1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/bsearch.h> 25 #include <linux/pci.h> 26 #include <linux/slab.h> 27 #include "kfd_priv.h" 28 #include "kfd_device_queue_manager.h" 29 #include "kfd_pm4_headers_vi.h" 30 #include "kfd_pm4_headers_aldebaran.h" 31 #include "cwsr_trap_handler.h" 32 #include "amdgpu_amdkfd.h" 33 #include "kfd_smi_events.h" 34 #include "kfd_svm.h" 35 #include "kfd_migrate.h" 36 #include "amdgpu.h" 37 #include "amdgpu_xcp.h" 38 39 #define MQD_SIZE_ALIGNED 768 40 41 /* 42 * kfd_locked is used to lock the kfd driver during suspend or reset 43 * once locked, kfd driver will stop any further GPU execution. 44 * create process (open) will return -EAGAIN. 45 */ 46 static int kfd_locked; 47 48 #ifdef CONFIG_DRM_AMDGPU_CIK 49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; 50 #endif 51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; 52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; 53 extern const struct kfd2kgd_calls arcturus_kfd2kgd; 54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd; 55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd; 56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; 57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd; 58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd; 59 60 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 61 unsigned int chunk_size); 62 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 63 64 static int kfd_resume(struct kfd_node *kfd); 65 66 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd) 67 { 68 uint32_t sdma_version = kfd->adev->ip_versions[SDMA0_HWIP][0]; 69 70 switch (sdma_version) { 71 case IP_VERSION(4, 0, 0):/* VEGA10 */ 72 case IP_VERSION(4, 0, 1):/* VEGA12 */ 73 case IP_VERSION(4, 1, 0):/* RAVEN */ 74 case IP_VERSION(4, 1, 1):/* RAVEN */ 75 case IP_VERSION(4, 1, 2):/* RENOIR */ 76 case IP_VERSION(5, 2, 1):/* VANGOGH */ 77 case IP_VERSION(5, 2, 3):/* YELLOW_CARP */ 78 case IP_VERSION(5, 2, 6):/* GC 10.3.6 */ 79 case IP_VERSION(5, 2, 7):/* GC 10.3.7 */ 80 kfd->device_info.num_sdma_queues_per_engine = 2; 81 break; 82 case IP_VERSION(4, 2, 0):/* VEGA20 */ 83 case IP_VERSION(4, 2, 2):/* ARCTURUS */ 84 case IP_VERSION(4, 4, 0):/* ALDEBARAN */ 85 case IP_VERSION(4, 4, 2): 86 case IP_VERSION(5, 0, 0):/* NAVI10 */ 87 case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */ 88 case IP_VERSION(5, 0, 2):/* NAVI14 */ 89 case IP_VERSION(5, 0, 5):/* NAVI12 */ 90 case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */ 91 case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */ 92 case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */ 93 case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */ 94 case IP_VERSION(6, 0, 0): 95 case IP_VERSION(6, 0, 1): 96 case IP_VERSION(6, 0, 2): 97 case IP_VERSION(6, 0, 3): 98 kfd->device_info.num_sdma_queues_per_engine = 8; 99 break; 100 default: 101 dev_warn(kfd_device, 102 "Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n", 103 sdma_version); 104 kfd->device_info.num_sdma_queues_per_engine = 8; 105 } 106 107 bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); 108 109 switch (sdma_version) { 110 case IP_VERSION(6, 0, 0): 111 case IP_VERSION(6, 0, 1): 112 case IP_VERSION(6, 0, 2): 113 case IP_VERSION(6, 0, 3): 114 /* Reserve 1 for paging and 1 for gfx */ 115 kfd->device_info.num_reserved_sdma_queues_per_engine = 2; 116 /* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */ 117 bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0, 118 kfd->adev->sdma.num_instances * 119 kfd->device_info.num_reserved_sdma_queues_per_engine); 120 break; 121 default: 122 break; 123 } 124 } 125 126 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd) 127 { 128 uint32_t gc_version = KFD_GC_VERSION(kfd); 129 130 switch (gc_version) { 131 case IP_VERSION(9, 0, 1): /* VEGA10 */ 132 case IP_VERSION(9, 1, 0): /* RAVEN */ 133 case IP_VERSION(9, 2, 1): /* VEGA12 */ 134 case IP_VERSION(9, 2, 2): /* RAVEN */ 135 case IP_VERSION(9, 3, 0): /* RENOIR */ 136 case IP_VERSION(9, 4, 0): /* VEGA20 */ 137 case IP_VERSION(9, 4, 1): /* ARCTURUS */ 138 case IP_VERSION(9, 4, 2): /* ALDEBARAN */ 139 kfd->device_info.event_interrupt_class = &event_interrupt_class_v9; 140 break; 141 case IP_VERSION(9, 4, 3): /* GC 9.4.3 */ 142 kfd->device_info.event_interrupt_class = 143 &event_interrupt_class_v9_4_3; 144 break; 145 case IP_VERSION(10, 3, 1): /* VANGOGH */ 146 case IP_VERSION(10, 3, 3): /* YELLOW_CARP */ 147 case IP_VERSION(10, 3, 6): /* GC 10.3.6 */ 148 case IP_VERSION(10, 3, 7): /* GC 10.3.7 */ 149 case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */ 150 case IP_VERSION(10, 1, 4): 151 case IP_VERSION(10, 1, 10): /* NAVI10 */ 152 case IP_VERSION(10, 1, 2): /* NAVI12 */ 153 case IP_VERSION(10, 1, 1): /* NAVI14 */ 154 case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */ 155 case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */ 156 case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */ 157 case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */ 158 kfd->device_info.event_interrupt_class = &event_interrupt_class_v10; 159 break; 160 case IP_VERSION(11, 0, 0): 161 case IP_VERSION(11, 0, 1): 162 case IP_VERSION(11, 0, 2): 163 