xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35 
36 #define MQD_SIZE_ALIGNED 768
37 
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44 
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54 
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
67 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
68 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77 	[CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81 	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82 	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83 	[CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84 	[CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85 	[CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
86 	[CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
87 };
88 
89 #ifdef KFD_SUPPORT_IOMMU_V2
90 static const struct kfd_device_info kaveri_device_info = {
91 	.asic_family = CHIP_KAVERI,
92 	.asic_name = "kaveri",
93 	.max_pasid_bits = 16,
94 	/* max num of queues for KV.TODO should be a dynamic value */
95 	.max_no_of_hqd	= 24,
96 	.doorbell_size  = 4,
97 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
98 	.event_interrupt_class = &event_interrupt_class_cik,
99 	.num_of_watch_points = 4,
100 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
101 	.supports_cwsr = false,
102 	.needs_iommu_device = true,
103 	.needs_pci_atomics = false,
104 	.num_sdma_engines = 2,
105 	.num_xgmi_sdma_engines = 0,
106 	.num_sdma_queues_per_engine = 2,
107 };
108 
109 static const struct kfd_device_info carrizo_device_info = {
110 	.asic_family = CHIP_CARRIZO,
111 	.asic_name = "carrizo",
112 	.max_pasid_bits = 16,
113 	/* max num of queues for CZ.TODO should be a dynamic value */
114 	.max_no_of_hqd	= 24,
115 	.doorbell_size  = 4,
116 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
117 	.event_interrupt_class = &event_interrupt_class_cik,
118 	.num_of_watch_points = 4,
119 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
120 	.supports_cwsr = true,
121 	.needs_iommu_device = true,
122 	.needs_pci_atomics = false,
123 	.num_sdma_engines = 2,
124 	.num_xgmi_sdma_engines = 0,
125 	.num_sdma_queues_per_engine = 2,
126 };
127 #endif
128 
129 static const struct kfd_device_info raven_device_info = {
130 	.asic_family = CHIP_RAVEN,
131 	.asic_name = "raven",
132 	.max_pasid_bits = 16,
133 	.max_no_of_hqd  = 24,
134 	.doorbell_size  = 8,
135 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
136 	.event_interrupt_class = &event_interrupt_class_v9,
137 	.num_of_watch_points = 4,
138 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
139 	.supports_cwsr = true,
140 	.needs_iommu_device = true,
141 	.needs_pci_atomics = true,
142 	.num_sdma_engines = 1,
143 	.num_xgmi_sdma_engines = 0,
144 	.num_sdma_queues_per_engine = 2,
145 };
146 
147 static const struct kfd_device_info hawaii_device_info = {
148 	.asic_family = CHIP_HAWAII,
149 	.asic_name = "hawaii",
150 	.max_pasid_bits = 16,
151 	/* max num of queues for KV.TODO should be a dynamic value */
152 	.max_no_of_hqd	= 24,
153 	.doorbell_size  = 4,
154 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
155 	.event_interrupt_class = &event_interrupt_class_cik,
156 	.num_of_watch_points = 4,
157 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
158 	.supports_cwsr = false,
159 	.needs_iommu_device = false,
160 	.needs_pci_atomics = false,
161 	.num_sdma_engines = 2,
162 	.num_xgmi_sdma_engines = 0,
163 	.num_sdma_queues_per_engine = 2,
164 };
165 
166 static const struct kfd_device_info tonga_device_info = {
167 	.asic_family = CHIP_TONGA,
168 	.asic_name = "tonga",
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = false,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 	.num_xgmi_sdma_engines = 0,
181 	.num_sdma_queues_per_engine = 2,
182 };
183 
184 static const struct kfd_device_info fiji_device_info = {
185 	.asic_family = CHIP_FIJI,
186 	.asic_name = "fiji",
187 	.max_pasid_bits = 16,
188 	.max_no_of_hqd  = 24,
189 	.doorbell_size  = 4,
190 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
191 	.event_interrupt_class = &event_interrupt_class_cik,
192 	.num_of_watch_points = 4,
193 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
194 	.supports_cwsr = true,
195 	.needs_iommu_device = false,
196 	.needs_pci_atomics = true,
197 	.num_sdma_engines = 2,
198 	.num_xgmi_sdma_engines = 0,
199 	.num_sdma_queues_per_engine = 2,
200 };
201 
202 static const struct kfd_device_info fiji_vf_device_info = {
203 	.asic_family = CHIP_FIJI,
204 	.asic_name = "fiji",
205 	.max_pasid_bits = 16,
206 	.max_no_of_hqd  = 24,
207 	.doorbell_size  = 4,
208 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
209 	.event_interrupt_class = &event_interrupt_class_cik,
210 	.num_of_watch_points = 4,
211 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
212 	.supports_cwsr = true,
213 	.needs_iommu_device = false,
214 	.needs_pci_atomics = false,
215 	.num_sdma_engines = 2,
216 	.num_xgmi_sdma_engines = 0,
217 	.num_sdma_queues_per_engine = 2,
218 };
219 
220 
221 static const struct kfd_device_info polaris10_device_info = {
222 	.asic_family = CHIP_POLARIS10,
223 	.asic_name = "polaris10",
224 	.max_pasid_bits = 16,
225 	.max_no_of_hqd  = 24,
226 	.doorbell_size  = 4,
