xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_crat.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36 
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *	@total_cu_count - Total CUs present in the GPU including ones
39  *			  masked off
40  */
41 static inline unsigned int get_and_inc_gpu_processor_id(
42 				unsigned int total_cu_count)
43 {
44 	int current_id = gpu_processor_id_low;
45 
46 	gpu_processor_id_low += total_cu_count;
47 	return current_id;
48 }
49 
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52 	uint32_t	cache_size;
53 	uint32_t	cache_level;
54 	uint32_t	flags;
55 	/* Indicates how many Compute Units share this cache
56 	 * Value = 1 indicates the cache is not shared
57 	 */
58 	uint32_t	num_cu_shared;
59 };
60 
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62 	{
63 		/* TCP L1 Cache per CU */
64 		.cache_size = 16,
65 		.cache_level = 1,
66 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
67 				CRAT_CACHE_FLAGS_DATA_CACHE |
68 				CRAT_CACHE_FLAGS_SIMD_CACHE),
69 		.num_cu_shared = 1,
70 
71 	},
72 	{
73 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
74 		.cache_size = 16,
75 		.cache_level = 1,
76 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
77 				CRAT_CACHE_FLAGS_INST_CACHE |
78 				CRAT_CACHE_FLAGS_SIMD_CACHE),
79 		.num_cu_shared = 2,
80 	},
81 	{
82 		/* Scalar L1 Data Cache (in SQC module) per bank */
83 		.cache_size = 8,
84 		.cache_level = 1,
85 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
86 				CRAT_CACHE_FLAGS_DATA_CACHE |
87 				CRAT_CACHE_FLAGS_SIMD_CACHE),
88 		.num_cu_shared = 2,
89 	},
90 
91 	/* TODO: Add L2 Cache information */
92 };
93 
94 
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96 	{
97 		/* TCP L1 Cache per CU */
98 		.cache_size = 16,
99 		.cache_level = 1,
100 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
101 				CRAT_CACHE_FLAGS_DATA_CACHE |
102 				CRAT_CACHE_FLAGS_SIMD_CACHE),
103 		.num_cu_shared = 1,
104 	},
105 	{
106 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
107 		.cache_size = 8,
108 		.cache_level = 1,
109 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
110 				CRAT_CACHE_FLAGS_INST_CACHE |
111 				CRAT_CACHE_FLAGS_SIMD_CACHE),
112 		.num_cu_shared = 4,
113 	},
114 	{
115 		/* Scalar L1 Data Cache (in SQC module) per bank. */
116 		.cache_size = 4,
117 		.cache_level = 1,
118 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
119 				CRAT_CACHE_FLAGS_DATA_CACHE |
120 				CRAT_CACHE_FLAGS_SIMD_CACHE),
121 		.num_cu_shared = 4,
122 	},
123 
124 	/* TODO: Add L2 Cache information */
125 };
126 
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135 /* TODO - check & update Vega10 cache details */
136 #define vega10_cache_info carrizo_cache_info
137 #define raven_cache_info carrizo_cache_info
138 
139 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
140 		struct crat_subtype_computeunit *cu)
141 {
142 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
143 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
144 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
145 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
146 
147 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
148 			cu->processor_id_low);
149 }
150 
151 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
152 		struct crat_subtype_computeunit *cu)
153 {
154 	dev->node_props.simd_id_base = cu->processor_id_low;
155 	dev->node_props.simd_count = cu->num_simd_cores;
156 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
157 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
158 	dev->node_props.wave_front_size = cu->wave_front_size;
159 	dev->node_props.array_count = cu->array_count;
160 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
161 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
162 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
163 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
164 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
165 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
166 }
167 
168 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
169  * topology device present in the device_list
170  */
171 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
172 				struct list_head *device_list)
173 {
174 	struct kfd_topology_device *dev;
175 
176 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
177 			cu->proximity_domain, cu->hsa_capability);
178 	list_for_each_entry(dev, device_list, list) {
179 		if (cu->proximity_domain == dev->proximity_domain) {
180 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
181 				kfd_populated_cu_info_cpu(dev, cu);
182 
183 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
184 				kfd_populated_cu_info_gpu(dev, cu);
185 			break;
186 		}
187 	}
188 
189 	return 0;
190 }
191 
192 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
193  * topology device present in the device_list
194  */
195 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
196 				struct list_head *device_list)
197 {
198 	struct kfd_mem_properties *props;
199 	struct kfd_topology_device *dev;
200 
201 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
202 			mem->proximity_domain);
203 	list_for_each_entry(dev, device_list, list) {
204 		if (mem->proximity_domain == dev->proximity_domain) {