case IP_VERSION(11, 0, 3): 164 case IP_VERSION(11, 0, 4): 165 kfd->device_info.event_interrupt_class = &event_interrupt_class_v11; 166 break; 167 default: 168 dev_warn(kfd_device, "v9 event interrupt handler is set due to " 169 "mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version); 170 kfd->device_info.event_interrupt_class = &event_interrupt_class_v9; 171 } 172 } 173 174 static void kfd_device_info_init(struct kfd_dev *kfd, 175 bool vf, uint32_t gfx_target_version) 176 { 177 uint32_t gc_version = KFD_GC_VERSION(kfd); 178 uint32_t asic_type = kfd->adev->asic_type; 179 180 kfd->device_info.max_pasid_bits = 16; 181 kfd->device_info.max_no_of_hqd = 24; 182 kfd->device_info.num_of_watch_points = 4; 183 kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED; 184 kfd->device_info.gfx_target_version = gfx_target_version; 185 186 if (KFD_IS_SOC15(kfd)) { 187 kfd->device_info.doorbell_size = 8; 188 kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t); 189 kfd->device_info.supports_cwsr = true; 190 191 kfd_device_info_set_sdma_info(kfd); 192 193 kfd_device_info_set_event_interrupt_class(kfd); 194 195 if (gc_version < IP_VERSION(11, 0, 0)) { 196 /* Navi2x+, Navi1x+ */ 197 if (gc_version == IP_VERSION(10, 3, 6)) 198 kfd->device_info.no_atomic_fw_version = 14; 199 else if (gc_version == IP_VERSION(10, 3, 7)) 200 kfd->device_info.no_atomic_fw_version = 3; 201 else if (gc_version >= IP_VERSION(10, 3, 0)) 202 kfd->device_info.no_atomic_fw_version = 92; 203 else if (gc_version >= IP_VERSION(10, 1, 1)) 204 kfd->device_info.no_atomic_fw_version = 145; 205 206 /* Navi1x+ */ 207 if (gc_version >= IP_VERSION(10, 1, 1)) 208 kfd->device_info.needs_pci_atomics = true; 209 } else if (gc_version < IP_VERSION(12, 0, 0)) { 210 /* 211 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires 212 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require 213 * PCIe atomics support. 214 */ 215 kfd->device_info.needs_pci_atomics = true; 216 kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0; 217 } 218 } else { 219 kfd->device_info.doorbell_size = 4; 220 kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t); 221 kfd->device_info.event_interrupt_class = &event_interrupt_class_cik; 222 kfd->device_info.num_sdma_queues_per_engine = 2; 223 224 if (asic_type != CHIP_KAVERI && 225 asic_type != CHIP_HAWAII && 226 asic_type != CHIP_TONGA) 227 kfd->device_info.supports_cwsr = true; 228 229 if (asic_type != CHIP_HAWAII && !vf) 230 kfd->device_info.needs_pci_atomics = true; 231 } 232 } 233 234 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf) 235 { 236 struct kfd_dev *kfd = NULL; 237 const struct kfd2kgd_calls *f2g = NULL; 238 uint32_t gfx_target_version = 0; 239 240 switch (adev->asic_type) { 241 #ifdef CONFIG_DRM_AMDGPU_CIK 242 case CHIP_KAVERI: 243 gfx_target_version = 70000; 244 if (!vf) 245 f2g = &gfx_v7_kfd2kgd; 246 break; 247 #endif 248 case CHIP_CARRIZO: 249 gfx_target_version = 80001; 250 if (!vf) 251 f2g = &gfx_v8_kfd2kgd; 252 break; 253 #ifdef CONFIG_DRM_AMDGPU_CIK 254 case CHIP_HAWAII: 255 gfx_target_version = 70001; 256 if (!amdgpu_exp_hw_support) 257 pr_info( 258 "KFD support on Hawaii is experimental. See modparam exp_hw_support\n" 259 ); 260 else if (!vf) 261 f2g = &gfx_v7_kfd2kgd; 262 break; 263 #endif 264 case CHIP_TONGA: 265 gfx_target_version = 80002; 266 if (!vf) 267 f2g = &gfx_v8_kfd2kgd; 268 break; 269 case CHIP_FIJI: 270 case CHIP_POLARIS10: 271 gfx_target_version = 80003; 272 f2g = &gfx_v8_kfd2kgd; 273 break; 274 case CHIP_POLARIS11: 275 case CHIP_POLARIS12: 276 case CHIP_VEGAM: 277 gfx_target_version = 80003; 278 if (!vf) 279 f2g = &gfx_v8_kfd2kgd; 280 break; 281 default: 282 switch (adev->ip_versions[GC_HWIP][0]) { 283 /* Vega 10 */ 284 case IP_VERSION(9, 0, 1): 285 gfx_target_version = 90000; 286 f2g = &gfx_v9_kfd2kgd; 287 break; 288 /* Raven */ 289 case IP_VERSION(9, 1, 0): 290 case IP_VERSION(9, 2, 2): 291 gfx_target_version = 90002; 292 if (!vf) 293 f2g = &gfx_v9_kfd2kgd; 294 break; 295 /* Vega12 */ 296 case IP_VERSION(9, 2, 1): 297 gfx_target_version = 90004; 298 if (!vf) 299 f2g = &gfx_v9_kfd2kgd; 300 break; 301 /* Renoir */ 302 case IP_VERSION(9, 3, 0): 303 gfx_target_version = 90012; 304 if (!vf) 305 f2g = &gfx_v9_kfd2kgd; 306 break; 307 /* Vega20 */ 308 case IP_VERSION(9, 4, 0): 309 gfx_target_version = 90006; 310 if (!vf) 311 f2g = &gfx_v9_kfd2kgd; 312 break; 313 /* Arcturus */ 314 case IP_VERSION(9, 4, 1): 315 gfx_target_version = 90008; 316 f2g = &arcturus_kfd2kgd; 317 break; 318 /* Aldebaran */ 319 case IP_VERSION(9, 4, 2): 320 gfx_target_version = 90010; 321 f2g = &aldebaran_kfd2kgd; 322 break; 323 case IP_VERSION(9, 4, 3): 324 gfx_target_version = adev->rev_id >= 1 ? 90402 325 : adev->flags & AMD_IS_APU ? 