227 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
228 	.event_interrupt_class = &event_interrupt_class_cik,
229 	.num_of_watch_points = 4,
230 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
231 	.supports_cwsr = true,
232 	.needs_iommu_device = false,
233 	.needs_pci_atomics = true,
234 	.num_sdma_engines = 2,
235 	.num_xgmi_sdma_engines = 0,
236 	.num_sdma_queues_per_engine = 2,
237 };
238 
239 static const struct kfd_device_info polaris10_vf_device_info = {
240 	.asic_family = CHIP_POLARIS10,
241 	.asic_name = "polaris10",
242 	.max_pasid_bits = 16,
243 	.max_no_of_hqd  = 24,
244 	.doorbell_size  = 4,
245 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
246 	.event_interrupt_class = &event_interrupt_class_cik,
247 	.num_of_watch_points = 4,
248 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
249 	.supports_cwsr = true,
250 	.needs_iommu_device = false,
251 	.needs_pci_atomics = false,
252 	.num_sdma_engines = 2,
253 	.num_xgmi_sdma_engines = 0,
254 	.num_sdma_queues_per_engine = 2,
255 };
256 
257 static const struct kfd_device_info polaris11_device_info = {
258 	.asic_family = CHIP_POLARIS11,
259 	.asic_name = "polaris11",
260 	.max_pasid_bits = 16,
261 	.max_no_of_hqd  = 24,
262 	.doorbell_size  = 4,
263 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
264 	.event_interrupt_class = &event_interrupt_class_cik,
265 	.num_of_watch_points = 4,
266 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
267 	.supports_cwsr = true,
268 	.needs_iommu_device = false,
269 	.needs_pci_atomics = true,
270 	.num_sdma_engines = 2,
271 	.num_xgmi_sdma_engines = 0,
272 	.num_sdma_queues_per_engine = 2,
273 };
274 
275 static const struct kfd_device_info polaris12_device_info = {
276 	.asic_family = CHIP_POLARIS12,
277 	.asic_name = "polaris12",
278 	.max_pasid_bits = 16,
279 	.max_no_of_hqd  = 24,
280 	.doorbell_size  = 4,
281 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
282 	.event_interrupt_class = &event_interrupt_class_cik,
283 	.num_of_watch_points = 4,
284 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
285 	.supports_cwsr = true,
286 	.needs_iommu_device = false,
287 	.needs_pci_atomics = true,
288 	.num_sdma_engines = 2,
289 	.num_xgmi_sdma_engines = 0,
290 	.num_sdma_queues_per_engine = 2,
291 };
292 
293 static const struct kfd_device_info vegam_device_info = {
294 	.asic_family = CHIP_VEGAM,
295 	.asic_name = "vegam",
296 	.max_pasid_bits = 16,
297 	.max_no_of_hqd  = 24,
298 	.doorbell_size  = 4,
299 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
300 	.event_interrupt_class = &event_interrupt_class_cik,
301 	.num_of_watch_points = 4,
302 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
303 	.supports_cwsr = true,
304 	.needs_iommu_device = false,
305 	.needs_pci_atomics = true,
306 	.num_sdma_engines = 2,
307 	.num_xgmi_sdma_engines = 0,
308 	.num_sdma_queues_per_engine = 2,
309 };
310 
311 static const struct kfd_device_info vega10_device_info = {
312 	.asic_family = CHIP_VEGA10,
313 	.asic_name = "vega10",
314 	.max_pasid_bits = 16,
315 	.max_no_of_hqd  = 24,
316 	.doorbell_size  = 8,
317 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
318 	.event_interrupt_class = &event_interrupt_class_v9,
319 	.num_of_watch_points = 4,
320 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
321 	.supports_cwsr = true,
322 	.needs_iommu_device = false,
323 	.needs_pci_atomics = false,
324 	.num_sdma_engines = 2,
325 	.num_xgmi_sdma_engines = 0,
326 	.num_sdma_queues_per_engine = 2,
327 };
328 
329 static const struct kfd_device_info vega10_vf_device_info = {
330 	.asic_family = CHIP_VEGA10,
331 	.asic_name = "vega10",
332 	.max_pasid_bits = 16,
333 	.max_no_of_hqd  = 24,
334 	.doorbell_size  = 8,
335 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
336 	.event_interrupt_class = &event_interrupt_class_v9,
337 	.num_of_watch_points = 4,
338 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
339 	.supports_cwsr = true,
340 	.needs_iommu_device = false,
341 	.needs_pci_atomics = false,
342 	.num_sdma_engines = 2,
343 	.num_xgmi_sdma_engines = 0,
344 	.num_sdma_queues_per_engine = 2,
345 };
346 
347 static const struct kfd_device_info vega12_device_info = {
348 	.asic_family = CHIP_VEGA12,
349 	.asic_name = "vega12",
350 	.max_pasid_bits = 16,
351 	.max_no_of_hqd  = 24,
352 	.doorbell_size  = 8,
353 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
354 	.event_interrupt_class = &event_interrupt_class_v9,
355 	.num_of_watch_points = 4,
356 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
357 	.supports_cwsr = true,
358 	.needs_iommu_device = false,
359 	.needs_pci_atomics = false,
360 	.num_sdma_engines = 2,
361 	.num_xgmi_sdma_engines = 0,
362 	.num_sdma_queues_per_engine = 2,
363 };
364 
365 static const struct kfd_device_info vega20_device_info = {
366 	.asic_family = CHIP_VEGA20,
367 	.asic_name = "vega20",
368 	.max_pasid_bits = 16,
369 	.max_no_of_hqd	= 24,
370 	.doorbell_size	= 8,
371 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
372 	.event_interrupt_class = &event_interrupt_class_v9,
373 	.num_of_watch_points = 4,
374 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
375 	.supports_cwsr = true,
376 	.needs_iommu_device = false,
