1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/amd-iommu.h> 24 #include <linux/bsearch.h> 25 #include <linux/pci.h> 26 #include <linux/slab.h> 27 #include "kfd_priv.h" 28 #include "kfd_device_queue_manager.h" 29 #include "kfd_pm4_headers.h" 30 31 #define MQD_SIZE_ALIGNED 768 32 33 static const struct kfd_device_info kaveri_device_info = { 34 .asic_family = CHIP_KAVERI, 35 .max_pasid_bits = 16, 36 .ih_ring_entry_size = 4 * sizeof(uint32_t), 37 .mqd_size_aligned = MQD_SIZE_ALIGNED 38 }; 39 40 static const struct kfd_device_info carrizo_device_info = { 41 .asic_family = CHIP_CARRIZO, 42 .max_pasid_bits = 16, 43 .ih_ring_entry_size = 4 * sizeof(uint32_t), 44 .num_of_watch_points = 4, 45 .mqd_size_aligned = MQD_SIZE_ALIGNED 46 }; 47 48 struct kfd_deviceid { 49 unsigned short did; 50 const struct kfd_device_info *device_info; 51 }; 52 53 /* Please keep this sorted by increasing device id. */ 54 static const struct kfd_deviceid supported_devices[] = { 55 { 0x1304, &kaveri_device_info }, /* Kaveri */ 56 { 0x1305, &kaveri_device_info }, /* Kaveri */ 57 { 0x1306, &kaveri_device_info }, /* Kaveri */ 58 { 0x1307, &kaveri_device_info }, /* Kaveri */ 59 { 0x1309, &kaveri_device_info }, /* Kaveri */ 60 { 0x130A, &kaveri_device_info }, /* Kaveri */ 61 { 0x130B, &kaveri_device_info }, /* Kaveri */ 62 { 0x130C, &kaveri_device_info }, /* Kaveri */ 63 { 0x130D, &kaveri_device_info }, /* Kaveri */ 64 { 0x130E, &kaveri_device_info }, /* Kaveri */ 65 { 0x130F, &kaveri_device_info }, /* Kaveri */ 66 { 0x1310, &kaveri_device_info }, /* Kaveri */ 67 { 0x1311, &kaveri_device_info }, /* Kaveri */ 68 { 0x1312, &kaveri_device_info }, /* Kaveri */ 69 { 0x1313, &kaveri_device_info }, /* Kaveri */ 70 { 0x1315, &kaveri_device_info }, /* Kaveri */ 71 { 0x1316, &kaveri_device_info }, /* Kaveri */ 72 { 0x1317, &kaveri_device_info }, /* Kaveri */ 73 { 0x1318, &kaveri_device_info }, /* Kaveri */ 74 { 0x131B, &kaveri_device_info }, /* Kaveri */ 75 { 0x131C, &kaveri_device_info }, /* Kaveri */ 76 { 0x131D, &kaveri_device_info } /* Kaveri */ 77 }; 78 79 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 80 unsigned int chunk_size); 81 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 82 83 static const struct kfd_device_info *lookup_device_info(unsigned short did) 84 { 85 size_t i; 86 87 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) { 88 if (supported_devices[i].did == did) { 89 BUG_ON(supported_devices[i].device_info == NULL); 90 return supported_devices[i].device_info; 91 } 92 } 93 94 return NULL; 95 } 96 97 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 98 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g) 99 { 100 struct kfd_dev *kfd; 101 102 const struct kfd_device_info *device_info = 103 lookup_device_info(pdev->device); 104 105 if (!device_info) 106 return NULL; 107 108 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 109 if (!kfd) 110 return NULL; 111 112 kfd->kgd = kgd; 113 kfd->device_info = device_info; 114 kfd->pdev = pdev; 115 kfd->init_complete = false; 116 kfd->kfd2kgd = f2g; 117 118 mutex_init(&kfd->doorbell_mutex); 119 memset(&kfd->doorbell_available_index, 0, 120 sizeof(kfd->doorbell_available_index)); 121 122 return kfd; 123 } 124 125 static bool device_iommu_pasid_init(struct kfd_dev *kfd) 126 { 127 const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP | 128 AMD_IOMMU_DEVICE_FLAG_PRI_SUP | 129 AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 130 131 struct amd_iommu_device_info iommu_info; 132 unsigned int pasid_limit; 133 int err; 134 135 err = amd_iommu_device_info(kfd->pdev, &iommu_info); 136 if (err < 0) { 137 dev_err(kfd_device, 138 "error getting iommu info. is the iommu enabled?