90400 326 : 90401; 327 f2g = &gc_9_4_3_kfd2kgd; 328 break; 329 /* Navi10 */ 330 case IP_VERSION(10, 1, 10): 331 gfx_target_version = 100100; 332 if (!vf) 333 f2g = &gfx_v10_kfd2kgd; 334 break; 335 /* Navi12 */ 336 case IP_VERSION(10, 1, 2): 337 gfx_target_version = 100101; 338 f2g = &gfx_v10_kfd2kgd; 339 break; 340 /* Navi14 */ 341 case IP_VERSION(10, 1, 1): 342 gfx_target_version = 100102; 343 if (!vf) 344 f2g = &gfx_v10_kfd2kgd; 345 break; 346 /* Cyan Skillfish */ 347 case IP_VERSION(10, 1, 3): 348 case IP_VERSION(10, 1, 4): 349 gfx_target_version = 100103; 350 if (!vf) 351 f2g = &gfx_v10_kfd2kgd; 352 break; 353 /* Sienna Cichlid */ 354 case IP_VERSION(10, 3, 0): 355 gfx_target_version = 100300; 356 f2g = &gfx_v10_3_kfd2kgd; 357 break; 358 /* Navy Flounder */ 359 case IP_VERSION(10, 3, 2): 360 gfx_target_version = 100301; 361 f2g = &gfx_v10_3_kfd2kgd; 362 break; 363 /* Van Gogh */ 364 case IP_VERSION(10, 3, 1): 365 gfx_target_version = 100303; 366 if (!vf) 367 f2g = &gfx_v10_3_kfd2kgd; 368 break; 369 /* Dimgrey Cavefish */ 370 case IP_VERSION(10, 3, 4): 371 gfx_target_version = 100302; 372 f2g = &gfx_v10_3_kfd2kgd; 373 break; 374 /* Beige Goby */ 375 case IP_VERSION(10, 3, 5): 376 gfx_target_version = 100304; 377 f2g = &gfx_v10_3_kfd2kgd; 378 break; 379 /* Yellow Carp */ 380 case IP_VERSION(10, 3, 3): 381 gfx_target_version = 100305; 382 if (!vf) 383 f2g = &gfx_v10_3_kfd2kgd; 384 break; 385 case IP_VERSION(10, 3, 6): 386 case IP_VERSION(10, 3, 7): 387 gfx_target_version = 100306; 388 if (!vf) 389 f2g = &gfx_v10_3_kfd2kgd; 390 break; 391 case IP_VERSION(11, 0, 0): 392 gfx_target_version = 110000; 393 f2g = &gfx_v11_kfd2kgd; 394 break; 395 case IP_VERSION(11, 0, 1): 396 case IP_VERSION(11, 0, 4): 397 gfx_target_version = 110003; 398 f2g = &gfx_v11_kfd2kgd; 399 break; 400 case IP_VERSION(11, 0, 2): 401 gfx_target_version = 110002; 402 f2g = &gfx_v11_kfd2kgd; 403 break; 404 case IP_VERSION(11, 0, 3): 405 /* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */ 406 gfx_target_version = 110001; 407 f2g = &gfx_v11_kfd2kgd; 408 break; 409 default: 410 break; 411 } 412 break; 413 } 414 415 if (!f2g) { 416 if (adev->ip_versions[GC_HWIP][0]) 417 dev_err(kfd_device, "GC IP %06x %s not supported in kfd\n", 418 adev->ip_versions[GC_HWIP][0], vf ? "VF" : ""); 419 else 420 dev_err(kfd_device, "%s %s not supported in kfd\n", 421 amdgpu_asic_name[adev->asic_type], vf ? "VF" : ""); 422 return NULL; 423 } 424 425 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 426 if (!kfd) 427 return NULL; 428 429 kfd->adev = adev; 430 kfd_device_info_init(kfd, vf, gfx_target_version); 431 kfd->init_complete = false; 432 kfd->kfd2kgd = f2g; 433 atomic_set(&kfd->compute_profile, 0); 434 435 mutex_init(&kfd->doorbell_mutex); 436 437 ida_init(&kfd->doorbell_ida); 438 439 return kfd; 440 } 441 442 static void kfd_cwsr_init(struct kfd_dev *kfd) 443 { 444 if (cwsr_enable && kfd->device_info.supports_cwsr) { 445 if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) { 446 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); 447 kfd->cwsr_isa = cwsr_trap_gfx8_hex; 448 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); 449 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) { 450 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); 451 kfd->cwsr_isa = cwsr_trap_arcturus_hex; 452 kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); 453 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) { 454 BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE); 455 kfd->cwsr_isa = cwsr_trap_aldebaran_hex; 456 kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex); 457 } else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) { 458 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE); 459 kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex; 460 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex); 461 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) { 462 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); 463 kfd->cwsr_isa = cwsr_trap_gfx9_hex; 464 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); 465 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) { 466 BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE); 467 kfd->cwsr_isa = cwsr_trap_nv1x_hex; 468 kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex); 469 } else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) { 470 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); 471 kfd->cwsr_isa = cwsr_trap_gfx10_hex; 472 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); 473 } else { 474 BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE); 475 kfd->cwsr_isa = cwsr_trap_gfx11_hex; 476 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex); 477 } 478 479 kfd->cwsr_enabled = true; 480 } 481 } 482 483 static int kfd_gws_init(struct kfd_node *node) 484 { 485 int ret = 0; 486 struct kfd_dev *kfd = node->kfd; 487 uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK; 488 489 if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) 490 return 0; 491 492 if (hws_gws_support || (KFD_IS_SOC15(node) && 493 ((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1) 494 && kfd->mec2_fw_version >= 0x81b3) || 495 (KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0) 496 && kfd->mec2_fw_version >= 0x1b3) || 497 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1) 498 && kfd->mec2_fw_version >= 0x30) || 499 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2) 500 && kfd->mec2_fw_version >= 0x28) || 501 (KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) || 502 (KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0) 503 && KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0) 