1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/bsearch.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include "kfd_priv.h" 27 #include "kfd_device_queue_manager.h" 28 #include "kfd_pm4_headers_vi.h" 29 #include "cwsr_trap_handler.h" 30 #include "kfd_iommu.h" 31 #include "amdgpu_amdkfd.h" 32 #include "kfd_smi_events.h" 33 34 #define MQD_SIZE_ALIGNED 768 35 36 /* 37 * kfd_locked is used to lock the kfd driver during suspend or reset 38 * once locked, kfd driver will stop any further GPU execution. 39 * create process (open) will return -EAGAIN. 40 */ 41 static atomic_t kfd_locked = ATOMIC_INIT(0); 42 43 #ifdef CONFIG_DRM_AMDGPU_CIK 44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; 45 #endif 46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; 47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; 48 extern const struct kfd2kgd_calls arcturus_kfd2kgd; 49 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; 50 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd; 51 52 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = { 53 #ifdef KFD_SUPPORT_IOMMU_V2 54 #ifdef CONFIG_DRM_AMDGPU_CIK 55 [CHIP_KAVERI] = &gfx_v7_kfd2kgd, 56 #endif 57 [CHIP_CARRIZO] = &gfx_v8_kfd2kgd, 58 [CHIP_RAVEN] = &gfx_v9_kfd2kgd, 59 #endif 60 #ifdef CONFIG_DRM_AMDGPU_CIK 61 [CHIP_HAWAII] = &gfx_v7_kfd2kgd, 62 #endif 63 [CHIP_TONGA] = &gfx_v8_kfd2kgd, 64 [CHIP_FIJI] = &gfx_v8_kfd2kgd, 65 [CHIP_POLARIS10] = &gfx_v8_kfd2kgd, 66 [CHIP_POLARIS11] = &gfx_v8_kfd2kgd, 67 [CHIP_POLARIS12] = &gfx_v8_kfd2kgd, 68 [CHIP_VEGAM] = &gfx_v8_kfd2kgd, 69 [CHIP_VEGA10] = &gfx_v9_kfd2kgd, 70 [CHIP_VEGA12] = &gfx_v9_kfd2kgd, 71 [CHIP_VEGA20] = &gfx_v9_kfd2kgd, 72 [CHIP_RENOIR] = &gfx_v9_kfd2kgd, 73 [CHIP_ARCTURUS] = &arcturus_kfd2kgd, 74 [CHIP_NAVI10] = &gfx_v10_kfd2kgd, 75 [CHIP_NAVI12] = &gfx_v10_kfd2kgd, 76 [CHIP_NAVI14] = &gfx_v10_kfd2kgd, 77 [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd, 78 [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd, 79 }; 80 81 #ifdef KFD_SUPPORT_IOMMU_V2 82 static const struct kfd_device_info kaveri_device_info = { 83 .asic_family = CHIP_KAVERI, 84 .asic_name = "kaveri", 85 .max_pasid_bits = 16, 86 /* max num of queues for KV.TODO should be a dynamic value */ 87 .max_no_of_hqd = 24, 88 .doorbell_size = 4, 89 .ih_ring_entry_size = 4 * sizeof(uint32_t), 90 .event_interrupt_class = &event_interrupt_class_cik, 91 .num_of_watch_points = 4, 92 .mqd_size_aligned = MQD_SIZE_ALIGNED, 93 .supports_cwsr = false, 94 .needs_iommu_device = true, 95 .needs_pci_atomics = false, 96 .num_sdma_engines = 2, 97 .num_xgmi_sdma_engines = 0, 98 .num_sdma_queues_per_engine = 2, 99 }; 100 101 static const struct kfd_device_info carrizo_device_info = { 102 .asic_family = CHIP_CARRIZO, 103 .asic_name = "carrizo", 104 .max_pasid_bits = 16, 105 /* max num of queues for CZ.TODO should be a dynamic value */ 106 .max_no_of_hqd = 24, 107 .doorbell_size = 4, 108 .ih_ring_entry_size = 4 * sizeof(uint32_t), 109 .event_interrupt_class = &event_interrupt_class_cik, 110 .num_of_watch_points = 4, 111 .mqd_size_aligned = MQD_SIZE_ALIGNED, 112 .supports_cwsr = true, 113 .needs_iommu_device = true, 114 .needs_pci_atomics = false, 115 .num_sdma_engines = 2, 116 .num_xgmi_sdma_engines = 0, 117 .num_sdma_queues_per_engine = 2, 118 }; 119 #endif 120 121 static const struct kfd_device_info raven_device_info = { 122 .asic_family = CHIP_RAVEN, 123 .asic_name = "raven", 124 .max_pasid_bits = 16, 125 .max_no_of_hqd = 24, 126 .doorbell_size = 8, 127 .ih_ring_entry_size = 8 * sizeof(uint32_t), 128 .event_interrupt_class = &event_interrupt_class_v9, 129 .num_of_watch_points = 4, 130 .mqd_size_aligned = MQD_SIZE_ALIGNED, 131 .supports_cwsr = true, 132 .needs_iommu_device = true, 133 .needs_pci_atomics = true, 134 .num_sdma_engines = 1, 135 .num_xgmi_sdma_engines = 0, 136 .num_sdma_queues_per_engine = 2, 137 }; 138 139 static const struct kfd_device_info hawaii_device_info = { 140 .asic_family = CHIP_HAWAII, 141 .asic_name = "hawaii", 142 .max_pasid_bits = 16, 143 /* max num of queues for KV.TODO should be a dynamic value */ 144 .max_no_of_hqd = 24, 145 .doorbell_size = 4, 146 .ih_ring_entry_size = 4 * sizeof(uint32_t), 147 .event_interrupt_class = &event_interrupt_class_cik, 148 .num_of_watch_points = 4, 149 .mqd_size_aligned = MQD_SIZE_ALIGNED, 150 .supports_cwsr = false, 151 .needs_iommu_device = false, 152 .needs_pci_atomics = false, 153 .num_sdma_engines = 2, 154 .num_xgmi_sdma_engines = 0, 155 .num_sdma_queues_per_engine = 2, 156 }; 157 158 static const struct kfd_device_info tonga_device_info = { 159 .asic_family = CHIP_TONGA, 160 .asic_name = "tonga", 161 .max_pasid_bits = 16, 162 .max_no_of_hqd = 24, 163 .doorbell_size = 4, 164 .ih_ring_entry_size = 4 * sizeof(uint32_t), 165 .event_interrupt_class = &event_interrupt_class_cik, 166 .num_of_watch_points = 4, 167 .mqd_size_aligned = MQD_SIZE_ALIGNED, 168 .supports_cwsr = false, 169 .needs_iommu_device = false, 170 .needs_pci_atomics = true, 171 .num_sdma_engines = 2, 172 .num_xgmi_sdma_engines = 0, 173 .num_sdma_queues_per_engine = 2, 174 }; 175 176 static const struct kfd_device_info fiji_device_info = { 177 .asic_family = CHIP_FIJI, 178 .asic_name = "fiji", 179 .max_pasid_bits = 16, 180 .max_no_of_hqd = 24, 181 .doorbell_size = 4, 182 .ih_ring_entry_size = 4 * sizeof(uint32_t), 183 .event_interrupt_class = &event_interrupt_class_cik, 184 .num_of_watch_points = 4, 185 .mqd_size_aligned = MQD_SIZE_ALIGNED, 186 .supports_cwsr = true, 187 .needs_iommu_device = false, 188 .needs_pci_atomics = true, 189 .num_sdma_engines = 2, 190 .num_xgmi_sdma_engines = 0, 191 .num_sdma_queues_per_engine = 2, 192 }; 193 194 static const struct kfd_device_info fiji_vf_device_info = { 195 .asic_family = CHIP_FIJI, 196 .asic_name = "fiji", 197 .max_pasid_bits = 16, 198 .max_no_of_hqd = 24, 199 .doorbell_size = 4, 200 .ih_ring_entry_size = 4 * sizeof(uint32_t), 201 .event_interrupt_class = &event_interrupt_class_cik, 202 .num_of_watch_points = 4, 203 .mqd_size_aligned = MQD_SIZE_ALIGNED, 204 .supports_cwsr = true, 205 .needs_iommu_device = false, 206 .needs_pci_atomics = false, 207 .num_sdma_engines = 2, 208 .num_xgmi_sdma_engines = 0, 209 .num_sdma_queues_per_engine = 2, 210 }; 211 212 213 static const struct kfd_device_info polaris10_device_info = { 214 .asic_family = CHIP_POLARIS10, 215 .asic_name = "polaris10", 216 .max_pasid_bits = 16, 217 .max_no_of_hqd = 24, 218 .doorbell_size = 4, 219 .ih_ring_entry_size = 4 * sizeof(uint32_t), 220 .event_interrupt_class = &event_interrupt_class_cik, 221 .num_of_watch_points = 4, 222 .mqd_size_aligned = MQD_SIZE_ALIGNED, 223 .supports_cwsr = true, 224 .needs_iommu_device = false, 225 .needs_pci_atomics = true, 226 .num_sdma_engines = 2, 227 .num_xgmi_sdma_engines = 0, 228 .num_sdma_queues_per_engine = 2, 229 }; 230 231 static const struct kfd_device_info polaris10_vf_device_info = { 232 .asic_family = CHIP_POLARIS10, 233 .asic_name = "polaris10", 234 .max_pasid_bits = 16, 235 .max_no_of_hqd = 24, 236 .doorbell_size = 4, 237 .ih_ring_entry_size = 4 * sizeof(uint32_t), 238 .event_interrupt_class = &event_interrupt_class_cik, 239 .num_of_watch_points = 4, 240 .mqd_size_aligned = MQD_SIZE_ALIGNED, 241 .supports_cwsr = true, 242 .needs_iommu_device = false, 243 .needs_pci_atomics = false, 244 .num_sdma_engines = 2, 245 .num_xgmi_sdma_engines = 0, 246 .num_sdma_queues_per_engine = 2, 247 }; 248 249 static const struct kfd_device_info polaris11_device_info = { 250 .asic_family = CHIP_POLARIS11, 251 .asic_name = "polaris11", 252 .max_pasid_bits = 16, 253 .max_no_of_hqd = 24, 254 .doorbell_size = 4, 255 .ih_ring_entry_size = 4 * sizeof(uint32_t), 256 .event_interrupt_class = &event_interrupt_class_cik, 257 .num_of_watch_points = 4, 258 .mqd_size_aligned = MQD_SIZE_ALIGNED, 259 .supports_cwsr = true, 260 .needs_iommu_device = false, 261 .needs_pci_atomics = true, 262 .num_sdma_engines = 2, 263 .num_xgmi_sdma_engines = 0, 264 .num_sdma_queues_per_engine = 2, 265 }; 266 267 static const struct kfd_device_info polaris12_device_info = { 268 .asic_family = CHIP_POLARIS12, 269 .asic_name = "polaris12", 270 .max_pasid_bits = 16, 271 .max_no_of_hqd = 24, 272 .doorbell_size = 4, 273 .ih_ring_entry_size = 4 * sizeof(uint32_t), 274 .event_interrupt_class = &event_interrupt_class_cik, 275 .num_of_watch_points = 4, 276 .mqd_size_aligned = MQD_SIZE_ALIGNED, 277 .supports_cwsr = true, 278 .needs_iommu_device = false, 279 .needs_pci_atomics = true, 280 .num_sdma_engines = 2, 281 .num_xgmi_sdma_engines = 0, 282 .num_sdma_queues_per_engine = 2, 283 }; 284 285 static const struct kfd_device_info vegam_device_info = { 286 .asic_family = CHIP_VEGAM, 287 .asic_name = "vegam", 288 .max_pasid_bits = 16, 289 .max_no_of_hqd = 24, 290 .doorbell_size = 4, 291 .ih_ring_entry_size = 4 * sizeof(uint32_t), 292 .event_interrupt_class = &event_interrupt_class_cik, 293 .num_of_watch_points = 4, 294 .mqd_size_aligned = MQD_SIZE_ALIGNED, 295 .supports_cwsr = true, 296 .needs_iommu_device = false, 297 .needs_pci_atomics = true, 298 .num_sdma_engines = 2, 299 .num_xgmi_sdma_engines = 0, 300 .num_sdma_queues_per_engine = 2, 301 }; 302 303 static const struct kfd_device_info vega10_device_info = { 304 .asic_family = CHIP_VEGA10, 305 .asic_name = "vega10", 306 .max_pasid_bits = 16, 307 .max_no_of_hqd = 24, 308 .doorbell_size = 8, 309 .ih_ring_entry_size = 8 * sizeof(uint32_t), 310 .event_interrupt_class = &event_interrupt_class_v9, 311 .num_of_watch_points = 4, 312 .mqd_size_aligned = MQD_SIZE_ALIGNED, 313 .supports_cwsr = true, 314 .needs_iommu_device = false, 315 .needs_pci_atomics = false, 316 .num_sdma_engines = 2, 317 .num_xgmi_sdma_engines = 0, 318 .num_sdma_queues_per_engine = 2, 319 }; 320 321 static const struct kfd_device_info vega10_vf_device_info = { 322 .asic_family = CHIP_VEGA10, 323 .asic_name = "vega10", 324 .max_pasid_bits = 16, 325 .max_no_of_hqd = 24, 326 .doorbell_size = 8, 327 .ih_ring_entry_size = 8 * sizeof(uint32_t), 328 .event_interrupt_class = &event_interrupt_class_v9, 329 .num_of_watch_points = 4, 330 .mqd_size_aligned = MQD_SIZE_ALIGNED, 331 .supports_cwsr = true, 332 .needs_iommu_device = false, 333 .needs_pci_atomics = false, 334 .num_sdma_engines = 2, 335 .num_xgmi_sdma_engines = 0, 336 .num_sdma_queues_per_engine = 2, 337 }; 338 339 static const struct kfd_device_info vega12_device_info = { 340 .asic_family = CHIP_VEGA12, 341 .asic_name = "vega12", 342 .max_pasid_bits = 16, 343 .max_no_of_hqd = 24, 344 .doorbell_size = 8, 345 .ih_ring_entry_size = 8 * sizeof(uint32_t), 346 .event_interrupt_class = &event_interrupt_class_v9, 347 .num_of_watch_points = 4, 348 .mqd_size_aligned = MQD_SIZE_ALIGNED, 349 .supports_cwsr = true, 350 .needs_iommu_device = false, 351 .needs_pci_atomics = false, 352 .num_sdma_engines = 2, 353 .num_xgmi_sdma_engines = 0, 354 .num_sdma_queues_per_engine = 2, 355 }; 356 357 static const struct kfd_device_info vega20_device_info = { 358 .asic_family = CHIP_VEGA20, 359 .asic_name = "vega20", 360 .max_pasid_bits = 16, 361 .max_no_of_hqd = 24, 362 .doorbell_size = 8, 363 .ih_ring_entry_size = 8 * sizeof(uint32_t), 364 .event_interrupt_class = &event_interrupt_class_v9, 365 .num_of_watch_points = 4, 366 .mqd_size_aligned = MQD_SIZE_ALIGNED, 367 .supports_cwsr = true, 368 .needs_iommu_device = false, 369 .needs_pci_atomics = false, 370 .num_sdma_engines = 2, 371 .num_xgmi_sdma_engines = 0, 372 .num_sdma_queues_per_engine = 8, 373 }; 374 375 static const struct kfd_device_info arcturus_device_info = { 376 .asic_family = CHIP_ARCTURUS, 377 .asic_name = "arcturus", 378 .max_pasid_bits = 16, 379 .max_no_of_hqd = 24, 380 .doorbell_size = 8, 381 .ih_ring_entry_size = 8 * sizeof(uint32_t), 382 .event_interrupt_class = &event_interrupt_class_v9, 383 .num_of_watch_points = 4, 384 .mqd_size_aligned = MQD_SIZE_ALIGNED, 385 .supports_cwsr = true, 386 .needs_iommu_device = false, 387 .needs_pci_atomics = false, 388 .num_sdma_engines = 2, 389 .num_xgmi_sdma_engines = 6, 390 .num_sdma_queues_per_engine = 8, 391 }; 392 393 static const struct kfd_device_info renoir_device_info = { 394 .asic_family = CHIP_RENOIR, 395 .asic_name = "renoir", 396 .max_pasid_bits = 16, 397 .max_no_of_hqd = 24, 398 .doorbell_size = 8, 399 .ih_ring_entry_size = 8 * sizeof(uint32_t), 400 .event_interrupt_class = &event_interrupt_class_v9, 401 .num_of_watch_points = 4, 402 .mqd_size_aligned = MQD_SIZE_ALIGNED, 403 .supports_cwsr = true, 404 .needs_iommu_device = false, 405 .needs_pci_atomics = false, 406 .num_sdma_engines = 1, 407 .num_xgmi_sdma_engines = 0, 408 .num_sdma_queues_per_engine = 2, 409 }; 410 411 static const struct kfd_device_info navi10_device_info = { 412 .asic_family = CHIP_NAVI10, 413 .asic_name = "navi10", 414 .max_pasid_bits = 16, 415 .max_no_of_hqd = 24, 416 .doorbell_size = 8, 417 .ih_ring_entry_size = 8 * sizeof(uint32_t), 418 .event_interrupt_class = &event_interrupt_class_v9, 419 .num_of_watch_points = 4, 420 .mqd_size_aligned = MQD_SIZE_ALIGNED, 421 .needs_iommu_device = false, 422 .supports_cwsr = true, 423 .needs_pci_atomics = false, 424 .num_sdma_engines = 2, 425 .num_xgmi_sdma_engines = 0, 426 .num_sdma_queues_per_engine = 8, 427 }; 428 429 static const struct kfd_device_info navi12_device_info = { 430 .asic_family = CHIP_NAVI12, 431 .asic_name = "navi12", 432 .max_pasid_bits = 16, 433 .max_no_of_hqd = 24, 434 .doorbell_size = 8, 435 .ih_ring_entry_size = 8 * sizeof(uint32_t), 436 .event_interrupt_class = &event_interrupt_class_v9, 437 .num_of_watch_points = 4, 438 .mqd_size_aligned = MQD_SIZE_ALIGNED, 439 .needs_iommu_device = false, 440 .supports_cwsr = true, 441 .needs_pci_atomics = false, 442 .num_sdma_engines = 2, 443 .num_xgmi_sdma_engines = 0, 444 .num_sdma_queues_per_engine = 8, 445 }; 446 447 static const struct kfd_device_info navi14_device_info = { 448 .asic_family = CHIP_NAVI14, 449 .asic_name = "navi14", 450 .max_pasid_bits = 16, 451 .max_no_of_hqd = 24, 452 .doorbell_size = 8, 453 .ih_ring_entry_size = 8 * sizeof(uint32_t), 454 .event_interrupt_class = &event_interrupt_class_v9, 455 .num_of_watch_points = 4, 456 .mqd_size_aligned = MQD_SIZE_ALIGNED, 457 .needs_iommu_device = false, 458 .supports_cwsr = true, 459 .needs_pci_atomics = false, 460 .num_sdma_engines = 2, 461 .num_xgmi_sdma_engines = 0, 462 .num_sdma_queues_per_engine = 8, 463 }; 464 465 static const struct kfd_device_info sienna_cichlid_device_info = { 466 .asic_family = CHIP_SIENNA_CICHLID, 467 .asic_name = "sienna_cichlid", 468 .max_pasid_bits = 16, 469 .max_no_of_hqd = 24, 470 .doorbell_size = 8, 471 .ih_ring_entry_size = 8 * sizeof(uint32_t), 472 .event_interrupt_class = &event_interrupt_class_v9, 473 .num_of_watch_points = 4, 474 .mqd_size_aligned = MQD_SIZE_ALIGNED, 475 .needs_iommu_device = false, 476 .supports_cwsr = true, 477 .needs_pci_atomics = false, 478 .num_sdma_engines = 4, 479 .num_xgmi_sdma_engines = 0, 480 .num_sdma_queues_per_engine = 8, 481 }; 482 483 static const struct kfd_device_info navy_flounder_device_info = { 484 .asic_family = CHIP_NAVY_FLOUNDER, 485 .asic_name = "navy_flounder", 486 .max_pasid_bits = 16, 487 .max_no_of_hqd = 24, 488 .doorbell_size = 8, 489 .ih_ring_entry_size = 8 * sizeof(uint32_t), 490 .event_interrupt_class = &event_interrupt_class_v9, 491 .num_of_watch_points = 4, 492 .mqd_size_aligned = MQD_SIZE_ALIGNED, 493 .needs_iommu_device = false, 494 .supports_cwsr = true, 495 .needs_pci_atomics = false, 496 .num_sdma_engines = 2, 497 .num_xgmi_sdma_engines = 0, 498 .num_sdma_queues_per_engine = 8, 499 }; 500 501 /* For each entry, [0] is regular and [1] is virtualisation device. */ 502 static const struct kfd_device_info *kfd_supported_devices[][2] = { 503 #ifdef KFD_SUPPORT_IOMMU_V2 504 [CHIP_KAVERI] = {&kaveri_device_info, NULL}, 505 [CHIP_CARRIZO] = {&carrizo_device_info, NULL}, 506 [CHIP_RAVEN] = {&raven_device_info, NULL}, 507 #endif 508 [CHIP_HAWAII] = {&hawaii_device_info, NULL}, 509 [CHIP_TONGA] = {&tonga_device_info, NULL}, 510 [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info}, 511 [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info}, 512 [CHIP_POLARIS11] = {&polaris11_device_info, NULL}, 513 [CHIP_POLARIS12] = {&polaris12_device_info, NULL}, 514 [CHIP_VEGAM] = {&vegam_device_info, NULL}, 515 [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info}, 516 [CHIP_VEGA12] = {&vega12_device_info, NULL}, 517 [CHIP_VEGA20] = {&vega20_device_info, NULL}, 518 [CHIP_RENOIR] = {&renoir_device_info, NULL}, 519 [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info}, 520 [CHIP_NAVI10] = {&navi10_device_info, NULL}, 521 [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info}, 522 [CHIP_NAVI14] = {&navi14_device_info, NULL}, 523 [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info}, 524 [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info}, 525 }; 526 527 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 528 unsigned int chunk_size); 529 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 530 531 static int kfd_resume(struct kfd_dev *kfd); 532 533 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 534 struct pci_dev *pdev, unsigned int asic_type, bool vf) 535 { 536 struct kfd_dev *kfd; 537 const struct kfd_device_info *device_info; 538 const struct kfd2kgd_calls *f2g; 539 540 if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2) 541 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) { 542 dev_err(kfd_device, "asic_type %d out of range\n", asic_type); 543 return NULL; /* asic_type out of range */ 544 } 545 546 device_info = kfd_supported_devices[asic_type][vf]; 547 f2g = kfd2kgd_funcs[asic_type]; 548 549 if (!device_info || !f2g) { 550 dev_err(kfd_device, "%s %s not supported in kfd\n", 551 amdgpu_asic_name[asic_type], vf ? "VF" : ""); 552 return NULL; 553 } 554 555 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 556 if (!kfd) 557 return NULL; 558 559 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. 560 * 32 and 64-bit requests are possible and must be 561 * supported. 562 */ 563 kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd); 564 if (device_info->needs_pci_atomics && 565 !kfd->pci_atomic_requested) { 566 dev_info(kfd_device, 567 "skipped device %x:%x, PCI rejects atomics\n", 568 pdev->vendor, pdev->device); 569 kfree(kfd); 570 return NULL; 571 } 572 573 kfd->kgd = kgd; 574 kfd->device_info = device_info; 575 kfd->pdev = pdev; 576 kfd->init_complete = false; 577 kfd->kfd2kgd = f2g; 578 atomic_set(&kfd->compute_profile, 0); 579 580 mutex_init(&kfd->doorbell_mutex); 581 memset(&kfd->doorbell_available_index, 0, 582 sizeof(kfd->doorbell_available_index)); 583 584 atomic_set(&kfd->sram_ecc_flag, 0); 585 586 return kfd; 587 } 588 589 static void kfd_cwsr_init(struct kfd_dev *kfd) 590 { 591 if (cwsr_enable && kfd->device_info->supports_cwsr) { 592 if (kfd->device_info->asic_family < CHIP_VEGA10) { 593 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); 594 kfd->cwsr_isa = cwsr_trap_gfx8_hex; 595 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); 596 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) { 