1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/bsearch.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include "kfd_priv.h" 27 #include "kfd_device_queue_manager.h" 28 #include "kfd_pm4_headers_vi.h" 29 #include "cwsr_trap_handler.h" 30 #include "kfd_iommu.h" 31 #include "amdgpu_amdkfd.h" 32 33 #define MQD_SIZE_ALIGNED 768 34 35 /* 36 * kfd_locked is used to lock the kfd driver during suspend or reset 37 * once locked, kfd driver will stop any further GPU execution. 38 * create process (open) will return -EAGAIN. 39 */ 40 static atomic_t kfd_locked = ATOMIC_INIT(0); 41 42 #ifdef CONFIG_DRM_AMDGPU_CIK 43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; 44 #endif 45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; 46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; 47 extern const struct kfd2kgd_calls arcturus_kfd2kgd; 48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; 49 50 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = { 51 #ifdef KFD_SUPPORT_IOMMU_V2 52 #ifdef CONFIG_DRM_AMDGPU_CIK 53 [CHIP_KAVERI] = &gfx_v7_kfd2kgd, 54 #endif 55 [CHIP_CARRIZO] = &gfx_v8_kfd2kgd, 56 [CHIP_RAVEN] = &gfx_v9_kfd2kgd, 57 #endif 58 #ifdef CONFIG_DRM_AMDGPU_CIK 59 [CHIP_HAWAII] = &gfx_v7_kfd2kgd, 60 #endif 61 [CHIP_TONGA] = &gfx_v8_kfd2kgd, 62 [CHIP_FIJI] = &gfx_v8_kfd2kgd, 63 [CHIP_POLARIS10] = &gfx_v8_kfd2kgd, 64 [CHIP_POLARIS11] = &gfx_v8_kfd2kgd, 65 [CHIP_POLARIS12] = &gfx_v8_kfd2kgd, 66 [CHIP_VEGAM] = &gfx_v8_kfd2kgd, 67 [CHIP_VEGA10] = &gfx_v9_kfd2kgd, 68 [CHIP_VEGA12] = &gfx_v9_kfd2kgd, 69 [CHIP_VEGA20] = &gfx_v9_kfd2kgd, 70 [CHIP_RENOIR] = &gfx_v9_kfd2kgd, 71 [CHIP_ARCTURUS] = &arcturus_kfd2kgd, 72 [CHIP_NAVI10] = &gfx_v10_kfd2kgd, 73 [CHIP_NAVI12] = &gfx_v10_kfd2kgd, 74 [CHIP_NAVI14] = &gfx_v10_kfd2kgd, 75 }; 76 77 #ifdef KFD_SUPPORT_IOMMU_V2 78 static const struct kfd_device_info kaveri_device_info = { 79 .asic_family = CHIP_KAVERI, 80 .asic_name = "kaveri", 81 .max_pasid_bits = 16, 82 /* max num of queues for KV.TODO should be a dynamic value */ 83 .max_no_of_hqd = 24, 84 .doorbell_size = 4, 85 .ih_ring_entry_size = 4 * sizeof(uint32_t), 86 .event_interrupt_class = &event_interrupt_class_cik, 87 .num_of_watch_points = 4, 88 .mqd_size_aligned = MQD_SIZE_ALIGNED, 89 .supports_cwsr = false, 90 .needs_iommu_device = true, 91 .needs_pci_atomics = false, 92 .num_sdma_engines = 2, 93 .num_xgmi_sdma_engines = 0, 94 .num_sdma_queues_per_engine = 2, 95 }; 96 97 static const struct kfd_device_info carrizo_device_info = { 98 .asic_family = CHIP_CARRIZO, 99 .asic_name = "carrizo", 100 .max_pasid_bits = 16, 101 /* max num of queues for CZ.TODO should be a dynamic value */ 102 .max_no_of_hqd = 24, 103 .doorbell_size = 4, 104 .ih_ring_entry_size = 4 * sizeof(uint32_t), 105 .event_interrupt_class = &event_interrupt_class_cik, 106 .num_of_watch_points = 4, 107 .mqd_size_aligned = MQD_SIZE_ALIGNED, 108 .supports_cwsr = true, 109 .needs_iommu_device = true, 110 .needs_pci_atomics = false, 111 .num_sdma_engines = 2, 112 .num_xgmi_sdma_engines = 0, 113 .num_sdma_queues_per_engine = 2, 114 }; 115 116 static const struct kfd_device_info raven_device_info = { 117 .asic_family = CHIP_RAVEN, 118 .asic_name = "raven", 119 .max_pasid_bits = 16, 120 .max_no_of_hqd = 24, 121 .doorbell_size = 8, 122 .ih_ring_entry_size = 8 * sizeof(uint32_t), 123 .event_interrupt_class = &event_interrupt_class_v9, 124 .num_of_watch_points = 4, 125 .mqd_size_aligned = MQD_SIZE_ALIGNED, 126 .supports_cwsr = true, 127 .needs_iommu_device = true, 128 .needs_pci_atomics = true, 129 .num_sdma_engines = 1, 130 .num_xgmi_sdma_engines = 0, 131 .num_sdma_queues_per_engine = 2, 132 }; 133 #endif 134 135 static const struct kfd_device_info hawaii_device_info = { 136 .asic_family = CHIP_HAWAII, 137 .asic_name = "hawaii", 138 .max_pasid_bits = 16, 139 /* max num of queues for KV.TODO should be a dynamic value */ 140 .max_no_of_hqd = 24, 141 .doorbell_size = 4, 142 .ih_ring_entry_size = 4 * sizeof(uint32_t), 143 .event_interrupt_class = &event_interrupt_class_cik, 144 .num_of_watch_points = 4, 145 .mqd_size_aligned = MQD_SIZE_ALIGNED, 146 .supports_cwsr = false, 147 .needs_iommu_device = false, 148 .needs_pci_atomics = false, 149 .num_sdma_engines = 2, 150 .num_xgmi_sdma_engines = 0, 151 .num_sdma_queues_per_engine = 2, 152 }; 153 154 static const struct kfd_device_info tonga_device_info = { 155 .asic_family = CHIP_TONGA, 156 .asic_name = "tonga", 157 .max_pasid_bits = 16, 158 .max_no_of_hqd = 24, 159 .doorbell_size = 4, 160 .ih_ring_entry_size = 4 * sizeof(uint32_t), 161 .event_interrupt_class = &event_interrupt_class_cik, 162 .num_of_watch_points = 4, 163 .mqd_size_aligned = MQD_SIZE_ALIGNED, 164 .supports_cwsr = false, 165 .needs_iommu_device = false, 166 .needs_pci_atomics = true, 167 .num_sdma_engines = 2, 168 .num_xgmi_sdma_engines = 0, 169 .num_sdma_queues_per_engine = 2, 170 }; 171 172 static const struct kfd_device_info fiji_device_info = { 173 .asic_family = CHIP_FIJI, 174 .asic_name = "fiji", 175 .max_pasid_bits = 16, 176 .max_no_of_hqd = 24, 177 .doorbell_size = 4, 178 .ih_ring_entry_size = 4 * sizeof(uint32_t), 179 .event_interrupt_class = &event_interrupt_class_cik, 180 .num_of_watch_points = 4, 181 .mqd_size_aligned = MQD_SIZE_ALIGNED, 182 .supports_cwsr = true, 183 .needs_iommu_device = false, 184 .needs_pci_atomics = true, 185 .num_sdma_engines = 2, 186 .num_xgmi_sdma_engines = 0, 187 .num_sdma_queues_per_engine = 2, 188 }; 189 190 static const struct kfd_device_info fiji_vf_device_info = { 191 .asic_family = CHIP_FIJI, 192 .asic_name = "fiji", 193 .max_pasid_bits = 16, 194 .max_no_of_hqd = 24, 195 .doorbell_size = 4, 196 .ih_ring_entry_size = 4 * sizeof(uint32_t), 197 .event_interrupt_class = &event_interrupt_class_cik, 198 .num_of_watch_points = 4, 199 .mqd_size_aligned = MQD_SIZE_ALIGNED, 200 .supports_cwsr = true, 201 .needs_iommu_device = false, 202 .needs_pci_atomics = false, 203 .num_sdma_engines = 2, 204 .num_xgmi_sdma_engines = 0, 205 .num_sdma_queues_per_engine = 2, 206 }; 207 208 209 static const struct kfd_device_info polaris10_device_info = { 210 .asic_family = CHIP_POLARIS10, 211 .asic_name = "polaris10", 212 .max_pasid_bits = 16, 213 .max_no_of_hqd = 24, 214 .doorbell_size = 4, 215 .ih_ring_entry_size = 4 * sizeof(uint32_t), 216 .event_interrupt_class = &event_interrupt_class_cik, 217 .num_of_watch_points = 4, 218 .mqd_size_aligned = MQD_SIZE_ALIGNED, 219 .supports_cwsr = true, 220 .needs_iommu_device = false, 221 .needs_pci_atomics = true, 222 .num_sdma_engines = 2, 223 .num_xgmi_sdma_engines = 0, 224 .num_sdma_queues_per_engine = 2, 225 }; 226 227 static const struct kfd_device_info polaris10_vf_device_info = { 228 .asic_family = CHIP_POLARIS10, 229 .asic_name = "polaris10", 230 .max_pasid_bits = 16, 231 .max_no_of_hqd = 24, 232 .doorbell_size = 4, 233 .ih_ring_entry_size = 4 * sizeof(uint32_t), 234 .event_interrupt_class = &event_interrupt_class_cik, 235 .num_of_watch_points = 4, 236 .mqd_size_aligned = MQD_SIZE_ALIGNED, 237 .supports_cwsr = true, 238 .needs_iommu_device = false, 239 .needs_pci_atomics = false, 240 .num_sdma_engines = 2, 241 .num_xgmi_sdma_engines = 0, 242 .num_sdma_queues_per_engine = 2, 243 }; 244 245 static const struct kfd_device_info polaris11_device_info = { 246 .asic_family = CHIP_POLARIS11, 247 .asic_name = "polaris11", 248 .max_pasid_bits = 16, 249 .max_no_of_hqd = 24, 250 .doorbell_size = 4, 251 .ih_ring_entry_size = 4 * sizeof(uint32_t), 252 .event_interrupt_class = &event_interrupt_class_cik, 253 .num_of_watch_points = 4, 254 .mqd_size_aligned = MQD_SIZE_ALIGNED, 255 .supports_cwsr = true, 256 .needs_iommu_device = false, 257 .needs_pci_atomics = true, 258 .num_sdma_engines = 2, 259 .num_xgmi_sdma_engines = 0, 260 .num_sdma_queues_per_engine = 2, 261 }; 262 263 static const struct kfd_device_info polaris12_device_info = { 264 .asic_family = CHIP_POLARIS12, 265 .asic_name = "polaris12", 266 .max_pasid_bits = 16, 267 .max_no_of_hqd = 24, 268 .doorbell_size = 4, 269 .ih_ring_entry_size = 4 * sizeof(uint32_t), 270 .event_interrupt_class = &event_interrupt_class_cik, 271 .num_of_watch_points = 4, 272 .mqd_size_aligned = MQD_SIZE_ALIGNED, 273 .supports_cwsr = true, 274 .needs_iommu_device = false, 275 .needs_pci_atomics = true, 276 .num_sdma_engines = 2, 277 .num_xgmi_sdma_engines = 0, 278 .num_sdma_queues_per_engine = 2, 279 }; 280 281 static const struct kfd_device_info vegam_device_info = { 282 .asic_family = CHIP_VEGAM, 283 .asic_name = "vegam", 284 .max_pasid_bits = 16, 285 .max_no_of_hqd = 24, 286 .doorbell_size = 4, 287 .ih_ring_entry_size = 4 * sizeof(uint32_t), 288 .event_interrupt_class = &event_interrupt_class_cik, 289 .num_of_watch_points = 4, 290 .mqd_size_aligned = MQD_SIZE_ALIGNED, 291 .supports_cwsr = true, 292 .needs_iommu_device = false, 293 .needs_pci_atomics = true, 294 .num_sdma_engines = 2, 295 .num_xgmi_sdma_engines = 0, 296 .num_sdma_queues_per_engine = 2, 297 }; 298 299 static const struct kfd_device_info vega10_device_info = { 300 .asic_family = CHIP_VEGA10, 301 .asic_name = "vega10", 302 .max_pasid_bits = 16, 303 .max_no_of_hqd = 24, 304 .doorbell_size = 8, 305 .ih_ring_entry_size = 8 * sizeof(uint32_t), 306 .event_interrupt_class = &event_interrupt_class_v9, 307 .num_of_watch_points = 4, 308 .mqd_size_aligned = MQD_SIZE_ALIGNED, 309 .supports_cwsr = true, 310 .needs_iommu_device = false, 311 .needs_pci_atomics = false, 312 .num_sdma_engines = 2, 313 .num_xgmi_sdma_engines = 0, 314 .num_sdma_queues_per_engine = 2, 315 }; 316 317 static const struct kfd_device_info vega10_vf_device_info = { 318 .asic_family = CHIP_VEGA10, 319 .asic_name = "vega10", 320 .max_pasid_bits = 16, 321 .max_no_of_hqd = 24, 322 .doorbell_size = 8, 323 .ih_ring_entry_size = 8 * sizeof(uint32_t), 324 .event_interrupt_class = &event_interrupt_class_v9, 325 .num_of_watch_points = 4, 326 .mqd_size_aligned = MQD_SIZE_ALIGNED, 327 .supports_cwsr = true, 328 .needs_iommu_device = false, 329 .needs_pci_atomics = false, 330 .num_sdma_engines = 2, 331 .num_xgmi_sdma_engines = 0, 332 .num_sdma_queues_per_engine = 2, 333 }; 334 335 static const struct kfd_device_info vega12_device_info = { 336 .asic_family = CHIP_VEGA12, 337 .asic_name = "vega12", 338 .max_pasid_bits = 16, 339 .max_no_of_hqd = 24, 340 .doorbell_size = 8, 341 .ih_ring_entry_size = 8 * sizeof(uint32_t), 342 .event_interrupt_class = &event_interrupt_class_v9, 343 .num_of_watch_points = 4, 344 .mqd_size_aligned = MQD_SIZE_ALIGNED, 345 .supports_cwsr = true, 346 .needs_iommu_device = false, 347 .needs_pci_atomics = false, 348 .num_sdma_engines = 2, 349 .num_xgmi_sdma_engines = 0, 350 .num_sdma_queues_per_engine = 2, 351 }; 352 353 static const struct kfd_device_info vega20_device_info = { 354 .asic_family = CHIP_VEGA20, 355 .asic_name = "vega20", 356 .max_pasid_bits = 16, 357 .max_no_of_hqd = 24, 358 .doorbell_size = 8, 359 .ih_ring_entry_size = 8 * sizeof(uint32_t), 360 .event_interrupt_class = &event_interrupt_class_v9, 361 .num_of_watch_points = 4, 362 .mqd_size_aligned = MQD_SIZE_ALIGNED, 363 .supports_cwsr = true, 364 .needs_iommu_device = false, 365 .needs_pci_atomics = false, 366 .num_sdma_engines = 2, 367 .num_xgmi_sdma_engines = 0, 368 .num_sdma_queues_per_engine = 8, 369 }; 370 371 static const struct kfd_device_info arcturus_device_info = { 372 .asic_family = CHIP_ARCTURUS, 373 .asic_name = "arcturus", 374 .max_pasid_bits = 16, 375 .max_no_of_hqd = 24, 376 .doorbell_size = 8, 377 .ih_ring_entry_size = 8 * sizeof(uint32_t), 378 .event_interrupt_class = &event_interrupt_class_v9, 379 .num_of_watch_points = 4, 380 .mqd_size_aligned = MQD_SIZE_ALIGNED, 381 .supports_cwsr = true, 382 .needs_iommu_device = false, 383 .needs_pci_atomics = false, 384 .num_sdma_engines = 2, 385 .num_xgmi_sdma_engines = 6, 386 .num_sdma_queues_per_engine = 8, 387 }; 388 389 static const struct kfd_device_info renoir_device_info = { 390 .asic_family = CHIP_RENOIR, 391 .asic_name = "renoir", 392 .max_pasid_bits = 16, 393 .max_no_of_hqd = 24, 394 .doorbell_size = 8, 395 .ih_ring_entry_size = 8 * sizeof(uint32_t), 396 .event_interrupt_class = &event_interrupt_class_v9, 397 .num_of_watch_points = 4, 398 .mqd_size_aligned = MQD_SIZE_ALIGNED, 399 .supports_cwsr = true, 400 .needs_iommu_device = false, 401 .needs_pci_atomics = false, 402 .num_sdma_engines = 1, 403 .num_xgmi_sdma_engines = 0, 404 .num_sdma_queues_per_engine = 2, 405 }; 406 407 static const struct kfd_device_info navi10_device_info = { 408 .asic_family = CHIP_NAVI10, 409 .asic_name = "navi10", 410 .max_pasid_bits = 16, 411 .max_no_of_hqd = 24, 412 .doorbell_size = 8, 413 .ih_ring_entry_size = 8 * sizeof(uint32_t), 414 .event_interrupt_class = &event_interrupt_class_v9, 415 .num_of_watch_points = 4, 416 .mqd_size_aligned = MQD_SIZE_ALIGNED, 417 .needs_iommu_device = false, 418 .supports_cwsr = true, 419 .needs_pci_atomics = false, 420 .num_sdma_engines = 2, 421 .num_xgmi_sdma_engines = 0, 422 .num_sdma_queues_per_engine = 8, 423 }; 424 425 static const struct kfd_device_info navi12_device_info = { 426 .asic_family = CHIP_NAVI12, 427 .asic_name = "navi12", 428 .max_pasid_bits = 16, 429 .max_no_of_hqd = 24, 430 .doorbell_size = 8, 431 .ih_ring_entry_size = 8 * sizeof(uint32_t), 432 .event_interrupt_class = &event_interrupt_class_v9, 433 .num_of_watch_points = 4, 434 .mqd_size_aligned = MQD_SIZE_ALIGNED, 435 .needs_iommu_device = false, 436 .supports_cwsr = true, 437 .needs_pci_atomics = false, 438 .num_sdma_engines = 2, 439 .num_xgmi_sdma_engines = 0, 440 .num_sdma_queues_per_engine = 8, 441 }; 442 443 static const struct kfd_device_info navi14_device_info = { 444 .asic_family = CHIP_NAVI14, 445 .asic_name = "navi14", 446 .max_pasid_bits = 16, 447 .max_no_of_hqd = 24, 448 .doorbell_size = 8, 449 .ih_ring_entry_size = 8 * sizeof(uint32_t), 450 .event_interrupt_class = &event_interrupt_class_v9, 451 .num_of_watch_points = 4, 452 .mqd_size_aligned = MQD_SIZE_ALIGNED, 453 .needs_iommu_device = false, 454 .supports_cwsr = true, 455 .needs_pci_atomics = false, 456 .num_sdma_engines = 2, 457 .num_xgmi_sdma_engines = 0, 458 .num_sdma_queues_per_engine = 8, 459 }; 460 461 /* For each entry, [0] is regular and [1] is virtualisation device. */ 462 static const struct kfd_device_info *kfd_supported_devices[][2] = { 463 #ifdef KFD_SUPPORT_IOMMU_V2 464 [CHIP_KAVERI] = {&kaveri_device_info, NULL}, 465 [CHIP_CARRIZO] = {&carrizo_device_info, NULL}, 466 [CHIP_RAVEN] = {&raven_device_info, NULL}, 467 #endif 468 [CHIP_HAWAII] = {&hawaii_device_info, NULL}, 469 [CHIP_TONGA] = {&tonga_device_info, NULL}, 470 [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info}, 471 [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info}, 472 [CHIP_POLARIS11] = {&polaris11_device_info, NULL}, 473 [CHIP_POLARIS12] = {&polaris12_device_info, NULL}, 474 [CHIP_VEGAM] = {&vegam_device_info, NULL}, 475 [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info}, 476 [CHIP_VEGA12] = {&vega12_device_info, NULL}, 477 [CHIP_VEGA20] = {&vega20_device_info, NULL}, 478 [CHIP_RENOIR] = {&renoir_device_info, NULL}, 479 [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info}, 480 [CHIP_NAVI10] = {&navi10_device_info, NULL}, 481 [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info}, 482 [CHIP_NAVI14] = {&navi14_device_info, NULL}, 483 }; 484 485 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 486 unsigned int chunk_size); 487 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 488 489 static int kfd_resume(struct kfd_dev *kfd); 490 491 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 492 struct pci_dev *pdev, unsigned int asic_type, bool vf) 493 { 494 struct kfd_dev *kfd; 495 const struct kfd_device_info *device_info; 496 const struct kfd2kgd_calls *f2g; 497 498 if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2) 499 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) { 500 dev_err(kfd_device, "asic_type %d out of range\n", asic_type); 501 return NULL; /* asic_type out of range */ 502 } 503 504 device_info = kfd_supported_devices[asic_type][vf]; 505 f2g = kfd2kgd_funcs[asic_type]; 506 507 if (!device_info || !f2g) { 508 dev_err(kfd_device, "%s %s not supported in kfd\n", 509 amdgpu_asic_name[asic_type], vf ? "VF" : ""); 510 return NULL; 511 } 512 513 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 514 if (!kfd) 515 return NULL; 516 517 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. 518 * 32 and 64-bit requests are possible and must be 519 * supported. 520 */ 521 kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd); 522 if (device_info->needs_pci_atomics && 523 !kfd->pci_atomic_requested) { 524 dev_info(kfd_device, 525 "skipped device %x:%x, PCI rejects atomics\n", 526 pdev->vendor, pdev->device); 527 kfree(kfd); 528 return NULL; 529 } 530 531 kfd->kgd = kgd; 532 kfd->device_info = device_info; 533 kfd->pdev = pdev; 534 kfd->init_complete = false; 535 kfd->kfd2kgd = f2g; 536 atomic_set(&kfd->compute_profile, 0); 537 538 mutex_init(&kfd->doorbell_mutex); 539 memset(&kfd->doorbell_available_index, 0, 540 sizeof(kfd->doorbell_available_index)); 541 542 atomic_set(&kfd->sram_ecc_flag, 0); 543 544 return kfd; 545 } 546 547 static void kfd_cwsr_init(struct kfd_dev *kfd) 548 { 549 if (cwsr_enable && kfd->device_info->supports_cwsr) { 550 if (kfd->device_info->asic_family < CHIP_VEGA10) { 551 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); 552 kfd->cwsr_isa = cwsr_trap_gfx8_hex; 553 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); 554 