\n"); 139 return false; 140 } 141 142 if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) { 143 dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n", 144 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0, 145 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0, 146 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0); 147 return false; 148 } 149 150 pasid_limit = min_t(unsigned int, 151 (unsigned int)1 << kfd->device_info->max_pasid_bits, 152 iommu_info.max_pasids); 153 /* 154 * last pasid is used for kernel queues doorbells 155 * in the future the last pasid might be used for a kernel thread. 156 */ 157 pasid_limit = min_t(unsigned int, 158 pasid_limit, 159 kfd->doorbell_process_limit - 1); 160 161 err = amd_iommu_init_device(kfd->pdev, pasid_limit); 162 if (err < 0) { 163 dev_err(kfd_device, "error initializing iommu device\n"); 164 return false; 165 } 166 167 if (!kfd_set_pasid_limit(pasid_limit)) { 168 dev_err(kfd_device, "error setting pasid limit\n"); 169 amd_iommu_free_device(kfd->pdev); 170 return false; 171 } 172 173 return true; 174 } 175 176 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid) 177 { 178 struct kfd_dev *dev = kfd_device_by_pci_dev(pdev); 179 180 if (dev) 181 kfd_unbind_process_from_device(dev, pasid); 182 } 183 184 bool kgd2kfd_device_init(struct kfd_dev *kfd, 185 const struct kgd2kfd_shared_resources *gpu_resources) 186 { 187 unsigned int size; 188 189 kfd->shared_resources = *gpu_resources; 190 191 /* calculate max size of mqds needed for queues */ 192 size = max_num_of_queues_per_device * 193 kfd->device_info->mqd_size_aligned; 194 195 /* 196 * calculate max size of runlist packet. 197 * There can be only 2 packets at once 198 */ 199 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) + 200 max_num_of_queues_per_device * 201 sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2; 202 203 /* Add size of HIQ & DIQ */ 204 size += KFD_KERNEL_QUEUE_SIZE * 2; 205 206 /* add another 512KB for all other allocations on gart (HPD, fences) */ 207 size += 512 * 1024; 208 209 if (kfd->kfd2kgd->init_gtt_mem_allocation( 210 kfd->kgd, size, &kfd->gtt_mem, 211 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){ 212 dev_err(kfd_device, 213 "Could not allocate %d bytes for device (%x:%x)\n", 214 size, kfd->pdev->vendor, kfd->pdev->device); 215 goto out; 216 } 217 218 dev_info(kfd_device, 219 "Allocated %d bytes on gart for device(%x:%x)\n", 220 size, kfd->pdev->vendor, kfd->pdev->device); 221 222 /* Initialize GTT sa with 512 byte chunk size */ 223 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 224 dev_err(kfd_device, 225 "Error initializing gtt sub-allocator\n"); 226 goto kfd_gtt_sa_init_error; 227 } 228 229 kfd_doorbell_init(kfd); 230 231 if (kfd_topology_add_device(kfd) != 0) { 232 dev_err(kfd_device, 233 "Error adding device (%x:%x) to topology\n", 234 kfd->pdev->vendor, kfd->pdev->device); 235 goto kfd_topology_add_device_error; 236 } 237 238 if (!device_iommu_pasid_init(kfd)) { 239 dev_err(kfd_device, 240 "Error initializing iommuv2 for device (%x:%x)\n", 241 kfd->pdev->vendor, kfd->pdev->device); 242 goto device_iommu_pasid_error; 243 } 244 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, 245 iommu_pasid_shutdown_callback); 246 247 kfd->dqm = device_queue_manager_init(kfd); 248 if (!kfd->dqm) { 249 dev_err(kfd_device, 250 "Error initializing queue manager for device (%x:%x)\n", 251 kfd->pdev->vendor, kfd->pdev->device); 252 