1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2015-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/pci.h> 25 #include <linux/acpi.h> 26 #include "kfd_crat.h" 27 #include "kfd_priv.h" 28 #include "kfd_topology.h" 29 #include "kfd_iommu.h" 30 #include "amdgpu.h" 31 #include "amdgpu_amdkfd.h" 32 33 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. 34 * GPU processor ID are expressed with Bit[31]=1. 35 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs 36 * used in the CRAT. 37 */ 38 static uint32_t gpu_processor_id_low = 0x80001000; 39 40 /* Return the next available gpu_processor_id and increment it for next GPU 41 * @total_cu_count - Total CUs present in the GPU including ones 42 * masked off 43 */ 44 static inline unsigned int get_and_inc_gpu_processor_id( 45 unsigned int total_cu_count) 46 { 47 int current_id = gpu_processor_id_low; 48 49 gpu_processor_id_low += total_cu_count; 50 return current_id; 51 } 52 53 /* Static table to describe GPU Cache information */ 54 struct kfd_gpu_cache_info { 55 uint32_t cache_size; 56 uint32_t cache_level; 57 uint32_t flags; 58 /* Indicates how many Compute Units share this cache 59 * within a SA. Value = 1 indicates the cache is not shared 60 */ 61 uint32_t num_cu_shared; 62 }; 63 64 static struct kfd_gpu_cache_info kaveri_cache_info[] = { 65 { 66 /* TCP L1 Cache per CU */ 67 .cache_size = 16, 68 .cache_level = 1, 69 .flags = (CRAT_CACHE_FLAGS_ENABLED | 70 CRAT_CACHE_FLAGS_DATA_CACHE | 71 CRAT_CACHE_FLAGS_SIMD_CACHE), 72 .num_cu_shared = 1, 73 }, 74 { 75 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 76 .cache_size = 16, 77 .cache_level = 1, 78 .flags = (CRAT_CACHE_FLAGS_ENABLED | 79 CRAT_CACHE_FLAGS_INST_CACHE | 80 CRAT_CACHE_FLAGS_SIMD_CACHE), 81 .num_cu_shared = 2, 82 }, 83 { 84 /* Scalar L1 Data Cache (in SQC module) per bank */ 85 .cache_size = 8, 86 .cache_level = 1, 87 .flags = (CRAT_CACHE_FLAGS_ENABLED | 88 CRAT_CACHE_FLAGS_DATA_CACHE | 89 CRAT_CACHE_FLAGS_SIMD_CACHE), 90 .num_cu_shared = 2, 91 }, 92 93 /* TODO: Add L2 Cache information */ 94 }; 95 96 97 static struct kfd_gpu_cache_info carrizo_cache_info[] = { 98 { 99 /* TCP L1 Cache per CU */ 100 .cache_size = 16, 101 .cache_level = 1, 102 .flags = (CRAT_CACHE_FLAGS_ENABLED | 103 CRAT_CACHE_FLAGS_DATA_CACHE | 104 CRAT_CACHE_FLAGS_SIMD_CACHE), 105 .num_cu_shared = 1, 106 }, 107 { 108 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 109 .cache_size = 8, 110 .cache_level = 1, 111 .flags = (CRAT_CACHE_FLAGS_ENABLED | 112 CRAT_CACHE_FLAGS_INST_CACHE | 113 CRAT_CACHE_FLAGS_SIMD_CACHE), 114 .num_cu_shared = 4, 115 }, 116 { 117 /* Scalar L1 Data Cache (in SQC module) per bank. */ 118 .cache_size = 4, 119 .cache_level = 1, 120 .flags = (CRAT_CACHE_FLAGS_ENABLED | 121 CRAT_CACHE_FLAGS_DATA_CACHE | 122 CRAT_CACHE_FLAGS_SIMD_CACHE), 123 .num_cu_shared = 4, 124 }, 125 126 /* TODO: Add L2 Cache information */ 127 }; 128 129 #define hawaii_cache_info kaveri_cache_info 130 #define tonga_cache_info carrizo_cache_info 131 #define fiji_cache_info carrizo_cache_info 132 #define polaris10_cache_info carrizo_cache_info 133 #define polaris11_cache_info carrizo_cache_info 134 #define polaris12_cache_info carrizo_cache_info 135 #define vegam_cache_info carrizo_cache_info 136 137 /* NOTE: L1 cache information has been updated and L2/L3 138 * cache information has been added for Vega10 and 139 * newer ASICs. The unit for cache_size is KiB. 140 * In future, check & update cache details 141 * for every new ASIC is required. 142 */ 143 144 static struct kfd_gpu_cache_info vega10_cache_info[] = { 145 { 146 /* TCP L1 Cache per CU */ 147 .cache_size = 16, 148 .cache_level = 1, 149 .flags = (CRAT_CACHE_FLAGS_ENABLED | 150 CRAT_CACHE_FLAGS_DATA_CACHE | 151 CRAT_CACHE_FLAGS_SIMD_CACHE), 152 .num_cu_shared = 1, 153 }, 154 { 155 /* Scalar L1 Instruction Cache per SQC */ 156 .cache_size = 32, 157 .cache_level = 1, 158 .flags = (CRAT_CACHE_FLAGS_ENABLED | 159 CRAT_CACHE_FLAGS_INST_CACHE | 160 CRAT_CACHE_FLAGS_SIMD_CACHE), 161 .num_cu_shared = 3, 162 }, 163 { 164 /* Scalar L1 Data Cache per SQC */ 165 .cache_size = 16, 166 .cache_level = 1, 167 .flags = (CRAT_CACHE_FLAGS_ENABLED | 168 CRAT_CACHE_FLAGS_DATA_CACHE | 169 CRAT_CACHE_FLAGS_SIMD_CACHE), 170 .num_cu_shared = 3, 171 }, 172 { 173 /* L2 Data Cache per GPU (Total Tex Cache) */ 174 .cache_size = 4096, 175 .cache_level = 2, 176 .flags = (CRAT_CACHE_FLAGS_ENABLED | 177 CRAT_CACHE_FLAGS_DATA_CACHE | 178 CRAT_CACHE_FLAGS_SIMD_CACHE), 179 .num_cu_shared = 16, 180 }, 181 }; 182 183 static struct kfd_gpu_cache_info raven_cache_info[] = { 184 { 185 /* TCP L1 Cache per CU */ 186 .cache_size = 16, 187 .cache_level = 1, 188 .flags = (CRAT_CACHE_FLAGS_ENABLED | 189 CRAT_CACHE_FLAGS_DATA_CACHE | 190 CRAT_CACHE_FLAGS_SIMD_CACHE), 191 .num_cu_shared = 1, 192 }, 193 { 194 /* Scalar L1 Instruction Cache per SQC */ 195 .cache_size = 32, 196 .cache_level = 1, 197 .flags = (CRAT_CACHE_FLAGS_ENABLED | 198 CRAT_CACHE_FLAGS_INST_CACHE | 199 CRAT_CACHE_FLAGS_SIMD_CACHE), 200 .num_cu_shared = 3, 201 }, 202 { 203 /* Scalar L1 Data Cache per SQC */ 204 .cache_size = 16, 205 .cache_level = 1, 206 .flags = (CRAT_CACHE_FLAGS_ENABLED | 207 CRAT_CACHE_FLAGS_DATA_CACHE | 208 CRAT_CACHE_FLAGS_SIMD_CACHE), 209 .num_cu_shared = 3, 210 }, 211 { 212 /* L2 Data Cache per GPU (Total Tex Cache) */ 213 .cache_size = 1024, 214 .cache_level = 2, 215 .flags = (CRAT_CACHE_FLAGS_ENABLED | 216 CRAT_CACHE_FLAGS_DATA_CACHE | 217 CRAT_CACHE_FLAGS_SIMD_CACHE), 218 .num_cu_shared = 11, 219 }, 220 }; 221 222 static struct kfd_gpu_cache_info renoir_cache_info[] = { 223 { 224 /* TCP L1 Cache per CU */ 225 .cache_size = 16, 226 .cache_level = 1, 227 .flags = (CRAT_CACHE_FLAGS_ENABLED | 228 CRAT_CACHE_FLAGS_DATA_CACHE | 229 CRAT_CACHE_FLAGS_SIMD_CACHE), 230 .num_cu_shared = 1, 231 }, 232 { 233 /* Scalar L1 Instruction Cache per SQC */ 234 .cache_size = 32, 235 .cache_level = 1, 236 .flags = (CRAT_CACHE_FLAGS_ENABLED | 237 CRAT_CACHE_FLAGS_INST_CACHE | 238 CRAT_CACHE_FLAGS_SIMD_CACHE), 239 .num_cu_shared = 3, 240 }, 241 { 242 /* Scalar L1 Data Cache per SQC */ 243 .cache_size = 16, 244 .cache_level = 1, 245 .flags = (CRAT_CACHE_FLAGS_ENABLED | 246 CRAT_CACHE_FLAGS_DATA_CACHE | 247 CRAT_CACHE_FLAGS_SIMD_CACHE), 248 .num_cu_shared = 3, 249 }, 250 { 251 /* L2 Data Cache per GPU (Total Tex Cache) */ 252 .cache_size = 1024, 253 .cache_level = 2, 254 .flags = (CRAT_CACHE_FLAGS_ENABLED | 255 CRAT_CACHE_FLAGS_DATA_CACHE | 256 CRAT_CACHE_FLAGS_SIMD_CACHE), 257 .num_cu_shared = 8, 258 }, 259 }; 260 261 static struct kfd_gpu_cache_info vega12_cache_info[] = { 262 { 263 /* TCP L1 Cache per CU */ 264 .cache_size = 16, 265 .cache_level = 1, 266 .flags = (CRAT_CACHE_FLAGS_ENABLED | 267 CRAT_CACHE_FLAGS_DATA_CACHE | 268 CRAT_CACHE_FLAGS_SIMD_CACHE), 269 .num_cu_shared = 1, 270 }, 271 { 272 /* Scalar L1 Instruction Cache per SQC */ 273 .cache_size = 32, 274 .cache_level = 1, 275 .flags = (CRAT_CACHE_FLAGS_ENABLED | 276 CRAT_CACHE_FLAGS_INST_CACHE | 277 CRAT_CACHE_FLAGS_SIMD_CACHE), 278 .num_cu_shared = 3, 279 }, 280 { 281 /* Scalar L1 Data Cache per SQC */ 282 .cache_size = 16, 283 .cache_level = 1, 284 .flags = (CRAT_CACHE_FLAGS_ENABLED | 285 CRAT_CACHE_FLAGS_DATA_CACHE | 286 CRAT_CACHE_FLAGS_SIMD_CACHE), 287 .num_cu_shared = 3, 288 }, 289 { 290 /* L2 Data Cache per GPU (Total Tex Cache) */ 291 .cache_size = 2048, 292 .cache_level = 2, 293 .flags = (CRAT_CACHE_FLAGS_ENABLED | 294 CRAT_CACHE_FLAGS_DATA_CACHE | 295 CRAT_CACHE_FLAGS_SIMD_CACHE), 296 .num_cu_shared = 5, 297 }, 298 }; 299 300 static struct kfd_gpu_cache_info vega20_cache_info[] = { 301 { 302 /* TCP L1 Cache per CU */ 303 .cache_size = 16, 304 .cache_level = 1, 305 .flags = (CRAT_CACHE_FLAGS_ENABLED | 306 CRAT_CACHE_FLAGS_DATA_CACHE | 307 CRAT_CACHE_FLAGS_SIMD_CACHE), 308 .num_cu_shared = 1, 309 }, 310 { 311 /* Scalar L1 Instruction Cache per SQC */ 312 .cache_size = 32, 313 .cache_level = 1, 314 .flags = (CRAT_CACHE_FLAGS_ENABLED | 315 CRAT_CACHE_FLAGS_INST_CACHE | 316 CRAT_CACHE_FLAGS_SIMD_CACHE), 317 .num_cu_shared = 3, 318 }, 319 { 320 /* Scalar L1 Data Cache per SQC */ 321 .cache_size = 16, 322 .cache_level = 1, 323 .flags = (CRAT_CACHE_FLAGS_ENABLED | 324 CRAT_CACHE_FLAGS_DATA_CACHE | 325 CRAT_CACHE_FLAGS_SIMD_CACHE), 326 .num_cu_shared = 3, 327 }, 328 { 329 /* L2 Data Cache per GPU (Total Tex Cache) */ 330 .cache_size = 8192, 331 .cache_level = 2, 332 .flags = (CRAT_CACHE_FLAGS_ENABLED | 333 CRAT_CACHE_FLAGS_DATA_CACHE | 334 CRAT_CACHE_FLAGS_SIMD_CACHE), 335 .num_cu_shared = 16, 336 }, 337 }; 338 339 static struct kfd_gpu_cache_info aldebaran_cache_info[] = { 340 { 341 /* TCP L1 Cache per CU */ 342 .cache_size = 16, 343 .cache_level = 1, 344 .flags = (CRAT_CACHE_FLAGS_ENABLED | 345 CRAT_CACHE_FLAGS_DATA_CACHE | 346 CRAT_CACHE_FLAGS_SIMD_CACHE), 347 .num_cu_shared = 1, 348 }, 349 { 350 /* Scalar L1 Instruction Cache per SQC */ 351 .cache_size = 32, 352 .cache_level = 1, 353 .flags = (CRAT_CACHE_FLAGS_ENABLED | 354 CRAT_CACHE_FLAGS_INST_CACHE | 355 CRAT_CACHE_FLAGS_SIMD_CACHE), 356 .num_cu_shared = 2, 357 }, 358 { 359 /* Scalar L1 Data Cache per SQC */ 360 .cache_size = 16, 361 .cache_level = 1, 362 .flags = (CRAT_CACHE_FLAGS_ENABLED | 363 CRAT_CACHE_FLAGS_DATA_CACHE | 364 CRAT_CACHE_FLAGS_SIMD_CACHE), 365 .num_cu_shared = 2, 366 }, 367 { 368 /* L2 Data Cache per GPU (Total Tex Cache) */ 369 .cache_size = 8192, 370 .cache_level = 2, 371 .flags = (CRAT_CACHE_FLAGS_ENABLED | 372 CRAT_CACHE_FLAGS_DATA_CACHE | 373 CRAT_CACHE_FLAGS_SIMD_CACHE), 374 .num_cu_shared = 14, 375 }, 376 }; 377 378 static struct kfd_gpu_cache_info navi10_cache_info[] = { 379 { 380 /* TCP L1 Cache per CU */ 381 .cache_size = 16, 382 .cache_level = 1, 383 .flags = (CRAT_CACHE_FLAGS_ENABLED | 384 CRAT_CACHE_FLAGS_DATA_CACHE | 385 CRAT_CACHE_FLAGS_SIMD_CACHE), 386 .num_cu_shared = 1, 387 }, 388 { 389 /* Scalar L1 Instruction Cache per SQC */ 390 .cache_size = 32, 391 .cache_level = 1, 392 .flags = (CRAT_CACHE_FLAGS_ENABLED | 393 CRAT_CACHE_FLAGS_INST_CACHE | 394 CRAT_CACHE_FLAGS_SIMD_CACHE), 395 .num_cu_shared = 2, 396 }, 397 { 398 /* Scalar L1 Data Cache per SQC */ 399 .cache_size = 16, 400 .cache_level = 1, 401 .flags = (CRAT_CACHE_FLAGS_ENABLED | 402 CRAT_CACHE_FLAGS_DATA_CACHE | 403 CRAT_CACHE_FLAGS_SIMD_CACHE), 404 .num_cu_shared = 2, 405 }, 406 { 407 /* GL1 Data Cache per SA */ 408 .cache_size = 128, 409 .cache_level = 1, 410 .flags = (CRAT_CACHE_FLAGS_ENABLED | 411 CRAT_CACHE_FLAGS_DATA_CACHE | 412 CRAT_CACHE_FLAGS_SIMD_CACHE), 413 .num_cu_shared = 10, 414 }, 415 { 416 /* L2 Data Cache per GPU (Total Tex Cache) */ 417 .cache_size = 4096, 418 .cache_level = 2, 419 .flags = (CRAT_CACHE_FLAGS_ENABLED | 420 CRAT_CACHE_FLAGS_DATA_CACHE | 421 CRAT_CACHE_FLAGS_SIMD_CACHE), 422 .num_cu_shared = 10, 423 }, 424 }; 425 426 static struct kfd_gpu_cache_info vangogh_cache_info[] = { 427 { 428 /* TCP L1 Cache per CU */ 429 .cache_size = 16, 430 .cache_level = 1, 431 .flags = (CRAT_CACHE_FLAGS_ENABLED | 432 CRAT_CACHE_FLAGS_DATA_CACHE | 433 CRAT_CACHE_FLAGS_SIMD_CACHE), 434 .num_cu_shared = 1, 435 }, 436 { 437 /* Scalar L1 Instruction Cache per SQC */ 438 .cache_size = 32, 439 .cache_level = 1, 440 .flags = (CRAT_CACHE_FLAGS_ENABLED | 441 CRAT_CACHE_FLAGS_INST_CACHE | 442 CRAT_CACHE_FLAGS_SIMD_CACHE), 443 .num_cu_shared = 2, 444 }, 445 { 446 /* Scalar L1 Data Cache per SQC */ 447 .cache_size = 16, 448 .cache_level = 1, 449 .flags = (CRAT_CACHE_FLAGS_ENABLED | 450 CRAT_CACHE_FLAGS_DATA_CACHE | 451 CRAT_CACHE_FLAGS_SIMD_CACHE), 452 .num_cu_shared = 2, 453 }, 454 { 455 /* GL1 Data Cache per SA */ 456 .cache_size = 128, 457 .cache_level = 1, 458 .flags = (CRAT_CACHE_FLAGS_ENABLED | 459 CRAT_CACHE_FLAGS_DATA_CACHE | 460 CRAT_CACHE_FLAGS_SIMD_CACHE), 461 .num_cu_shared = 8, 462 }, 463 { 464 /* L2 Data Cache per GPU (Total Tex Cache) */ 465 .cache_size = 1024, 466 .cache_level = 2, 467 .flags = (CRAT_CACHE_FLAGS_ENABLED | 468 CRAT_CACHE_FLAGS_DATA_CACHE | 469 CRAT_CACHE_FLAGS_SIMD_CACHE), 470 .num_cu_shared = 8, 471 }, 472 }; 473 474 static struct kfd_gpu_cache_info navi14_cache_info[] = { 475 { 476 /* TCP L1 Cache per CU */ 477 .cache_size = 16, 478 .cache_level = 1, 479 .flags = (CRAT_CACHE_FLAGS_ENABLED | 480 CRAT_CACHE_FLAGS_DATA_CACHE | 481 CRAT_CACHE_FLAGS_SIMD_CACHE), 482 .num_cu_shared = 1, 483 }, 484 { 485 /* Scalar L1 Instruction Cache per SQC */ 486 .cache_size = 32, 487 .cache_level = 1, 488 .flags = (CRAT_CACHE_FLAGS_ENABLED | 489 CRAT_CACHE_FLAGS_INST_CACHE | 490 CRAT_CACHE_FLAGS_SIMD_CACHE), 491 .num_cu_shared = 2, 492 }, 493 { 494 /* Scalar L1 Data Cache per SQC */ 495 .cache_size = 16, 496 .cache_level = 1, 497 .flags = (CRAT_CACHE_FLAGS_ENABLED | 498 CRAT_CACHE_FLAGS_DATA_CACHE | 499 CRAT_CACHE_FLAGS_SIMD_CACHE), 500 .num_cu_shared = 2, 501 }, 502 { 503 /* GL1 Data Cache per SA */ 504 .cache_size = 128, 505 .cache_level = 1, 506 .flags = (CRAT_CACHE_FLAGS_ENABLED | 507 CRAT_CACHE_FLAGS_DATA_CACHE | 508 CRAT_CACHE_FLAGS_SIMD_CACHE), 509 .num_cu_shared = 12, 510 }, 511 { 512 /* L2 Data Cache per GPU (Total Tex Cache) */ 513 .cache_size = 2048, 514 .cache_level = 2, 515 .flags = (CRAT_CACHE_FLAGS_ENABLED | 516 CRAT_CACHE_FLAGS_DATA_CACHE | 517 CRAT_CACHE_FLAGS_SIMD_CACHE), 518 .num_cu_shared = 12, 519 }, 520 }; 521 522 static struct kfd_gpu_cache_info sienna_cichlid_cache_info[] = { 523 { 524 /* TCP L1 Cache per CU */ 525 .cache_size = 16, 526 .cache_level = 1, 527 .flags = (CRAT_CACHE_FLAGS_ENABLED | 528 CRAT_CACHE_FLAGS_DATA_CACHE | 529 CRAT_CACHE_FLAGS_SIMD_CACHE), 530 .num_cu_shared = 1, 531 }, 532 { 533 /* Scalar L1 Instruction Cache per SQC */ 534 .cache_size = 32, 535 .cache_level = 1, 536 .flags = (CRAT_CACHE_FLAGS_ENABLED | 537 CRAT_CACHE_FLAGS_INST_CACHE | 538 CRAT_CACHE_FLAGS_SIMD_CACHE), 539 .num_cu_shared = 2, 540 }, 541 { 542 /* Scalar L1 Data Cache per SQC */ 543 .cache_size = 16, 544 .cache_level = 1, 545 .flags = (CRAT_CACHE_FLAGS_ENABLED | 546 CRAT_CACHE_FLAGS_DATA_CACHE | 547 CRAT_CACHE_FLAGS_SIMD_CACHE), 548 .num_cu_shared = 2, 549 }, 550 { 551 /* GL1 Data Cache per SA */ 552 .cache_size = 128, 553 .cache_level = 1, 554 .flags = (CRAT_CACHE_FLAGS_ENABLED | 555 CRAT_CACHE_FLAGS_DATA_CACHE | 556 CRAT_CACHE_FLAGS_SIMD_CACHE), 557 .num_cu_shared = 10, 558 }, 559 { 560 /* L2 Data Cache per GPU (Total Tex Cache) */ 561 .cache_size = 4096, 562 .cache_level = 2, 563 .flags = (CRAT_CACHE_FLAGS_ENABLED | 564 CRAT_CACHE_FLAGS_DATA_CACHE | 565 CRAT_CACHE_FLAGS_SIMD_CACHE), 566 .num_cu_shared = 10, 567 }, 568 { 569 /* L3 Data Cache per GPU */ 570 .cache_size = 128*1024, 571 .cache_level = 3, 572 .flags = (CRAT_CACHE_FLAGS_ENABLED | 573 CRAT_CACHE_FLAGS_DATA_CACHE | 574 CRAT_CACHE_FLAGS_SIMD_CACHE), 575 .num_cu_shared = 10, 576 }, 577 }; 578 579 static struct kfd_gpu_cache_info navy_flounder_cache_info[] = { 580 { 581 /* TCP L1 Cache per CU */ 582 .cache_size = 16, 583 .cache_level = 1, 584 .flags = (CRAT_CACHE_FLAGS_ENABLED | 585 CRAT_CACHE_FLAGS_DATA_CACHE | 586 CRAT_CACHE_FLAGS_SIMD_CACHE), 587 .num_cu_shared = 1, 588 }, 589 { 590 /* Scalar L1 Instruction Cache per SQC */ 591 .cache_size = 32, 592 .cache_level = 1, 593 .flags = (CRAT_CACHE_FLAGS_ENABLED | 594 CRAT_CACHE_FLAGS_INST_CACHE | 595 CRAT_CACHE_FLAGS_SIMD_CACHE), 596 .num_cu_shared = 2, 597 }, 598 { 599 /* Scalar L1 Data Cache per SQC */ 600 .cache_size = 16, 601 .cache_level = 1, 602 .flags = (CRAT_CACHE_FLAGS_ENABLED | 603 CRAT_CACHE_FLAGS_DATA_CACHE | 604 CRAT_CACHE_FLAGS_SIMD_CACHE), 605 .num_cu_shared = 2, 606 }, 607 { 608 /* GL1 Data Cache per SA */ 609 .cache_size = 128, 610 .cache_level = 1, 611 .flags = (CRAT_CACHE_FLAGS_ENABLED | 612 CRAT_CACHE_FLAGS_DATA_CACHE | 613 CRAT_CACHE_FLAGS_SIMD_CACHE), 614 .num_cu_shared = 10, 615 }, 616 { 617 /* L2 Data Cache per GPU (Total Tex Cache) */ 618 .cache_size = 3072, 619 .cache_level = 2, 620 .flags = (CRAT_CACHE_FLAGS_ENABLED | 621 CRAT_CACHE_FLAGS_DATA_CACHE | 622 CRAT_CACHE_FLAGS_SIMD_CACHE), 623 .num_cu_shared = 10, 624 }, 625 { 626 /* L3 Data Cache per GPU */ 627 .cache_size = 96*1024, 628 .cache_level = 3, 629 .flags = (CRAT_CACHE_FLAGS_ENABLED | 630 CRAT_CACHE_FLAGS_DATA_CACHE | 631 CRAT_CACHE_FLAGS_SIMD_CACHE), 632 .num_cu_shared = 10, 633 }, 634 }; 635 636 static struct kfd_gpu_cache_info dimgrey_cavefish_cache_info[] = { 637 { 638 /* TCP L1 Cache per CU */ 639 .cache_size = 16, 640 .cache_level = 1, 641 .flags = (CRAT_CACHE_FLAGS_ENABLED | 642 CRAT_CACHE_FLAGS_DATA_CACHE | 643 CRAT_CACHE_FLAGS_SIMD_CACHE), 644 .num_cu_shared = 1, 645 }, 646 { 647 /* Scalar L1 Instruction Cache per SQC */ 648 .cache_size = 32, 649 .cache_level = 1, 650 .flags = (CRAT_CACHE_FLAGS_ENABLED | 651 CRAT_CACHE_FLAGS_INST_CACHE | 652 CRAT_CACHE_FLAGS_SIMD_CACHE), 653 .num_cu_shared = 2, 654 }, 655 { 656 /* Scalar L1 Data Cache per SQC */ 657 .cache_size = 16, 658 .cache_level = 1, 659 .flags = (CRAT_CACHE_FLAGS_ENABLED | 660 CRAT_CACHE_FLAGS_DATA_CACHE | 661 CRAT_CACHE_FLAGS_SIMD_CACHE), 662 .num_cu_shared = 2, 663 }, 664 { 665 /* GL1 Data Cache per SA */ 666 .cache_size = 128, 667 .cache_level = 1, 668 .flags = (CRAT_CACHE_FLAGS_ENABLED | 669 CRAT_CACHE_FLAGS_DATA_CACHE | 670 CRAT_CACHE_FLAGS_SIMD_CACHE), 671 .num_cu_shared = 8, 672 }, 673 { 674 /* L2 Data Cache per GPU (Total Tex Cache) */ 675 .cache_size = 2048, 676 .cache_level = 2, 677 .flags = (CRAT_CACHE_FLAGS_ENABLED | 678 CRAT_CACHE_FLAGS_DATA_CACHE | 679 CRAT_CACHE_FLAGS_SIMD_CACHE), 680 .num_cu_shared = 8, 681 }, 682 { 683 /* L3 Data Cache per GPU */ 684 .cache_size = 32*1024, 685 .cache_level = 3, 686 .flags = (CRAT_CACHE_FLAGS_ENABLED | 687 CRAT_CACHE_FLAGS_DATA_CACHE | 688 CRAT_CACHE_FLAGS_SIMD_CACHE), 689 .num_cu_shared = 8, 690 }, 691 }; 692 693 static struct kfd_gpu_cache_info beige_goby_cache_info[] = { 694 { 695 /* TCP L1 Cache per CU */ 696 .cache_size = 16, 697 .cache_level = 1, 698 .flags = (CRAT_CACHE_FLAGS_ENABLED | 699 CRAT_CACHE_FLAGS_DATA_CACHE | 700 CRAT_CACHE_FLAGS_SIMD_CACHE), 701 .num_cu_shared = 1, 702 }, 703 { 704 /* Scalar L1 Instruction Cache per SQC */ 705 .cache_size = 32, 706 .cache_level = 1, 707 .flags = (CRAT_CACHE_FLAGS_ENABLED | 708 CRAT_CACHE_FLAGS_INST_CACHE | 709 CRAT_CACHE_FLAGS_SIMD_CACHE), 710 .num_cu_shared = 2, 711 }, 712 { 713 /* Scalar L1 Data Cache per SQC */ 714 .cache_size = 16, 715 .cache_level = 1, 716 .flags = (CRAT_CACHE_FLAGS_ENABLED | 717 CRAT_CACHE_FLAGS_DATA_CACHE | 718 CRAT_CACHE_FLAGS_SIMD_CACHE), 719 .num_cu_shared = 2, 720 }, 721 { 722 /* GL1 Data Cache per SA */ 723 .cache_size = 128, 724 .cache_level = 1, 725 .flags = (CRAT_CACHE_FLAGS_ENABLED | 726 CRAT_CACHE_FLAGS_DATA_CACHE | 727 CRAT_CACHE_FLAGS_SIMD_CACHE), 728 .num_cu_shared = 8, 729 }, 730 { 731 /* L2 Data Cache per GPU (Total Tex Cache) */ 732 .cache_size = 1024, 733 .cache_level = 2, 734 .flags = (CRAT_CACHE_FLAGS_ENABLED | 735 CRAT_CACHE_FLAGS_DATA_CACHE | 736 CRAT_CACHE_FLAGS_SIMD_CACHE), 737 .num_cu_shared = 8, 738 }, 739 { 740 /* L3 Data Cache per GPU */ 741 .cache_size = 16*1024, 742 .cache_level = 3, 743 .flags = (CRAT_CACHE_FLAGS_ENABLED | 744 CRAT_CACHE_FLAGS_DATA_CACHE | 745 CRAT_CACHE_FLAGS_SIMD_CACHE), 746 .num_cu_shared = 8, 747 }, 748 }; 749 750 static struct kfd_gpu_cache_info yellow_carp_cache_info[] = { 751 { 752 /* TCP L1 Cache per CU */ 753 .cache_size = 16, 754 .cache_level = 1, 755 .flags = (CRAT_CACHE_FLAGS_ENABLED | 756 CRAT_CACHE_FLAGS_DATA_CACHE | 757 CRAT_CACHE_FLAGS_SIMD_CACHE), 758 .num_cu_shared = 1, 759 }, 760 { 761 /* Scalar L1 Instruction Cache per SQC */ 762 .cache_size = 32, 763 .cache_level = 1, 764 .flags = (CRAT_CACHE_FLAGS_ENABLED | 765 CRAT_CACHE_FLAGS_INST_CACHE | 766 CRAT_CACHE_FLAGS_SIMD_CACHE), 767 .num_cu_shared = 2, 768 }, 769 { 770 /* Scalar L1 Data Cache per SQC */ 771 .cache_size = 16, 772 .cache_level = 1, 773 .flags = (CRAT_CACHE_FLAGS_ENABLED | 774 CRAT_CACHE_FLAGS_DATA_CACHE | 775 CRAT_CACHE_FLAGS_SIMD_CACHE), 776 .num_cu_shared = 2, 777 }, 778 { 779 /* GL1 Data Cache per SA */ 780 .cache_size = 128, 781 .cache_level = 1, 782 .flags = (CRAT_CACHE_FLAGS_ENABLED | 783 CRAT_CACHE_FLAGS_DATA_CACHE | 784 CRAT_CACHE_FLAGS_SIMD_CACHE), 785 .num_cu_shared = 6, 786 }, 787 { 788 /* L2 Data Cache per GPU (Total Tex Cache) */ 789 .cache_size = 2048, 790 .cache_level = 2, 791 .flags = (CRAT_CACHE_FLAGS_ENABLED | 792 CRAT_CACHE_FLAGS_DATA_CACHE | 793 CRAT_CACHE_FLAGS_SIMD_CACHE), 794 .num_cu_shared = 6, 795 }, 796 }; 797 798 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, 799 struct crat_subtype_computeunit *cu) 800 { 801 dev->node_props.cpu_cores_count = cu->num_cpu_cores; 802 dev->node_props.cpu_core_id_base = cu->processor_id_low; 803 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) 804 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 805 806 pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, 807 cu->processor_id_low); 808 } 809 810 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, 811 struct crat_subtype_computeunit *cu) 812 { 813 dev->node_props.simd_id_base = cu->processor_id_low; 814 dev->node_props.simd_count = cu->num_simd_cores; 815 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; 816 dev->node_props.max_waves_per_simd = cu->max_waves_simd; 817 dev->node_props.wave_front_size = cu->wave_front_size; 818 dev->node_props.array_count = cu->array_count; 819 dev->node_props.cu_per_simd_array = cu->num_cu_per_array; 820 dev->node_props.simd_per_cu = cu->num_simd_per_cu; 821 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; 822 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) 823 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; 824 pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); 825 } 826 827 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct 828 * topology device present in the device_list 829 */ 830 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, 831 struct list_head *device_list) 832 { 833 struct kfd_topology_device *dev; 834 835 pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", 836 cu->proximity_domain, cu->hsa_capability); 837 list_for_each_entry(dev, device_list, list) { 838 if (cu->proximity_domain == dev->proximity_domain) { 839 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) 840 kfd_populated_cu_info_cpu(dev, cu); 841 842 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) 843 kfd_populated_cu_info_gpu(dev, cu); 844 break; 845 } 846 } 847 848 return 0; 849 } 850 851 static struct kfd_mem_properties * 852 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, 853 struct kfd_topology_device *dev) 854 { 855 struct kfd_mem_properties *props; 856 857 list_for_each_entry(props, &dev->mem_props, list) { 858 if (props->heap_type == heap_type 859 && props->flags == flags 860 && props->width == width) 861 return props; 862 } 863 864 return NULL; 865 } 866 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct 867 * topology device present in the device_list 868 */ 869 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, 870 struct list_head *device_list) 871 { 872 struct kfd_mem_properties *props; 873 struct kfd_topology_device *dev; 874 uint32_t heap_type; 875 uint64_t size_in_bytes; 876 uint32_t flags = 0; 877 uint32_t width; 878 879 pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", 880 mem->proximity_domain); 881 list_for_each_entry(dev, device_list, list) { 882 if (mem->proximity_domain == dev->proximity_domain) { 883 /* We're on GPU node */ 884 if (dev->node_props.cpu_cores_count == 0) { 885 /* APU */ 886 if (mem->visibility_type == 0) 887 heap_type = 888 HSA_MEM_HEAP_TYPE_FB_PRIVATE; 889 /* dGPU */ 890 else 891 heap_type = mem->visibility_type; 892 } else 893 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; 894 895 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) 896 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; 897 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) 898 flags |= HSA_MEM_FLAGS_NON_VOLATILE; 899 900 size_in_bytes = 901 ((uint64_t)mem->length_high << 32) + 902 mem->length_low; 903 width = mem->width; 904 905 /* Multiple banks of the same type are aggregated into 906 * one. User mode doesn't care about multiple physical 907 * memory segments. It's managed as a single virtual 908 * heap for user mode. 909 */ 910 props = find_subtype_mem(heap_type, flags, width, dev); 911 if (props) { 912 props->size_in_bytes += size_in_bytes; 913 break; 914 } 915 916 props = kfd_alloc_struct(props); 917 if (!props) 918 return -ENOMEM; 919 920 props->heap_type = heap_type; 921 props->flags = flags; 922 props->size_in_bytes = size_in_bytes; 923 props->width = width; 924 925 dev->node_props.mem_banks_count++; 926 list_add_tail(&props->list, &dev->mem_props); 927 928 break; 929 } 930 } 931 932 return 0; 933 } 934 935 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct 936 * topology device present in the device_list 937 */ 938 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, 939 struct list_head *device_list) 940 { 941 struct kfd_cache_properties *props; 942 struct kfd_topology_device *dev; 943 uint32_t id; 944 uint32_t total_num_of_cu; 945 946 id = cache->processor_id_low; 947 948 pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); 949 list_for_each_entry(dev, device_list, list) { 950 total_num_of_cu = (dev->node_props.array_count * 951 dev->node_props.cu_per_simd_array); 952 953 /* Cache infomration in CRAT doesn't have proximity_domain 954 * information as it is associated with a CPU core or GPU 955 * Compute Unit. So map the cache using CPU core Id or SIMD 956 * (GPU) ID. 957 * TODO: This works because currently we can safely assume that 958 * Compute Units are parsed before caches are parsed. In 959 * future, remove this dependency 960 */ 961 if ((id >= dev->node_props.cpu_core_id_base && 962 id <= dev->node_props.cpu_core_id_base + 963 dev->node_props.cpu_cores_count) || 964 (id >= dev->node_props.simd_id_base && 965 id < dev->node_props.simd_id_base + 966 total_num_of_cu)) { 967 props = kfd_alloc_struct(props); 968 if (!props) 969 return -ENOMEM; 970 971 props->processor_id_low = id; 972 props->cache_level = cache->cache_level; 973 props->cache_size = cache->cache_size; 974 props->cacheline_size = cache->cache_line_size; 975 props->cachelines_per_tag = cache->lines_per_tag; 976 props->cache_assoc = cache->associativity; 977 props->cache_latency = cache->cache_latency; 978 memcpy(props->sibling_map, cache->sibling_map, 979 sizeof(props->sibling_map)); 980 981 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) 982 props->cache_type |= HSA_CACHE_TYPE_DATA; 983 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) 984 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 985 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) 986 props->cache_type |= HSA_CACHE_TYPE_CPU; 987 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 988 props->cache_type |= HSA_CACHE_TYPE_HSACU; 989 990 dev->cache_count++; 991 dev->node_props.caches_count++; 992 list_add_tail(&props->list, &dev->cache_props); 993 994 break; 995 } 996 } 997 998 return 0; 999 } 1000 1001 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct 1002 * topology device present in the device_list 1003 */ 1004 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, 1005 struct list_head *device_list) 1006 { 1007 struct kfd_iolink_properties *props = NULL, *props2; 1008 struct kfd_topology_device *dev, *to_dev; 1009 uint32_t id_from; 1010 uint32_t id_to; 1011 1012 id_from = iolink->proximity_domain_from; 1013 id_to = iolink->proximity_domain_to; 1014 1015 pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n", 1016 id_from, id_to); 1017 list_for_each_entry(dev, device_list, list) { 1018 if (id_from == dev->proximity_domain) { 1019 props = kfd_alloc_struct(props); 1020 if (!props) 1021 return -ENOMEM; 1022 1023 props->node_from = id_from; 1024 props->node_to = id_to; 1025 props->ver_maj = iolink->version_major; 1026 props->ver_min = iolink->version_minor; 1027 props->iolink_type = iolink->io_interface_type; 1028 1029 if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 1030 props->weight = 20; 1031 else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI) 1032 props->weight = 15 * iolink->num_hops_xgmi; 1033 else 1034 props->weight = node_distance(id_from, id_to); 1035 1036 props->min_latency = iolink->minimum_latency; 1037 props->max_latency = iolink->maximum_latency; 1038 props->min_bandwidth = iolink->minimum_bandwidth_mbs; 1039 props->max_bandwidth = iolink->maximum_bandwidth_mbs; 1040 props->rec_transfer_size = 1041 iolink->recommended_transfer_size; 1042 1043 dev->io_link_count++; 1044 dev->node_props.io_links_count++; 1045 list_add_tail(&props->list, &dev->io_link_props); 1046 break; 1047 } 1048 } 1049 1050 /* CPU topology is created before GPUs are detected, so CPU->GPU 1051 * links are not built at that time. If a PCIe type is discovered, it 1052 * means a GPU is detected and we are adding GPU->CPU to the topology. 