205 			props = kfd_alloc_struct(props);
206 			if (!props)
207 				return -ENOMEM;
208 
209 			/* We're on GPU node */
210 			if (dev->node_props.cpu_cores_count == 0) {
211 				/* APU */
212 				if (mem->visibility_type == 0)
213 					props->heap_type =
214 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
215 				/* dGPU */
216 				else
217 					props->heap_type = mem->visibility_type;
218 			} else
219 				props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
220 
221 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
222 				props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
223 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
224 				props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
225 
226 			props->size_in_bytes =
227 				((uint64_t)mem->length_high << 32) +
228 							mem->length_low;
229 			props->width = mem->width;
230 
231 			dev->node_props.mem_banks_count++;
232 			list_add_tail(&props->list, &dev->mem_props);
233 
234 			break;
235 		}
236 	}
237 
238 	return 0;
239 }
240 
241 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
242  * topology device present in the device_list
243  */
244 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
245 			struct list_head *device_list)
246 {
247 	struct kfd_cache_properties *props;
248 	struct kfd_topology_device *dev;
249 	uint32_t id;
250 	uint32_t total_num_of_cu;
251 
252 	id = cache->processor_id_low;
253 
254 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
255 	list_for_each_entry(dev, device_list, list) {
256 		total_num_of_cu = (dev->node_props.array_count *
257 					dev->node_props.cu_per_simd_array);
258 
259 		/* Cache infomration in CRAT doesn't have proximity_domain
260 		 * information as it is associated with a CPU core or GPU
261 		 * Compute Unit. So map the cache using CPU core Id or SIMD
262 		 * (GPU) ID.
263 		 * TODO: This works because currently we can safely assume that
264 		 *  Compute Units are parsed before caches are parsed. In
265 		 *  future, remove this dependency
266 		 */
267 		if ((id >= dev->node_props.cpu_core_id_base &&
268 			id <= dev->node_props.cpu_core_id_base +
269 				dev->node_props.cpu_cores_count) ||
270 			(id >= dev->node_props.simd_id_base &&
271 			id < dev->node_props.simd_id_base +
272 				total_num_of_cu)) {
273 			props = kfd_alloc_struct(props);
274 			if (!props)
275 				return -ENOMEM;
276 
277 			props->processor_id_low = id;
278 			props->cache_level = cache->cache_level;
279 			props->cache_size = cache->cache_size;
280 			props->cacheline_size = cache->cache_line_size;
281 			props->cachelines_per_tag = cache->lines_per_tag;
282 			props->cache_assoc = cache->associativity;
283 			props->cache_latency = cache->cache_latency;
284 			memcpy(props->sibling_map, cache->sibling_map,
285 					sizeof(props->sibling_map));
286 
287 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
288 				props->cache_type |= HSA_CACHE_TYPE_DATA;
289 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
290 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
291 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
292 				props->cache_type |= HSA_CACHE_TYPE_CPU;
293 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
294 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
295 
296 			dev->cache_count++;
297 			dev->node_props.caches_count++;
298 			list_add_tail(&props->list, &dev->cache_props);
299 
300 			break;
301 		}
302 	}
303 
304 	return 0;
305 }
306 
307 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
308  * topology device present in the device_list
309  */
310 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
311 					struct list_head *device_list)
312 {
313 	struct kfd_iolink_properties *props = NULL, *props2;
314 	struct kfd_topology_device *dev, *cpu_dev;
315 	uint32_t id_from;
316 	uint32_t id_to;
317 
318 	id_from = iolink->proximity_domain_from;
319 	id_to = iolink->proximity_domain_to;
320 
321 	pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
322 			id_from);
323 	list_for_each_entry(dev, device_list, list) {
324 		if (id_from == dev->proximity_domain) {
325 			props = kfd_alloc_struct(props);
326 			if (!props)
327 				return -ENOMEM;
328 
329 			props->node_from = id_from;
330 			props->node_to = id_to;
331 			props->ver_maj = iolink->version_major;
332 			props->ver_min = iolink->version_minor;
333 			props->iolink_type = iolink->io_interface_type;
334 
335 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
336 				props->weight = 20;
337 			else
338 				props->weight = node_distance(id_from, id_to);
339 
340 			props->min_latency = iolink->minimum_latency;
341 			props->max_latency = iolink->maximum_latency;
342 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
343 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
344 			props->rec_transfer_size =
345 					iolink->recommended_transfer_size;
346 
347 			dev->io_link_count++;
348 			dev->node_props.io_links_count++;
349 			list_add_tail(&props->list, &dev->io_link_props);
350 			break;
351 		}
352 	}
353 
354 	/* CPU topology is created before GPUs are detected, so CPU->GPU
355 	 * links are not built at that time. If a PCIe type is discovered, it
356 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
357 	 * At this time, also add the corresponded CPU->GPU link.