597 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); 598 kfd->cwsr_isa = cwsr_trap_arcturus_hex; 599 kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); 600 } else if (kfd->device_info->asic_family < CHIP_NAVI10) { 601 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); 602 kfd->cwsr_isa = cwsr_trap_gfx9_hex; 603 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); 604 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) { 605 BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE); 606 kfd->cwsr_isa = cwsr_trap_nv1x_hex; 607 kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex); 608 } else { 609 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); 610 kfd->cwsr_isa = cwsr_trap_gfx10_hex; 611 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); 612 } 613 614 kfd->cwsr_enabled = true; 615 } 616 } 617 618 static int kfd_gws_init(struct kfd_dev *kfd) 619 { 620 int ret = 0; 621 622 if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) 623 return 0; 624 625 if (hws_gws_support 626 || (kfd->device_info->asic_family == CHIP_VEGA10 627 && kfd->mec2_fw_version >= 0x81b3) 628 || (kfd->device_info->asic_family >= CHIP_VEGA12 629 && kfd->device_info->asic_family <= CHIP_RAVEN 630 && kfd->mec2_fw_version >= 0x1b3) 631 || (kfd->device_info->asic_family == CHIP_ARCTURUS 632 && kfd->mec2_fw_version >= 0x30)) 633 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd, 634 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws); 635 636 return ret; 637 } 638 639 static void kfd_smi_init(struct kfd_dev *dev) { 640 INIT_LIST_HEAD(&dev->smi_clients); 641 spin_lock_init(&dev->smi_lock); 642 } 643 644 bool kgd2kfd_device_init(struct kfd_dev *kfd, 645 struct drm_device *ddev, 646 const struct kgd2kfd_shared_resources *gpu_resources) 647 { 648 unsigned int size; 649 650 kfd->ddev = ddev; 651 kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 652 KGD_ENGINE_MEC1); 653 kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 654 KGD_ENGINE_MEC2); 655 kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 656 KGD_ENGINE_SDMA1); 657 kfd->shared_resources = *gpu_resources; 658 659 kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; 660 kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; 661 kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd 662 - kfd->vm_info.first_vmid_kfd + 1; 663 664 /* Verify module parameters regarding mapped process number*/ 665 if ((hws_max_conc_proc < 0) 666 || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { 667 dev_err(kfd_device, 668 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", 669 hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, 670 kfd->vm_info.vmid_num_kfd); 671 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; 672 } else 673 kfd->max_proc_per_quantum = hws_max_conc_proc; 674 675 /* calculate max size of mqds needed for queues */ 676 size = max_num_of_queues_per_device * 677 kfd->device_info->mqd_size_aligned; 678 679 /* 680 * calculate max size of runlist packet. 681 * There can be only 2 packets at once 682 */ 683 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + 684 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) 685 + sizeof(struct pm4_mes_runlist)) * 2; 686 687 /* Add size of HIQ & DIQ */ 688 size += KFD_KERNEL_QUEUE_SIZE * 2; 689 690 /* add another 512KB for all other allocations on gart (HPD, fences) */ 691 size += 512 * 1024; 692 693 if (amdgpu_amdkfd_alloc_gtt_mem( 694 kfd->kgd, size, &kfd->gtt_mem, 695 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, 696 false)) { 697 dev_err(kfd_device, "Could not allocate %d bytes\n", size); 698 goto alloc_gtt_mem_failure; 699 } 700 701 dev_info(kfd_device, "Allocated %d bytes on gart\n", size); 702 703 /* Initialize GTT sa with 512 byte chunk size */ 704 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 705 dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); 706 goto kfd_gtt_sa_init_error; 707 } 708 709 if (kfd_doorbell_init(kfd)) { 710 dev_err(kfd_device, 711 "Error initializing doorbell aperture\n"); 712 goto kfd_doorbell_error; 713 } 714 715 kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd); 716 717 kfd->unique_id = amdgpu_amdkfd_get_unique_id(kfd->kgd); 718 719 if (kfd_interrupt_init(kfd)) { 720 dev_err(kfd_device, "Error initializing interrupts\n"); 721 goto kfd_interrupt_error; 722 } 723 724 kfd->dqm = device_queue_manager_init(kfd); 725 if (!kfd->dqm) { 726 dev_err(kfd_device, "Error initializing queue manager\n"); 727 goto device_queue_manager_error; 728 } 729 730 /* If supported on this device, allocate global GWS that is shared 731 * by all KFD processes 732 */ 733 if (kfd_gws_init(kfd)) { 734 dev_err(kfd_device, "Could not allocate %d gws\n", 735 amdgpu_amdkfd_get_num_gws(kfd->kgd)); 736 goto