1053 * At this time, also add the corresponded CPU->GPU link if GPU 1054 * is large bar. 1055 * For xGMI, we only added the link with one direction in the crat 1056 * table, add corresponded reversed direction link now. 1057 */ 1058 if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) { 1059 to_dev = kfd_topology_device_by_proximity_domain_no_lock(id_to); 1060 if (!to_dev) 1061 return -ENODEV; 1062 /* same everything but the other direction */ 1063 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); 1064 if (!props2) 1065 return -ENOMEM; 1066 1067 props2->node_from = id_to; 1068 props2->node_to = id_from; 1069 props2->kobj = NULL; 1070 to_dev->io_link_count++; 1071 to_dev->node_props.io_links_count++; 1072 list_add_tail(&props2->list, &to_dev->io_link_props); 1073 } 1074 1075 return 0; 1076 } 1077 1078 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device 1079 * present in the device_list 1080 * @sub_type_hdr - subtype section of crat_image 1081 * @device_list - list of topology devices present in this crat_image 1082 */ 1083 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, 1084 struct list_head *device_list) 1085 { 1086 struct crat_subtype_computeunit *cu; 1087 struct crat_subtype_memory *mem; 1088 struct crat_subtype_cache *cache; 1089 struct crat_subtype_iolink *iolink; 1090 int ret = 0; 1091 1092 switch (sub_type_hdr->type) { 1093 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: 1094 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 1095 ret = kfd_parse_subtype_cu(cu, device_list); 1096 break; 1097 case CRAT_SUBTYPE_MEMORY_AFFINITY: 1098 mem = (struct crat_subtype_memory *)sub_type_hdr; 1099 ret = kfd_parse_subtype_mem(mem, device_list); 1100 break; 1101 case CRAT_SUBTYPE_CACHE_AFFINITY: 1102 cache = (struct crat_subtype_cache *)sub_type_hdr; 1103 ret = kfd_parse_subtype_cache(cache, device_list); 1104 break; 1105 case CRAT_SUBTYPE_TLB_AFFINITY: 1106 /* 1107 * For now, nothing to do here 1108 */ 1109 pr_debug("Found TLB entry in CRAT table (not processing)\n"); 1110 break; 1111 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: 1112 /* 1113 * For now, nothing to do here 1114 */ 1115 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); 1116 break; 1117 case CRAT_SUBTYPE_IOLINK_AFFINITY: 1118 iolink = (struct crat_subtype_iolink *)sub_type_hdr; 1119 ret = kfd_parse_subtype_iolink(iolink, device_list); 1120 break; 1121 default: 1122 pr_warn("Unknown subtype %d in CRAT\n", 1123 sub_type_hdr->type); 1124 } 1125 1126 return ret; 1127 } 1128 1129 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT 1130 * create a kfd_topology_device and add in to device_list. Also parse 1131 * CRAT subtypes and attach it to appropriate kfd_topology_device 1132 * @crat_image - input image containing CRAT 1133 * @device_list - [OUT] list of kfd_topology_device generated after 1134 * parsing crat_image 1135 * @proximity_domain - Proximity domain of the first device in the table 1136 * 1137 * Return - 0 if successful else -ve value 1138 */ 1139 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, 1140 uint32_t proximity_domain) 1141 { 1142 struct kfd_topology_device *top_dev = NULL; 1143 struct crat_subtype_generic *sub_type_hdr; 1144 uint16_t node_id; 1145 int ret = 0; 1146 struct crat_header *crat_table = (struct crat_header *)crat_image; 1147 uint16_t num_nodes; 1148 uint32_t image_len; 1149 1150 if (!crat_image) 1151 return -EINVAL; 1152 1153 if (!list_empty(device_list)) { 1154 pr_warn("Error device list should be empty\n"); 1155 return -EINVAL; 1156 } 1157 1158 num_nodes = crat_table->num_domains; 1159 image_len = crat_table->length; 1160 1161 pr_debug("Parsing CRAT table with %d nodes\n", num_nodes); 1162 1163 for (node_id = 0; node_id < num_nodes; node_id++) { 1164 top_dev = kfd_create_topology_device(device_list); 1165 if (!top_dev) 1166 break; 1167 top_dev->proximity_domain = proximity_domain++; 1168 } 1169 1170 if (!top_dev) { 1171 ret = -ENOMEM; 1172 goto err; 1173 } 1174 1175 memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); 1176 memcpy(top_dev->oem_table_id, crat_table->oem_table_id, 1177 CRAT_OEMTABLEID_LENGTH); 1178 top_dev->oem_revision = crat_table->oem_revision; 1179 1180 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 1181 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < 1182 ((char *)crat_image) + image_len) { 1183 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { 1184 ret = kfd_parse_subtype(sub_type_hdr, device_list); 1185 if (ret) 1186 break; 1187 } 1188 1189 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1190 sub_type_hdr->length); 1191 } 1192 1193 err: 1194 if (ret) 1195 kfd_release_topology_device_list(device_list); 1196 1197 return ret; 1198 } 1199 1200 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1201 static int fill_in_l1_pcache(struct crat_subtype_cache *pcache, 1202 struct kfd_gpu_cache_info *pcache_info, 1203 struct kfd_cu_info *cu_info, 1204 int mem_available, 1205 int cu_bitmask, 1206 int cache_type, unsigned int cu_processor_id, 1207 int cu_block) 1208 { 1209 unsigned int cu_sibling_map_mask; 1210 int first_active_cu; 1211 1212 /* First check if enough memory is available */ 1213 if (sizeof(struct crat_subtype_cache) > mem_available) 1214 return -ENOMEM; 1215 1216 cu_sibling_map_mask = cu_bitmask; 1217 cu_sibling_map_mask >>= cu_block; 1218 cu_sibling_map_mask &= 1219 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1220 first_active_cu = ffs(cu_sibling_map_mask); 1221 1222 /* CU could be inactive. In case of shared cache find the first active 1223 * CU. and incase of non-shared cache check if the CU is inactive. If 1224 * inactive active skip it 1225 */ 1226 if (first_active_cu) { 1227 memset(pcache, 0, sizeof(struct crat_subtype_cache)); 1228 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; 1229 pcache->length = sizeof(struct crat_subtype_cache); 1230 pcache->flags = pcache_info[cache_type].flags; 1231 pcache->processor_id_low = cu_processor_id 1232 + (first_active_cu - 1); 1233 pcache->cache_level = pcache_info[cache_type].cache_level; 1234 pcache->cache_size = pcache_info[cache_type].cache_size; 1235 1236 /* Sibling map is w.r.t processor_id_low, so shift out 1237 * inactive CU 1238 */ 1239 cu_sibling_map_mask = 1240 cu_sibling_map_mask >> (first_active_cu - 1); 1241 1242 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 1243 pcache->sibling_map[1] = 1244 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1245 pcache->sibling_map[2] = 1246 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1247 pcache->sibling_map[3] = 1248 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1249 return 0; 1250 } 1251 return 1; 1252 } 1253 1254 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 1255 static int fill_in_l2_l3_pcache(struct crat_subtype_cache *pcache, 1256 struct kfd_gpu_cache_info *pcache_info, 1257 struct kfd_cu_info *cu_info, 1258 int mem_available, 1259 int cache_type, unsigned int cu_processor_id) 1260 { 1261 unsigned int cu_sibling_map_mask; 1262 int first_active_cu; 1263 int i, j, k; 1264 1265 /* First check if enough memory is available */ 1266 if (sizeof(struct crat_subtype_cache) > mem_available) 1267 return -ENOMEM; 1268 1269 cu_sibling_map_mask = cu_info->cu_bitmap[0][0]; 1270 cu_sibling_map_mask &= 1271 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 1272 first_active_cu = ffs(cu_sibling_map_mask); 1273 1274 /* CU could be inactive. In case of shared cache find the first active 1275 * CU. and incase of non-shared cache check if the CU is inactive. If 1276 * inactive active skip it 1277 */ 1278 if (first_active_cu) { 1279 memset(pcache, 0, sizeof(struct crat_subtype_cache)); 1280 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; 1281 pcache->length = sizeof(struct crat_subtype_cache); 1282 pcache->flags = pcache_info[cache_type].flags; 1283 pcache->processor_id_low = cu_processor_id 1284 + (first_active_cu - 1); 1285 pcache->cache_level = pcache_info[cache_type].cache_level; 1286 pcache->cache_size = pcache_info[cache_type].cache_size; 1287 1288 /* Sibling map is w.r.t processor_id_low, so shift out 1289 * inactive CU 1290 */ 1291 cu_sibling_map_mask = 1292 cu_sibling_map_mask >> (first_active_cu - 1); 