1 /* 2 * Copyright 2015-2017 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/acpi.h> 25 #include "kfd_crat.h" 26 #include "kfd_priv.h" 27 #include "kfd_topology.h" 28 #include "kfd_iommu.h" 29 #include "amdgpu_amdkfd.h" 30 31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. 32 * GPU processor ID are expressed with Bit[31]=1. 33 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs 34 * used in the CRAT. 35 */ 36 static uint32_t gpu_processor_id_low = 0x80001000; 37 38 /* Return the next available gpu_processor_id and increment it for next GPU 39 * @total_cu_count - Total CUs present in the GPU including ones 40 * masked off 41 */ 42 static inline unsigned int get_and_inc_gpu_processor_id( 43 unsigned int total_cu_count) 44 { 45 int current_id = gpu_processor_id_low; 46 47 gpu_processor_id_low += total_cu_count; 48 return current_id; 49 } 50 51 /* Static table to describe GPU Cache information */ 52 struct kfd_gpu_cache_info { 53 uint32_t cache_size; 54 uint32_t cache_level; 55 uint32_t flags; 56 /* Indicates how many Compute Units share this cache 57 * Value = 1 indicates the cache is not shared 58 */ 59 uint32_t num_cu_shared; 60 }; 61 62 static struct kfd_gpu_cache_info kaveri_cache_info[] = { 63 { 64 /* TCP L1 Cache per CU */ 65 .cache_size = 16, 66 .cache_level = 1, 67 .flags = (CRAT_CACHE_FLAGS_ENABLED | 68 CRAT_CACHE_FLAGS_DATA_CACHE | 69 CRAT_CACHE_FLAGS_SIMD_CACHE), 70 .num_cu_shared = 1, 71 72 }, 73 { 74 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 75 .cache_size = 16, 76 .cache_level = 1, 77 .flags = (CRAT_CACHE_FLAGS_ENABLED | 78 CRAT_CACHE_FLAGS_INST_CACHE | 79 CRAT_CACHE_FLAGS_SIMD_CACHE), 80 .num_cu_shared = 2, 81 }, 82 { 83 /* Scalar L1 Data Cache (in SQC module) per bank */ 84 .cache_size = 8, 85 .cache_level = 1, 86 .flags = (CRAT_CACHE_FLAGS_ENABLED | 87 CRAT_CACHE_FLAGS_DATA_CACHE | 88 CRAT_CACHE_FLAGS_SIMD_CACHE), 89 .num_cu_shared = 2, 90 }, 91 92 /* TODO: Add L2 Cache information */ 93 }; 94 95 96 static struct kfd_gpu_cache_info carrizo_cache_info[] = { 97 { 98 /* TCP L1 Cache per CU */ 99 .cache_size = 16, 100 .cache_level = 1, 101 .flags = (CRAT_CACHE_FLAGS_ENABLED | 102 CRAT_CACHE_FLAGS_DATA_CACHE | 103 CRAT_CACHE_FLAGS_SIMD_CACHE), 104 .num_cu_shared = 1, 105 }, 106 { 107 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 108 .cache_size = 8, 109 .cache_level = 1, 110 .flags = (CRAT_CACHE_FLAGS_ENABLED | 111 CRAT_CACHE_FLAGS_INST_CACHE | 112 CRAT_CACHE_FLAGS_SIMD_CACHE), 113 .num_cu_shared = 4, 114 }, 115 { 116 /* Scalar L1 Data Cache (in SQC module) per bank. */ 117 .cache_size = 4, 118 .cache_level = 1, 119 .flags = (CRAT_CACHE_FLAGS_ENABLED | 120 CRAT_CACHE_FLAGS_DATA_CACHE | 121 CRAT_CACHE_FLAGS_SIMD_CACHE), 122 .num_cu_shared = 4, 123 }, 124 125 /* TODO: Add L2 Cache information */ 126 }; 127 128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info 129 * the following ASICs may need a separate table. 130 */ 131 #define hawaii_cache_info kaveri_cache_info 132 #define tonga_cache_info carrizo_cache_info 133 #define fiji_cache_info carrizo_cache_info 134 #define polaris10_cache_info carrizo_cache_info 135 #define polaris11_cache_info carrizo_cache_info 136 #define polaris12_cache_info carrizo_cache_info 137 /* TODO - check & update Vega10 cache details */ 138 #define vega10_cache_info carrizo_cache_info 139 #define raven_cache_info carrizo_cache_info 140 141 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, 142 struct crat_subtype_computeunit *cu) 143 { 144 dev->node_props.cpu_cores_count = cu->num_cpu_cores; 145 dev->node_props.cpu_core_id_base = cu->processor_id_low; 146 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) 147 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 148 149 pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, 150 cu->processor_id_low); 151 } 152 153 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, 154 struct crat_subtype_computeunit *cu) 155 { 156 dev->node_props.simd_id_base = cu->processor_id_low; 157 dev->node_props.simd_count = cu->num_simd_cores; 158 