1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_sdma_queues_per_engine = 2,
58 };
59 
60 static const struct kfd_device_info carrizo_device_info = {
61 	.asic_family = CHIP_CARRIZO,
62 	.max_pasid_bits = 16,
63 	/* max num of queues for CZ.TODO should be a dynamic value */
64 	.max_no_of_hqd	= 24,
65 	.doorbell_size  = 4,
66 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
67 	.event_interrupt_class = &event_interrupt_class_cik,
68 	.num_of_watch_points = 4,
69 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
70 	.supports_cwsr = true,
71 	.needs_iommu_device = true,
72 	.needs_pci_atomics = false,
73 	.num_sdma_engines = 2,
74 	.num_sdma_queues_per_engine = 2,
75 };
76 
77 static const struct kfd_device_info raven_device_info = {
78 	.asic_family = CHIP_RAVEN,
79 	.max_pasid_bits = 16,
80 	.max_no_of_hqd  = 24,
81 	.doorbell_size  = 8,
82 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
83 	.event_interrupt_class = &event_interrupt_class_v9,
84 	.num_of_watch_points = 4,
85 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
86 	.supports_cwsr = true,
87 	.needs_iommu_device = true,
88 	.needs_pci_atomics = true,
89 	.num_sdma_engines = 1,
90 	.num_sdma_queues_per_engine = 2,
91 };
92 #endif
93 
94 static const struct kfd_device_info hawaii_device_info = {
95 	.asic_family = CHIP_HAWAII,
96 	.max_pasid_bits = 16,
97 	/* max num of queues for KV.TODO should be a dynamic value */
98 	.max_no_of_hqd	= 24,
99 	.doorbell_size  = 4,
100 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
101 	.event_interrupt_class = &event_interrupt_class_cik,
102 	.num_of_watch_points = 4,
103 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
104 	.supports_cwsr = false,
105 	.needs_iommu_device = false,
106 	.needs_pci_atomics = false,
107 	.num_sdma_engines = 2,
108 	.num_sdma_queues_per_engine = 2,
109 };
110 
111 static const struct kfd_device_info tonga_device_info = {
112 	.asic_family = CHIP_TONGA,
113 	.max_pasid_bits = 16,
114 	.max_no_of_hqd  = 24,
115 	.doorbell_size  = 4,
116 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
117 	.event_interrupt_class = &event_interrupt_class_cik,
118 	.num_of_watch_points = 4,
119 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
120 	.supports_cwsr = false,
121 	.needs_iommu_device = false,
122 	.needs_pci_atomics = true,
123 	.num_sdma_engines = 2,
124 	.num_sdma_queues_per_engine = 2,
125 };
126 
127 static const struct kfd_device_info fiji_device_info = {
128 	.asic_family = CHIP_FIJI,
129 	.max_pasid_bits = 16,
130 	.max_no_of_hqd  = 24,
131 	.doorbell_size  = 4,
132 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
133 	.event_interrupt_class = &event_interrupt_class_cik,
134 	.num_of_watch_points = 4,
135 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
136 	.supports_cwsr = true,
137 	.needs_iommu_device = false,
138 	.needs_pci_atomics = true,
139 	.num_sdma_engines = 2,
140 	.num_sdma_queues_per_engine = 2,
141 };
142 
143 static const struct kfd_device_info fiji_vf_device_info = {
144 	.asic_family = CHIP_FIJI,
145 	.max_pasid_bits = 16,
146 	.max_no_of_hqd  = 24,
147 	.doorbell_size  = 4,
148 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
149 	.event_interrupt_class = &event_interrupt_class_cik,
150 	.num_of_watch_points = 4,
151 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
152 	.supports_cwsr = true,
153 	.needs_iommu_device = false,
154 	.needs_pci_atomics = false,
155 	.num_sdma_engines = 2,
156 	.num_sdma_queues_per_engine = 2,
157 };
158 
159 
160 static const struct kfd_device_info polaris10_device_info = {
161 	.asic_family = CHIP_POLARIS10,
162 	.max_pasid_bits = 16,
163 	.max_no_of_hqd  = 24,
164 	.doorbell_size  = 4,
165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166 	.event_interrupt_class = &event_interrupt_class_cik,
167 	.num_of_watch_points = 4,
168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169 	.supports_cwsr = true,
170 	.needs_iommu_device = false,
171 	.needs_pci_atomics = true,
172 	.num_sdma_engines = 2,
173 	.num_sdma_queues_per_engine = 2,
174 };
175 
176 static const struct kfd_device_info polaris10_vf_device_info = {
177 	.asic_family = CHIP_POLARIS10,
178 	.max_pasid_bits = 16,
179 	.max_no_of_hqd  = 24,
180 	.doorbell_size  = 4,
181 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
182 	.event_interrupt_class = &event_interrupt_class_cik,
183 	.num_of_watch_points = 4,
184 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
185 	.supports_cwsr = true,
186 	.needs_iommu_device = false,
187 	.needs_pci_atomics = false,
188 	.num_sdma_engines = 2,
189 	.num_sdma_queues_per_engine = 2,
190 };
191 
192 static const struct kfd_device_info polaris11_device_info = {
193 	.asic_family = CHIP_POLARIS11,
194 	.max_pasid_bits = 16,
195 	.max_no_of_hqd  = 24,
196 	.doorbell_size  = 4,
197 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
198 	.event_interrupt_class = &event_interrupt_class_cik,
199 	.num_of_watch_points = 4,
200 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
201 	.supports_cwsr = true,
202 	.needs_iommu_device = false,
203 	.needs_pci_atomics = true,