377 	.needs_pci_atomics = false,
378 	.num_sdma_engines = 2,
379 	.num_xgmi_sdma_engines = 0,
380 	.num_sdma_queues_per_engine = 8,
381 };
382 
383 static const struct kfd_device_info arcturus_device_info = {
384 	.asic_family = CHIP_ARCTURUS,
385 	.asic_name = "arcturus",
386 	.max_pasid_bits = 16,
387 	.max_no_of_hqd	= 24,
388 	.doorbell_size	= 8,
389 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
390 	.event_interrupt_class = &event_interrupt_class_v9,
391 	.num_of_watch_points = 4,
392 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
393 	.supports_cwsr = true,
394 	.needs_iommu_device = false,
395 	.needs_pci_atomics = false,
396 	.num_sdma_engines = 2,
397 	.num_xgmi_sdma_engines = 6,
398 	.num_sdma_queues_per_engine = 8,
399 };
400 
401 static const struct kfd_device_info aldebaran_device_info = {
402 	.asic_family = CHIP_ALDEBARAN,
403 	.asic_name = "aldebaran",
404 	.max_pasid_bits = 16,
405 	.max_no_of_hqd	= 24,
406 	.doorbell_size	= 8,
407 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
408 	.event_interrupt_class = &event_interrupt_class_v9,
409 	.num_of_watch_points = 4,
410 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
411 	.supports_cwsr = true,
412 	.needs_iommu_device = false,
413 	.needs_pci_atomics = false,
414 	.num_sdma_engines = 2,
415 	.num_xgmi_sdma_engines = 3,
416 	.num_sdma_queues_per_engine = 8,
417 };
418 
419 static const struct kfd_device_info renoir_device_info = {
420 	.asic_family = CHIP_RENOIR,
421 	.asic_name = "renoir",
422 	.max_pasid_bits = 16,
423 	.max_no_of_hqd  = 24,
424 	.doorbell_size  = 8,
425 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
426 	.event_interrupt_class = &event_interrupt_class_v9,
427 	.num_of_watch_points = 4,
428 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
429 	.supports_cwsr = true,
430 	.needs_iommu_device = false,
431 	.needs_pci_atomics = false,
432 	.num_sdma_engines = 1,
433 	.num_xgmi_sdma_engines = 0,
434 	.num_sdma_queues_per_engine = 2,
435 };
436 
437 static const struct kfd_device_info navi10_device_info = {
438 	.asic_family = CHIP_NAVI10,
439 	.asic_name = "navi10",
440 	.max_pasid_bits = 16,
441 	.max_no_of_hqd  = 24,
442 	.doorbell_size  = 8,
443 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
444 	.event_interrupt_class = &event_interrupt_class_v9,
445 	.num_of_watch_points = 4,
446 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
447 	.needs_iommu_device = false,
448 	.supports_cwsr = true,
449 	.needs_pci_atomics = true,
450 	.num_sdma_engines = 2,
451 	.num_xgmi_sdma_engines = 0,
452 	.num_sdma_queues_per_engine = 8,
453 };
454 
455 static const struct kfd_device_info navi12_device_info = {
456 	.asic_family = CHIP_NAVI12,
457 	.asic_name = "navi12",
458 	.max_pasid_bits = 16,
459 	.max_no_of_hqd  = 24,
460 	.doorbell_size  = 8,
461 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
462 	.event_interrupt_class = &event_interrupt_class_v9,
463 	.num_of_watch_points = 4,
464 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
465 	.needs_iommu_device = false,
466 	.supports_cwsr = true,
467 	.needs_pci_atomics = true,
468 	.num_sdma_engines = 2,
469 	.num_xgmi_sdma_engines = 0,
470 	.num_sdma_queues_per_engine = 8,
471 };
472 
473 static const struct kfd_device_info navi14_device_info = {
474 	.asic_family = CHIP_NAVI14,
475 	.asic_name = "navi14",
476 	.max_pasid_bits = 16,
477 	.max_no_of_hqd  = 24,
478 	.doorbell_size  = 8,
479 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
480 	.event_interrupt_class = &event_interrupt_class_v9,
481 	.num_of_watch_points = 4,
482 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
483 	.needs_iommu_device = false,
484 	.supports_cwsr = true,
485 	.needs_pci_atomics = true,
486 	.num_sdma_engines = 2,
487 	.num_xgmi_sdma_engines = 0,
488 	.num_sdma_queues_per_engine = 8,
489 };
490 
491 static const struct kfd_device_info sienna_cichlid_device_info = {
492 	.asic_family = CHIP_SIENNA_CICHLID,
493 	.asic_name = "sienna_cichlid",
494 	.max_pasid_bits = 16,
495 	.max_no_of_hqd  = 24,
496 	.doorbell_size  = 8,
497 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
498 	.event_interrupt_class = &event_interrupt_class_v9,
499 	.num_of_watch_points = 4,
500 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
501 	.needs_iommu_device = false,
502 	.supports_cwsr = true,
503 	.needs_pci_atomics = true,
504 	.num_sdma_engines = 4,
505 	.num_xgmi_sdma_engines = 0,
506 	.num_sdma_queues_per_engine = 8,
507 };
508 
509 static const struct kfd_device_info navy_flounder_device_info = {
510 	.asic_family = CHIP_NAVY_FLOUNDER,
511 	.asic_name = "navy_flounder",
512 	.max_pasid_bits = 16,
513 	.max_no_of_hqd  = 24,
514 	.doorbell_size  = 8,
515 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
516 	.event_interrupt_class = &event_interrupt_class_v9,
517 	.num_of_watch_points = 4,
518 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
519 	.needs_iommu_device = false,
520 	.supports_cwsr = true,
521 	.needs_pci_atomics = true,
522 	.num_sdma_engines = 2,
523 	.num_xgmi_sdma_engines = 0,
524 	.num_sdma_queues_per_engine = 8,
525 };
526 
527 static const struct kfd_device_info vangogh_device_info = {
528 	.asic_family = CHIP_VANGOGH,
529 	.asic_name = "vangogh",