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; 159 dev->node_props.max_waves_per_simd = cu->max_waves_simd; 160 dev->node_props.wave_front_size = cu->wave_front_size; 161 dev->node_props.array_count = cu->array_count; 162 dev->node_props.cu_per_simd_array = cu->num_cu_per_array; 163 dev->node_props.simd_per_cu = cu->num_simd_per_cu; 164 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; 165 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) 166 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; 167 pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); 168 } 169 170 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct 171 * topology device present in the device_list 172 */ 173 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, 174 struct list_head *device_list) 175 { 176 struct kfd_topology_device *dev; 177 178 pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", 179 cu->proximity_domain, cu->hsa_capability); 180 list_for_each_entry(dev, device_list, list) { 181 if (cu->proximity_domain == dev->proximity_domain) { 182 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) 183 kfd_populated_cu_info_cpu(dev, cu); 184 185 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) 186 kfd_populated_cu_info_gpu(dev, cu); 187 break; 188 } 189 } 190 191 return 0; 192 } 193 194 static struct kfd_mem_properties * 195 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, 196 struct kfd_topology_device *dev) 197 { 198 struct kfd_mem_properties *props; 199 200 list_for_each_entry(props, &dev->mem_props, list) { 201 if (props->heap_type == heap_type 202 && props->flags == flags 203 && props->width == width) 204 return props; 205 } 206 207 return NULL; 208 } 209 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct 210 * topology device present in the device_list 211 */ 212 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, 213 struct list_head *device_list) 214 { 215 struct kfd_mem_properties *props; 216 struct kfd_topology_device *dev; 217 uint32_t heap_type; 218 uint64_t size_in_bytes; 219 uint32_t flags = 0; 220 uint32_t width; 221 222 pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", 223 mem->proximity_domain); 224 list_for_each_entry(dev, device_list, list) { 225 if (mem->proximity_domain == dev->proximity_domain) { 226 /* We're on GPU node */ 227 if (dev->node_props.cpu_cores_count == 0) { 228 /* APU */ 229 if (mem->visibility_type == 0) 230 heap_type = 231 HSA_MEM_HEAP_TYPE_FB_PRIVATE; 232 /* dGPU */ 233 else 234 heap_type = mem->visibility_type; 235 } else 236 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; 237 238 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) 239 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; 240 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) 241 flags |= HSA_MEM_FLAGS_NON_VOLATILE; 242 243 size_in_bytes = 244 ((uint64_t)mem->length_high << 32) + 245 mem->length_low; 246 width = mem->width; 247 248 /* Multiple banks of the same type are aggregated into 249 * one. User mode doesn't care about multiple physical 250 * memory segments. It's managed as a single virtual 251 * heap for user mode. 252 */ 253 props = find_subtype_mem(heap_type, flags, width, dev); 254 if (props) { 255 props->size_in_bytes += size_in_bytes; 256 break; 257 } 258 259 props = kfd_alloc_struct(props); 260 if (!props) 261 return -ENOMEM; 262 263 props->heap_type = heap_type; 264 props->flags = flags; 265 props->size_in_bytes = size_in_bytes; 266 props->width = width; 267 268 dev->node_props.mem_banks_count++; 269 list_add_tail(&props->list, &dev->mem_props); 270 271 break; 272 } 273 } 274 275 return 0; 276 } 277 278 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct 279 * topology device present in the device_list 280 */ 281 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, 282 struct list_head *device_list) 283 { 284 struct kfd_cache_properties *props; 285 struct kfd_topology_device *dev; 286 uint32_t id; 287 uint32_t total_num_of_cu; 288 289 id = cache->processor_id_low; 290 291 pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); 