204 	.num_sdma_engines = 2,
205 	.num_sdma_queues_per_engine = 2,
206 };
207 
208 static const struct kfd_device_info polaris12_device_info = {
209 	.asic_family = CHIP_POLARIS12,
210 	.max_pasid_bits = 16,
211 	.max_no_of_hqd  = 24,
212 	.doorbell_size  = 4,
213 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
214 	.event_interrupt_class = &event_interrupt_class_cik,
215 	.num_of_watch_points = 4,
216 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
217 	.supports_cwsr = true,
218 	.needs_iommu_device = false,
219 	.needs_pci_atomics = true,
220 	.num_sdma_engines = 2,
221 	.num_sdma_queues_per_engine = 2,
222 };
223 
224 static const struct kfd_device_info vega10_device_info = {
225 	.asic_family = CHIP_VEGA10,
226 	.max_pasid_bits = 16,
227 	.max_no_of_hqd  = 24,
228 	.doorbell_size  = 8,
229 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
230 	.event_interrupt_class = &event_interrupt_class_v9,
231 	.num_of_watch_points = 4,
232 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
233 	.supports_cwsr = true,
234 	.needs_iommu_device = false,
235 	.needs_pci_atomics = false,
236 	.num_sdma_engines = 2,
237 	.num_sdma_queues_per_engine = 2,
238 };
239 
240 static const struct kfd_device_info vega10_vf_device_info = {
241 	.asic_family = CHIP_VEGA10,
242 	.max_pasid_bits = 16,
243 	.max_no_of_hqd  = 24,
244 	.doorbell_size  = 8,
245 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
246 	.event_interrupt_class = &event_interrupt_class_v9,
247 	.num_of_watch_points = 4,
248 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
249 	.supports_cwsr = true,
250 	.needs_iommu_device = false,
251 	.needs_pci_atomics = false,
252 	.num_sdma_engines = 2,
253 	.num_sdma_queues_per_engine = 2,
254 };
255 
256 static const struct kfd_device_info vega12_device_info = {
257 	.asic_family = CHIP_VEGA12,
258 	.max_pasid_bits = 16,
259 	.max_no_of_hqd  = 24,
260 	.doorbell_size  = 8,
261 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
262 	.event_interrupt_class = &event_interrupt_class_v9,
263 	.num_of_watch_points = 4,
264 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
265 	.supports_cwsr = true,
266 	.needs_iommu_device = false,
267 	.needs_pci_atomics = false,
268 	.num_sdma_engines = 2,
269 	.num_sdma_queues_per_engine = 2,
270 };
271 
272 static const struct kfd_device_info vega20_device_info = {
273 	.asic_family = CHIP_VEGA20,
274 	.max_pasid_bits = 16,
275 	.max_no_of_hqd	= 24,
276 	.doorbell_size	= 8,
277 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
278 	.event_interrupt_class = &event_interrupt_class_v9,
279 	.num_of_watch_points = 4,
280 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
281 	.supports_cwsr = true,
282 	.needs_iommu_device = false,
283 	.needs_pci_atomics = false,
284 	.num_sdma_engines = 2,
285 	.num_sdma_queues_per_engine = 8,
286 };
287 
288 struct kfd_deviceid {
289 	unsigned short did;
290 	const struct kfd_device_info *device_info;
291 };
292 
293 static const struct kfd_deviceid supported_devices[] = {
294 #ifdef KFD_SUPPORT_IOMMU_V2
295 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
296 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
297 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
298 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
299 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
300 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
301 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
302 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
303 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
304 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
305 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
306 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
307 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
308 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
309 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
310 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
311 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
312 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
313 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
314 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
315 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
316 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
317 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
318 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
319 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
320 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
321 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
322 	{ 0x15DD, &raven_device_info },		/* Raven */
323 #endif
324 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
325 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
326 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
327 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
328 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
329 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
330 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
331 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