gws_error; 737 } 738 739 /* If CRAT is broken, won't set iommu enabled */ 740 kfd_double_confirm_iommu_support(kfd); 741 742 if (kfd_iommu_device_init(kfd)) { 743 dev_err(kfd_device, "Error initializing iommuv2\n"); 744 goto device_iommu_error; 745 } 746 747 kfd_cwsr_init(kfd); 748 749 if (kfd_resume(kfd)) 750 goto kfd_resume_error; 751 752 kfd->dbgmgr = NULL; 753 754 if (kfd_topology_add_device(kfd)) { 755 dev_err(kfd_device, "Error adding device to topology\n"); 756 goto kfd_topology_add_device_error; 757 } 758 759 kfd_smi_init(kfd); 760 761 kfd->init_complete = true; 762 dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, 763 kfd->pdev->device); 764 765 pr_debug("Starting kfd with the following scheduling policy %d\n", 766 kfd->dqm->sched_policy); 767 768 goto out; 769 770 kfd_topology_add_device_error: 771 kfd_resume_error: 772 device_iommu_error: 773 gws_error: 774 device_queue_manager_uninit(kfd->dqm); 775 device_queue_manager_error: 776 kfd_interrupt_exit(kfd); 777 kfd_interrupt_error: 778 kfd_doorbell_fini(kfd); 779 kfd_doorbell_error: 780 kfd_gtt_sa_fini(kfd); 781 kfd_gtt_sa_init_error: 782 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 783 alloc_gtt_mem_failure: 784 if (kfd->gws) 785 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 786 dev_err(kfd_device, 787 "device %x:%x NOT added due to errors\n", 788 kfd->pdev->vendor, kfd->pdev->device); 789 out: 790 return kfd->init_complete; 791 } 792 793 void kgd2kfd_device_exit(struct kfd_dev *kfd) 794 { 795 if (kfd->init_complete) { 796 kgd2kfd_suspend(kfd, false); 797 device_queue_manager_uninit(kfd->dqm); 798 kfd_interrupt_exit(kfd); 799 kfd_topology_remove_device(kfd); 800 kfd_doorbell_fini(kfd); 801 kfd_gtt_sa_fini(kfd); 802 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 803 if (kfd->gws) 804 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 805 } 806 807 kfree(kfd); 808 } 809 810 int kgd2kfd_pre_reset(struct kfd_dev *kfd) 811 { 812 if (!kfd->init_complete) 813 return 0; 814 815 kfd_smi_event_update_gpu_reset(kfd, false); 816 817 kfd->dqm->ops.pre_reset(kfd->dqm); 818 819 kgd2kfd_suspend(kfd, false); 820 821 kfd_signal_reset_event(kfd); 822 return 0; 823 } 824 825 /* 826 * Fix me. KFD won't be able to resume existing process for now. 827 * We will keep all existing process in a evicted state and 828 * wait the process to be terminated. 829 */ 830 831 int kgd2kfd_post_reset(struct kfd_dev *kfd) 832 { 833 int ret; 834 835 if (!kfd->init_complete) 836 return 0; 837 838 ret = kfd_resume(kfd); 839 if (ret) 840 return ret; 841 atomic_dec(&kfd_locked); 842 843 atomic_set(&kfd->sram_ecc_flag, 0); 844 845 kfd_smi_event_update_gpu_reset(kfd, true); 846 847 return 0; 848 } 849 850 bool kfd_is_locked(void) 851 { 852 return (atomic_read(&kfd_locked) > 0); 853 } 854 855 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) 856 { 857 if (!kfd->init_complete) 858 return; 859 860 /* for runtime suspend, skip locking kfd */ 861 if (!run_pm) { 862 /* For first KFD device suspend all the KFD processes */ 863 if (atomic_inc_return(&kfd_locked) == 1) 864 kfd_suspend_all_processes(); 865 } 866 867 kfd->dqm->ops.stop(kfd->dqm); 868 kfd_iommu_suspend(kfd); 869 } 870 871 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) 872 { 873 int ret, count; 874 875 if (!kfd->init_complete) 876 return 0; 877 878 ret = kfd_resume(kfd); 879 if (ret) 880 return ret; 881 882 /* for runtime resume, skip unlocking kfd */ 883 if (!run_pm) { 884 count = atomic_dec_return(&kfd_locked); 885 WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); 886 if (count == 0) 887 ret = kfd_resume_all_processes(); 888 } 889 890 return ret; 891 } 892 893 static int kfd_resume(struct kfd_dev *kfd) 894 { 895 int err = 0; 896 897 err = kfd_iommu_resume(kfd); 898 if (err) { 899 dev_err(kfd_device, 900 "Failed to resume IOMMU for device %x:%x\n", 901 kfd->pdev->vendor, kfd->pdev->device); 902 return err; 903 } 904 905 err = kfd->dqm->ops.start(kfd->dqm); 906 if (err) { 907 dev_err(kfd_device, 908 "Error starting queue manager for device %x:%x\n", 909 kfd->pdev->vendor, kfd->pdev->device); 910 goto dqm_start_error; 911 } 912 913 return err; 914 915 dqm_start_error: 916 kfd_iommu_suspend(kfd); 917 return err; 918 } 919 920 static inline void kfd_queue_work(struct workqueue_struct *wq, 921 struct work_struct *work) 922 { 923 int cpu, new_cpu; 924 925 cpu = new_cpu = smp_processor_id(); 926 do { 927 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; 928 if (cpu_to_node(new_cpu) == numa_node_id()) 929 break; 930 } while (cpu != new_cpu); 931 932 queue_work_on(new_cpu, wq, work); 933 } 934 935 /* This is called directly from KGD at ISR. */ 936 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 937 { 938 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; 