292 list_for_each_entry(dev, device_list, list) { 293 total_num_of_cu = (dev->node_props.array_count * 294 dev->node_props.cu_per_simd_array); 295 296 /* Cache infomration in CRAT doesn't have proximity_domain 297 * information as it is associated with a CPU core or GPU 298 * Compute Unit. So map the cache using CPU core Id or SIMD 299 * (GPU) ID. 300 * TODO: This works because currently we can safely assume that 301 * Compute Units are parsed before caches are parsed. In 302 * future, remove this dependency 303 */ 304 if ((id >= dev->node_props.cpu_core_id_base && 305 id <= dev->node_props.cpu_core_id_base + 306 dev->node_props.cpu_cores_count) || 307 (id >= dev->node_props.simd_id_base && 308 id < dev->node_props.simd_id_base + 309 total_num_of_cu)) { 310 props = kfd_alloc_struct(props); 311 if (!props) 312 return -ENOMEM; 313 314 props->processor_id_low = id; 315 props->cache_level = cache->cache_level; 316 props->cache_size = cache->cache_size; 317 props->cacheline_size = cache->cache_line_size; 318 props->cachelines_per_tag = cache->lines_per_tag; 319 props->cache_assoc = cache->associativity; 320 props->cache_latency = cache->cache_latency; 321 memcpy(props->sibling_map, cache->sibling_map, 322 sizeof(props->sibling_map)); 323 324 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) 325 props->cache_type |= HSA_CACHE_TYPE_DATA; 326 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) 327 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 328 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) 329 props->cache_type |= HSA_CACHE_TYPE_CPU; 330 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 331 props->cache_type |= HSA_CACHE_TYPE_HSACU; 332 333 dev->cache_count++; 334 dev->node_props.caches_count++; 335 list_add_tail(&props->list, &dev->cache_props); 336 337 break; 338 } 339 } 340 341 return 0; 342 } 343 344 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct 345 * topology device present in the device_list 346 */ 347 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, 348 struct list_head *device_list) 349 { 350 struct kfd_iolink_properties *props = NULL, *props2; 351 struct kfd_topology_device *dev, *to_dev; 352 uint32_t id_from; 353 uint32_t id_to; 354 355 id_from = iolink->proximity_domain_from; 356 id_to = iolink->proximity_domain_to; 357 358 pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n", 359 id_from, id_to); 360 list_for_each_entry(dev, device_list, list) { 361 if (id_from == dev->proximity_domain) { 362 props = kfd_alloc_struct(props); 363 if (!props) 364 return -ENOMEM; 365 366 props->node_from = id_from; 367 props->node_to = id_to; 368 props->ver_maj = iolink->version_major; 369 props->ver_min = iolink->version_minor; 370 props->iolink_type = iolink->io_interface_type; 371 372 if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 373 props->weight = 20; 374 else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI) 375 props->weight = 15; 376 else 377 props->weight = node_distance(id_from, id_to); 378 379 props->min_latency = iolink->minimum_latency; 380 props->max_latency = iolink->maximum_latency; 381 props->min_bandwidth = iolink->minimum_bandwidth_mbs; 382 props->max_bandwidth = iolink->maximum_bandwidth_mbs; 383 props->rec_transfer_size = 384 iolink->recommended_transfer_size; 385 386 dev->io_link_count++; 387 dev->node_props.io_links_count++; 388 list_add_tail(&props->list, &dev->io_link_props); 389 break; 390 } 391 } 392 393 /* CPU topology is created before GPUs are detected, so CPU->GPU 394 * links are not built at that time. If a PCIe type is discovered, it 395 * means a GPU is detected and we are adding GPU->CPU to the topology. 