358 	 */
359 	if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
360 		cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
361 		if (!cpu_dev)
362 			return -ENODEV;
363 		/* same everything but the other direction */
364 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
365 		props2->node_from = id_to;
366 		props2->node_to = id_from;
367 		props2->kobj = NULL;
368 		cpu_dev->io_link_count++;
369 		cpu_dev->node_props.io_links_count++;
370 		list_add_tail(&props2->list, &cpu_dev->io_link_props);
371 	}
372 
373 	return 0;
374 }
375 
376 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
377  * present in the device_list
378  *	@sub_type_hdr - subtype section of crat_image
379  *	@device_list - list of topology devices present in this crat_image
380  */
381 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
382 				struct list_head *device_list)
383 {
384 	struct crat_subtype_computeunit *cu;
385 	struct crat_subtype_memory *mem;
386 	struct crat_subtype_cache *cache;
387 	struct crat_subtype_iolink *iolink;
388 	int ret = 0;
389 
390 	switch (sub_type_hdr->type) {
391 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
392 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
393 		ret = kfd_parse_subtype_cu(cu, device_list);
394 		break;
395 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
396 		mem = (struct crat_subtype_memory *)sub_type_hdr;
397 		ret = kfd_parse_subtype_mem(mem, device_list);
398 		break;
399 	case CRAT_SUBTYPE_CACHE_AFFINITY:
400 		cache = (struct crat_subtype_cache *)sub_type_hdr;
401 		ret = kfd_parse_subtype_cache(cache, device_list);
402 		break;
403 	case CRAT_SUBTYPE_TLB_AFFINITY:
404 		/*
405 		 * For now, nothing to do here
406 		 */
407 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
408 		break;
409 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
410 		/*
411 		 * For now, nothing to do here
412 		 */
413 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
414 		break;
415 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
416 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
417 		ret = kfd_parse_subtype_iolink(iolink, device_list);
418 		break;
419 	default:
420 		pr_warn("Unknown subtype %d in CRAT\n",
421 				sub_type_hdr->type);
422 	}
423 
424 	return ret;
425 }
426 
427 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
428  * create a kfd_topology_device and add in to device_list. Also parse
429  * CRAT subtypes and attach it to appropriate kfd_topology_device
430  *	@crat_image - input image containing CRAT
431  *	@device_list - [OUT] list of kfd_topology_device generated after
432  *		       parsing crat_image
433  *	@proximity_domain - Proximity domain of the first device in the table
434  *
435  *	Return - 0 if successful else -ve value
436  */
437 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
438 			 uint32_t proximity_domain)
439 {
440 	struct kfd_topology_device *top_dev = NULL;
441 	struct crat_subtype_generic *sub_type_hdr;
442 	uint16_t node_id;
443 	int ret = 0;
444 	struct crat_header *crat_table = (struct crat_header *)crat_image;
445 	uint16_t num_nodes;
446 	uint32_t image_len;
447 
448 	if (!crat_image)
449 		return -EINVAL;
450 
451 	if (!list_empty(device_list)) {
452 		pr_warn("Error device list should be empty\n");
453 		return -EINVAL;
454 	}
455 
456 	num_nodes = crat_table->num_domains;
457 	image_len = crat_table->length;
458 
459 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
460 
461 	for (node_id = 0; node_id < num_nodes; node_id++) {
462 		top_dev = kfd_create_topology_device(device_list);
463 		if (!top_dev)
464 			break;
465 		top_dev->proximity_domain = proximity_domain++;
466 	}
467 
468 	if (!top_dev) {
469 		ret = -ENOMEM;
470 		goto err;
471 	}
472 
473 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
474 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
475 			CRAT_OEMTABLEID_LENGTH);
476 	top_dev->oem_revision = crat_table->oem_revision;
477 
478 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
479 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
480 			((char *)crat_image) + image_len) {
481 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
482 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
483 			if (ret)
484 				break;
485 		}
486 
487 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
488 				sub_type_hdr->length);
489 	}
490 
491 err:
492 	if (ret)
493 		kfd_release_topology_device_list(device_list);
494 
495 	return ret;
496 }
497 
498 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
499 static int fill_in_pcache(struct crat_subtype_cache *pcache,
500 				struct kfd_gpu_cache_info *pcache_info,
501 				struct kfd_cu_info *cu_info,
502 				int mem_available,
503 				int cu_bitmask,
504 				int cache_type, unsigned int cu_processor_id,
505 				int cu_block)
506 {
507 	unsigned int cu_sibling_map_mask;
508 	int first_active_cu;
509 
510 	/* First check if enough memory is available */
511 	if (sizeof(struct crat_subtype_cache) > mem_available)
512 		return -ENOMEM;
513 
514 	cu_sibling_map_mask = cu_bitmask;
515 	cu_sibling_map_mask >>= cu_block;
516 	cu_sibling_map_mask &=