1293 k = 0; 1294 for (i = 0; i < cu_info->num_shader_engines; i++) { 1295 for (j = 0; j < cu_info->num_shader_arrays_per_engine; 1296 j++) { 1297 pcache->sibling_map[k] = 1298 (uint8_t)(cu_sibling_map_mask & 0xFF); 1299 pcache->sibling_map[k+1] = 1300 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 1301 pcache->sibling_map[k+2] = 1302 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 1303 pcache->sibling_map[k+3] = 1304 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 1305 k += 4; 1306 cu_sibling_map_mask = 1307 cu_info->cu_bitmap[i % 4][j + i / 4]; 1308 cu_sibling_map_mask &= ( 1309 (1 << pcache_info[cache_type].num_cu_shared) 1310 - 1); 1311 } 1312 } 1313 return 0; 1314 } 1315 return 1; 1316 } 1317 1318 #define KFD_MAX_CACHE_TYPES 6 1319 1320 static int kfd_fill_gpu_cache_info_from_gfx_config(struct kfd_dev *kdev, 1321 struct kfd_gpu_cache_info *pcache_info) 1322 { 1323 struct amdgpu_device *adev = kdev->adev; 1324 int i = 0; 1325 1326 /* TCP L1 Cache per CU */ 1327 if (adev->gfx.config.gc_tcp_l1_size) { 1328 pcache_info[i].cache_size = adev->gfx.config.gc_tcp_l1_size; 1329 pcache_info[i].cache_level = 1; 1330 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1331 CRAT_CACHE_FLAGS_DATA_CACHE | 1332 CRAT_CACHE_FLAGS_SIMD_CACHE); 1333 pcache_info[0].num_cu_shared = adev->gfx.config.gc_num_tcp_per_wpg / 2; 1334 i++; 1335 } 1336 /* Scalar L1 Instruction Cache per SQC */ 1337 if (adev->gfx.config.gc_l1_instruction_cache_size_per_sqc) { 1338 pcache_info[i].cache_size = 1339 adev->gfx.config.gc_l1_instruction_cache_size_per_sqc; 1340 pcache_info[i].cache_level = 1; 1341 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1342 CRAT_CACHE_FLAGS_INST_CACHE | 1343 CRAT_CACHE_FLAGS_SIMD_CACHE); 1344 pcache_info[i].num_cu_shared = adev->gfx.config.gc_num_sqc_per_wgp * 2; 1345 i++; 1346 } 1347 /* Scalar L1 Data Cache per SQC */ 1348 if (adev->gfx.config.gc_l1_data_cache_size_per_sqc) { 1349 pcache_info[i].cache_size = adev->gfx.config.gc_l1_data_cache_size_per_sqc; 1350 pcache_info[i].cache_level = 1; 1351 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1352 CRAT_CACHE_FLAGS_DATA_CACHE | 1353 CRAT_CACHE_FLAGS_SIMD_CACHE); 1354 pcache_info[i].num_cu_shared = adev->gfx.config.gc_num_sqc_per_wgp * 2; 1355 i++; 1356 } 1357 /* GL1 Data Cache per SA */ 1358 if (adev->gfx.config.gc_gl1c_per_sa && 1359 adev->gfx.config.gc_gl1c_size_per_instance) { 1360 pcache_info[i].cache_size = adev->gfx.config.gc_gl1c_per_sa * 1361 adev->gfx.config.gc_gl1c_size_per_instance; 1362 pcache_info[i].cache_level = 1; 1363 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1364 CRAT_CACHE_FLAGS_DATA_CACHE | 1365 CRAT_CACHE_FLAGS_SIMD_CACHE); 1366 pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh; 1367 i++; 1368 } 1369 /* L2 Data Cache per GPU (Total Tex Cache) */ 1370 if (adev->gfx.config.gc_gl2c_per_gpu) { 1371 pcache_info[i].cache_size = adev->gfx.config.gc_gl2c_per_gpu; 1372 pcache_info[i].cache_level = 2; 1373 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1374 CRAT_CACHE_FLAGS_DATA_CACHE | 1375 CRAT_CACHE_FLAGS_SIMD_CACHE); 1376 pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh; 1377 i++; 1378 } 1379 /* L3 Data Cache per GPU */ 1380 if (adev->gmc.mall_size) { 1381 pcache_info[i].cache_size = adev->gmc.mall_size / 1024; 1382 pcache_info[i].cache_level = 3; 1383 pcache_info[i].flags = (CRAT_CACHE_FLAGS_ENABLED | 1384 CRAT_CACHE_FLAGS_DATA_CACHE | 1385 CRAT_CACHE_FLAGS_SIMD_CACHE); 1386 pcache_info[i].num_cu_shared = adev->gfx.config.max_cu_per_sh; 1387 i++; 1388 } 1389 return i; 1390 } 1391 1392 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info 1393 * tables 1394 * 1395 * @kdev - [IN] GPU device 1396 * @gpu_processor_id - [IN] GPU processor ID to which these caches 1397 * associate 1398 * @available_size - [IN] Amount of memory available in pcache 1399 * @cu_info - [IN] Compute Unit info obtained from KGD 1400 * @pcache - [OUT] memory into which cache data is to be filled in. 1401 * @size_filled - [OUT] amount of data used up in pcache. 1402 * @num_of_entries - [OUT] number of caches added 1403 */ 1404 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, 1405 int gpu_processor_id, 1406 int available_size, 1407 struct kfd_cu_info *cu_info, 1408 struct crat_subtype_cache *pcache, 1409 int *size_filled, 1410 int *num_of_entries) 1411 { 1412 struct kfd_gpu_cache_info *pcache_info; 1413 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; 1414 int num_of_cache_types = 0; 1415 int i, j, k; 1416 int ct = 0; 1417 int mem_available = available_size; 1418 unsigned int cu_processor_id; 1419 int ret; 1420 unsigned int num_cu_shared; 1421 1422 switch (kdev->adev->asic_type) { 1423 case CHIP_KAVERI: 1424 pcache_info = kaveri_cache_info; 1425 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); 1426 break; 1427 case CHIP_HAWAII: 1428 pcache_info = hawaii_cache_info; 1429 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); 1430 break; 1431 case CHIP_CARRIZO: 1432 pcache_info = carrizo_cache_info; 1433 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); 1434 break; 1435 case CHIP_TONGA: 1436 pcache_info = tonga_cache_info; 1437 num_of_cache_types = ARRAY_SIZE(tonga_cache_info); 1438 break; 1439 case CHIP_FIJI: 1440 pcache_info = fiji_cache_info; 1441 num_of_cache_types = ARRAY_SIZE(fiji_cache_info); 1442 break; 1443 case CHIP_POLARIS10: 1444 pcache_info = polaris10_cache_info; 1445 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); 1446 break; 1447 case CHIP_POLARIS11: 1448 pcache_info = polaris11_cache_info; 1449 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); 1450 break; 1451 case CHIP_POLARIS12: 1452 pcache_info = polaris12_cache_info; 1453 num_of_cache_types = ARRAY_SIZE(polaris12_cache_info); 1454 break; 1455 case CHIP_VEGAM: 1456 pcache_info = vegam_cache_info; 1457 num_of_cache_types = ARRAY_SIZE(vegam_cache_info); 1458 break; 1459 default: 1460 switch (KFD_GC_VERSION(kdev)) { 1461 case IP_VERSION(9, 0, 1): 1462 pcache_info = vega10_cache_info; 1463 num_of_cache_types = ARRAY_SIZE(vega10_cache_info); 1464 break; 1465 case IP_VERSION(9, 2, 1): 1466 pcache_info = vega12_cache_info; 1467 num_of_cache_types = ARRAY_SIZE(vega12_cache_info); 1468 break; 1469 case IP_VERSION(9, 4, 0): 1470 case IP_VERSION(9, 4, 1): 1471 pcache_info = vega20_cache_info; 1472 num_of_cache_types = ARRAY_SIZE(vega20_cache_info); 1473 break; 1474 case IP_VERSION(9, 4, 2): 1475 pcache_info = aldebaran_cache_info; 1476 num_of_cache_types = ARRAY_SIZE(aldebaran_cache_info); 1477 break; 1478 case IP_VERSION(9, 1, 0): 1479 case IP_VERSION(9, 2, 2): 1480 pcache_info = raven_cache_info; 1481 num_of_cache_types = ARRAY_SIZE(raven_cache_info); 1482 break; 1483 case IP_VERSION(9, 3, 0): 1484 pcache_info = renoir_cache_info; 1485 num_of_cache_types = ARRAY_SIZE(renoir_cache_info); 1486 break; 1487 case IP_VERSION(10, 1, 10): 1488 case IP_VERSION(10, 1, 2): 1489 case IP_VERSION(10, 1, 3): 1490 case IP_VERSION(10, 1, 4): 1491 pcache_info = navi10_cache_info; 1492 num_of_cache_types = ARRAY_SIZE(navi10_cache_info); 1493 break; 1494 case IP_VERSION(10, 1, 1): 1495 pcache_info = navi14_cache_info; 1496 num_of_cache_types = ARRAY_SIZE(navi14_cache_info); 1497 break; 1498 case IP_VERSION(10, 3, 0): 1499 pcache_info = sienna_cichlid_cache_info; 1500 num_of_cache_types = ARRAY_SIZE(sienna_cichlid_cache_info); 1501 break; 1502 case IP_VERSION(10, 3, 2): 1503 pcache_info = navy_flounder_cache_info; 1504 num_of_cache_types = ARRAY_SIZE(navy_flounder_cache_info); 1505 break; 1506 case IP_VERSION(10, 3, 4): 1507 pcache_info = dimgrey_cavefish_cache_info; 1508 num_of_cache_types = ARRAY_SIZE(dimgrey_cavefish_cache_info); 1509 break; 1510 case IP_VERSION(10, 3, 1): 1511 pcache_info = vangogh_cache_info; 1512 num_of_cache_types = ARRAY_SIZE(vangogh_cache_info); 1513 break; 1514 case IP_VERSION(10, 3, 5): 1515 pcache_info = beige_goby_cache_info; 1516 num_of_cache_types = ARRAY_SIZE(beige_goby_cache_info); 1517 break; 1518 case IP_VERSION(10, 3, 3): 1519 case IP_VERSION(10, 3, 6): /* TODO: Double check these on production silicon */ 1520 case IP_VERSION(10, 3, 7): /* TODO: Double check these on production silicon */ 1521 pcache_info = yellow_carp_cache_info; 1522 num_of_cache_types = ARRAY_SIZE(yellow_carp_cache_info); 1523 break; 1524 case IP_VERSION(11, 0, 0): 1525 case IP_VERSION(11, 0, 1): 1526 case IP_VERSION(11, 0, 2): 1527 pcache_info = cache_info; 1528 num_of_cache_types = 1529 kfd_fill_gpu_cache_info_from_gfx_config(kdev, pcache_info); 1530 break; 1531 default: 1532 return -EINVAL; 1533 } 1534 } 1535 1536 *size_filled = 0; 1537 *num_of_entries = 0; 1538 1539 /* For each type of cache listed in the kfd_gpu_cache_info table, 1540 * go through all available Compute Units. 