396 * At this time, also add the corresponded CPU->GPU link if GPU 397 * is large bar. 398 * For xGMI, we only added the link with one direction in the crat 399 * table, add corresponded reversed direction link now. 400 */ 401 if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) { 402 to_dev = kfd_topology_device_by_proximity_domain(id_to); 403 if (!to_dev) 404 return -ENODEV; 405 /* same everything but the other direction */ 406 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); 407 props2->node_from = id_to; 408 props2->node_to = id_from; 409 props2->kobj = NULL; 410 to_dev->io_link_count++; 411 to_dev->node_props.io_links_count++; 412 list_add_tail(&props2->list, &to_dev->io_link_props); 413 } 414 415 return 0; 416 } 417 418 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device 419 * present in the device_list 420 * @sub_type_hdr - subtype section of crat_image 421 * @device_list - list of topology devices present in this crat_image 422 */ 423 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, 424 struct list_head *device_list) 425 { 426 struct crat_subtype_computeunit *cu; 427 struct crat_subtype_memory *mem; 428 struct crat_subtype_cache *cache; 429 struct crat_subtype_iolink *iolink; 430 int ret = 0; 431 432 switch (sub_type_hdr->type) { 433 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: 434 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 435 ret = kfd_parse_subtype_cu(cu, device_list); 436 break; 437 case CRAT_SUBTYPE_MEMORY_AFFINITY: 438 mem = (struct crat_subtype_memory *)sub_type_hdr; 439 ret = kfd_parse_subtype_mem(mem, device_list); 440 break; 441 case CRAT_SUBTYPE_CACHE_AFFINITY: 442 cache = (struct crat_subtype_cache *)sub_type_hdr; 443 ret = kfd_parse_subtype_cache(cache, device_list); 444 break; 445 case CRAT_SUBTYPE_TLB_AFFINITY: 446 /* 447 * For now, nothing to do here 448 */ 449 pr_debug("Found TLB entry in CRAT table (not processing)\n"); 450 break; 451 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: 452 /* 453 * For now, nothing to do here 454 */ 455 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); 456 break; 457 case CRAT_SUBTYPE_IOLINK_AFFINITY: 458 iolink = (struct crat_subtype_iolink *)sub_type_hdr; 459 ret = kfd_parse_subtype_iolink(iolink, device_list); 460 break; 461 default: 462 pr_warn("Unknown subtype %d in CRAT\n", 463 sub_type_hdr->type); 464 } 465 466 return ret; 467 } 468 469 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT 470 * create a kfd_topology_device and add in to device_list. Also parse 471 * CRAT subtypes and attach it to appropriate kfd_topology_device 472 * @crat_image - input image containing CRAT 473 * @device_list - [OUT] list of kfd_topology_device generated after 474 * parsing crat_image 475 * @proximity_domain - Proximity domain of the first device in the table 476 * 477 * Return - 0 if successful else -ve value 478 */ 479 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, 480 uint32_t proximity_domain) 481 { 482 struct kfd_topology_device *top_dev = NULL; 483 struct crat_subtype_generic *sub_type_hdr; 484 uint16_t node_id; 485 int ret = 0; 486 struct crat_header *crat_table = (struct crat_header *)crat_image; 487 uint16_t num_nodes; 488 uint32_t image_len; 489 490 if (!crat_image) 491 return -EINVAL; 492 493 if (!list_empty(device_list)) { 494 pr_warn("Error device list should be empty\n"); 495 return -EINVAL; 496 } 497 498 num_nodes = crat_table->num_domains; 499 image_len = crat_table->length; 500 501 pr_info("Parsing CRAT table with %d nodes\n", num_nodes); 502 503 for (node_id = 0; node_id < num_nodes; node_id++) { 504 top_dev = kfd_create_topology_device(device_list); 505 if (!top_dev) 506 break; 507 top_dev->proximity_domain = proximity_domain++; 508 } 509 510 if (!top_dev) { 511 ret = -ENOMEM; 512 goto err; 513 } 514 515 memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); 516 memcpy(top_dev->oem_table_id, crat_table->oem_table_id, 517 CRAT_OEMTABLEID_LENGTH); 518 top_dev->oem_revision = crat_table->oem_revision; 519 520 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 521 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < 522 ((char *)crat_image) + image_len) { 523 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { 524 ret = kfd_parse_subtype(sub_type_hdr, device_list); 525 if (ret) 526 break; 527 } 528 529 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 530 sub_type_hdr->length); 