517 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
518 	first_active_cu = ffs(cu_sibling_map_mask);
519 
520 	/* CU could be inactive. In case of shared cache find the first active
521 	 * CU. and incase of non-shared cache check if the CU is inactive. If
522 	 * inactive active skip it
523 	 */
524 	if (first_active_cu) {
525 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
526 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
527 		pcache->length = sizeof(struct crat_subtype_cache);
528 		pcache->flags = pcache_info[cache_type].flags;
529 		pcache->processor_id_low = cu_processor_id
530 					 + (first_active_cu - 1);
531 		pcache->cache_level = pcache_info[cache_type].cache_level;
532 		pcache->cache_size = pcache_info[cache_type].cache_size;
533 
534 		/* Sibling map is w.r.t processor_id_low, so shift out
535 		 * inactive CU
536 		 */
537 		cu_sibling_map_mask =
538 			cu_sibling_map_mask >> (first_active_cu - 1);
539 
540 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
541 		pcache->sibling_map[1] =
542 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
543 		pcache->sibling_map[2] =
544 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
545 		pcache->sibling_map[3] =
546 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
547 		return 0;
548 	}
549 	return 1;
550 }
551 
552 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
553  * tables
554  *
555  *	@kdev - [IN] GPU device
556  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
557  *			    associate
558  *	@available_size - [IN] Amount of memory available in pcache
559  *	@cu_info - [IN] Compute Unit info obtained from KGD
560  *	@pcache - [OUT] memory into which cache data is to be filled in.
561  *	@size_filled - [OUT] amount of data used up in pcache.
562  *	@num_of_entries - [OUT] number of caches added
563  */
564 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
565 			int gpu_processor_id,
566 			int available_size,
567 			struct kfd_cu_info *cu_info,
568 			struct crat_subtype_cache *pcache,
569 			int *size_filled,
570 			int *num_of_entries)
571 {
572 	struct kfd_gpu_cache_info *pcache_info;
573 	int num_of_cache_types = 0;
574 	int i, j, k;
575 	int ct = 0;
576 	int mem_available = available_size;
577 	unsigned int cu_processor_id;
578 	int ret;
579 
580 	switch (kdev->device_info->asic_family) {
581 	case CHIP_KAVERI:
582 		pcache_info = kaveri_cache_info;
583 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
584 		break;
585 	case CHIP_HAWAII:
586 		pcache_info = hawaii_cache_info;
587 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
588 		break;
589 	case CHIP_CARRIZO:
590 		pcache_info = carrizo_cache_info;
591 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
592 		break;
593 	case CHIP_TONGA:
594 		pcache_info = tonga_cache_info;
595 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
596 		break;
597 	case CHIP_FIJI:
598 		pcache_info = fiji_cache_info;
599 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
600 		break;
601 	case CHIP_POLARIS10:
602 		pcache_info = polaris10_cache_info;
603 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
604 		break;
605 	case CHIP_POLARIS11:
606 		pcache_info = polaris11_cache_info;
607 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
608 		break;
609 	case CHIP_VEGA10:
610 		pcache_info = vega10_cache_info;
611 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
612 		break;
613 	case CHIP_RAVEN:
614 		pcache_info = raven_cache_info;
615 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
616 		break;
617 	default:
618 		return -EINVAL;
619 	}
620 
621 	*size_filled = 0;
622 	*num_of_entries = 0;
623 
624 	/* For each type of cache listed in the kfd_gpu_cache_info table,
625 	 * go through all available Compute Units.
626 	 * The [i,j,k] loop will
627 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
628 	 *			will parse through all available CU
629 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
630 	 *			then it will consider only one CU from
631 	 *			the shared unit
632 	 */
633 
634 	for (ct = 0; ct < num_of_cache_types; ct++) {
635 		cu_processor_id = gpu_processor_id;
636 		for (i = 0; i < cu_info->num_shader_engines; i++) {
637 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
638 				j++) {
639 				for (k = 0; k < cu_info->num_cu_per_sh;
640 					k += pcache_info[ct].num_cu_shared) {
641 
642 					ret = fill_in_pcache(pcache,
643 						pcache_info,
644 						cu_info,
645 						mem_available,
646 						cu_info->cu_bitmap[i][j],
647 						ct,
648 						cu_processor_id,
649 						k);
650 
651 					if (ret < 0)
652 						break;
653 
654 					if (!ret) {
655 						pcache++;
656 						(*num_of_entries)++;
657 						mem_available -=
658 							sizeof(*pcache);
659 						(*size_filled) +=
660 							sizeof(*pcache);
661 					}
662 
663 					/* Move to next CU block */
664 					cu_processor_id +=
665 						pcache_info[ct].num_cu_shared;
666 				}
667 			}
668 		}
669 	}
670 
671 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
672 
673 	return 0;
674 }
675 
676 /*
677  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
678  * copies CRAT from ACPI (if available).