1541 * The [i,j,k] loop will 1542 * if kfd_gpu_cache_info.num_cu_shared = 1 1543 * will parse through all available CU 1544 * If (kfd_gpu_cache_info.num_cu_shared != 1) 1545 * then it will consider only one CU from 1546 * the shared unit 1547 */ 1548 1549 for (ct = 0; ct < num_of_cache_types; ct++) { 1550 cu_processor_id = gpu_processor_id; 1551 if (pcache_info[ct].cache_level == 1) { 1552 for (i = 0; i < cu_info->num_shader_engines; i++) { 1553 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) { 1554 for (k = 0; k < cu_info->num_cu_per_sh; 1555 k += pcache_info[ct].num_cu_shared) { 1556 ret = fill_in_l1_pcache(pcache, 1557 pcache_info, 1558 cu_info, 1559 mem_available, 1560 cu_info->cu_bitmap[i % 4][j + i / 4], 1561 ct, 1562 cu_processor_id, 1563 k); 1564 1565 if (ret < 0) 1566 break; 1567 1568 if (!ret) { 1569 pcache++; 1570 (*num_of_entries)++; 1571 mem_available -= sizeof(*pcache); 1572 (*size_filled) += sizeof(*pcache); 1573 } 1574 1575 /* Move to next CU block */ 1576 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= 1577 cu_info->num_cu_per_sh) ? 1578 pcache_info[ct].num_cu_shared : 1579 (cu_info->num_cu_per_sh - k); 1580 cu_processor_id += num_cu_shared; 1581 } 1582 } 1583 } 1584 } else { 1585 ret = fill_in_l2_l3_pcache(pcache, 1586 pcache_info, 1587 cu_info, 1588 mem_available, 1589 ct, 1590 cu_processor_id); 1591 1592 if (ret < 0) 1593 break; 1594 1595 if (!ret) { 1596 pcache++; 1597 (*num_of_entries)++; 1598 mem_available -= sizeof(*pcache); 1599 (*size_filled) += sizeof(*pcache); 1600 } 1601 } 1602 } 1603 1604 pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); 1605 1606 return 0; 1607 } 1608 1609 static bool kfd_ignore_crat(void) 1610 { 1611 bool ret; 1612 1613 if (ignore_crat) 1614 return true; 1615 1616 #ifndef KFD_SUPPORT_IOMMU_V2 1617 ret = true; 1618 #else 1619 ret = false; 1620 #endif 1621 1622 return ret; 1623 } 1624 1625 /* 1626 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and 1627 * copies CRAT from ACPI (if available). 1628 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 1629 * 1630 * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then 1631 * crat_image will be NULL 1632 * @size: [OUT] size of crat_image 1633 * 1634 * Return 0 if successful else return error code 1635 */ 1636 int kfd_create_crat_image_acpi(void **crat_image, size_t *size) 1637 { 1638 struct acpi_table_header *crat_table; 1639 acpi_status status; 1640 void *pcrat_image; 1641 int rc = 0; 1642 1643 if (!crat_image) 1644 return -EINVAL; 1645 1646 *crat_image = NULL; 1647 1648 if (kfd_ignore_crat()) { 1649 pr_info("CRAT table disabled by module option\n"); 1650 return -ENODATA; 1651 } 1652 1653 /* Fetch the CRAT table from ACPI */ 1654 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); 1655 if (status == AE_NOT_FOUND) { 1656 pr_info("CRAT table not found\n"); 1657 return -ENODATA; 1658 } else if (ACPI_FAILURE(status)) { 1659 const char *err = acpi_format_exception(status); 1660 1661 pr_err("CRAT table error: %s\n", err); 1662 return -EINVAL; 1663 } 1664 1665 pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL); 1666 if (!pcrat_image) { 1667 rc = -ENOMEM; 1668 goto out; 1669 } 1670 1671 memcpy(pcrat_image, crat_table, crat_table->length); 1672 *crat_image = pcrat_image; 1673 *size = crat_table->length; 1674 out: 1675 acpi_put_table(crat_table); 1676 return rc; 1677 } 1678 1679 /* Memory required to create Virtual CRAT. 1680 * Since there is no easy way to predict the amount of memory required, the 1681 * following amount is allocated for GPU Virtual CRAT. This is 1682 * expected to cover all known conditions. But to be safe additional check 1683 * is put in the code to ensure we don't overwrite. 1684 */ 1685 #define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE) 1686 1687 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node 1688 * 1689 * @numa_node_id: CPU NUMA node id 1690 * @avail_size: Available size in the memory 1691 * @sub_type_hdr: Memory into which compute info will be filled in 1692 * 1693 * Return 0 if successful else return -ve value 1694 */ 1695 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, 1696 int proximity_domain, 1697 struct crat_subtype_computeunit *sub_type_hdr) 1698 { 1699 const struct cpumask *cpumask; 1700 1701 *avail_size -= sizeof(struct crat_subtype_computeunit); 1702 if (*avail_size < 0) 1703 return -ENOMEM; 1704 1705 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 1706 1707 /* Fill in subtype header data */ 1708 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 1709 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 1710 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1711 1712 cpumask = cpumask_of_node(numa_node_id); 1713 1714 /* Fill in CU data */ 1715 sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; 1716 sub_type_hdr->proximity_domain = proximity_domain; 1717 sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); 1718 if (sub_type_hdr->processor_id_low == -1) 1719 return -EINVAL; 1720 1721 sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); 1722 1723 return 0; 1724 } 1725 1726 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node 1727 * 1728 * @numa_node_id: CPU NUMA node id 1729 * @avail_size: Available size in the memory 1730 * @sub_type_hdr: Memory into which compute info will be filled in 1731 * 1732 * Return 0 if successful else return -ve value 1733 */ 1734 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, 1735 int proximity_domain, 1736 struct crat_subtype_memory *sub_type_hdr) 1737 { 1738 uint64_t mem_in_bytes = 0; 1739 pg_data_t *pgdat; 1740 int zone_type; 1741 1742 *avail_size -= sizeof(struct crat_subtype_memory); 1743 if (*avail_size < 0) 1744 return -ENOMEM; 1745 1746 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 1747 1748 /* Fill in subtype header data */ 1749 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 1750 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 1751 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1752 1753 /* Fill in Memory Subunit data */ 1754 1755 /* Unlike si_meminfo, si_meminfo_node is not exported. So 1756 * the following lines are duplicated from si_meminfo_node 1757 * function 1758 */ 1759 pgdat = NODE_DATA(numa_node_id); 1760 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 1761 mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]); 1762 mem_in_bytes <<= PAGE_SHIFT; 1763 1764 sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); 1765 sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); 1766 sub_type_hdr->proximity_domain = proximity_domain; 1767 1768 return 0; 1769 } 1770 1771 #ifdef CONFIG_X86_64 1772 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, 1773 uint32_t *num_entries, 1774 struct crat_subtype_iolink *sub_type_hdr) 1775 { 1776 int nid; 1777 struct cpuinfo_x86 *c = &cpu_data(0); 1778 uint8_t link_type; 1779 1780 if (c->x86_vendor == X86_VENDOR_AMD) 1781 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; 1782 else 1783 link_type = CRAT_IOLINK_TYPE_QPI_1_1; 1784 1785 *num_entries = 0; 1786 1787 /* Create IO links from this node to other CPU nodes */ 1788 for_each_online_node(nid) { 1789 if (nid == numa_node_id) /* node itself */ 1790 continue; 1791 1792 *avail_size -= sizeof(struct crat_subtype_iolink); 1793 if (*avail_size < 0) 1794 return -ENOMEM; 1795 1796 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1797 1798 /* Fill in subtype header data */ 1799 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1800 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1801 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1802 1803 /* Fill in IO link data */ 1804 sub_type_hdr->proximity_domain_from = numa_node_id; 1805 sub_type_hdr->proximity_domain_to = nid; 1806 sub_type_hdr->io_interface_type = link_type; 1807 1808 (*num_entries)++; 1809 sub_type_hdr++; 1810 } 1811 1812 return 0; 1813 } 1814 #endif 1815 1816 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU 1817 * 1818 * @pcrat_image: Fill in VCRAT for CPU 1819 * @size: [IN] allocated size of crat_image. 1820 * [OUT] actual size of data filled in crat_image 1821 */ 1822 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) 1823 { 1824 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 1825 struct acpi_table_header *acpi_table; 1826 acpi_status status; 1827 struct crat_subtype_generic *sub_type_hdr; 1828 int avail_size = *size; 1829 int numa_node_id; 1830 #ifdef CONFIG_X86_64 1831 uint32_t entries = 0; 1832 #endif 1833 int ret = 0; 1834 1835 if (!pcrat_image) 1836 return -EINVAL; 1837 1838 /* Fill in CRAT Header. 1839 * Modify length and total_entries as subunits are added. 