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) { 555 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); 556 kfd->cwsr_isa = cwsr_trap_arcturus_hex; 557 kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); 558 } else if (kfd->device_info->asic_family < CHIP_NAVI10) { 559 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); 560 kfd->cwsr_isa = cwsr_trap_gfx9_hex; 561 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); 562 } else { 563 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); 564 kfd->cwsr_isa = cwsr_trap_gfx10_hex; 565 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); 566 } 567 568 kfd->cwsr_enabled = true; 569 } 570 } 571 572 bool kgd2kfd_device_init(struct kfd_dev *kfd, 573 struct drm_device *ddev, 574 const struct kgd2kfd_shared_resources *gpu_resources) 575 { 576 unsigned int size; 577 578 kfd->ddev = ddev; 579 kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 580 KGD_ENGINE_MEC1); 581 kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 582 KGD_ENGINE_SDMA1); 583 kfd->shared_resources = *gpu_resources; 584 585 kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; 586 kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; 587 kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd 588 - kfd->vm_info.first_vmid_kfd + 1; 589 590 /* Verify module parameters regarding mapped process number*/ 591 if ((hws_max_conc_proc < 0) 592 || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { 593 dev_err(kfd_device, 594 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", 595 hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, 596 kfd->vm_info.vmid_num_kfd); 597 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; 598 } else 599 kfd->max_proc_per_quantum = hws_max_conc_proc; 600 601 /* Allocate global GWS that is shared by all KFD processes */ 602 if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd, 603 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) { 604 dev_err(kfd_device, "Could not allocate %d gws\n", 605 amdgpu_amdkfd_get_num_gws(kfd->kgd)); 606 goto out; 607 } 608 /* calculate max size of mqds needed for queues */ 609 size = max_num_of_queues_per_device * 610 kfd->device_info->mqd_size_aligned; 611 612 /* 613 * calculate max size of runlist packet. 614 * There can be only 2 packets at once 615 */ 616 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + 617 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) 618 + sizeof(struct pm4_mes_runlist)) * 2; 619 620 /* Add size of HIQ & DIQ */ 621 size += KFD_KERNEL_QUEUE_SIZE * 2; 622 623 /* add another 512KB for all other allocations on gart (HPD, fences) */ 624 size += 512 * 1024; 625 626 if (amdgpu_amdkfd_alloc_gtt_mem( 627 kfd->kgd, size, &kfd->gtt_mem, 628 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, 629 false)) { 630 dev_err(kfd_device, "Could not allocate %d bytes\n", size); 631 goto alloc_gtt_mem_failure; 632 } 633 634 dev_info(kfd_device, "Allocated %d bytes on gart\n", size); 635 636 /* Initialize GTT sa with 512 byte chunk size */ 637 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 638 dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); 639 goto kfd_gtt_sa_init_error; 640 } 641 642 if (kfd_doorbell_init(kfd)) { 643 dev_err(kfd_device, 644 "Error initializing doorbell aperture\n"); 645 goto kfd_doorbell_error; 646 } 647 648 if (kfd->kfd2kgd->get_hive_id) 649 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd); 650 651 if (kfd->kfd2kgd->get_unique_id) 652 kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd); 653 654 if (kfd_interrupt_init(kfd)) { 655 dev_err(kfd_device, "Error initializing interrupts\n"); 656 goto kfd_interrupt_error; 657 } 658 659 kfd->dqm = device_queue_manager_init(kfd); 660 if (!kfd->dqm) { 661 dev_err(kfd_device, "Error initializing queue manager\n"); 662 goto device_queue_manager_error; 663 } 664 665 if (kfd_iommu_device_init(kfd)) { 666 dev_err(kfd_device, "Error initializing iommuv2\n"); 667 goto device_iommu_error; 668 } 669 670 kfd_cwsr_init(kfd); 671 672 if (kfd_resume(kfd)) 673 goto kfd_resume_error; 674 675 kfd->dbgmgr = NULL; 676 677 if (kfd_topology_add_device(kfd)) { 678 dev_err(kfd_device, "Error adding device to topology\n"); 679 goto kfd_topology_add_device_error; 680 } 681 682 kfd->init_complete = true; 683 dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, 684 kfd->pdev->device); 685 686 