679  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
680  *
681  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
682  *		     crat_image will be NULL
683  *	@size: [OUT] size of crat_image
684  *
685  *	Return 0 if successful else return error code
686  */
687 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
688 {
689 	struct acpi_table_header *crat_table;
690 	acpi_status status;
691 	void *pcrat_image;
692 
693 	if (!crat_image)
694 		return -EINVAL;
695 
696 	*crat_image = NULL;
697 
698 	/* Fetch the CRAT table from ACPI */
699 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
700 	if (status == AE_NOT_FOUND) {
701 		pr_warn("CRAT table not found\n");
702 		return -ENODATA;
703 	} else if (ACPI_FAILURE(status)) {
704 		const char *err = acpi_format_exception(status);
705 
706 		pr_err("CRAT table error: %s\n", err);
707 		return -EINVAL;
708 	}
709 
710 	if (ignore_crat) {
711 		pr_info("CRAT table disabled by module option\n");
712 		return -ENODATA;
713 	}
714 
715 	pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
716 	if (!pcrat_image)
717 		return -ENOMEM;
718 
719 	memcpy(pcrat_image, crat_table, crat_table->length);
720 
721 	*crat_image = pcrat_image;
722 	*size = crat_table->length;
723 
724 	return 0;
725 }
726 
727 /* Memory required to create Virtual CRAT.
728  * Since there is no easy way to predict the amount of memory required, the
729  * following amount are allocated for CPU and GPU Virtual CRAT. This is
730  * expected to cover all known conditions. But to be safe additional check
731  * is put in the code to ensure we don't overwrite.
732  */
733 #define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
734 #define VCRAT_SIZE_FOR_GPU	(3 * PAGE_SIZE)
735 
736 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
737  *
738  *	@numa_node_id: CPU NUMA node id
739  *	@avail_size: Available size in the memory
740  *	@sub_type_hdr: Memory into which compute info will be filled in
741  *
742  *	Return 0 if successful else return -ve value
743  */
744 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
745 				int proximity_domain,
746 				struct crat_subtype_computeunit *sub_type_hdr)
747 {
748 	const struct cpumask *cpumask;
749 
750 	*avail_size -= sizeof(struct crat_subtype_computeunit);
751 	if (*avail_size < 0)
752 		return -ENOMEM;
753 
754 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
755 
756 	/* Fill in subtype header data */
757 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
758 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
759 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
760 
761 	cpumask = cpumask_of_node(numa_node_id);
762 
763 	/* Fill in CU data */
764 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
765 	sub_type_hdr->proximity_domain = proximity_domain;
766 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
767 	if (sub_type_hdr->processor_id_low == -1)
768 		return -EINVAL;
769 
770 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
771 
772 	return 0;
773 }
774 
775 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
776  *
777  *	@numa_node_id: CPU NUMA node id
778  *	@avail_size: Available size in the memory
779  *	@sub_type_hdr: Memory into which compute info will be filled in
780  *
781  *	Return 0 if successful else return -ve value
782  */
783 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
784 			int proximity_domain,
785 			struct crat_subtype_memory *sub_type_hdr)
786 {
787 	uint64_t mem_in_bytes = 0;
788 	pg_data_t *pgdat;
789 	int zone_type;
790 
791 	*avail_size -= sizeof(struct crat_subtype_memory);
792 	if (*avail_size < 0)
793 		return -ENOMEM;
794 
795 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
796 
797 	/* Fill in subtype header data */
798 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
799 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
800 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
801 
802 	/* Fill in Memory Subunit data */
803 
804 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
805 	 * the following lines are duplicated from si_meminfo_node
806 	 * function
807 	 */
808 	pgdat = NODE_DATA(numa_node_id);
809 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
810 		mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
811 	mem_in_bytes <<= PAGE_SHIFT;
812 
813 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
814 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
815 	sub_type_hdr->proximity_domain = proximity_domain;
816 
817 	return 0;
818 }
819 
820 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
821 				uint32_t *num_entries,
822 				struct crat_subtype_iolink *sub_type_hdr)
823 {
824 	int nid;
825 	struct cpuinfo_x86 *c = &cpu_data(0);
826 	uint8_t link_type;
827 
828 	if (c->x86_vendor == X86_VENDOR_AMD)
829 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
830 	else
831 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
832 
833 	*num_entries = 0;
834 
835 	/* Create IO links from this node to other CPU nodes */
836 	for_each_online_node(nid) {
837 		if (nid == numa_node_id) /* node itself */
838 			continue;
839 
840 		*avail_size -= sizeof(struct crat_subtype_iolink);
841 		if (*avail_size < 0)
842 			return -ENOMEM;
843 
844 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
845 
846 		/* Fill in subtype header data */
847 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
848 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
849 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
850 
851 		/* Fill in IO link data */
852 		sub_type_hdr->proximity_domain_from = numa_node_id;
853 		sub_type_hdr->proximity_domain_to = nid;
854 		sub_type_hdr->io_interface_type = link_type;
855 
856 		(*num_entries)++;
857 		sub_type_hdr++;
858 	}
859 
860 	return 0;
861 }
862 
863 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
864  *
865  *	@pcrat_image: Fill in VCRAT for CPU
866  *	@size:	[IN] allocated size of crat_image.