1840 */ 1841 avail_size -= sizeof(struct crat_header); 1842 if (avail_size < 0) 1843 return -ENOMEM; 1844 1845 memset(crat_table, 0, sizeof(struct crat_header)); 1846 memcpy(&crat_table->signature, CRAT_SIGNATURE, 1847 sizeof(crat_table->signature)); 1848 crat_table->length = sizeof(struct crat_header); 1849 1850 status = acpi_get_table("DSDT", 0, &acpi_table); 1851 if (status != AE_OK) 1852 pr_warn("DSDT table not found for OEM information\n"); 1853 else { 1854 crat_table->oem_revision = acpi_table->revision; 1855 memcpy(crat_table->oem_id, acpi_table->oem_id, 1856 CRAT_OEMID_LENGTH); 1857 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, 1858 CRAT_OEMTABLEID_LENGTH); 1859 acpi_put_table(acpi_table); 1860 } 1861 crat_table->total_entries = 0; 1862 crat_table->num_domains = 0; 1863 1864 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 1865 1866 for_each_online_node(numa_node_id) { 1867 if (kfd_numa_node_to_apic_id(numa_node_id) == -1) 1868 continue; 1869 1870 /* Fill in Subtype: Compute Unit */ 1871 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, 1872 crat_table->num_domains, 1873 (struct crat_subtype_computeunit *)sub_type_hdr); 1874 if (ret < 0) 1875 return ret; 1876 crat_table->length += sub_type_hdr->length; 1877 crat_table->total_entries++; 1878 1879 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1880 sub_type_hdr->length); 1881 1882 /* Fill in Subtype: Memory */ 1883 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, 1884 crat_table->num_domains, 1885 (struct crat_subtype_memory *)sub_type_hdr); 1886 if (ret < 0) 1887 return ret; 1888 crat_table->length += sub_type_hdr->length; 1889 crat_table->total_entries++; 1890 1891 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1892 sub_type_hdr->length); 1893 1894 /* Fill in Subtype: IO Link */ 1895 #ifdef CONFIG_X86_64 1896 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, 1897 &entries, 1898 (struct crat_subtype_iolink *)sub_type_hdr); 1899 if (ret < 0) 1900 return ret; 1901 1902 if (entries) { 1903 crat_table->length += (sub_type_hdr->length * entries); 1904 crat_table->total_entries += entries; 1905 1906 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1907 sub_type_hdr->length * entries); 1908 } 1909 #else 1910 pr_info("IO link not available for non x86 platforms\n"); 1911 #endif 1912 1913 crat_table->num_domains++; 1914 } 1915 1916 /* TODO: Add cache Subtype for CPU. 1917 * Currently, CPU cache information is available in function 1918 * detect_cache_attributes(cpu) defined in the file 1919 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not 1920 * exported and to get the same information the code needs to be 1921 * duplicated. 1922 */ 1923 1924 *size = crat_table->length; 1925 pr_info("Virtual CRAT table created for CPU\n"); 1926 1927 return 0; 1928 } 1929 1930 static int kfd_fill_gpu_memory_affinity(int *avail_size, 1931 struct kfd_dev *kdev, uint8_t type, uint64_t size, 1932 struct crat_subtype_memory *sub_type_hdr, 1933 uint32_t proximity_domain, 1934 const struct kfd_local_mem_info *local_mem_info) 1935 { 1936 *avail_size -= sizeof(struct crat_subtype_memory); 1937 if (*avail_size < 0) 1938 return -ENOMEM; 1939 1940 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 1941 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 1942 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 1943 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1944 1945 sub_type_hdr->proximity_domain = proximity_domain; 1946 1947 pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", 1948 type, size); 1949 1950 sub_type_hdr->length_low = lower_32_bits(size); 1951 sub_type_hdr->length_high = upper_32_bits(size); 1952 1953 sub_type_hdr->width = local_mem_info->vram_width; 1954 sub_type_hdr->visibility_type = type; 1955 1956 return 0; 1957 } 1958 1959 #ifdef CONFIG_ACPI_NUMA 1960 static void kfd_find_numa_node_in_srat(struct kfd_dev *kdev) 1961 { 1962 struct acpi_table_header *table_header = NULL; 1963 struct acpi_subtable_header *sub_header = NULL; 1964 unsigned long table_end, subtable_len; 1965 u32 pci_id = pci_domain_nr(kdev->pdev->bus) << 16 | 1966 pci_dev_id(kdev->pdev); 1967 u32 bdf; 1968 acpi_status status; 1969 struct acpi_srat_cpu_affinity *cpu; 1970 struct acpi_srat_generic_affinity *gpu; 1971 int pxm = 0, max_pxm = 0; 1972 int numa_node = NUMA_NO_NODE; 1973 bool found = false; 1974 1975 /* Fetch the SRAT table from ACPI */ 1976 status = acpi_get_table(ACPI_SIG_SRAT, 0, &table_header); 1977 if (status == AE_NOT_FOUND) { 1978 pr_warn("SRAT table not found\n"); 1979 return; 1980 } else if (ACPI_FAILURE(status)) { 1981 const char *err = acpi_format_exception(status); 1982 pr_err("SRAT table error: %s\n", err); 1983 return; 1984 } 1985 1986 table_end = (unsigned long)table_header + table_header->length; 1987 1988 /* Parse all entries looking for a match. */ 1989 sub_header = (struct acpi_subtable_header *) 1990 ((unsigned long)table_header + 1991 sizeof(struct acpi_table_srat)); 1992 subtable_len = sub_header->length; 1993 1994 while (((unsigned long)sub_header) + subtable_len < table_end) { 1995 /* 1996 * If length is 0, break from this loop to avoid 1997 * infinite loop. 1998 */ 1999 if (subtable_len == 0) { 2000 pr_err("SRAT invalid zero length\n"); 2001 break; 2002 } 2003 2004 switch (sub_header->type) { 2005 case ACPI_SRAT_TYPE_CPU_AFFINITY: 2006 cpu = (struct acpi_srat_cpu_affinity *)sub_header; 2007 pxm = *((u32 *)cpu->proximity_domain_hi) << 8 | 2008 cpu->proximity_domain_lo; 2009 if (pxm > max_pxm) 2010 max_pxm = pxm; 2011 break; 2012 case ACPI_SRAT_TYPE_GENERIC_AFFINITY: 2013 gpu = (struct acpi_srat_generic_affinity *)sub_header; 2014 bdf = *((u16 *)(&gpu->device_handle[0])) << 16 | 2015 *((u16 *)(&gpu->device_handle[2])); 2016 if (bdf == pci_id) { 2017 found = true; 2018 numa_node = pxm_to_node(gpu->proximity_domain); 2019 } 2020 break; 2021 default: 2022 break; 2023 } 2024 2025 if (found) 2026 break; 2027 2028 sub_header = (struct acpi_subtable_header *) 2029 ((unsigned long)sub_header + subtable_len); 2030 subtable_len = sub_header->length; 2031 } 2032 2033 acpi_put_table(table_header); 2034 2035 /* Workaround bad cpu-gpu binding case */ 2036 if (found && (numa_node < 0 || 2037 numa_node > pxm_to_node(max_pxm))) 2038 numa_node = 0; 2039 2040 if (numa_node != NUMA_NO_NODE) 2041 set_dev_node(&kdev->pdev->dev, numa_node); 2042 } 2043 #endif 2044 2045 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU 2046 * to its NUMA node 2047 * @avail_size: Available size in the memory 2048 * @kdev - [IN] GPU device 2049 * @sub_type_hdr: Memory into which io link info will be filled in 2050 * @proximity_domain - proximity domain of the GPU node 2051 * 2052 * Return 0 if successful else return -ve value 2053 */ 2054 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size, 2055 struct kfd_dev *kdev, 2056 struct crat_subtype_iolink *sub_type_hdr, 2057 uint32_t proximity_domain) 2058 { 2059 *avail_size -= sizeof(struct crat_subtype_iolink); 2060 if (*avail_size < 0) 2061 return -ENOMEM; 2062 2063 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 2064 2065 /* Fill in subtype header data */ 2066 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 2067 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 2068 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 2069 if (kfd_dev_is_large_bar(kdev)) 2070 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 2071 2072 /* Fill in IOLINK subtype. 2073 * TODO: Fill-in other fields of iolink subtype 2074 */ 2075 if (kdev->adev->gmc.xgmi.connected_to_cpu) { 2076 /* 2077 * with host gpu xgmi link, host can access gpu memory whether 2078 * or not pcie bar type is large, so always create bidirectional 2079 * io link. 2080 */ 2081 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 2082 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; 2083 sub_type_hdr->num_hops_xgmi = 1; 2084 if (KFD_GC_VERSION(kdev) == IP_VERSION(9, 4, 2)) { 2085 sub_type_hdr->minimum_bandwidth_mbs = 2086 amdgpu_amdkfd_get_xgmi_bandwidth_mbytes( 2087 kdev->adev, NULL, true); 2088 sub_type_hdr->maximum_bandwidth_mbs = 2089 sub_type_hdr->minimum_bandwidth_mbs; 2090 } 2091 } else { 2092 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; 2093 sub_type_hdr->minimum_bandwidth_mbs = 2094 amdgpu_amdkfd_get_pcie_bandwidth_mbytes(kdev->adev, true); 2095 sub_type_hdr->maximum_bandwidth_mbs = 2096 amdgpu_amdkfd_get_pcie_bandwidth_mbytes(kdev->adev, false); 2097 } 2098 2099 sub_type_hdr->proximity_domain_from = proximity_domain; 2100 2101 #ifdef CONFIG_ACPI_NUMA 2102 if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) 2103 kfd_find_numa_node_in_srat(kdev); 2104 #endif 2105 #ifdef CONFIG_NUMA 2106 if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) 2107 sub_type_hdr->proximity_domain_to = 0; 2108 else 2109 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; 2110 #else 2111 sub_type_hdr->proximity_domain_to = 0; 2112 #endif 2113 return 0; 2114 } 2115 2116 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size, 2117 struct kfd_dev *kdev, 2118 struct kfd_dev *peer_kdev, 2119 struct crat_subtype_iolink *sub_type_hdr, 2120 uint32_t proximity_domain_from, 2121 uint32_t proximity_domain_to) 2122 { 2123 *avail_size -= sizeof(struct crat_subtype_iolink); 2124 if (*avail_size < 0) 2125 return -ENOMEM; 2126 2127 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 2128 2129 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 2130 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 2131 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED | 2132 CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 2133 2134 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; 2135 sub_type_hdr->proximity_domain_from = proximity_domain_from; 2136 sub_type_hdr->proximity_domain_to = proximity_domain_to; 2137 sub_type_hdr->num_hops_xgmi = 2138 amdgpu_amdkfd_get_xgmi_hops_count(kdev->adev, peer_kdev->adev); 2139 sub_type_hdr->maximum_bandwidth_mbs = 2140 amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(kdev->adev, peer_kdev->adev, false); 2141 sub_type_hdr->minimum_bandwidth_mbs = sub_type_hdr->maximum_bandwidth_mbs ? 2142 amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(kdev->adev, NULL, true) : 0; 2143 2144 return 0; 2145 } 2146 2147 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU 2148 * 2149 * @pcrat_image: Fill in VCRAT for GPU 2150 * @size: [IN] allocated size of crat_image. 