332 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
333 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
334 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
335 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
336 	{ 0x6920, &tonga_device_info },		/* Tonga */
337 	{ 0x6921, &tonga_device_info },		/* Tonga */
338 	{ 0x6928, &tonga_device_info },		/* Tonga */
339 	{ 0x6929, &tonga_device_info },		/* Tonga */
340 	{ 0x692B, &tonga_device_info },		/* Tonga */
341 	{ 0x6938, &tonga_device_info },		/* Tonga */
342 	{ 0x6939, &tonga_device_info },		/* Tonga */
343 	{ 0x7300, &fiji_device_info },		/* Fiji */
344 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
345 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
346 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
347 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
348 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
349 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
350 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
351 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
352 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
353 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
354 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
355 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
356 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
357 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
358 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
359 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
360 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
361 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
362 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
363 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
364 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
365 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
366 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
367 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
368 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
369 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
370 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
371 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
372 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
373 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
374 	{ 0x6860, &vega10_device_info },	/* Vega10 */
375 	{ 0x6861, &vega10_device_info },	/* Vega10 */
376 	{ 0x6862, &vega10_device_info },	/* Vega10 */
377 	{ 0x6863, &vega10_device_info },	/* Vega10 */
378 	{ 0x6864, &vega10_device_info },	/* Vega10 */
379 	{ 0x6867, &vega10_device_info },	/* Vega10 */
380 	{ 0x6868, &vega10_device_info },	/* Vega10 */
381 	{ 0x6869, &vega10_device_info },	/* Vega10 */
382 	{ 0x686A, &vega10_device_info },	/* Vega10 */
383 	{ 0x686B, &vega10_device_info },	/* Vega10 */
384 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
385 	{ 0x686D, &vega10_device_info },	/* Vega10 */
386 	{ 0x686E, &vega10_device_info },	/* Vega10 */
387 	{ 0x686F, &vega10_device_info },	/* Vega10 */
388 	{ 0x687F, &vega10_device_info },	/* Vega10 */
389 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
390 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
391 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
392 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
393 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
394 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
395 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
396 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
397 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
398 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
399 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
400 	{ 0x66af, &vega20_device_info }		/* Vega20 */
401 };
402 
403 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
404 				unsigned int chunk_size);
405 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
406 
407 static int kfd_resume(struct kfd_dev *kfd);
408 
409 static const struct kfd_device_info *lookup_device_info(unsigned short did)
410 {
411 	size_t i;
412 
413 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
414 		if (supported_devices[i].did == did) {
415 			WARN_ON(!supported_devices[i].device_info);
416 			return supported_devices[i].device_info;
417 		}
418 	}
419 
420 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
421 		 did);
422 
423 	return NULL;
424 }
425 
426 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
427 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
428 {
429 	struct kfd_dev *kfd;
430 	int ret;
431 	const struct kfd_device_info *device_info =
432 					lookup_device_info(pdev->device);
433 
434 	if (!device_info) {
435 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
436 		return NULL;
437 	}
438 
439 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
440 	if (!kfd)
441 		return NULL;
442 
443 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
444 	 * 32 and 64-bit requests are possible and must be
445 	 * supported.