530 	.max_pasid_bits = 16,
531 	.max_no_of_hqd  = 24,
532 	.doorbell_size  = 8,
533 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
534 	.event_interrupt_class = &event_interrupt_class_v9,
535 	.num_of_watch_points = 4,
536 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
537 	.needs_iommu_device = false,
538 	.supports_cwsr = true,
539 	.needs_pci_atomics = false,
540 	.num_sdma_engines = 1,
541 	.num_xgmi_sdma_engines = 0,
542 	.num_sdma_queues_per_engine = 2,
543 };
544 
545 static const struct kfd_device_info dimgrey_cavefish_device_info = {
546 	.asic_family = CHIP_DIMGREY_CAVEFISH,
547 	.asic_name = "dimgrey_cavefish",
548 	.max_pasid_bits = 16,
549 	.max_no_of_hqd  = 24,
550 	.doorbell_size  = 8,
551 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
552 	.event_interrupt_class = &event_interrupt_class_v9,
553 	.num_of_watch_points = 4,
554 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
555 	.needs_iommu_device = false,
556 	.supports_cwsr = true,
557 	.needs_pci_atomics = true,
558 	.num_sdma_engines = 2,
559 	.num_xgmi_sdma_engines = 0,
560 	.num_sdma_queues_per_engine = 8,
561 };
562 
563 static const struct kfd_device_info beige_goby_device_info = {
564 	.asic_family = CHIP_BEIGE_GOBY,
565 	.asic_name = "beige_goby",
566 	.max_pasid_bits = 16,
567 	.max_no_of_hqd  = 24,
568 	.doorbell_size  = 8,
569 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
570 	.event_interrupt_class = &event_interrupt_class_v9,
571 	.num_of_watch_points = 4,
572 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
573 	.needs_iommu_device = false,
574 	.supports_cwsr = true,
575 	.needs_pci_atomics = true,
576 	.num_sdma_engines = 1,
577 	.num_xgmi_sdma_engines = 0,
578 	.num_sdma_queues_per_engine = 8,
579 };
580 
581 static const struct kfd_device_info yellow_carp_device_info = {
582 	.asic_family = CHIP_YELLOW_CARP,
583 	.asic_name = "yellow_carp",
584 	.max_pasid_bits = 16,
585 	.max_no_of_hqd  = 24,
586 	.doorbell_size  = 8,
587 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
588 	.event_interrupt_class = &event_interrupt_class_v9,
589 	.num_of_watch_points = 4,
590 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
591 	.needs_iommu_device = false,
592 	.supports_cwsr = true,
593 	.needs_pci_atomics = false,
594 	.num_sdma_engines = 1,
595 	.num_xgmi_sdma_engines = 0,
596 	.num_sdma_queues_per_engine = 2,
597 };
598 
599 /* For each entry, [0] is regular and [1] is virtualisation device. */
600 static const struct kfd_device_info *kfd_supported_devices[][2] = {
601 #ifdef KFD_SUPPORT_IOMMU_V2
602 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
603 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
604 #endif
605 	[CHIP_RAVEN] = {&raven_device_info, NULL},
606 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
607 	[CHIP_TONGA] = {&tonga_device_info, NULL},
608 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
609 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
610 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
611 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
612 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
613 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
614 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
615 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
616 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
617 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
618 	[CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
619 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
620 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
621 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
622 	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
623 	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
624 	[CHIP_VANGOGH] = {&vangogh_device_info, NULL},
625 	[CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
626 	[CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
627 	[CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
628 };
629 
630 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
631 				unsigned int chunk_size);
632 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
633 
634 static int kfd_resume(struct kfd_dev *kfd);
635 
636 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
637 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
638 {
639 	struct kfd_dev *kfd;
640 	const struct kfd_device_info *device_info;
641 	const struct kfd2kgd_calls *f2g;
642 
643 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
644 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
645 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
646 		return NULL; /* asic_type out of range */
647 	}
648 
649 	device_info = kfd_supported_devices[asic_type][vf];
650 	f2g = kfd2kgd_funcs[asic_type];
651 
652 	if (!device_info || !f2g) {
653 		dev_err(kfd_device, "%s %s not supported in kfd\n",
654 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
655 		return NULL;
656 	}
657 
658 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
659 	if (!kfd)
660 		return NULL;
661 
662 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
663 	 * 32 and 64-bit requests are possible and must be
664 	 * supported.