867  *		[OUT] actual size of data filled in crat_image
868  */
869 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
870 {
871 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
872 	struct acpi_table_header *acpi_table;
873 	acpi_status status;
874 	struct crat_subtype_generic *sub_type_hdr;
875 	int avail_size = *size;
876 	int numa_node_id;
877 	uint32_t entries = 0;
878 	int ret = 0;
879 
880 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
881 		return -EINVAL;
882 
883 	/* Fill in CRAT Header.
884 	 * Modify length and total_entries as subunits are added.
885 	 */
886 	avail_size -= sizeof(struct crat_header);
887 	if (avail_size < 0)
888 		return -ENOMEM;
889 
890 	memset(crat_table, 0, sizeof(struct crat_header));
891 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
892 			sizeof(crat_table->signature));
893 	crat_table->length = sizeof(struct crat_header);
894 
895 	status = acpi_get_table("DSDT", 0, &acpi_table);
896 	if (status != AE_OK)
897 		pr_warn("DSDT table not found for OEM information\n");
898 	else {
899 		crat_table->oem_revision = acpi_table->revision;
900 		memcpy(crat_table->oem_id, acpi_table->oem_id,
901 				CRAT_OEMID_LENGTH);
902 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
903 				CRAT_OEMTABLEID_LENGTH);
904 	}
905 	crat_table->total_entries = 0;
906 	crat_table->num_domains = 0;
907 
908 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
909 
910 	for_each_online_node(numa_node_id) {
911 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
912 			continue;
913 
914 		/* Fill in Subtype: Compute Unit */
915 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
916 			crat_table->num_domains,
917 			(struct crat_subtype_computeunit *)sub_type_hdr);
918 		if (ret < 0)
919 			return ret;
920 		crat_table->length += sub_type_hdr->length;
921 		crat_table->total_entries++;
922 
923 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
924 			sub_type_hdr->length);
925 
926 		/* Fill in Subtype: Memory */
927 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
928 			crat_table->num_domains,
929 			(struct crat_subtype_memory *)sub_type_hdr);
930 		if (ret < 0)
931 			return ret;
932 		crat_table->length += sub_type_hdr->length;
933 		crat_table->total_entries++;
934 
935 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
936 			sub_type_hdr->length);
937 
938 		/* Fill in Subtype: IO Link */
939 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
940 				&entries,
941 				(struct crat_subtype_iolink *)sub_type_hdr);
942 		if (ret < 0)
943 			return ret;
944 		crat_table->length += (sub_type_hdr->length * entries);
945 		crat_table->total_entries += entries;
946 
947 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
948 				sub_type_hdr->length * entries);
949 
950 		crat_table->num_domains++;
951 	}
952 
953 	/* TODO: Add cache Subtype for CPU.
954 	 * Currently, CPU cache information is available in function
955 	 * detect_cache_attributes(cpu) defined in the file
956 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
957 	 * exported and to get the same information the code needs to be
958 	 * duplicated.