446 	 */
447 	ret = pci_enable_atomic_ops_to_root(pdev,
448 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
449 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
450 	if (device_info->needs_pci_atomics && ret < 0) {
451 		dev_info(kfd_device,
452 			 "skipped device %x:%x, PCI rejects atomics\n",
453 			 pdev->vendor, pdev->device);
454 		kfree(kfd);
455 		return NULL;
456 	} else if (!ret)
457 		kfd->pci_atomic_requested = true;
458 
459 	kfd->kgd = kgd;
460 	kfd->device_info = device_info;
461 	kfd->pdev = pdev;
462 	kfd->init_complete = false;
463 	kfd->kfd2kgd = f2g;
464 
465 	mutex_init(&kfd->doorbell_mutex);
466 	memset(&kfd->doorbell_available_index, 0,
467 		sizeof(kfd->doorbell_available_index));
468 
469 	atomic_set(&kfd->sram_ecc_flag, 0);
470 
471 	return kfd;
472 }
473 
474 static void kfd_cwsr_init(struct kfd_dev *kfd)
475 {
476 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
477 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
478 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
479 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
480 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
481 		} else {
482 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
483 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
484 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
485 		}
486 
487 		kfd->cwsr_enabled = true;
488 	}
489 }
490 
491 bool kgd2kfd_device_init(struct kfd_dev *kfd,
492 			 const struct kgd2kfd_shared_resources *gpu_resources)
493 {
494 	unsigned int size;
495 
496 	kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
497 			KGD_ENGINE_MEC1);
498 	kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
499 			KGD_ENGINE_SDMA1);
500 	kfd->shared_resources = *gpu_resources;
501 
502 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
503 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
504 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
505 			- kfd->vm_info.first_vmid_kfd + 1;
506 
507 	/* Verify module parameters regarding mapped process number*/
508 	if ((hws_max_conc_proc < 0)
509 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
510 		dev_err(kfd_device,
511 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
512 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
513 			kfd->vm_info.vmid_num_kfd);
514 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
515 	} else
516 		kfd->max_proc_per_quantum = hws_max_conc_proc;
517 
518 	/* calculate max size of mqds needed for queues */
519 	size = max_num_of_queues_per_device *
520 			kfd->device_info->mqd_size_aligned;
521 
522 	/*
523 	 * calculate max size of runlist packet.