2151 * [OUT] actual size of data filled in crat_image 2152 */ 2153 static int kfd_create_vcrat_image_gpu(void *pcrat_image, 2154 size_t *size, struct kfd_dev *kdev, 2155 uint32_t proximity_domain) 2156 { 2157 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 2158 struct crat_subtype_generic *sub_type_hdr; 2159 struct kfd_local_mem_info local_mem_info; 2160 struct kfd_topology_device *peer_dev; 2161 struct crat_subtype_computeunit *cu; 2162 struct kfd_cu_info cu_info; 2163 int avail_size = *size; 2164 uint32_t total_num_of_cu; 2165 int num_of_cache_entries = 0; 2166 int cache_mem_filled = 0; 2167 uint32_t nid = 0; 2168 int ret = 0; 2169 2170 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) 2171 return -EINVAL; 2172 2173 /* Fill the CRAT Header. 2174 * Modify length and total_entries as subunits are added. 2175 */ 2176 avail_size -= sizeof(struct crat_header); 2177 if (avail_size < 0) 2178 return -ENOMEM; 2179 2180 memset(crat_table, 0, sizeof(struct crat_header)); 2181 2182 memcpy(&crat_table->signature, CRAT_SIGNATURE, 2183 sizeof(crat_table->signature)); 2184 /* Change length as we add more subtypes*/ 2185 crat_table->length = sizeof(struct crat_header); 2186 crat_table->num_domains = 1; 2187 crat_table->total_entries = 0; 2188 2189 /* Fill in Subtype: Compute Unit 2190 * First fill in the sub type header and then sub type data 2191 */ 2192 avail_size -= sizeof(struct crat_subtype_computeunit); 2193 if (avail_size < 0) 2194 return -ENOMEM; 2195 2196 sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); 2197 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 2198 2199 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 2200 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 2201 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 2202 2203 /* Fill CU subtype data */ 2204 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 2205 cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; 2206 cu->proximity_domain = proximity_domain; 2207 2208 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info); 2209 cu->num_simd_per_cu = cu_info.simd_per_cu; 2210 cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; 2211 cu->max_waves_simd = cu_info.max_waves_per_simd; 2212 2213 cu->wave_front_size = cu_info.wave_front_size; 2214 cu->array_count = cu_info.num_shader_arrays_per_engine * 2215 cu_info.num_shader_engines; 2216 total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); 2217 cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); 2218 cu->num_cu_per_array = cu_info.num_cu_per_sh; 2219 cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; 2220 cu->num_banks = cu_info.num_shader_engines; 2221 cu->lds_size_in_kb = cu_info.lds_size; 2222 2223 cu->hsa_capability = 0; 2224 2225 /* Check if this node supports IOMMU. During parsing this flag will 2226 * translate to HSA_CAP_ATS_PRESENT 2227 */ 2228 if (!kfd_iommu_check_device(kdev)) 2229 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; 2230 2231 crat_table->length += sub_type_hdr->length; 2232 crat_table->total_entries++; 2233 2234 /* Fill in Subtype: Memory. Only on systems with large BAR (no 2235 * private FB), report memory as public. On other systems 2236 * report the total FB size (public+private) as a single 2237 * private heap. 2238 */ 2239 local_mem_info = kdev->local_mem_info; 2240 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 2241 sub_type_hdr->length); 2242 2243 if (debug_largebar) 2244 local_mem_info.local_mem_size_private = 0; 2245 2246 if (local_mem_info.local_mem_size_private == 0) 2247 ret = kfd_fill_gpu_memory_affinity(&avail_size, 2248 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, 2249 local_mem_info.local_mem_size_public, 2250 (struct crat_subtype_memory *)sub_type_hdr, 2251 proximity_domain, 2252 &local_mem_info); 2253 else 2254 ret = kfd_fill_gpu_memory_affinity(&avail_size, 2255 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, 2256 local_mem_info.local_mem_size_public + 2257 local_mem_info.local_mem_size_private, 2258 (struct crat_subtype_memory *)sub_type_hdr, 2259 proximity_domain, 2260 &local_mem_info); 2261 if (ret < 0) 2262 return ret; 2263 2264 crat_table->length += sizeof(struct crat_subtype_memory); 2265 crat_table->total_entries++; 2266 2267 /* TODO: Fill in cache information. This information is NOT readily 2268 * available in KGD 2269 */ 2270 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 2271 sub_type_hdr->length); 2272 ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, 2273 avail_size, 2274 &cu_info, 2275 (struct crat_subtype_cache *)sub_type_hdr, 2276 &cache_mem_filled, 2277 &num_of_cache_entries); 2278 2279 if (ret < 0) 2280 return ret; 2281 2282 crat_table->length += cache_mem_filled; 2283 crat_table->total_entries += num_of_cache_entries; 2284 avail_size -= cache_mem_filled; 2285 2286 /* Fill in Subtype: IO_LINKS 2287 * Only direct links are added here which is Link from GPU to 2288 * to its NUMA node. Indirect links are added by userspace. 2289 */ 2290 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 2291 cache_mem_filled); 2292 ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev, 2293 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); 2294 2295 if (ret < 0) 2296 return ret; 2297 2298 crat_table->length += sub_type_hdr->length; 2299 crat_table->total_entries++; 2300 2301 2302 /* Fill in Subtype: IO_LINKS 2303 * Direct links from GPU to other GPUs through xGMI. 2304 * We will loop GPUs that already be processed (with lower value 2305 * of proximity_domain), add the link for the GPUs with same 2306 * hive id (from this GPU to other GPU) . The reversed iolink 2307 * (from other GPU to this GPU) will be added 2308 * in kfd_parse_subtype_iolink. 2309 */ 2310 if (kdev->hive_id) { 2311 for (nid = 0; nid < proximity_domain; ++nid) { 2312 peer_dev = kfd_topology_device_by_proximity_domain_no_lock(nid); 2313 if (!peer_dev->gpu) 2314 continue; 2315 if (peer_dev->gpu->hive_id != kdev->hive_id) 2316 continue; 2317 sub_type_hdr = (typeof(sub_type_hdr))( 2318 (char *)sub_type_hdr + 2319 sizeof(struct crat_subtype_iolink)); 2320 ret = kfd_fill_gpu_xgmi_link_to_gpu( 2321 &avail_size, kdev, peer_dev->gpu, 2322 (struct crat_subtype_iolink *)sub_type_hdr, 2323 proximity_domain, nid); 2324 if (ret < 0) 2325 return ret; 2326 crat_table->length += sub_type_hdr->length; 2327 crat_table->total_entries++; 2328 } 2329 } 2330 *size = crat_table->length; 2331 pr_info("Virtual CRAT table created for GPU\n"); 2332 2333 return ret; 2334 } 2335 2336 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and 2337 * creates a Virtual CRAT (VCRAT) image 2338 * 2339 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 2340 * 2341 * @crat_image: VCRAT image created because ACPI does not have a 2342 * CRAT for this device 2343 * @size: [OUT] size of virtual crat_image 2344 * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device 2345 * COMPUTE_UNIT_GPU - Create VCRAT for GPU 2346 * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU 2347 * -- this option is not currently implemented. 2348 * The assumption is that all AMD APUs will have CRAT 2349 * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU 2350 * 2351 * Return 0 if successful else return -ve value 2352 */ 2353 int kfd_create_crat_image_virtual(void **crat_image, size_t *size, 2354 int flags, struct kfd_dev *kdev, 2355 uint32_t proximity_domain) 2356 { 2357 void *pcrat_image = NULL; 2358 int ret = 0, num_nodes; 2359 size_t dyn_size; 2360 2361 if (!crat_image) 2362 return -EINVAL; 2363 2364 *crat_image = NULL; 2365 2366 /* Allocate the CPU Virtual CRAT size based on the number of online 2367 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. 2368 * This should cover all the current conditions. A check is put not 2369 * to overwrite beyond allocated size for GPUs 2370 */ 2371 switch (flags) { 2372 case COMPUTE_UNIT_CPU: 2373 num_nodes = num_online_nodes(); 2374 dyn_size = sizeof(struct crat_header) + 2375 num_nodes * (sizeof(struct crat_subtype_computeunit) + 2376 sizeof(struct crat_subtype_memory) + 2377 (num_nodes - 1) * sizeof(struct crat_subtype_iolink)); 2378 pcrat_image = kvmalloc(dyn_size, GFP_KERNEL); 2379 if (!pcrat_image) 2380 return -ENOMEM; 2381 *size = dyn_size; 2382 pr_debug("CRAT size is %ld", dyn_size); 2383 ret = kfd_create_vcrat_image_cpu(pcrat_image, size); 2384 break; 2385 case COMPUTE_UNIT_GPU: 2386 if (!kdev) 2387 return -EINVAL; 2388 pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); 2389 if (!pcrat_image) 2390 return -ENOMEM; 2391 *size = VCRAT_SIZE_FOR_GPU; 2392 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, 2393 proximity_domain); 2394 break; 2395 case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): 2396 /* TODO: */ 2397 ret = -EINVAL; 2398 pr_err("VCRAT not implemented for APU\n"); 2399 break; 2400 default: 2401 ret = -EINVAL; 2402 } 2403 2404 if (!ret) 2405 *crat_image = pcrat_image; 2406 else 2407 kvfree(pcrat_image); 2408 2409 return ret; 2410 } 2411 2412 2413 /* kfd_destroy_crat_image 2414 * 2415 * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) 2416 * 2417 */ 2418 void kfd_destroy_crat_image(void *crat_image) 2419 { 2420 kvfree(crat_image); 2421 } 2422