959 	 */
960 
961 	*size = crat_table->length;
962 	pr_info("Virtual CRAT table created for CPU\n");
963 
964 	return 0;
965 }
966 
967 static int kfd_fill_gpu_memory_affinity(int *avail_size,
968 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
969 		struct crat_subtype_memory *sub_type_hdr,
970 		uint32_t proximity_domain,
971 		const struct kfd_local_mem_info *local_mem_info)
972 {
973 	*avail_size -= sizeof(struct crat_subtype_memory);
974 	if (*avail_size < 0)
975 		return -ENOMEM;
976 
977 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
978 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
979 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
980 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
981 
982 	sub_type_hdr->proximity_domain = proximity_domain;
983 
984 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
985 			type, size);
986 
987 	sub_type_hdr->length_low = lower_32_bits(size);
988 	sub_type_hdr->length_high = upper_32_bits(size);
989 
990 	sub_type_hdr->width = local_mem_info->vram_width;
991 	sub_type_hdr->visibility_type = type;
992 
993 	return 0;
994 }
995 
996 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
997  * to its NUMA node
998  *	@avail_size: Available size in the memory
999  *	@kdev - [IN] GPU device
1000  *	@sub_type_hdr: Memory into which io link info will be filled in
1001  *	@proximity_domain - proximity domain of the GPU node
1002  *
1003  *	Return 0 if successful else return -ve value
1004  */
1005 static int kfd_fill_gpu_direct_io_link(int *avail_size,
1006 			struct kfd_dev *kdev,
1007 			struct crat_subtype_iolink *sub_type_hdr,
1008 			uint32_t proximity_domain)
1009 {
1010 	*avail_size -= sizeof(struct crat_subtype_iolink);
1011 	if (*avail_size < 0)
1012 		return -ENOMEM;
1013 
1014 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1015 
1016 	/* Fill in subtype header data */
1017 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1018 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1019 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1020 
1021 	/* Fill in IOLINK subtype.
1022 	 * TODO: Fill-in other fields of iolink subtype
1023 	 */
1024 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1025 	sub_type_hdr->proximity_domain_from = proximity_domain;
1026 #ifdef CONFIG_NUMA
1027 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1028 		sub_type_hdr->proximity_domain_to = 0;
1029 	else
1030 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1031 #else
1032 	sub_type_hdr->proximity_domain_to = 0;
1033 #endif
1034 	return 0;
1035 }
1036 
1037 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1038  *
1039  *	@pcrat_image: Fill in VCRAT for GPU
1040  *	@size:	[IN] allocated size of crat_image.
1041  *		[OUT] actual size of data filled in crat_image
1042  */
1043 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1044 				      size_t *size, struct kfd_dev *kdev,
1045 				      uint32_t proximity_domain)
1046 {
1047 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1048 	struct crat_subtype_generic *sub_type_hdr;
1049 	struct crat_subtype_computeunit *cu;
1050 	struct kfd_cu_info cu_info;
1051 	int avail_size = *size;
1052 	uint32_t total_num_of_cu;
1053 	int num_of_cache_entries = 0;
1054 	int cache_mem_filled = 0;
1055 	int ret = 0;
1056 	struct kfd_local_mem_info local_mem_info;
1057 
1058 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1059 		return -EINVAL;
1060 
1061 	/* Fill the CRAT Header.
1062 	 * Modify length and total_entries as subunits are added.
1063 	 */
1064 	avail_size -= sizeof(struct crat_header);
1065 	if (avail_size < 0)
1066 		return -ENOMEM;
1067 
1068 	memset(crat_table, 0, sizeof(struct crat_header));
1069 
1070 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1071 			sizeof(crat_table->signature));
1072 	/* Change length as we add more subtypes*/
1073 	crat_table->length = sizeof(struct crat_header);
1074 	crat_table->num_domains = 1;
1075 	crat_table->total_entries = 0;
1076 
1077 	/* Fill in Subtype: Compute Unit
1078 	 * First fill in the sub type header and then sub type data
1079 	 */
1080 	avail_size -= sizeof(struct crat_subtype_computeunit);
1081 	if (avail_size < 0)
1082 		return -ENOMEM;
1083 
1084 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1085 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1086 
1087 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1088 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1089 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1090 
1091 	/* Fill CU subtype data */
1092 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1093 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1094 	cu->proximity_domain = proximity_domain;
1095 
1096 	kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1097 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1098 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1099 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1100 
1101 	cu->wave_front_size = cu_info.wave_front_size;
1102 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1103 		cu_info.num_shader_engines;
1104 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1105 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1106 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1107 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1108 	cu->num_banks = cu_info.num_shader_engines;
1109 	cu->lds_size_in_kb = cu_info.lds_size;
1110 
1111 	cu->hsa_capability = 0;
1112 
1113 	/* Check if this node supports IOMMU. During parsing this flag will
1114 	 * translate to HSA_CAP_ATS_PRESENT
1115 	 */
1116 	if (!kfd_iommu_check_device(kdev))
1117 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1118 
1119 	crat_table->length += sub_type_hdr->length;
1120 	crat_table->total_entries++;
1121 
1122 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1123 	 * private FB), report memory as public. On other systems
1124 	 * report the total FB size (public+private) as a single
1125 	 * private heap.