goto device_queue_manager_error; 253 } 254 255 if (kfd->dqm->ops.start(kfd->dqm) != 0) { 256 dev_err(kfd_device, 257 "Error starting queuen manager for device (%x:%x)\n", 258 kfd->pdev->vendor, kfd->pdev->device); 259 goto dqm_start_error; 260 } 261 262 kfd->init_complete = true; 263 dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor, 264 kfd->pdev->device); 265 266 pr_debug("kfd: Starting kfd with the following scheduling policy %d\n", 267 sched_policy); 268 269 goto out; 270 271 dqm_start_error: 272 device_queue_manager_uninit(kfd->dqm); 273 device_queue_manager_error: 274 amd_iommu_free_device(kfd->pdev); 275 device_iommu_pasid_error: 276 kfd_topology_remove_device(kfd); 277 kfd_topology_add_device_error: 278 kfd_gtt_sa_fini(kfd); 279 kfd_gtt_sa_init_error: 280 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); 281 dev_err(kfd_device, 282 "device (%x:%x) NOT added due to errors\n", 283 kfd->pdev->vendor, kfd->pdev->device); 284 out: 285 return kfd->init_complete; 286 } 287 288 void kgd2kfd_device_exit(struct kfd_dev *kfd) 289 { 290 if (kfd->init_complete) { 291 device_queue_manager_uninit(kfd->dqm); 292 amd_iommu_free_device(kfd->pdev); 293 kfd_topology_remove_device(kfd); 294 kfd_gtt_sa_fini(kfd); 295 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); 296 } 297 298 kfree(kfd); 299 } 300 301 void kgd2kfd_suspend(struct kfd_dev *kfd) 302 { 303 BUG_ON(kfd == NULL); 304 305 if (kfd->init_complete) { 306 kfd->dqm->ops.stop(kfd->dqm); 307 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL); 308 amd_iommu_free_device(kfd->pdev); 309 } 310 } 311 312 int kgd2kfd_resume(struct kfd_dev *kfd) 313 { 314 unsigned int pasid_limit; 315 int err; 316 317 BUG_ON(kfd == NULL); 318 319 pasid_limit = kfd_get_pasid_limit(); 320 321 if (kfd->init_complete) { 322 err = amd_iommu_init_device(kfd->pdev, pasid_limit); 323 if (err < 0) 324 return -ENXIO; 325 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, 326 iommu_pasid_shutdown_callback); 327 kfd->dqm->ops.start(kfd->dqm); 328 } 329 330 return 0; 331 } 332 333 /* This is called directly from KGD at ISR. */ 334 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 335 { 336 /* Process interrupts / schedule work as necessary */ 337 } 338 339 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 340 unsigned int chunk_size) 341 { 342 unsigned int num_of_bits; 343 344 BUG_ON(!kfd); 345 BUG_ON(!kfd->gtt_mem); 346 BUG_ON(buf_size < chunk_size); 347 BUG_ON(buf_size == 0); 348 BUG_ON(chunk_size == 0); 349 350 kfd->gtt_sa_chunk_size = chunk_size; 351 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 352 353 num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE; 354 BUG_ON(num_of_bits == 0); 355 356 kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL); 357 358 if (!kfd->gtt_sa_bitmap) 359 return -ENOMEM; 360 361 pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 362 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 363 364 mutex_init(&kfd->gtt_sa_lock); 365 366 return 0; 367 368 } 369 370 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 371 { 372 mutex_destroy(&kfd->gtt_sa_lock); 373 kfree(kfd->gtt_sa_bitmap); 374 } 375 376 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 377 unsigned int bit_num, 378 unsigned int chunk_size) 379 { 380 return start_addr + bit_num * chunk_size; 381 } 382 383 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 384 unsigned int bit_num, 385 unsigned int chunk_size) 386 { 387 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 388 } 389 390 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 391 