939 bool is_patched = false; 940 unsigned long flags; 941 942 if (!kfd->init_complete) 943 return; 944 945 if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { 946 dev_err_once(kfd_device, "Ring entry too small\n"); 947 return; 948 } 949 950 spin_lock_irqsave(&kfd->interrupt_lock, flags); 951 952 if (kfd->interrupts_active 953 && interrupt_is_wanted(kfd, ih_ring_entry, 954 patched_ihre, &is_patched) 955 && enqueue_ih_ring_entry(kfd, 956 is_patched ? patched_ihre : ih_ring_entry)) 957 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work); 958 959 spin_unlock_irqrestore(&kfd->interrupt_lock, flags); 960 } 961 962 int kgd2kfd_quiesce_mm(struct mm_struct *mm) 963 { 964 struct kfd_process *p; 965 int r; 966 967 /* Because we are called from arbitrary context (workqueue) as opposed 968 * to process context, kfd_process could attempt to exit while we are 969 * running so the lookup function increments the process ref count. 970 */ 971 p = kfd_lookup_process_by_mm(mm); 972 if (!p) 973 return -ESRCH; 974 975 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 976 r = kfd_process_evict_queues(p); 977 978 kfd_unref_process(p); 979 return r; 980 } 981 982 int kgd2kfd_resume_mm(struct mm_struct *mm) 983 { 984 struct kfd_process *p; 985 int r; 986 987 /* Because we are called from arbitrary context (workqueue) as opposed 988 * to process context, kfd_process could attempt to exit while we are 989 * running so the lookup function increments the process ref count. 990 */ 991 p = kfd_lookup_process_by_mm(mm); 992 if (!p) 993 return -ESRCH; 994 995 r = kfd_process_restore_queues(p); 996 997 kfd_unref_process(p); 998 return r; 999 } 1000 1001 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will 1002 * prepare for safe eviction of KFD BOs that belong to the specified 1003 * process. 1004 * 1005 * @mm: mm_struct that identifies the specified KFD process 1006 * @fence: eviction fence attached to KFD process BOs 1007 * 1008 */ 1009 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, 1010 struct dma_fence *fence) 1011 { 1012 struct kfd_process *p; 1013 unsigned long active_time; 1014 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); 1015 1016 if (!fence) 1017 return -EINVAL; 1018 1019 if (dma_fence_is_signaled(fence)) 1020 return 0; 1021 1022 p = kfd_lookup_process_by_mm(mm); 1023 if (!p) 1024 return -ENODEV; 1025 1026 if (fence->seqno == p->last_eviction_seqno) 1027 goto out; 1028 1029 p->last_eviction_seqno = fence->seqno; 1030 1031 /* Avoid KFD process starvation. Wait for at least 1032 * PROCESS_ACTIVE_TIME_MS before evicting the process again 1033 */ 1034 active_time = get_jiffies_64() - p->last_restore_timestamp; 1035 if (delay_jiffies > active_time) 1036 delay_jiffies -= active_time; 1037 else 1038 delay_jiffies = 0; 1039 1040 /* During process initialization eviction_work.dwork is initialized 1041 * to kfd_evict_bo_worker 1042 */ 1043 WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies", 1044 p->lead_thread->pid, delay_jiffies); 1045 schedule_delayed_work(&p->eviction_work, delay_jiffies); 1046 out: 1047 kfd_unref_process(p); 1048 return 0; 1049 } 1050 1051 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 1052 unsigned int chunk_size) 1053 { 1054 unsigned int num_of_longs; 1055 1056 if (WARN_ON(buf_size < chunk_size)) 1057 return -EINVAL; 1058 if (WARN_ON(buf_size == 0)) 1059 return -EINVAL; 1060 if (WARN_ON(chunk_size == 0)) 1061 return -EINVAL; 1062 1063 kfd->gtt_sa_chunk_size = chunk_size; 1064 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 1065 1066 num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / 1067 BITS_PER_LONG; 1068 1069 kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); 1070 1071 if (!kfd->gtt_sa_bitmap) 1072 return -ENOMEM; 1073 1074 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 1075 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 1076 1077 mutex_init(&kfd->gtt_sa_lock); 1078 1079 return 0; 1080 1081 } 1082 1083 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 1084 { 1085 mutex_destroy(&kfd->gtt_sa_lock); 1086 kfree(kfd->gtt_sa_bitmap); 1087 } 1088 1089 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 1090 unsigned int bit_num, 1091 unsigned int chunk_size) 1092 { 1093 return start_addr + bit_num * chunk_size; 1094 } 1095 1096 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 1097 unsigned int bit_num, 1098 unsigned int chunk_size) 1099 { 1100 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 1101 } 1102 1103 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1104 struct kfd_mem_obj **mem_obj) 1105 { 1106 unsigned int found, start_search, cur_size; 1107 1108 if (size == 0) 1109 return -EINVAL; 1110 1111 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 1112 return -ENOMEM; 1113 1114 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 1115 if (!