665 	 */
666 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
667 	if (device_info->needs_pci_atomics &&
668 	    !kfd->pci_atomic_requested) {
669 		dev_info(kfd_device,
670 			 "skipped device %x:%x, PCI rejects atomics\n",
671 			 pdev->vendor, pdev->device);
672 		kfree(kfd);
673 		return NULL;
674 	}
675 
676 	kfd->kgd = kgd;
677 	kfd->device_info = device_info;
678 	kfd->pdev = pdev;
679 	kfd->init_complete = false;
680 	kfd->kfd2kgd = f2g;
681 	atomic_set(&kfd->compute_profile, 0);
682 
683 	mutex_init(&kfd->doorbell_mutex);
684 	memset(&kfd->doorbell_available_index, 0,
685 		sizeof(kfd->doorbell_available_index));
686 
687 	atomic_set(&kfd->sram_ecc_flag, 0);
688 
689 	ida_init(&kfd->doorbell_ida);
690 
691 	return kfd;
692 }
693 
694 static void kfd_cwsr_init(struct kfd_dev *kfd)
695 {
696 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
697 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
698 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
699 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
700 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
701 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
702 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
703 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
704 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
705 		} else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
706 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
707 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
708 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
709 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
710 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
711 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
712 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
713 		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
714 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
715 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
716 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
717 		} else {
718 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
719 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
720 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
721 		}
722 
723 		kfd->cwsr_enabled = true;
724 	}
725 }
726 
727 static int kfd_gws_init(struct kfd_dev *kfd)
728 {
729 	int ret = 0;
730 
731 	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
732 		return 0;
733 
734 	if (hws_gws_support
735 		|| (kfd->device_info->asic_family == CHIP_VEGA10
736 			&& kfd->mec2_fw_version >= 0x81b3)
737 		|| (kfd->device_info->asic_family >= CHIP_VEGA12
738 			&& kfd->device_info->asic_family <= CHIP_RAVEN
739 			&& kfd->mec2_fw_version >= 0x1b3)
740 		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
741 			&& kfd->mec2_fw_version >= 0x30)
742 		|| (kfd->device_info->asic_family == CHIP_ALDEBARAN
743 			&& kfd->mec2_fw_version >= 0x28))
744 		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
745 				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
746 
747 	return ret;
748 }
749 
750 static void kfd_smi_init(struct kfd_dev *dev) {
751 	INIT_LIST_HEAD(&dev->smi_clients);
752 	spin_lock_init(&dev->smi_lock);
753 }
754 
755 bool kgd2kfd_device_init(struct kfd_dev *kfd,
756 			 struct drm_device *ddev,
757 			 const struct kgd2kfd_shared_resources *gpu_resources)
758 {
759 	unsigned int size, map_process_packet_size;
760 
761 	kfd->ddev = ddev;
762 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
763 			KGD_ENGINE_MEC1);
764 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
765 			KGD_ENGINE_MEC2);
766 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
767 			KGD_ENGINE_SDMA1);
768 	kfd->shared_resources = *gpu_resources;
769 
770 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
771 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
772 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
773 			- kfd->vm_info.first_vmid_kfd + 1;
774 
775 	/* Verify module parameters regarding mapped process number*/
776 	if ((hws_max_conc_proc < 0)
777 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
778 		dev_err(kfd_device,
779 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
780 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
781 			kfd->vm_info.vmid_num_kfd);
782 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
783 	} else
784 		kfd->max_proc_per_quantum = hws_max_conc_proc;
785 
786 	/* calculate max size of mqds needed for queues */
787 	size = max_num_of_queues_per_device *
788 			kfd->device_info->mqd_size_aligned;
789 
790 	/*
791 	 * calculate max size of runlist packet.
792 	 * There can be only 2 packets at once
793 	 */
794 	map_process_packet_size =
795 			kfd->device_info->asic_family == CHIP_ALDEBARAN ?
796 				sizeof(struct pm4_mes_map_process_aldebaran) :
797 					sizeof(struct pm4_mes_map_process);
798 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
799 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
800 		+ sizeof(struct pm4_mes_runlist)) * 2;
801 
802 	/* Add size of HIQ & DIQ */
803 	size += KFD_KERNEL_QUEUE_SIZE * 2;
804 
805 	/* add another 512KB for all other allocations on gart (HPD, fences) */
806 	size += 512 * 1024;
807 
808 	if (amdgpu_amdkfd_alloc_gtt_mem(
809 			kfd->kgd, size, &kfd->gtt_mem,
810 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
811 			false)) {
812 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