524 	 * There can be only 2 packets at once
525 	 */
526 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
527 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
528 		+ sizeof(struct pm4_mes_runlist)) * 2;
529 
530 	/* Add size of HIQ & DIQ */
531 	size += KFD_KERNEL_QUEUE_SIZE * 2;
532 
533 	/* add another 512KB for all other allocations on gart (HPD, fences) */
534 	size += 512 * 1024;
535 
536 	if (amdgpu_amdkfd_alloc_gtt_mem(
537 			kfd->kgd, size, &kfd->gtt_mem,
538 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
539 			false)) {
540 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
541 		goto out;
542 	}
543 
544 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
545 
546 	/* Initialize GTT sa with 512 byte chunk size */
547 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
548 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
549 		goto kfd_gtt_sa_init_error;
550 	}
551 
552 	if (kfd_doorbell_init(kfd)) {
553 		dev_err(kfd_device,
554 			"Error initializing doorbell aperture\n");
555 		goto kfd_doorbell_error;
556 	}
557 
558 	if (kfd->kfd2kgd->get_hive_id)
559 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
560 
561 	if (kfd_topology_add_device(kfd)) {
562 		dev_err(kfd_device, "Error adding device to topology\n");
563 		goto kfd_topology_add_device_error;
564 	}
565 
566 	if (kfd_interrupt_init(kfd)) {
567 		dev_err(kfd_device, "Error initializing interrupts\n");
568 		goto kfd_interrupt_error;
569 	}
570 
571 	kfd->dqm = device_queue_manager_init(kfd);
572 	if (!kfd->dqm) {
573 		dev_err(kfd_device, "Error initializing queue manager\n");
574 		goto device_queue_manager_error;
575 	}
576 
577 	if (kfd_iommu_device_init(kfd)) {
578 		dev_err(kfd_device, "Error initializing iommuv2\n");
579 		goto device_iommu_error;
580 	}
581 
582 	kfd_cwsr_init(kfd);
583 
584 	if (kfd_resume(kfd))
585 		goto kfd_resume_error;
586 
587 	kfd->dbgmgr = NULL;
588 
589 	kfd->init_complete = true;
590 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
591 		 kfd->pdev->device);
592 
593 	pr_debug("Starting kfd with the following scheduling policy %d\n",
594 		kfd->dqm->sched_policy);
595 
596 	goto out;
597 
598 kfd_resume_error:
599 device_iommu_error:
600 	device_queue_manager_uninit(kfd->dqm);
601 device_queue_manager_error:
602 	kfd_interrupt_exit(kfd);
603 kfd_interrupt_error:
604 	kfd_topology_remove_device(kfd);
605 kfd_topology_add_device_error:
606 	kfd_doorbell_fini(kfd);
607 kfd_doorbell_error:
608 	kfd_gtt_sa_fini(kfd);
609 kfd_gtt_sa_init_error:
610 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
611 	dev_err(kfd_device,
612 		"device %x:%x NOT added due to errors\n",
613 		kfd->pdev->vendor, kfd->pdev->device);
614 out:
615 	return kfd->init_complete;
616 }
617 
618 void kgd2kfd_device_exit(struct kfd_dev *kfd)
619 {
620 	if (kfd->init_complete) {
621 		kgd2kfd_suspend(kfd);
622 		device_queue_manager_uninit(kfd->dqm);
623 		kfd_interrupt_exit(kfd);
624 		kfd_topology_remove_device(kfd);
625 		kfd_doorbell_fini(kfd);
626 		kfd_gtt_sa_fini(kfd);
627 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
628 	}
629 
630 	kfree(kfd);
631 }
632 
633 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
634 {
635 	if (!kfd->init_complete)
636 		return 0;
637 	kgd2kfd_suspend(kfd);
638 
639 	/* hold dqm->lock to prevent further execution*/
640 	dqm_lock(kfd->dqm);
641 
642 	kfd_signal_reset_event(kfd);
643 	return 0;
644 }
645 
646 /*
647  * Fix me. KFD won't be able to resume existing process for now.
648  * We will keep all existing process in a evicted state and
649  * wait the process to be terminated.