504 && kfd->mec2_fw_version >= 0x6b) || 505 (KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0) 506 && KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0) 507 && mes_rev >= 68)))) 508 ret = amdgpu_amdkfd_alloc_gws(node->adev, 509 node->adev->gds.gws_size, &node->gws); 510 511 return ret; 512 } 513 514 static void kfd_smi_init(struct kfd_node *dev) 515 { 516 INIT_LIST_HEAD(&dev->smi_clients); 517 spin_lock_init(&dev->smi_lock); 518 } 519 520 static int kfd_init_node(struct kfd_node *node) 521 { 522 int err = -1; 523 524 if (kfd_interrupt_init(node)) { 525 dev_err(kfd_device, "Error initializing interrupts\n"); 526 goto kfd_interrupt_error; 527 } 528 529 node->dqm = device_queue_manager_init(node); 530 if (!node->dqm) { 531 dev_err(kfd_device, "Error initializing queue manager\n"); 532 goto device_queue_manager_error; 533 } 534 535 if (kfd_gws_init(node)) { 536 dev_err(kfd_device, "Could not allocate %d gws\n", 537 node->adev->gds.gws_size); 538 goto gws_error; 539 } 540 541 if (kfd_resume(node)) 542 goto kfd_resume_error; 543 544 if (kfd_topology_add_device(node)) { 545 dev_err(kfd_device, "Error adding device to topology\n"); 546 goto kfd_topology_add_device_error; 547 } 548 549 kfd_smi_init(node); 550 551 return 0; 552 553 kfd_topology_add_device_error: 554 kfd_resume_error: 555 gws_error: 556 device_queue_manager_uninit(node->dqm); 557 device_queue_manager_error: 558 kfd_interrupt_exit(node); 559 kfd_interrupt_error: 560 if (node->gws) 561 amdgpu_amdkfd_free_gws(node->adev, node->gws); 562 563 /* Cleanup the node memory here */ 564 kfree(node); 565 return err; 566 } 567 568 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes) 569 { 570 struct kfd_node *knode; 571 unsigned int i; 572 573 for (i = 0; i < num_nodes; i++) { 574 knode = kfd->nodes[i]; 575 device_queue_manager_uninit(knode->dqm); 576 kfd_interrupt_exit(knode); 577 kfd_topology_remove_device(knode); 578 if (knode->gws) 579 amdgpu_amdkfd_free_gws(knode->adev, knode->gws); 580 kfree(knode); 581 kfd->nodes[i] = NULL; 582 } 583 } 584 585 static void kfd_setup_interrupt_bitmap(struct kfd_node *node, 586 unsigned int kfd_node_idx) 587 { 588 struct amdgpu_device *adev = node->adev; 589 uint32_t xcc_mask = node->xcc_mask; 590 uint32_t xcc, mapped_xcc; 591 /* 592 * Interrupt bitmap is setup for processing interrupts from 593 * different XCDs and AIDs. 594 * Interrupt bitmap is defined as follows: 595 * 1. Bits 0-15 - correspond to the NodeId field. 596 * Each bit corresponds to NodeId number. For example, if 597 * a KFD node has interrupt bitmap set to 0x7, then this 598 * KFD node will process interrupts with NodeId = 0, 1 and 2 599 * in the IH cookie. 600 * 2. Bits 16-31 - unused. 601 * 602 * Please note that the kfd_node_idx argument passed to this 603 * function is not related to NodeId field received in the 604 * IH cookie. 605 * 606 * In CPX mode, a KFD node will process an interrupt if: 607 * - the Node Id matches the corresponding bit set in 608 * Bits 0-15. 609 * - AND VMID reported in the interrupt lies within the 610 * VMID range of the node. 611 */ 612 for_each_inst(xcc, xcc_mask) { 613 mapped_xcc = GET_INST(GC, xcc); 614 node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2)); 615 } 616 dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx, 617 node->interrupt_bitmap); 618 } 619 620 bool kgd2kfd_device_init(struct kfd_dev *kfd, 621 const struct kgd2kfd_shared_resources *gpu_resources) 622 { 623 unsigned int size, map_process_packet_size, i; 624 struct kfd_node *node; 625 uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd; 626 unsigned int max_proc_per_quantum; 627 int partition_mode; 628 int xcp_idx; 629 630 kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, 631 KGD_ENGINE_MEC1); 632 kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, 633 KGD_ENGINE_MEC2); 634 kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev, 635 KGD_ENGINE_SDMA1); 636 kfd->shared_resources = *gpu_resources; 637 638 kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr); 639 640 if (kfd->num_nodes == 0) { 641 dev_err(kfd_device, 642 "KFD num nodes cannot be 0, num_xcc_in_node: %d\n", 643 kfd->adev->gfx.num_xcc_per_xcp); 644 goto out; 645 } 646 647 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. 648 * 32 and 64-bit requests are possible and must be 649 * supported. 650 */ 651 kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev); 652 if (!kfd->pci_atomic_requested && 653 kfd->device_info.needs_pci_atomics && 654 (!kfd->device_info.no_atomic_fw_version || 655 kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) { 656 dev_info(kfd_device, 657 "skipped device %x:%x, PCI rejects atomics %d<%d\n", 658 kfd->adev->pdev->vendor, kfd->adev->pdev->device, 659 kfd->mec_fw_version, 660 kfd->device_info.no_atomic_fw_version); 661 return false; 662 } 663 664 first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; 665 last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; 666 vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1; 667 668 /* For GFX9.4.3, we need special handling for VMIDs depending on 669 * partition mode. 670 * In CPX mode, the VMID range needs to be shared between XCDs. 671 * Additionally, there are 13 VMIDs (3-15) available for KFD. To 672 * divide them equally, we change starting VMID to 4 and not use 673 * VMID 3. 