531 } 532 533 err: 534 if (ret) 535 kfd_release_topology_device_list(device_list); 536 537 return ret; 538 } 539 540 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 541 static int fill_in_pcache(struct crat_subtype_cache *pcache, 542 struct kfd_gpu_cache_info *pcache_info, 543 struct kfd_cu_info *cu_info, 544 int mem_available, 545 int cu_bitmask, 546 int cache_type, unsigned int cu_processor_id, 547 int cu_block) 548 { 549 unsigned int cu_sibling_map_mask; 550 int first_active_cu; 551 552 /* First check if enough memory is available */ 553 if (sizeof(struct crat_subtype_cache) > mem_available) 554 return -ENOMEM; 555 556 cu_sibling_map_mask = cu_bitmask; 557 cu_sibling_map_mask >>= cu_block; 558 cu_sibling_map_mask &= 559 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 560 first_active_cu = ffs(cu_sibling_map_mask); 561 562 /* CU could be inactive. In case of shared cache find the first active 563 * CU. and incase of non-shared cache check if the CU is inactive. If 564 * inactive active skip it 565 */ 566 if (first_active_cu) { 567 memset(pcache, 0, sizeof(struct crat_subtype_cache)); 568 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; 569 pcache->length = sizeof(struct crat_subtype_cache); 570 pcache->flags = pcache_info[cache_type].flags; 571 pcache->processor_id_low = cu_processor_id 572 + (first_active_cu - 1); 573 pcache->cache_level = pcache_info[cache_type].cache_level; 574 pcache->cache_size = pcache_info[cache_type].cache_size; 575 576 /* Sibling map is w.r.t processor_id_low, so shift out 577 * inactive CU 578 */ 579 cu_sibling_map_mask = 580 cu_sibling_map_mask >> (first_active_cu - 1); 581 582 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 583 pcache->sibling_map[1] = 584 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 585 pcache->sibling_map[2] = 586 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 587 pcache->sibling_map[3] = 588 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 589 return 0; 590 } 591 return 1; 592 } 593 594 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info 595 * tables 596 * 597 * @kdev - [IN] GPU device 598 * @gpu_processor_id - [IN] GPU processor ID to which these caches 599 * associate 600 * @available_size - [IN] Amount of memory available in pcache 601 * @cu_info - [IN] Compute Unit info obtained from KGD 602 * @pcache - [OUT] memory into which cache data is to be filled in. 603 * @size_filled - [OUT] amount of data used up in pcache. 604 * @num_of_entries - [OUT] number of caches added 605 */ 606 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, 607 int gpu_processor_id, 608 int available_size, 609 struct kfd_cu_info *cu_info, 610 struct crat_subtype_cache *pcache, 611 int *size_filled, 612 int *num_of_entries) 613 { 614 struct kfd_gpu_cache_info *pcache_info; 615 int num_of_cache_types = 0; 616 int i, j, k; 617 int ct = 0; 618 int mem_available = available_size; 619 unsigned int cu_processor_id; 620 int ret; 621 622 switch (kdev->device_info->asic_family) { 623 case CHIP_KAVERI: 624 pcache_info = kaveri_cache_info; 625 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); 626 break; 627 case CHIP_HAWAII: 628 pcache_info = hawaii_cache_info; 629 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); 630 break; 631 case CHIP_CARRIZO: 632 pcache_info = carrizo_cache_info; 633 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); 634 break; 635 case CHIP_TONGA: 636 pcache_info = tonga_cache_info; 637 num_of_cache_types = ARRAY_SIZE(tonga_cache_info); 638 break; 639 case CHIP_FIJI: 640 pcache_info = fiji_cache_info; 641 num_of_cache_types = ARRAY_SIZE(fiji_cache_info); 642 break; 643 case CHIP_POLARIS10: 644 pcache_info = polaris10_cache_info; 645 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); 646 break; 647 case CHIP_POLARIS11: 648 pcache_info = polaris11_cache_info; 649 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); 650 break; 651 case CHIP_POLARIS12: 652 pcache_info = polaris12_cache_info; 653 num_of_cache_types = ARRAY_SIZE(polaris12_cache_info); 654 break; 655 case CHIP_VEGA10: 656 case CHIP_VEGA12: 657 case CHIP_VEGA20: 658 pcache_info = vega10_cache_info; 659 num_of_cache_types = ARRAY_SIZE(vega10_cache_info); 660 break; 661 case CHIP_RAVEN: 662 pcache_info = raven_cache_info; 663 num_of_cache_types = ARRAY_SIZE(raven_cache_info); 664 break; 665 default: 666 return -EINVAL; 667 } 668 669 *size_filled = 0; 670 *num_of_entries = 0; 671 672 /* For each type of cache listed in the kfd_gpu_cache_info table, 673 * go through all available Compute Units. 