(*mem_obj)) 1116 return -ENOMEM; 1117 1118 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); 1119 1120 start_search = 0; 1121 1122 mutex_lock(&kfd->gtt_sa_lock); 1123 1124 kfd_gtt_restart_search: 1125 /* Find the first chunk that is free */ 1126 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 1127 kfd->gtt_sa_num_of_chunks, 1128 start_search); 1129 1130 pr_debug("Found = %d\n", found); 1131 1132 /* If there wasn't any free chunk, bail out */ 1133 if (found == kfd->gtt_sa_num_of_chunks) 1134 goto kfd_gtt_no_free_chunk; 1135 1136 /* Update fields of mem_obj */ 1137 (*mem_obj)->range_start = found; 1138 (*mem_obj)->range_end = found; 1139 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 1140 kfd->gtt_start_gpu_addr, 1141 found, 1142 kfd->gtt_sa_chunk_size); 1143 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 1144 kfd->gtt_start_cpu_ptr, 1145 found, 1146 kfd->gtt_sa_chunk_size); 1147 1148 pr_debug("gpu_addr = %p, cpu_addr = %p\n", 1149 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 1150 1151 /* If we need only one chunk, mark it as allocated and get out */ 1152 if (size <= kfd->gtt_sa_chunk_size) { 1153 pr_debug("Single bit\n"); 1154 set_bit(found, kfd->gtt_sa_bitmap); 1155 goto kfd_gtt_out; 1156 } 1157 1158 /* Otherwise, try to see if we have enough contiguous chunks */ 1159 cur_size = size - kfd->gtt_sa_chunk_size; 1160 do { 1161 (*mem_obj)->range_end = 1162 find_next_zero_bit(kfd->gtt_sa_bitmap, 1163 kfd->gtt_sa_num_of_chunks, ++found); 1164 /* 1165 * If next free chunk is not contiguous than we need to 1166 * restart our search from the last free chunk we found (which 1167 * wasn't contiguous to the previous ones 1168 */ 1169 if ((*mem_obj)->range_end != found) { 1170 start_search = found; 1171 goto kfd_gtt_restart_search; 1172 } 1173 1174 /* 1175 * If we reached end of buffer, bail out with error 1176 */ 1177 if (found == kfd->gtt_sa_num_of_chunks) 1178 goto kfd_gtt_no_free_chunk; 1179 1180 /* Check if we don't need another chunk */ 1181 if (cur_size <= kfd->gtt_sa_chunk_size) 1182 cur_size = 0; 1183 else 1184 cur_size -= kfd->gtt_sa_chunk_size; 1185 1186 } while (cur_size > 0); 1187 1188 pr_debug("range_start = %d, range_end = %d\n", 1189 (*mem_obj)->range_start, (*mem_obj)->range_end); 1190 1191 /* Mark the chunks as allocated */ 1192 for (found = (*mem_obj)->range_start; 1193 found <= (*mem_obj)->range_end; 1194 found++) 1195 set_bit(found, kfd->gtt_sa_bitmap); 1196 1197 kfd_gtt_out: 1198 mutex_unlock(&kfd->gtt_sa_lock); 1199 return 0; 1200 1201 kfd_gtt_no_free_chunk: 1202 pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); 1203 mutex_unlock(&kfd->gtt_sa_lock); 1204 kfree(*mem_obj); 1205 return -ENOMEM; 1206 } 1207 1208 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) 1209 { 1210 unsigned int bit; 1211 1212 /* Act like kfree when trying to free a NULL object */ 1213 if (!mem_obj) 1214 return 0; 1215 1216 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", 1217 mem_obj, mem_obj->range_start, mem_obj->range_end); 1218 1219 mutex_lock(&kfd->gtt_sa_lock); 1220 1221 /* Mark the chunks as free */ 1222 for (bit = mem_obj->range_start; 1223 bit <= mem_obj->range_end; 1224 bit++) 1225 clear_bit(bit, kfd->gtt_sa_bitmap); 1226 1227 mutex_unlock(&kfd->gtt_sa_lock); 1228 1229 kfree(mem_obj); 1230 return 0; 1231 } 1232 1233 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) 1234 { 1235 if (kfd) 1236 atomic_inc(&kfd->sram_ecc_flag); 1237 } 1238 1239 void kfd_inc_compute_active(struct kfd_dev *kfd) 1240 { 1241 if (atomic_inc_return(&kfd->compute_profile) == 1) 1242 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false); 1243 } 1244 1245 void kfd_dec_compute_active(struct kfd_dev *kfd) 1246 { 1247 int count = atomic_dec_return(&kfd->compute_profile); 1248 1249 if (count == 0) 1250 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true); 1251 WARN_ONCE(count < 0, "Compute profile ref. count error"); 1252 } 1253 1254 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask) 1255 { 1256 if (kfd) 1257 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask); 1258 } 1259 1260 #if defined(CONFIG_DEBUG_FS) 1261 1262 /* This function will send a package to HIQ to hang the HWS 1263 * which will trigger a GPU reset and bring the HWS back to normal state 1264 */ 1265 int kfd_debugfs_hang_hws(struct kfd_dev *dev) 1266 { 1267 int r = 0; 1268 1269 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { 1270 pr_err("HWS is not enabled"); 1271 return -EINVAL; 1272 } 1273 1274 r = pm_debugfs_hang_hws(&dev->dqm->packets); 1275 if (!r) 1276 r = dqm_debugfs_execute_queues(dev->dqm); 1277 1278 return r; 1279 } 1280 1281 #endif 1282