1126 	 */
1127 	kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1128 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1129 			sub_type_hdr->length);
1130 
1131 	if (debug_largebar)
1132 		local_mem_info.local_mem_size_private = 0;
1133 
1134 	if (local_mem_info.local_mem_size_private == 0)
1135 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1136 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1137 				local_mem_info.local_mem_size_public,
1138 				(struct crat_subtype_memory *)sub_type_hdr,
1139 				proximity_domain,
1140 				&local_mem_info);
1141 	else
1142 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1143 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1144 				local_mem_info.local_mem_size_public +
1145 				local_mem_info.local_mem_size_private,
1146 				(struct crat_subtype_memory *)sub_type_hdr,
1147 				proximity_domain,
1148 				&local_mem_info);
1149 	if (ret < 0)
1150 		return ret;
1151 
1152 	crat_table->length += sizeof(struct crat_subtype_memory);
1153 	crat_table->total_entries++;
1154 
1155 	/* TODO: Fill in cache information. This information is NOT readily
1156 	 * available in KGD
1157 	 */
1158 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1159 		sub_type_hdr->length);
1160 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1161 				avail_size,
1162 				&cu_info,
1163 				(struct crat_subtype_cache *)sub_type_hdr,
1164 				&cache_mem_filled,
1165 				&num_of_cache_entries);
1166 
1167 	if (ret < 0)
1168 		return ret;
1169 
1170 	crat_table->length += cache_mem_filled;
1171 	crat_table->total_entries += num_of_cache_entries;
1172 	avail_size -= cache_mem_filled;
1173 
1174 	/* Fill in Subtype: IO_LINKS
1175 	 *  Only direct links are added here which is Link from GPU to
1176 	 *  to its NUMA node. Indirect links are added by userspace.
1177 	 */
1178 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1179 		cache_mem_filled);
1180 	ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
1181 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1182 
1183 	if (ret < 0)
1184 		return ret;
1185 
1186 	crat_table->length += sub_type_hdr->length;
1187 	crat_table->total_entries++;
1188 
1189 	*size = crat_table->length;
1190 	pr_info("Virtual CRAT table created for GPU\n");
1191 
1192 	return ret;
1193 }
1194 
1195 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1196  *		creates a Virtual CRAT (VCRAT) image
1197  *
1198  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1199  *
1200  *	@crat_image: VCRAT image created because ACPI does not have a
1201  *		     CRAT for this device
1202  *	@size: [OUT] size of virtual crat_image
1203  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1204  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1205  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1206  *			-- this option is not currently implemented.
1207  *			The assumption is that all AMD APUs will have CRAT
1208  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1209  *
1210  *	Return 0 if successful else return -ve value
1211  */
1212 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1213 				  int flags, struct kfd_dev *kdev,
1214 				  uint32_t proximity_domain)
1215 {
1216 	void *pcrat_image = NULL;
1217 	int ret = 0;
1218 
1219 	if (!crat_image)
1220 		return -EINVAL;
1221 
1222 	*crat_image = NULL;
1223 
1224 	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1225 	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1226 	 * all the current conditions. A check is put not to overwrite beyond
1227 	 * allocated size
1228 	 */
1229 	switch (flags) {
1230 	case COMPUTE_UNIT_CPU:
1231 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1232 		if (!pcrat_image)
1233 			return -ENOMEM;
1234 		*size = VCRAT_SIZE_FOR_CPU;
1235 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1236 		break;
1237 	case COMPUTE_UNIT_GPU:
1238 		if (!kdev)
1239 			return -EINVAL;
1240 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1241 		if (!pcrat_image)
1242 			return -ENOMEM;
1243 		*size = VCRAT_SIZE_FOR_GPU;
1244 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1245 						 proximity_domain);
1246 		break;
1247 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1248 		/* TODO: */
1249 		ret = -EINVAL;
1250 		pr_err("VCRAT not implemented for APU\n");
1251 		break;
1252 	default:
1253 		ret = -EINVAL;
1254 	}
1255 
1256 	if (!ret)
1257 		*crat_image = pcrat_image;
1258 	else
1259 		kfree(pcrat_image);
1260 
1261 	return ret;
1262 }
1263 
1264 
1265 /* kfd_destroy_crat_image
1266  *
1267  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1268  *
1269  */
1270 void kfd_destroy_crat_image(void *crat_image)
1271 {
1272 	kfree(crat_image);
1273 }
1274