674 * The [i,j,k] loop will 675 * if kfd_gpu_cache_info.num_cu_shared = 1 676 * will parse through all available CU 677 * If (kfd_gpu_cache_info.num_cu_shared != 1) 678 * then it will consider only one CU from 679 * the shared unit 680 */ 681 682 for (ct = 0; ct < num_of_cache_types; ct++) { 683 cu_processor_id = gpu_processor_id; 684 for (i = 0; i < cu_info->num_shader_engines; i++) { 685 for (j = 0; j < cu_info->num_shader_arrays_per_engine; 686 j++) { 687 for (k = 0; k < cu_info->num_cu_per_sh; 688 k += pcache_info[ct].num_cu_shared) { 689 690 ret = fill_in_pcache(pcache, 691 pcache_info, 692 cu_info, 693 mem_available, 694 cu_info->cu_bitmap[i][j], 695 ct, 696 cu_processor_id, 697 k); 698 699 if (ret < 0) 700 break; 701 702 if (!ret) { 703 pcache++; 704 (*num_of_entries)++; 705 mem_available -= 706 sizeof(*pcache); 707 (*size_filled) += 708 sizeof(*pcache); 709 } 710 711 /* Move to next CU block */ 712 cu_processor_id += 713 pcache_info[ct].num_cu_shared; 714 } 715 } 716 } 717 } 718 719 pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); 720 721 return 0; 722 } 723 724 /* 725 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and 726 * copies CRAT from ACPI (if available). 727 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 728 * 729 * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then 730 * crat_image will be NULL 731 * @size: [OUT] size of crat_image 732 * 733 * Return 0 if successful else return error code 734 */ 735 int kfd_create_crat_image_acpi(void **crat_image, size_t *size) 736 { 737 struct acpi_table_header *crat_table; 738 acpi_status status; 739 void *pcrat_image; 740 741 if (!crat_image) 742 return -EINVAL; 743 744 *crat_image = NULL; 745 746 /* Fetch the CRAT table from ACPI */ 747 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); 748 if (status == AE_NOT_FOUND) { 749 pr_warn("CRAT table not found\n"); 750 return -ENODATA; 751 } else if (ACPI_FAILURE(status)) { 752 const char *err = acpi_format_exception(status); 753 754 pr_err("CRAT table error: %s\n", err); 755 return -EINVAL; 756 } 757 758 if (ignore_crat) { 759 pr_info("CRAT table disabled by module option\n"); 760 return -ENODATA; 761 } 762 763 pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL); 764 if (!pcrat_image) 765 return -ENOMEM; 766 767 *crat_image = pcrat_image; 768 *size = crat_table->length; 769 770 return 0; 771 } 772 773 /* Memory required to create Virtual CRAT. 774 * Since there is no easy way to predict the amount of memory required, the 775 * following amount are allocated for CPU and GPU Virtual CRAT. This is 776 * expected to cover all known conditions. But to be safe additional check 777 * is put in the code to ensure we don't overwrite. 778 */ 779 #define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE) 780 #define VCRAT_SIZE_FOR_GPU (3 * PAGE_SIZE) 781 782 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node 783 * 784 * @numa_node_id: CPU NUMA node id 785 * @avail_size: Available size in the memory 786 * @sub_type_hdr: Memory into which compute info will be filled in 787 * 788 * Return 0 if successful else return -ve value 789 */ 790 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, 791 int proximity_domain, 792 struct crat_subtype_computeunit *sub_type_hdr) 793 { 794 const struct cpumask *cpumask; 795 796 *avail_size -= sizeof(struct crat_subtype_computeunit); 797 if (*avail_size < 0) 798 return -ENOMEM; 799 800 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 801 802 /* Fill in subtype header data */ 803 