struct kfd_mem_obj **mem_obj) 392 { 393 unsigned int found, start_search, cur_size; 394 395 BUG_ON(!kfd); 396 397 if (size == 0) 398 return -EINVAL; 399 400 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 401 return -ENOMEM; 402 403 *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 404 if ((*mem_obj) == NULL) 405 return -ENOMEM; 406 407 pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size); 408 409 start_search = 0; 410 411 mutex_lock(&kfd->gtt_sa_lock); 412 413 kfd_gtt_restart_search: 414 /* Find the first chunk that is free */ 415 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 416 kfd->gtt_sa_num_of_chunks, 417 start_search); 418 419 pr_debug("kfd: found = %d\n", found); 420 421 /* If there wasn't any free chunk, bail out */ 422 if (found == kfd->gtt_sa_num_of_chunks) 423 goto kfd_gtt_no_free_chunk; 424 425 /* Update fields of mem_obj */ 426 (*mem_obj)->range_start = found; 427 (*mem_obj)->range_end = found; 428 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 429 kfd->gtt_start_gpu_addr, 430 found, 431 kfd->gtt_sa_chunk_size); 432 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 433 kfd->gtt_start_cpu_ptr, 434 found, 435 kfd->gtt_sa_chunk_size); 436 437 pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n", 438 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 439 440 /* If we need only one chunk, mark it as allocated and get out */ 441 if (size <= kfd->gtt_sa_chunk_size) { 442 pr_debug("kfd: single bit\n"); 443 set_bit(found, kfd->gtt_sa_bitmap); 444 goto kfd_gtt_out; 445 } 446 447 /* Otherwise, try to see if we have enough contiguous chunks */ 448 cur_size = size - kfd->gtt_sa_chunk_size; 449 do { 450 (*mem_obj)->range_end = 451 find_next_zero_bit(kfd->gtt_sa_bitmap, 452 kfd->gtt_sa_num_of_chunks, ++found); 453 /* 454 * If next free chunk is not contiguous than we need to 455 * restart our search from the last free chunk we found (which 456 * wasn't contiguous to the previous ones 457 */ 458 if ((*mem_obj)->range_end != found) { 459 start_search = found; 460 goto kfd_gtt_restart_search; 461 } 462 463 /* 464 * If we reached end of buffer, bail out with error 465 */ 466 if (found == kfd->gtt_sa_num_of_chunks) 467 goto kfd_gtt_no_free_chunk; 468 469 /* Check if we don't need another chunk */ 470 if (cur_size <= kfd->gtt_sa_chunk_size) 471 cur_size = 0; 472 else 473 cur_size -= kfd->gtt_sa_chunk_size; 474 475 } while (cur_size > 0); 476 477 pr_debug("kfd: range_start = %d, range_end = %d\n", 478 (*mem_obj)->range_start, (*mem_obj)->range_end); 479 480 /* Mark the chunks as allocated */ 481 for (found = (*mem_obj)->range_start; 482 found <= (*mem_obj)->range_end; 483 found++) 484 set_bit(found, kfd->gtt_sa_bitmap); 485 486 kfd_gtt_out: 487 mutex_unlock(&kfd->gtt_sa_lock); 488 return 0; 489 490 kfd_gtt_no_free_chunk: 491 pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj); 492 mutex_unlock(&kfd->gtt_sa_lock); 493 kfree(mem_obj); 494 return -ENOMEM; 495 } 496 497 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) 498 { 499 unsigned int bit; 500 501 BUG_ON(!kfd); 502 503 /* Act like kfree when trying to free a NULL object */ 504 if (!mem_obj) 505 return 0; 506 507 pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n", 508 mem_obj, mem_obj->range_start, mem_obj->range_end); 509 510 mutex_lock(&kfd->gtt_sa_lock); 511 512 /* Mark the chunks as free */ 513 for (bit = mem_obj->range_start; 514 bit <= mem_obj->range_end; 515 bit++) 516 clear_bit(bit, kfd->gtt_sa_bitmap); 517 518 mutex_unlock(&kfd->gtt_sa_lock); 519 520 kfree(mem_obj); 521 return 0; 522 } 523