674 * If the VMID range changes for GFX9.4.3, then this code MUST be 675 * revisited. 676 */ 677 if (kfd->adev->xcp_mgr) { 678 partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr, 679 AMDGPU_XCP_FL_LOCKED); 680 if (partition_mode == AMDGPU_CPX_PARTITION_MODE && 681 kfd->num_nodes != 1) { 682 vmid_num_kfd /= 2; 683 first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2; 684 } 685 } 686 687 /* Verify module parameters regarding mapped process number*/ 688 if (hws_max_conc_proc >= 0) 689 max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd); 690 else 691 max_proc_per_quantum = vmid_num_kfd; 692 693 /* calculate max size of mqds needed for queues */ 694 size = max_num_of_queues_per_device * 695 kfd->device_info.mqd_size_aligned; 696 697 /* 698 * calculate max size of runlist packet. 699 * There can be only 2 packets at once 700 */ 701 map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ? 702 sizeof(struct pm4_mes_map_process_aldebaran) : 703 sizeof(struct pm4_mes_map_process); 704 size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size + 705 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) 706 + sizeof(struct pm4_mes_runlist)) * 2; 707 708 /* Add size of HIQ & DIQ */ 709 size += KFD_KERNEL_QUEUE_SIZE * 2; 710 711 /* add another 512KB for all other allocations on gart (HPD, fences) */ 712 size += 512 * 1024; 713 714 if (amdgpu_amdkfd_alloc_gtt_mem( 715 kfd->adev, size, &kfd->gtt_mem, 716 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, 717 false)) { 718 dev_err(kfd_device, "Could not allocate %d bytes\n", size); 719 goto alloc_gtt_mem_failure; 720 } 721 722 dev_info(kfd_device, "Allocated %d bytes on gart\n", size); 723 724 /* Initialize GTT sa with 512 byte chunk size */ 725 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 726 dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); 727 goto kfd_gtt_sa_init_error; 728 } 729 730 if (kfd_doorbell_init(kfd)) { 731 dev_err(kfd_device, 732 "Error initializing doorbell aperture\n"); 733 goto kfd_doorbell_error; 734 } 735 736 if (amdgpu_use_xgmi_p2p) 737 kfd->hive_id = kfd->adev->gmc.xgmi.hive_id; 738 739 /* 740 * For GFX9.4.3, the KFD abstracts all partitions within a socket as 741 * xGMI connected in the topology so assign a unique hive id per 742 * device based on the pci device location if device is in PCIe mode. 743 */ 744 if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1) 745 kfd->hive_id = pci_dev_id(kfd->adev->pdev); 746 747 kfd->noretry = kfd->adev->gmc.noretry; 748 749 kfd_cwsr_init(kfd); 750 751 dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n", 752 kfd->num_nodes); 753 754 /* Allocate the KFD nodes */ 755 for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) { 756 node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL); 757 if (!node) 758 goto node_alloc_error; 759 760 node->node_id = i; 761 node->adev = kfd->adev; 762 node->kfd = kfd; 763 node->kfd2kgd = kfd->kfd2kgd; 764 node->vm_info.vmid_num_kfd = vmid_num_kfd; 765 node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx); 766 /* TODO : Check if error handling is needed */ 767 if (node->xcp) { 768 amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX, 769 &node->xcc_mask); 770 ++xcp_idx; 771 } else { 772 node->xcc_mask = 773 (1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1; 774 } 775 776 if (node->xcp) { 777 dev_info(kfd_device, "KFD node %d partition %d size %lldM\n", 778 node->node_id, node->xcp->mem_id, 779 KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20); 780 } 781 782 if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) && 783 partition_mode == AMDGPU_CPX_PARTITION_MODE && 784 kfd->num_nodes != 1) { 785 /* For GFX9.4.3 and CPX mode, first XCD gets VMID range 786 * 4-9 and second XCD gets VMID range 10-15. 787 */ 788 789 node->vm_info.first_vmid_kfd = (i%2 == 0) ? 790 first_vmid_kfd : 791 first_vmid_kfd+vmid_num_kfd; 792 node->vm_info.last_vmid_kfd = (i%2 == 0) ? 793 last_vmid_kfd-vmid_num_kfd : 794 last_vmid_kfd; 795 node->compute_vmid_bitmap = 796 ((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) - 797 ((0x1 << (node->vm_info.first_vmid_kfd)) - 1); 798 } else { 799 node->vm_info.first_vmid_kfd = first_vmid_kfd; 800 node->vm_info.last_vmid_kfd = last_vmid_kfd; 801 node->compute_vmid_bitmap = 802 gpu_resources->compute_vmid_bitmap; 803 } 804 node->max_proc_per_quantum = max_proc_per_quantum; 805 atomic_set(&node->sram_ecc_flag, 0); 806 807 amdgpu_amdkfd_get_local_mem_info(kfd->adev, 808 &node->local_mem_info, node->xcp); 809 810 if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) 811 kfd_setup_interrupt_bitmap(node, i); 812 813 /* Initialize the KFD node */ 814 if (kfd_init_node(node)) { 815 dev_err(kfd_device, "Error initializing KFD node\n"); 816 goto node_init_error; 817 } 818 kfd->nodes[i] = node; 819 } 820 821 svm_range_set_max_pages(kfd->adev); 822 823 spin_lock_init(&kfd->watch_points_lock); 824 825 kfd->init_complete = true; 826 dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor, 827 kfd->adev->pdev->device); 828 829 