pr_debug("Starting kfd with the following scheduling policy %d\n", 687 kfd->dqm->sched_policy); 688 689 goto out; 690 691 kfd_topology_add_device_error: 692 kfd_resume_error: 693 device_iommu_error: 694 device_queue_manager_uninit(kfd->dqm); 695 device_queue_manager_error: 696 kfd_interrupt_exit(kfd); 697 kfd_interrupt_error: 698 kfd_doorbell_fini(kfd); 699 kfd_doorbell_error: 700 kfd_gtt_sa_fini(kfd); 701 kfd_gtt_sa_init_error: 702 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 703 alloc_gtt_mem_failure: 704 if (hws_gws_support) 705 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 706 dev_err(kfd_device, 707 "device %x:%x NOT added due to errors\n", 708 kfd->pdev->vendor, kfd->pdev->device); 709 out: 710 return kfd->init_complete; 711 } 712 713 void kgd2kfd_device_exit(struct kfd_dev *kfd) 714 { 715 if (kfd->init_complete) { 716 kgd2kfd_suspend(kfd, false); 717 device_queue_manager_uninit(kfd->dqm); 718 kfd_interrupt_exit(kfd); 719 kfd_topology_remove_device(kfd); 720 kfd_doorbell_fini(kfd); 721 kfd_gtt_sa_fini(kfd); 722 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 723 if (hws_gws_support) 724 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 725 } 726 727 kfree(kfd); 728 } 729 730 int kgd2kfd_pre_reset(struct kfd_dev *kfd) 731 { 732 if (!kfd->init_complete) 733 return 0; 734 735 kfd->dqm->ops.pre_reset(kfd->dqm); 736 737 kgd2kfd_suspend(kfd, false); 738 739 kfd_signal_reset_event(kfd); 740 return 0; 741 } 742 743 /* 744 * Fix me. KFD won't be able to resume existing process for now. 745 * We will keep all existing process in a evicted state and 746 * wait the process to be terminated. 747 */ 748 749 int kgd2kfd_post_reset(struct kfd_dev *kfd) 750 { 751 int ret; 752 753 if (!kfd->init_complete) 754 return 0; 755 756 ret = kfd_resume(kfd); 757 if (ret) 758 return ret; 759 atomic_dec(&kfd_locked); 760 761 atomic_set(&kfd->sram_ecc_flag, 0); 762 763 return 0; 764 } 765 766 bool kfd_is_locked(void) 767 { 768 return (atomic_read(&kfd_locked) > 0); 769 } 770 771 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) 772 { 773 if (!kfd->init_complete) 774 return; 775 776 /* for runtime suspend, skip locking kfd */ 777 if (!run_pm) { 778 /* For first KFD device suspend all the KFD processes */ 779 if (atomic_inc_return(&kfd_locked) == 1) 780 kfd_suspend_all_processes(); 781 } 782 783 kfd->dqm->ops.stop(kfd->dqm); 784 kfd_iommu_suspend(kfd); 785 } 786 787 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) 788 { 789 int ret, count; 790 791 if (!kfd->init_complete) 792 return 0; 793 794 ret = kfd_resume(kfd); 795 if (ret) 796 return ret; 797 798 /* for runtime resume, skip unlocking kfd */ 799 if (!run_pm) { 800 count = atomic_dec_return(&kfd_locked); 801 WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); 802 if (count == 0) 803 ret = kfd_resume_all_processes(); 804 } 805 806 return ret; 807 } 808 809 static int kfd_resume(struct kfd_dev *kfd) 810 { 811 int err = 0; 812 813 err = kfd_iommu_resume(kfd); 814 if (err) { 815 dev_err(kfd_device, 816 "Failed to resume IOMMU for device %x:%x\n", 817 kfd->pdev->vendor, kfd->pdev->device); 818 return err; 819 } 820 821 err = kfd->dqm->ops.start(kfd->dqm); 822 if (err) { 823 dev_err(kfd_device, 824 "Error starting queue manager for device %x:%x\n", 825 kfd->pdev->vendor, kfd->pdev->device); 826 goto dqm_start_error; 827 } 828 829 return err; 830 831 dqm_start_error: 832 kfd_iommu_suspend(kfd); 833 return err; 834 } 835 836 static inline void kfd_queue_work(struct workqueue_struct *wq, 837 struct work_struct *work) 838 { 839 int cpu, new_cpu; 840 841 cpu = new_cpu = smp_processor_id(); 842 do { 843 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; 844 if (cpu_to_node(new_cpu) == numa_node_id()) 845 break; 846 } while (cpu != new_cpu); 847 848 queue_work_on(new_cpu, wq, work); 849 } 850 851 /* This is called directly from KGD at ISR. */ 852 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 853 { 854 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; 855 bool is_patched = false; 856 unsigned long flags; 857 858 if (!kfd->init_complete) 859 return; 860 861 if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { 862 dev_err_once(kfd_device, "Ring entry too small\n"); 863 return; 864 } 865 866 spin_lock_irqsave(&kfd->interrupt_lock, flags); 867 868 if (kfd->interrupts_active 869 && interrupt_is_wanted(kfd, ih_ring_entry, 870 patched_ihre, &is_patched) 871 && enqueue_ih_ring_entry(kfd, 872 is_patched ? patched_ihre : ih_ring_entry)) 873 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work); 874 875 spin_unlock_irqrestore(&kfd->interrupt_lock, flags); 876 } 877 878 int kgd2kfd_quiesce_mm(struct mm_struct *mm) 879 { 880 struct kfd_process *p; 881 int r; 882 883 /* Because we are called from arbitrary context (workqueue) as opposed 884 * to process context, kfd_process could attempt to exit while we are 885 * running so the lookup function increments the process ref count. 