650  */
651 
652 int kgd2kfd_post_reset(struct kfd_dev *kfd)
653 {
654 	int ret, count;
655 
656 	if (!kfd->init_complete)
657 		return 0;
658 
659 	dqm_unlock(kfd->dqm);
660 
661 	ret = kfd_resume(kfd);
662 	if (ret)
663 		return ret;
664 	count = atomic_dec_return(&kfd_locked);
665 	WARN_ONCE(count != 0, "KFD reset ref. error");
666 
667 	atomic_set(&kfd->sram_ecc_flag, 0);
668 
669 	return 0;
670 }
671 
672 bool kfd_is_locked(void)
673 {
674 	return  (atomic_read(&kfd_locked) > 0);
675 }
676 
677 void kgd2kfd_suspend(struct kfd_dev *kfd)
678 {
679 	if (!kfd->init_complete)
680 		return;
681 
682 	/* For first KFD device suspend all the KFD processes */
683 	if (atomic_inc_return(&kfd_locked) == 1)
684 		kfd_suspend_all_processes();
685 
686 	kfd->dqm->ops.stop(kfd->dqm);
687 
688 	kfd_iommu_suspend(kfd);
689 }
690 
691 int kgd2kfd_resume(struct kfd_dev *kfd)
692 {
693 	int ret, count;
694 
695 	if (!kfd->init_complete)
696 		return 0;
697 
698 	ret = kfd_resume(kfd);
699 	if (ret)
700 		return ret;
701 
702 	count = atomic_dec_return(&kfd_locked);
703 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
704 	if (count == 0)
705 		ret = kfd_resume_all_processes();
706 
707 	return ret;
708 }
709 
710 static int kfd_resume(struct kfd_dev *kfd)
711 {
712 	int err = 0;
713 
714 	err = kfd_iommu_resume(kfd);
715 	if (err) {
716 		dev_err(kfd_device,
717 			"Failed to resume IOMMU for device %x:%x\n",
718 			kfd->pdev->vendor, kfd->pdev->device);
719 		return err;
720 	}
721 
722 	err = kfd->dqm->ops.start(kfd->dqm);
723 	if (err) {
724 		dev_err(kfd_device,
725 			"Error starting queue manager for device %x:%x\n",
726 			kfd->pdev->vendor, kfd->pdev->device);
727 		goto dqm_start_error;
728 	}
729 
730 	return err;
731 
732 dqm_start_error:
733 	kfd_iommu_suspend(kfd);
734 	return err;
735 }
736 
737 /* This is called directly from KGD at ISR. */
738 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
739 {
740 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
741 	bool is_patched = false;
742 	unsigned long flags;
743 
744 	if (!kfd->init_complete)
745 		return;
746 
747 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
748 		dev_err_once(kfd_device, "Ring entry too small\n");
749 		return;
750 	}
751 
752 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
753 
754 	if (kfd->interrupts_active
755 	    && interrupt_is_wanted(kfd, ih_ring_entry,
756 				   patched_ihre, &is_patched)
757 	    && enqueue_ih_ring_entry(kfd,
758 				     is_patched ? patched_ihre : ih_ring_entry))
759 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
760 
761 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
762 }
763 
764 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
765 {
766 	struct kfd_process *p;
767 	int r;
768 
769 	/* Because we are called from arbitrary context (workqueue) as opposed
770 	 * to process context, kfd_process could attempt to exit while we are
771 	 * running so the lookup function increments the process ref count.
772 	 */
773 	p = kfd_lookup_process_by_mm(mm);
774 	if (!p)
775 		return -ESRCH;
776 
777 	r = kfd_process_evict_queues(p);
778 
779 	kfd_unref_process(p);
780 	return r;
781 }
782 
783 int kgd2kfd_resume_mm(struct mm_struct *mm)
784 {
785 	struct kfd_process *p;
786 	int r;
787 
788 	/* Because we are called from arbitrary context (workqueue) as opposed
789 	 * to process context, kfd_process could attempt to exit while we are
790 	 * running so the lookup function increments the process ref count.