813 		goto alloc_gtt_mem_failure;
814 	}
815 
816 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
817 
818 	/* Initialize GTT sa with 512 byte chunk size */
819 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
820 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
821 		goto kfd_gtt_sa_init_error;
822 	}
823 
824 	if (kfd_doorbell_init(kfd)) {
825 		dev_err(kfd_device,
826 			"Error initializing doorbell aperture\n");
827 		goto kfd_doorbell_error;
828 	}
829 
830 	kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
831 
832 	kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
833 
834 	if (kfd_interrupt_init(kfd)) {
835 		dev_err(kfd_device, "Error initializing interrupts\n");
836 		goto kfd_interrupt_error;
837 	}
838 
839 	kfd->dqm = device_queue_manager_init(kfd);
840 	if (!kfd->dqm) {
841 		dev_err(kfd_device, "Error initializing queue manager\n");
842 		goto device_queue_manager_error;
843 	}
844 
845 	/* If supported on this device, allocate global GWS that is shared
846 	 * by all KFD processes
847 	 */
848 	if (kfd_gws_init(kfd)) {
849 		dev_err(kfd_device, "Could not allocate %d gws\n",
850 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
851 		goto gws_error;
852 	}
853 
854 	/* If CRAT is broken, won't set iommu enabled */
855 	kfd_double_confirm_iommu_support(kfd);
856 
857 	if (kfd_iommu_device_init(kfd)) {
858 		dev_err(kfd_device, "Error initializing iommuv2\n");
859 		goto device_iommu_error;
860 	}
861 
862 	kfd_cwsr_init(kfd);
863 
864 	svm_migrate_init((struct amdgpu_device *)kfd->kgd);
865 
866 	if (kfd_resume(kfd))
867 		goto kfd_resume_error;
868 
869 	kfd->dbgmgr = NULL;
870 
871 	if (kfd_topology_add_device(kfd)) {
872 		dev_err(kfd_device, "Error adding device to topology\n");
873 		goto kfd_topology_add_device_error;
874 	}
875 
876 	kfd_smi_init(kfd);
877 
878 	kfd->init_complete = true;
879 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
880 		 kfd->pdev->device);
881 
882 	pr_debug("Starting kfd with the following scheduling policy %d\n",
883 		kfd->dqm->sched_policy);
884 
885 	goto out;
886 
887 kfd_topology_add_device_error:
888 kfd_resume_error:
889 device_iommu_error:
890 gws_error:
891 	device_queue_manager_uninit(kfd->dqm);
892 device_queue_manager_error:
893 	kfd_interrupt_exit(kfd);
894 kfd_interrupt_error:
895 	kfd_doorbell_fini(kfd);
896 kfd_doorbell_error:
897 	kfd_gtt_sa_fini(kfd);
898 kfd_gtt_sa_init_error:
899 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
900 alloc_gtt_mem_failure:
901 	if (kfd->gws)
902 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
903 	dev_err(kfd_device,
904 		"device %x:%x NOT added due to errors\n",
905 		kfd->pdev->vendor, kfd->pdev->device);
906 out:
907 	return kfd->init_complete;
908 }
909 
910 void kgd2kfd_device_exit(struct kfd_dev *kfd)
911 {
912 	if (kfd->init_complete) {
913 		svm_migrate_fini((struct amdgpu_device *)kfd->kgd);
914 		device_queue_manager_uninit(kfd->dqm);
915 		kfd_interrupt_exit(kfd);
916 		kfd_topology_remove_device(kfd);
917 		kfd_doorbell_fini(kfd);
918 		ida_destroy(&kfd->doorbell_ida);
919 		kfd_gtt_sa_fini(kfd);
920 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
921 		if (kfd->gws)
922 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
923 	}
924 
925 	kfree(kfd);
926 }
927 
928 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
929 {
930 	if (!kfd->init_complete)
931 		return 0;
932 
933 	kfd_smi_event_update_gpu_reset(kfd, false);
934 
935 	kfd->dqm->ops.pre_reset(kfd->dqm);
936 
937 	kgd2kfd_suspend(kfd, false);
938 
939 	kfd_signal_reset_event(kfd);
940 	return 0;
941 }
942 
943 /*
944  * Fix me. KFD won't be able to resume existing process for now.
945  * We will keep all existing process in a evicted state and
946  * wait the process to be terminated.
947  */
948 
949 int kgd2kfd_post_reset(struct kfd_dev *kfd)
950 {
951 	int ret;
952 
953 	if (!kfd->init_complete)
954 		return 0;
955 
956 	ret = kfd_resume(kfd);
957 	if (ret)
958 		return ret;
959 	atomic_dec(&kfd_locked);
960 
961 	atomic_set(&kfd->sram_ecc_flag, 0);
962 
963 	kfd_smi_event_update_gpu_reset(kfd, true);
964 
965 	return 0;
966 }
967 
968 bool kfd_is_locked(void)
969 {
970 	return  (atomic_read(&kfd_locked) > 0);
971 }
972 
973 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
974 {
975 	if (!kfd->init_complete)
976 		return;
977 
978 	/* for runtime suspend, skip locking kfd */
979 	if (!run_pm) {
980 		/* For first KFD device suspend all the KFD processes */
981 		if (atomic_inc_return(&kfd_locked) == 1)
982 			kfd_suspend_all_processes();
983 	}
984 
985 	kfd->dqm->ops.stop(kfd->dqm);
986 	kfd_iommu_suspend(kfd);
987 }
988 
989 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
990 {
991 	int ret, count;
992 
993 	if (!kfd->init_complete)
994 		return 0;
995 
996 	ret = kfd_resume(kfd);
997 	if (ret)
998 		return ret;
999 
1000 	/* for runtime resume, skip unlocking kfd */
1001 	if (!run_pm) {
1002 		count = atomic_dec_return(&kfd_locked);
1003 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1004 		if (count == 0)
1005 			ret = kfd_resume_all_processes();
1006 	}
1007 
1008 	return ret;
1009 }
1010 
1011 static int kfd_resume(struct kfd_dev *kfd)
1012 {
1013 	int err = 0;
1014 
1015 	err = kfd_iommu_resume(kfd);
1016 	if (err) {
1017 		dev_err(kfd_device,
1018 			"Failed to resume IOMMU for device %x:%x\n",
1019 			kfd->pdev->vendor, kfd->pdev->device);
1020 		return err;
1021 	}
1022 