pr_debug("Starting kfd with the following scheduling policy %d\n", 830 node->dqm->sched_policy); 831 832 goto out; 833 834 node_init_error: 835 node_alloc_error: 836 kfd_cleanup_nodes(kfd, i); 837 kfd_doorbell_fini(kfd); 838 kfd_doorbell_error: 839 kfd_gtt_sa_fini(kfd); 840 kfd_gtt_sa_init_error: 841 amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem); 842 alloc_gtt_mem_failure: 843 dev_err(kfd_device, 844 "device %x:%x NOT added due to errors\n", 845 kfd->adev->pdev->vendor, kfd->adev->pdev->device); 846 out: 847 return kfd->init_complete; 848 } 849 850 void kgd2kfd_device_exit(struct kfd_dev *kfd) 851 { 852 if (kfd->init_complete) { 853 /* Cleanup KFD nodes */ 854 kfd_cleanup_nodes(kfd, kfd->num_nodes); 855 /* Cleanup common/shared resources */ 856 kfd_doorbell_fini(kfd); 857 ida_destroy(&kfd->doorbell_ida); 858 kfd_gtt_sa_fini(kfd); 859 amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem); 860 } 861 862 kfree(kfd); 863 } 864 865 int kgd2kfd_pre_reset(struct kfd_dev *kfd) 866 { 867 struct kfd_node *node; 868 int i; 869 870 if (!kfd->init_complete) 871 return 0; 872 873 for (i = 0; i < kfd->num_nodes; i++) { 874 node = kfd->nodes[i]; 875 kfd_smi_event_update_gpu_reset(node, false); 876 node->dqm->ops.pre_reset(node->dqm); 877 } 878 879 kgd2kfd_suspend(kfd, false); 880 881 for (i = 0; i < kfd->num_nodes; i++) 882 kfd_signal_reset_event(kfd->nodes[i]); 883 884 return 0; 885 } 886 887 /* 888 * Fix me. KFD won't be able to resume existing process for now. 889 * We will keep all existing process in a evicted state and 890 * wait the process to be terminated. 891 */ 892 893 int kgd2kfd_post_reset(struct kfd_dev *kfd) 894 { 895 int ret; 896 struct kfd_node *node; 897 int i; 898 899 if (!kfd->init_complete) 900 return 0; 901 902 for (i = 0; i < kfd->num_nodes; i++) { 903 ret = kfd_resume(kfd->nodes[i]); 904 if (ret) 905 return ret; 906 } 907 908 mutex_lock(&kfd_processes_mutex); 909 --kfd_locked; 910 mutex_unlock(&kfd_processes_mutex); 911 912 for (i = 0; i < kfd->num_nodes; i++) { 913 node = kfd->nodes[i]; 914 atomic_set(&node->sram_ecc_flag, 0); 915 kfd_smi_event_update_gpu_reset(node, true); 916 } 917 918 return 0; 919 } 920 921 bool kfd_is_locked(void) 922 { 923 lockdep_assert_held(&kfd_processes_mutex); 924 return (kfd_locked > 0); 925 } 926 927 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) 928 { 929 struct kfd_node *node; 930 int i; 931 932 if (!kfd->init_complete) 933 return; 934 935 /* for runtime suspend, skip locking kfd */ 936 if (!run_pm) { 937 mutex_lock(&kfd_processes_mutex); 938 /* For first KFD device suspend all the KFD processes */ 939 if (++kfd_locked == 1) 940 kfd_suspend_all_processes(); 941 mutex_unlock(&kfd_processes_mutex); 942 } 943 944 for (i = 0; i < kfd->num_nodes; i++) { 945 node = kfd->nodes[i]; 946 node->dqm->ops.stop(node->dqm); 947 } 948 } 949 950 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) 951 { 952 int ret, i; 953 954 if (!kfd->init_complete) 955 return 0; 956 957 for (i = 0; i < kfd->num_nodes; i++) { 958 ret = kfd_resume(kfd->nodes[i]); 959 if (ret) 960 return ret; 961 } 962 963 /* for runtime resume, skip unlocking kfd */ 964 if (!run_pm) { 965 mutex_lock(&kfd_processes_mutex); 966 if (--kfd_locked == 0) 967 ret = kfd_resume_all_processes(); 968 WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error"); 969 mutex_unlock(&kfd_processes_mutex); 970 } 971 972 return ret; 973 } 974 975 static int kfd_resume(struct kfd_node *node) 976 { 977 int err = 0; 978 979 err = node->dqm->ops.start(node->dqm); 980 if (err) 981 dev_err(kfd_device, 982 "Error starting queue manager for device %x:%x\n", 983 node->adev->pdev->vendor, node->adev->pdev->device); 984 985 return err; 986 } 987 988 static inline void kfd_queue_work(struct workqueue_struct *wq, 989 struct work_struct *work) 990 { 991 int cpu, new_cpu; 992 993 cpu = new_cpu = smp_processor_id(); 994 do { 995 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; 996 if (cpu_to_node(new_cpu) == numa_node_id()) 997 break; 998 } while (cpu != new_cpu); 999 1000 queue_work_on(new_cpu, wq, work); 1001 } 1002 1003 /* This is called directly from KGD at ISR. */ 1004 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 1005 { 1006 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i; 1007 bool is_patched = false; 1008 unsigned long flags; 1009 struct kfd_node *node; 1010 1011 if (!kfd->init_complete) 1012 return; 1013 1014 if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) { 1015 dev_err_once(kfd_device, "Ring entry too small\n"); 1016 return; 1017 } 1018 1019 for (i = 0; i < kfd->num_nodes; i++) { 1020 node = kfd->nodes[i]; 1021 spin_lock_irqsave(&node->interrupt_lock, flags); 1022 1023 if (node->interrupts_active 1024 && interrupt_is_wanted(node, ih_ring_entry, 1025 patched_ihre, &is_patched) 1026 && enqueue_ih_ring_entry(node, 1027 is_patched ? patched_ihre : ih_ring_entry)) { 1028 kfd_queue_work(node->ih_wq, &node->interrupt_work); 1029 spin_unlock_irqrestore(&node->interrupt_lock, flags); 1030 return; 1031 } 1032 spin_unlock_irqrestore(&node->interrupt_lock, flags); 1033 } 1034 1035 } 1036 1037 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger) 1038 { 1039 struct kfd_process *p; 1040 int r; 1041 1042 /* Because we are called from arbitrary context (workqueue) as opposed 1043 * to process context, kfd_process could attempt to exit while we are 1044 * running so the lookup function increments the process ref count. 