791 	 */
792 	p = kfd_lookup_process_by_mm(mm);
793 	if (!p)
794 		return -ESRCH;
795 
796 	r = kfd_process_restore_queues(p);
797 
798 	kfd_unref_process(p);
799 	return r;
800 }
801 
802 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
803  *   prepare for safe eviction of KFD BOs that belong to the specified
804  *   process.
805  *
806  * @mm: mm_struct that identifies the specified KFD process
807  * @fence: eviction fence attached to KFD process BOs
808  *
809  */
810 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
811 					       struct dma_fence *fence)
812 {
813 	struct kfd_process *p;
814 	unsigned long active_time;
815 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
816 
817 	if (!fence)
818 		return -EINVAL;
819 
820 	if (dma_fence_is_signaled(fence))
821 		return 0;
822 
823 	p = kfd_lookup_process_by_mm(mm);
824 	if (!p)
825 		return -ENODEV;
826 
827 	if (fence->seqno == p->last_eviction_seqno)
828 		goto out;
829 
830 	p->last_eviction_seqno = fence->seqno;
831 
832 	/* Avoid KFD process starvation. Wait for at least
833 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
834 	 */
835 	active_time = get_jiffies_64() - p->last_restore_timestamp;
836 	if (delay_jiffies > active_time)
837 		delay_jiffies -= active_time;
838 	else
839 		delay_jiffies = 0;
840 
841 	/* During process initialization eviction_work.dwork is initialized
842 	 * to kfd_evict_bo_worker
843 	 */
844 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
845 out:
846 	kfd_unref_process(p);
847 	return 0;
848 }
849 
850 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
851 				unsigned int chunk_size)
852 {
853 	unsigned int num_of_longs;
854 
855 	if (WARN_ON(buf_size < chunk_size))
856 		return -EINVAL;
857 	if (WARN_ON(buf_size == 0))
858 		return -EINVAL;
859 	if (WARN_ON(chunk_size == 0))
860 		return -EINVAL;
861 
862 	kfd->gtt_sa_chunk_size = chunk_size;
863 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
864 
865 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
866 		BITS_PER_LONG;
867 
868 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
869 
870 	if (!kfd->gtt_sa_bitmap)
871 		return -ENOMEM;
872 
873 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
874 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
875 
876 	mutex_init(&kfd->gtt_sa_lock);
877 
878 	return 0;
879 
880 }
881 
882 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
883 {
884 	mutex_destroy(&kfd->gtt_sa_lock);
885 	kfree(kfd->gtt_sa_bitmap);
886 }
887 
888 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
889 						unsigned int bit_num,
890 						unsigned int chunk_size)
891 {
892 	return start_addr + bit_num * chunk_size;
893 }
894 
895 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
896 						unsigned int bit_num,
897 						unsigned int chunk_size)
898 {
899 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
900 }
901 
902 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
903 			struct kfd_mem_obj **mem_obj)
904 {
905 	unsigned int found, start_search, cur_size;
906 
907 	if (size == 0)
908 		return -EINVAL;
909 
910 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
911 		return -ENOMEM;
912 
913 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
914 	if (!(*mem_obj))
915 		return -ENOMEM;
916 
917 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
918 
919 	start_search = 0;
920 
921 	mutex_lock(&kfd->gtt_sa_lock);
922 
923 kfd_gtt_restart_search:
924 	/* Find the first chunk that is free */
925 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
926 					kfd->gtt_sa_num_of_chunks,
927 					start_search);
928 
929 	pr_debug("Found = %d\n", found);
930 
931 	/* If there wasn't any free chunk, bail out */