1023 	err = kfd->dqm->ops.start(kfd->dqm);
1024 	if (err) {
1025 		dev_err(kfd_device,
1026 			"Error starting queue manager for device %x:%x\n",
1027 			kfd->pdev->vendor, kfd->pdev->device);
1028 		goto dqm_start_error;
1029 	}
1030 
1031 	return err;
1032 
1033 dqm_start_error:
1034 	kfd_iommu_suspend(kfd);
1035 	return err;
1036 }
1037 
1038 static inline void kfd_queue_work(struct workqueue_struct *wq,
1039 				  struct work_struct *work)
1040 {
1041 	int cpu, new_cpu;
1042 
1043 	cpu = new_cpu = smp_processor_id();
1044 	do {
1045 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1046 		if (cpu_to_node(new_cpu) == numa_node_id())
1047 			break;
1048 	} while (cpu != new_cpu);
1049 
1050 	queue_work_on(new_cpu, wq, work);
1051 }
1052 
1053 /* This is called directly from KGD at ISR. */
1054 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1055 {
1056 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1057 	bool is_patched = false;
1058 	unsigned long flags;
1059 
1060 	if (!kfd->init_complete)
1061 		return;
1062 
1063 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1064 		dev_err_once(kfd_device, "Ring entry too small\n");
1065 		return;
1066 	}
1067 
1068 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
1069 
1070 	if (kfd->interrupts_active
1071 	    && interrupt_is_wanted(kfd, ih_ring_entry,
1072 				   patched_ihre, &is_patched)
1073 	    && enqueue_ih_ring_entry(kfd,
1074 				     is_patched ? patched_ihre : ih_ring_entry))
1075 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1076 
1077 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1078 }
1079 
1080 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1081 {
1082 	struct kfd_process *p;
1083 	int r;
1084 
1085 	/* Because we are called from arbitrary context (workqueue) as opposed
1086 	 * to process context, kfd_process could attempt to exit while we are
1087 	 * running so the lookup function increments the process ref count.
1088 	 */
1089 	p = kfd_lookup_process_by_mm(mm);
1090 	if (!p)
1091 		return -ESRCH;
1092 
1093 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1094 	r = kfd_process_evict_queues(p);
1095 
1096 	kfd_unref_process(p);
1097 	return r;
1098 }
1099 
1100 int kgd2kfd_resume_mm(struct mm_struct *mm)
1101 {
1102 	struct kfd_process *p;
1103 	int r;
1104 
1105 	/* Because we are called from arbitrary context (workqueue) as opposed
1106 	 * to process context, kfd_process could attempt to exit while we are
1107 	 * running so the lookup function increments the process ref count.
1108 	 */
1109 	p = kfd_lookup_process_by_mm(mm);
1110 	if (!p)
1111 		return -ESRCH;
1112 
1113 	r = kfd_process_restore_queues(p);
1114 
1115 	kfd_unref_process(p);
1116 	return r;
1117 }
1118 
1119 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1120  *   prepare for safe eviction of KFD BOs that belong to the specified
1121  *   process.
1122  *
1123  * @mm: mm_struct that identifies the specified KFD process
1124  * @fence: eviction fence attached to KFD process BOs
1125  *
1126  */
1127 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1128 					       struct dma_fence *fence)
1129 {
1130 	struct kfd_process *p;
1131 	unsigned long active_time;
1132 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1133 
1134 	if (!fence)
1135 		return -EINVAL;
1136 
1137 	if (dma_fence_is_signaled(fence))
1138 		return 0;
1139 
1140 	p = kfd_lookup_process_by_mm(mm);
1141 	if (!p)
1142 		return -ENODEV;
1143 
1144 	if (fence->seqno == p->last_eviction_seqno)
1145 		goto out;
1146 
1147 	p->last_eviction_seqno = fence->seqno;
1148 
1149 	/* Avoid KFD process starvation. Wait for at least
1150 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1151 	 */
1152 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1153 	if (delay_jiffies > active_time)
1154 		delay_jiffies -= active_time;
1155 	else
1156 		delay_jiffies = 0;
1157 
1158 	/* During process initialization eviction_work.dwork is initialized
1159 	 * to kfd_evict_bo_worker
1160 	 */
1161 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1162 	     p->lead_thread->pid, delay_jiffies);
1163 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1164 out:
1165 	kfd_unref_process(p);
1166 	return 0;
1167 }
1168 
1169 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1170 				unsigned int chunk_size)
1171 {
1172 	unsigned int num_of_longs;
1173 
1174 	if (WARN_ON(buf_size < chunk_size))
1175 		return -EINVAL;
1176 	if (WARN_ON(buf_size == 0))
1177 		return -EINVAL;
1178 	if (WARN_ON(chunk_size == 0))
1179 		return -EINVAL;
1180 
1181 	kfd->gtt_sa_chunk_size = chunk_size;
1182 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1183 
1184 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1185 		BITS_PER_LONG;
1186 
1187 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1188 
1189 	if (!kfd->gtt_sa_bitmap)
1190 		return -ENOMEM;
1191 
1192 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1193 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1194 
1195 	mutex_init(&kfd->gtt_sa_lock);
1196 
1197 	return 0;
1198 
1199 }
1200 
1201 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1202 {
1203 	mutex_destroy(&kfd->gtt_sa_lock);
1204 	kfree(kfd->gtt_sa_bitmap);
1205 }
1206 
1207 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1208 						unsigned int bit_num,
1209 						unsigned int chunk_size)
1210 {
1211 	return start_addr + bit_num * chunk_size;
1212 }
1213 