886 */ 887 p = kfd_lookup_process_by_mm(mm); 888 if (!p) 889 return -ESRCH; 890 891 r = kfd_process_evict_queues(p); 892 893 kfd_unref_process(p); 894 return r; 895 } 896 897 int kgd2kfd_resume_mm(struct mm_struct *mm) 898 { 899 struct kfd_process *p; 900 int r; 901 902 /* Because we are called from arbitrary context (workqueue) as opposed 903 * to process context, kfd_process could attempt to exit while we are 904 * running so the lookup function increments the process ref count. 905 */ 906 p = kfd_lookup_process_by_mm(mm); 907 if (!p) 908 return -ESRCH; 909 910 r = kfd_process_restore_queues(p); 911 912 kfd_unref_process(p); 913 return r; 914 } 915 916 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will 917 * prepare for safe eviction of KFD BOs that belong to the specified 918 * process. 919 * 920 * @mm: mm_struct that identifies the specified KFD process 921 * @fence: eviction fence attached to KFD process BOs 922 * 923 */ 924 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, 925 struct dma_fence *fence) 926 { 927 struct kfd_process *p; 928 unsigned long active_time; 929 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); 930 931 if (!fence) 932 return -EINVAL; 933 934 if (dma_fence_is_signaled(fence)) 935 return 0; 936 937 p = kfd_lookup_process_by_mm(mm); 938 if (!p) 939 return -ENODEV; 940 941 if (fence->seqno == p->last_eviction_seqno) 942 goto out; 943 944 p->last_eviction_seqno = fence->seqno; 945 946 /* Avoid KFD process starvation. Wait for at least 947 * PROCESS_ACTIVE_TIME_MS before evicting the process again 948 */ 949 active_time = get_jiffies_64() - p->last_restore_timestamp; 950 if (delay_jiffies > active_time) 951 delay_jiffies -= active_time; 952 else 953 delay_jiffies = 0; 954 955 /* During process initialization eviction_work.dwork is initialized 956 * to kfd_evict_bo_worker 957 */ 958 schedule_delayed_work(&p->eviction_work, delay_jiffies); 959 out: 960 kfd_unref_process(p); 961 return 0; 962 } 963 964 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 965 unsigned int chunk_size) 966 { 967 unsigned int num_of_longs; 968 969 if (WARN_ON(buf_size < chunk_size)) 970 return -EINVAL; 971 if (WARN_ON(buf_size == 0)) 972 return -EINVAL; 973 if (WARN_ON(chunk_size == 0)) 974 return -EINVAL; 975 976 kfd->gtt_sa_chunk_size = chunk_size; 977 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 978 979 num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / 980 BITS_PER_LONG; 981 982 kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); 983 984 if (!kfd->gtt_sa_bitmap) 985 return -ENOMEM; 986 987 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 988 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 989 990 mutex_init(&kfd->gtt_sa_lock); 991 992 return 0; 993 994 } 995 996 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 997 { 998 mutex_destroy(&kfd->gtt_sa_lock); 999 kfree(kfd->gtt_sa_bitmap); 1000 } 1001 1002 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 1003 unsigned int bit_num, 1004 unsigned int chunk_size) 1005 { 1006 return start_addr + bit_num * chunk_size; 1007 } 1008 1009 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 1010 unsigned int bit_num, 1011 unsigned int chunk_size) 1012 { 1013 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 1014 } 1015 1016 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1017 struct kfd_mem_obj **mem_obj) 1018 { 1019 unsigned int found, start_search, cur_size; 1020 1021 if (size == 0) 1022 return -EINVAL; 1023 1024 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 1025 return -ENOMEM; 1026 1027 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 1028 if (!