932 	if (found == kfd->gtt_sa_num_of_chunks)
933 		goto kfd_gtt_no_free_chunk;
934 
935 	/* Update fields of mem_obj */
936 	(*mem_obj)->range_start = found;
937 	(*mem_obj)->range_end = found;
938 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
939 					kfd->gtt_start_gpu_addr,
940 					found,
941 					kfd->gtt_sa_chunk_size);
942 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
943 					kfd->gtt_start_cpu_ptr,
944 					found,
945 					kfd->gtt_sa_chunk_size);
946 
947 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
948 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
949 
950 	/* If we need only one chunk, mark it as allocated and get out */
951 	if (size <= kfd->gtt_sa_chunk_size) {
952 		pr_debug("Single bit\n");
953 		set_bit(found, kfd->gtt_sa_bitmap);
954 		goto kfd_gtt_out;
955 	}
956 
957 	/* Otherwise, try to see if we have enough contiguous chunks */
958 	cur_size = size - kfd->gtt_sa_chunk_size;
959 	do {
960 		(*mem_obj)->range_end =
961 			find_next_zero_bit(kfd->gtt_sa_bitmap,
962 					kfd->gtt_sa_num_of_chunks, ++found);
963 		/*
964 		 * If next free chunk is not contiguous than we need to
965 		 * restart our search from the last free chunk we found (which
966 		 * wasn't contiguous to the previous ones
967 		 */
968 		if ((*mem_obj)->range_end != found) {
969 			start_search = found;
970 			goto kfd_gtt_restart_search;
971 		}
972 
973 		/*
974 		 * If we reached end of buffer, bail out with error
975 		 */
976 		if (found == kfd->gtt_sa_num_of_chunks)
977 			goto kfd_gtt_no_free_chunk;
978 
979 		/* Check if we don't need another chunk */
980 		if (cur_size <= kfd->gtt_sa_chunk_size)
981 			cur_size = 0;
982 		else
983 			cur_size -= kfd->gtt_sa_chunk_size;
984 
985 	} while (cur_size > 0);
986 
987 	pr_debug("range_start = %d, range_end = %d\n",
988 		(*mem_obj)->range_start, (*mem_obj)->range_end);
989 
990 	/* Mark the chunks as allocated */
991 	for (found = (*mem_obj)->range_start;
992 		found <= (*mem_obj)->range_end;
993 		found++)
994 		set_bit(found, kfd->gtt_sa_bitmap);
995 
996 kfd_gtt_out:
997 	mutex_unlock(&kfd->gtt_sa_lock);
998 	return 0;
999 
1000 kfd_gtt_no_free_chunk:
1001 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1002 	mutex_unlock(&kfd->gtt_sa_lock);
1003 	kfree(mem_obj);
1004 	return -ENOMEM;
1005 }
1006 
1007 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1008 {
1009 	unsigned int bit;
1010 
1011 	/* Act like kfree when trying to free a NULL object */
1012 	if (!mem_obj)
1013 		return 0;
1014 
1015 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1016 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1017 
1018 	mutex_lock(&kfd->gtt_sa_lock);
1019 
1020 	/* Mark the chunks as free */
1021 	for (bit = mem_obj->range_start;
1022 		bit <= mem_obj->range_end;
1023 		bit++)
1024 		clear_bit(bit, kfd->gtt_sa_bitmap);
1025 
1026 	mutex_unlock(&kfd->gtt_sa_lock);
1027 
1028 	kfree(mem_obj);
1029 	return 0;
1030 }
1031 
1032 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1033 {
1034 	if (kfd)
1035 		atomic_inc(&kfd->sram_ecc_flag);
1036 }
1037 
1038 #if defined(CONFIG_DEBUG_FS)
1039 
1040 /* This function will send a package to HIQ to hang the HWS
1041  * which will trigger a GPU reset and bring the HWS back to normal state
1042  */
1043 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1044 {
1045 	int r = 0;
1046 
1047 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1048 		pr_err("HWS is not enabled");
1049 		return -EINVAL;
1050 	}
1051 
1052 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1053 	if (!r)
1054 		r = dqm_debugfs_execute_queues(dev->dqm);
1055 
1056 	return r;
1057 }
1058 
1059 #endif
1060