1214 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1215 						unsigned int bit_num,
1216 						unsigned int chunk_size)
1217 {
1218 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1219 }
1220 
1221 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1222 			struct kfd_mem_obj **mem_obj)
1223 {
1224 	unsigned int found, start_search, cur_size;
1225 
1226 	if (size == 0)
1227 		return -EINVAL;
1228 
1229 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1230 		return -ENOMEM;
1231 
1232 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1233 	if (!(*mem_obj))
1234 		return -ENOMEM;
1235 
1236 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1237 
1238 	start_search = 0;
1239 
1240 	mutex_lock(&kfd->gtt_sa_lock);
1241 
1242 kfd_gtt_restart_search:
1243 	/* Find the first chunk that is free */
1244 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1245 					kfd->gtt_sa_num_of_chunks,
1246 					start_search);
1247 
1248 	pr_debug("Found = %d\n", found);
1249 
1250 	/* If there wasn't any free chunk, bail out */
1251 	if (found == kfd->gtt_sa_num_of_chunks)
1252 		goto kfd_gtt_no_free_chunk;
1253 
1254 	/* Update fields of mem_obj */
1255 	(*mem_obj)->range_start = found;
1256 	(*mem_obj)->range_end = found;
1257 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1258 					kfd->gtt_start_gpu_addr,
1259 					found,
1260 					kfd->gtt_sa_chunk_size);
1261 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1262 					kfd->gtt_start_cpu_ptr,
1263 					found,
1264 					kfd->gtt_sa_chunk_size);
1265 
1266 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1267 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1268 
1269 	/* If we need only one chunk, mark it as allocated and get out */
1270 	if (size <= kfd->gtt_sa_chunk_size) {
1271 		pr_debug("Single bit\n");
1272 		set_bit(found, kfd->gtt_sa_bitmap);
1273 		goto kfd_gtt_out;
1274 	}
1275 
1276 	/* Otherwise, try to see if we have enough contiguous chunks */
1277 	cur_size = size - kfd->gtt_sa_chunk_size;
1278 	do {
1279 		(*mem_obj)->range_end =
1280 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1281 					kfd->gtt_sa_num_of_chunks, ++found);
1282 		/*
1283 		 * If next free chunk is not contiguous than we need to
1284 		 * restart our search from the last free chunk we found (which
1285 		 * wasn't contiguous to the previous ones
1286 		 */
1287 		if ((*mem_obj)->range_end != found) {
1288 			start_search = found;
1289 			goto kfd_gtt_restart_search;
1290 		}
1291 
1292 		/*
1293 		 * If we reached end of buffer, bail out with error
1294 		 */
1295 		if (found == kfd->gtt_sa_num_of_chunks)
1296 			goto kfd_gtt_no_free_chunk;
1297 
1298 		/* Check if we don't need another chunk */
1299 		if (cur_size <= kfd->gtt_sa_chunk_size)
1300 			cur_size = 0;
1301 		else
1302 			cur_size -= kfd->gtt_sa_chunk_size;
1303 
1304 	} while (cur_size > 0);
1305 
1306 	pr_debug("range_start = %d, range_end = %d\n",
1307 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1308 
1309 	/* Mark the chunks as allocated */
1310 	for (found = (*mem_obj)->range_start;
1311 		found <= (*mem_obj)->range_end;
1312 		found++)
1313 		set_bit(found, kfd->gtt_sa_bitmap);
1314 
1315 kfd_gtt_out:
1316 	mutex_unlock(&kfd->gtt_sa_lock);
1317 	return 0;
1318 
1319 kfd_gtt_no_free_chunk:
1320 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1321 	mutex_unlock(&kfd->gtt_sa_lock);
1322 	kfree(*mem_obj);
1323 	return -ENOMEM;
1324 }
1325 
1326 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1327 {
1328 	unsigned int bit;
1329 
1330 	/* Act like kfree when trying to free a NULL object */
1331 	if (!mem_obj)
1332 		return 0;
1333 
1334 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1335 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1336 
1337 	mutex_lock(&kfd->gtt_sa_lock);
1338 
1339 	/* Mark the chunks as free */
1340 	for (bit = mem_obj->range_start;
1341 		bit <= mem_obj->range_end;
1342 		bit++)
1343 		clear_bit(bit, kfd->gtt_sa_bitmap);
1344 
1345 	mutex_unlock(&kfd->gtt_sa_lock);
1346 
1347 	kfree(mem_obj);
1348 	return 0;
1349 }
1350 
1351 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1352 {
1353 	if (kfd)
1354 		atomic_inc(&kfd->sram_ecc_flag);
1355 }
1356 
1357 void kfd_inc_compute_active(struct kfd_dev *kfd)
1358 {
1359 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1360 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1361 }
1362 
1363 void kfd_dec_compute_active(struct kfd_dev *kfd)
1364 {
1365 	int count = atomic_dec_return(&kfd->compute_profile);
1366 
1367 	if (count == 0)
1368 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1369 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1370 }
1371 
1372 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1373 {
1374 	if (kfd && kfd->init_complete)
1375 		kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1376 }
1377 
1378 #if defined(CONFIG_DEBUG_FS)
1379 
1380 /* This function will send a package to HIQ to hang the HWS
1381  * which will trigger a GPU reset and bring the HWS back to normal state
1382  */
1383 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1384 {
1385 	int r = 0;
1386 
1387 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1388 		pr_err("HWS is not enabled");
1389 		return -EINVAL;
1390 	}
1391 
1392 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1393 	if (!r)
1394 		r = dqm_debugfs_execute_queues(dev->dqm);
1395 
1396 	return r;
1397 }
1398 
1399 #endif
1400