1045 */ 1046 p = kfd_lookup_process_by_mm(mm); 1047 if (!p) 1048 return -ESRCH; 1049 1050 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 1051 r = kfd_process_evict_queues(p, trigger); 1052 1053 kfd_unref_process(p); 1054 return r; 1055 } 1056 1057 int kgd2kfd_resume_mm(struct mm_struct *mm) 1058 { 1059 struct kfd_process *p; 1060 int r; 1061 1062 /* Because we are called from arbitrary context (workqueue) as opposed 1063 * to process context, kfd_process could attempt to exit while we are 1064 * running so the lookup function increments the process ref count. 1065 */ 1066 p = kfd_lookup_process_by_mm(mm); 1067 if (!p) 1068 return -ESRCH; 1069 1070 r = kfd_process_restore_queues(p); 1071 1072 kfd_unref_process(p); 1073 return r; 1074 } 1075 1076 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will 1077 * prepare for safe eviction of KFD BOs that belong to the specified 1078 * process. 1079 * 1080 * @mm: mm_struct that identifies the specified KFD process 1081 * @fence: eviction fence attached to KFD process BOs 1082 * 1083 */ 1084 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, 1085 struct dma_fence *fence) 1086 { 1087 struct kfd_process *p; 1088 unsigned long active_time; 1089 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); 1090 1091 if (!fence) 1092 return -EINVAL; 1093 1094 if (dma_fence_is_signaled(fence)) 1095 return 0; 1096 1097 p = kfd_lookup_process_by_mm(mm); 1098 if (!p) 1099 return -ENODEV; 1100 1101 if (fence->seqno == p->last_eviction_seqno) 1102 goto out; 1103 1104 p->last_eviction_seqno = fence->seqno; 1105 1106 /* Avoid KFD process starvation. Wait for at least 1107 * PROCESS_ACTIVE_TIME_MS before evicting the process again 1108 */ 1109 active_time = get_jiffies_64() - p->last_restore_timestamp; 1110 if (delay_jiffies > active_time) 1111 delay_jiffies -= active_time; 1112 else 1113 delay_jiffies = 0; 1114 1115 /* During process initialization eviction_work.dwork is initialized 1116 * to kfd_evict_bo_worker 1117 */ 1118 WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies", 1119 p->lead_thread->pid, delay_jiffies); 1120 schedule_delayed_work(&p->eviction_work, delay_jiffies); 1121 out: 1122 kfd_unref_process(p); 1123 return 0; 1124 } 1125 1126 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 1127 unsigned int chunk_size) 1128 { 1129 if (WARN_ON(buf_size < chunk_size)) 1130 return -EINVAL; 1131 if (WARN_ON(buf_size == 0)) 1132 return -EINVAL; 1133 if (WARN_ON(chunk_size == 0)) 1134 return -EINVAL; 1135 1136 kfd->gtt_sa_chunk_size = chunk_size; 1137 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 1138 1139 kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks, 1140 GFP_KERNEL); 1141 if (!kfd->gtt_sa_bitmap) 1142 return -ENOMEM; 1143 1144 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 1145 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 1146 1147 mutex_init(&kfd->gtt_sa_lock); 1148 1149 return 0; 1150 } 1151 1152 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 1153 { 1154 mutex_destroy(&kfd->gtt_sa_lock); 1155 bitmap_free(kfd->gtt_sa_bitmap); 1156 } 1157 1158 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 1159 unsigned int bit_num, 1160 unsigned int chunk_size) 1161 { 1162 return start_addr + bit_num * chunk_size; 1163 } 1164 1165 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 1166 unsigned int bit_num, 1167 unsigned int chunk_size) 1168 { 1169 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 1170 } 1171 1172 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size, 1173 struct kfd_mem_obj **mem_obj) 1174 { 1175 unsigned int found, start_search, cur_size; 1176 struct kfd_dev *kfd = node->kfd; 1177 1178 if (size == 0) 1179 return -EINVAL; 1180 1181 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 1182 return -ENOMEM; 1183 1184 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 1185 if (!(*mem_obj)) 1186 return -ENOMEM; 1187 1188 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); 1189 1190 start_search = 0; 1191 1192 mutex_lock(&kfd->gtt_sa_lock); 1193 1194 kfd_gtt_restart_search: 1195 /* Find the first chunk that is free */ 1196 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 1197 kfd->gtt_sa_num_of_chunks, 1198 start_search); 1199 1200 pr_debug("Found = %d\n", found); 1201 1202 /* If there wasn't any free chunk, bail out */ 1203 if (found == kfd->gtt_sa_num_of_chunks) 1204 goto kfd_gtt_no_free_chunk; 1205 1206 /* Update fields of mem_obj */ 1207 (*mem_obj)->range_start = found; 1208 (*mem_obj)->range_end = found; 1209 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 1210 kfd->gtt_start_gpu_addr, 1211 found, 1212 kfd->gtt_sa_chunk_size); 1213 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 1214 kfd->gtt_start_cpu_ptr, 1215 found, 1216 kfd->gtt_sa_chunk_size); 1217 1218 pr_debug("gpu_addr = %p, cpu_addr = %p\n", 1219 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 1220 1221 /* If we need only one chunk, mark it as allocated and get