(*mem_obj)) 1029 return -ENOMEM; 1030 1031 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); 1032 1033 start_search = 0; 1034 1035 mutex_lock(&kfd->gtt_sa_lock); 1036 1037 kfd_gtt_restart_search: 1038 /* Find the first chunk that is free */ 1039 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 1040 kfd->gtt_sa_num_of_chunks, 1041 start_search); 1042 1043 pr_debug("Found = %d\n", found); 1044 1045 /* If there wasn't any free chunk, bail out */ 1046 if (found == kfd->gtt_sa_num_of_chunks) 1047 goto kfd_gtt_no_free_chunk; 1048 1049 /* Update fields of mem_obj */ 1050 (*mem_obj)->range_start = found; 1051 (*mem_obj)->range_end = found; 1052 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 1053 kfd->gtt_start_gpu_addr, 1054 found, 1055 kfd->gtt_sa_chunk_size); 1056 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 1057 kfd->gtt_start_cpu_ptr, 1058 found, 1059 kfd->gtt_sa_chunk_size); 1060 1061 pr_debug("gpu_addr = %p, cpu_addr = %p\n", 1062 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 1063 1064 /* If we need only one chunk, mark it as allocated and get out */ 1065 if (size <= kfd->gtt_sa_chunk_size) { 1066 pr_debug("Single bit\n"); 1067 set_bit(found, kfd->gtt_sa_bitmap); 1068 goto kfd_gtt_out; 1069 } 1070 1071 /* Otherwise, try to see if we have enough contiguous chunks */ 1072 cur_size = size - kfd->gtt_sa_chunk_size; 1073 do { 1074 (*mem_obj)->range_end = 1075 find_next_zero_bit(kfd->gtt_sa_bitmap, 1076 kfd->gtt_sa_num_of_chunks, ++found); 1077 /* 1078 * If next free chunk is not contiguous than we need to 1079 * restart our search from the last free chunk we found (which 1080 * wasn't contiguous to the previous ones 1081 */ 1082 if ((*mem_obj)->range_end != found) { 1083 start_search = found; 1084 goto kfd_gtt_restart_search; 1085 } 1086 1087 /* 1088 * If we reached end of buffer, bail out with error 1089 */ 1090 if (found == kfd->gtt_sa_num_of_chunks) 1091 goto kfd_gtt_no_free_chunk; 1092 1093 /* Check if we don't need another chunk */ 1094 if (cur_size <= kfd->gtt_sa_chunk_size) 1095 cur_size = 0; 1096 else 1097 cur_size -= kfd->gtt_sa_chunk_size; 1098 1099 } while (cur_size > 0); 1100 1101 pr_debug("range_start = %d, range_end = %d\n", 1102 (*mem_obj)->range_start, (*mem_obj)->range_end); 1103 1104 /* Mark the chunks as allocated */ 1105 for (found = (*mem_obj)->range_start; 1106 found <= (*mem_obj)->range_end; 1107 found++) 1108 set_bit(found, kfd->gtt_sa_bitmap); 1109 1110 kfd_gtt_out: 1111 mutex_unlock(&kfd->gtt_sa_lock); 1112 return 0; 1113 1114 kfd_gtt_no_free_chunk: 1115 pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); 1116 mutex_unlock(&kfd->gtt_sa_lock); 1117 kfree(*mem_obj); 1118 return -ENOMEM; 1119 } 1120 1121 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) 1122 { 1123 unsigned int bit; 1124 1125 /* Act like kfree when trying to free a NULL object */ 1126 if (!mem_obj) 1127 return 0; 1128 1129 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", 1130 mem_obj, mem_obj->range_start, mem_obj->range_end); 1131 1132 mutex_lock(&kfd->gtt_sa_lock); 1133 1134 /* Mark the chunks as free */ 1135 for (bit = mem_obj->range_start; 1136 bit <= mem_obj->range_end; 1137 bit++) 1138 clear_bit(bit, kfd->gtt_sa_bitmap); 1139 1140 mutex_unlock(&kfd->gtt_sa_lock); 1141 1142 kfree(mem_obj); 1143 return 0; 1144 } 1145 1146 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) 1147 { 1148 if (kfd) 1149 atomic_inc(&kfd->sram_ecc_flag); 1150 } 1151 1152 void kfd_inc_compute_active(struct kfd_dev *kfd) 1153 { 1154 if (atomic_inc_return(&kfd->compute_profile) == 1) 1155 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false); 1156 } 1157 1158 void kfd_dec_compute_active(struct kfd_dev *kfd) 1159 { 1160 int count = atomic_dec_return(&kfd->compute_profile); 1161 1162 if (count == 0) 1163 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true); 1164 WARN_ONCE(count < 0, "Compute profile ref. count error"); 1165 } 1166 1167 #if defined(CONFIG_DEBUG_FS) 1168 1169 /* This function will send a package to HIQ to hang the HWS 1170 * which will trigger a GPU reset and bring the HWS back to normal state 1171 */ 1172 int kfd_debugfs_hang_hws(struct kfd_dev *dev) 1173 { 1174 int r = 0; 1175 1176 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { 1177 pr_err("HWS is not enabled"); 1178 return -EINVAL; 1179 } 1180 1181 r = pm_debugfs_hang_hws(&dev->dqm->packets); 1182 if (!r) 1183 r = dqm_debugfs_execute_queues(dev->dqm); 1184 1185 return r; 1186 } 1187 1188 #endif 1189