out */ 1222 if (size <= kfd->gtt_sa_chunk_size) { 1223 pr_debug("Single bit\n"); 1224 __set_bit(found, kfd->gtt_sa_bitmap); 1225 goto kfd_gtt_out; 1226 } 1227 1228 /* Otherwise, try to see if we have enough contiguous chunks */ 1229 cur_size = size - kfd->gtt_sa_chunk_size; 1230 do { 1231 (*mem_obj)->range_end = 1232 find_next_zero_bit(kfd->gtt_sa_bitmap, 1233 kfd->gtt_sa_num_of_chunks, ++found); 1234 /* 1235 * If next free chunk is not contiguous than we need to 1236 * restart our search from the last free chunk we found (which 1237 * wasn't contiguous to the previous ones 1238 */ 1239 if ((*mem_obj)->range_end != found) { 1240 start_search = found; 1241 goto kfd_gtt_restart_search; 1242 } 1243 1244 /* 1245 * If we reached end of buffer, bail out with error 1246 */ 1247 if (found == kfd->gtt_sa_num_of_chunks) 1248 goto kfd_gtt_no_free_chunk; 1249 1250 /* Check if we don't need another chunk */ 1251 if (cur_size <= kfd->gtt_sa_chunk_size) 1252 cur_size = 0; 1253 else 1254 cur_size -= kfd->gtt_sa_chunk_size; 1255 1256 } while (cur_size > 0); 1257 1258 pr_debug("range_start = %d, range_end = %d\n", 1259 (*mem_obj)->range_start, (*mem_obj)->range_end); 1260 1261 /* Mark the chunks as allocated */ 1262 bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start, 1263 (*mem_obj)->range_end - (*mem_obj)->range_start + 1); 1264 1265 kfd_gtt_out: 1266 mutex_unlock(&kfd->gtt_sa_lock); 1267 return 0; 1268 1269 kfd_gtt_no_free_chunk: 1270 pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); 1271 mutex_unlock(&kfd->gtt_sa_lock); 1272 kfree(*mem_obj); 1273 return -ENOMEM; 1274 } 1275 1276 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj) 1277 { 1278 struct kfd_dev *kfd = node->kfd; 1279 1280 /* Act like kfree when trying to free a NULL object */ 1281 if (!mem_obj) 1282 return 0; 1283 1284 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", 1285 mem_obj, mem_obj->range_start, mem_obj->range_end); 1286 1287 mutex_lock(&kfd->gtt_sa_lock); 1288 1289 /* Mark the chunks as free */ 1290 bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start, 1291 mem_obj->range_end - mem_obj->range_start + 1); 1292 1293 mutex_unlock(&kfd->gtt_sa_lock); 1294 1295 kfree(mem_obj); 1296 return 0; 1297 } 1298 1299 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) 1300 { 1301 /* 1302 * TODO: Currently update SRAM ECC flag for first node. 1303 * This needs to be updated later when we can 1304 * identify SRAM ECC error on other nodes also. 1305 */ 1306 if (kfd) 1307 atomic_inc(&kfd->nodes[0]->sram_ecc_flag); 1308 } 1309 1310 void kfd_inc_compute_active(struct kfd_node *node) 1311 { 1312 if (atomic_inc_return(&node->kfd->compute_profile) == 1) 1313 amdgpu_amdkfd_set_compute_idle(node->adev, false); 1314 } 1315 1316 void kfd_dec_compute_active(struct kfd_node *node) 1317 { 1318 int count = atomic_dec_return(&node->kfd->compute_profile); 1319 1320 if (count == 0) 1321 amdgpu_amdkfd_set_compute_idle(node->adev, true); 1322 WARN_ONCE(count < 0, "Compute profile ref. count error"); 1323 } 1324 1325 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask) 1326 { 1327 /* 1328 * TODO: For now, raise the throttling event only on first node. 1329 * This will need to change after we are able to determine 1330 * which node raised the throttling event. 1331 */ 1332 if (kfd && kfd->init_complete) 1333 kfd_smi_event_update_thermal_throttling(kfd->nodes[0], 1334 throttle_bitmask); 1335 } 1336 1337 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and 1338 * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA. 1339 * When the device has more than two engines, we reserve two for PCIe to enable 1340 * full-duplex and the rest are used as XGMI. 1341 */ 1342 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node) 1343 { 1344 /* If XGMI is not supported, all SDMA engines are PCIe */ 1345 if (!node->adev->gmc.xgmi.supported) 1346 return node->adev->sdma.num_instances/(int)node->kfd->num_nodes; 1347 1348 return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2); 1349 } 1350 1351 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node) 1352 { 1353 /* After reserved for PCIe, the rest of engines are XGMI */ 1354 return node->adev->sdma.num_instances/(int)node->kfd->num_nodes - 1355 kfd_get_num_sdma_engines(node); 1356 } 1357 1358 int kgd2kfd_check_and_lock_kfd(void) 1359 { 1360 mutex_lock(&kfd_processes_mutex); 1361 if (!hash_empty(kfd_processes_table) || kfd_is_locked()) { 1362 mutex_unlock(&kfd_processes_mutex); 1363 return -EBUSY; 1364 } 1365 1366 ++kfd_locked; 1367 mutex_unlock(&kfd_processes_mutex); 1368 1369 return 0; 1370 } 1371 1372 void kgd2kfd_unlock_kfd(void) 1373 { 1374 mutex_lock(&kfd_processes_mutex); 1375 --kfd_locked; 1376 mutex_unlock(&kfd_processes_mutex); 1377 } 1378 1379 #if defined(CONFIG_DEBUG_FS) 1380 1381 /* This function will send a package to HIQ to hang the HWS 1382 * which will trigger a GPU reset and bring the HWS back to normal state 1383 */ 1384 int kfd_debugfs_hang_hws(struct kfd_node *dev) 1385 { 1386 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { 1387 pr_err("HWS is not enabled"); 1388 return -EINVAL; 1389 } 1390 1391 return dqm_debugfs_hang_hws(dev->dqm); 1392 } 1393 1394 #endif 1395