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 804 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 805 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 806 807 cpumask = cpumask_of_node(numa_node_id); 808 809 /* Fill in CU data */ 810 sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; 811 sub_type_hdr->proximity_domain = proximity_domain; 812 sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); 813 if (sub_type_hdr->processor_id_low == -1) 814 return -EINVAL; 815 816 sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); 817 818 return 0; 819 } 820 821 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node 822 * 823 * @numa_node_id: CPU NUMA node id 824 * @avail_size: Available size in the memory 825 * @sub_type_hdr: Memory into which compute info will be filled in 826 * 827 * Return 0 if successful else return -ve value 828 */ 829 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, 830 int proximity_domain, 831 struct crat_subtype_memory *sub_type_hdr) 832 { 833 uint64_t mem_in_bytes = 0; 834 pg_data_t *pgdat; 835 int zone_type; 836 837 *avail_size -= sizeof(struct crat_subtype_memory); 838 if (*avail_size < 0) 839 return -ENOMEM; 840 841 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 842 843 /* Fill in subtype header data */ 844 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 845 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 846 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 847 848 /* Fill in Memory Subunit data */ 849 850 /* Unlike si_meminfo, si_meminfo_node is not exported. So 851 * the following lines are duplicated from si_meminfo_node 852 * function 853 */ 854 pgdat = NODE_DATA(numa_node_id); 855 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 856 mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]); 857 mem_in_bytes <<= PAGE_SHIFT; 858 859 sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); 860 sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); 861 sub_type_hdr->proximity_domain = proximity_domain; 862 863 return 0; 864 } 865 866 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, 867 uint32_t *num_entries, 868 struct crat_subtype_iolink *sub_type_hdr) 869 { 870 int nid; 871 struct cpuinfo_x86 *c = &cpu_data(0); 872 uint8_t link_type; 873 874 if (c->x86_vendor == X86_VENDOR_AMD) 875 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; 876 else 877 link_type = CRAT_IOLINK_TYPE_QPI_1_1; 878 879 *num_entries = 0; 880 881 /* Create IO links from this node to other CPU nodes */ 882 for_each_online_node(nid) { 883 if (nid == numa_node_id) /* node itself */ 884 continue; 885 886 *avail_size -= sizeof(struct crat_subtype_iolink); 887 if (*avail_size < 0) 888 return -ENOMEM; 889 890 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 891 892 /* Fill in subtype header data */ 893 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 894 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 895 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 896 897 /* Fill in IO link data */ 898 sub_type_hdr->proximity_domain_from = numa_node_id; 899 sub_type_hdr->proximity_domain_to = nid; 900 sub_type_hdr->io_interface_type = link_type; 901 902 (*num_entries)++; 903 sub_type_hdr++; 904 } 905 906 return 0; 907 } 908 909 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU 910 * 911 * @pcrat_image: Fill in VCRAT for CPU 912 * @size: [IN] allocated size of crat_image. 913 * [OUT] actual size of data filled in crat_image 914 */ 915 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) 916 { 917 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 918 struct acpi_table_header *acpi_table; 919 acpi_status status; 920 struct crat_subtype_generic *sub_type_hdr; 921 int avail_size = *size; 922 int numa_node_id; 923 uint32_t entries = 0; 924 int ret = 0; 925 926 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU) 927 return -EINVAL; 928 929 /* Fill in CRAT Header. 930 * Modify length and total_entries as subunits are added. 931 */ 932 avail_size -= sizeof(struct crat_header); 933 if (avail_size < 0) 934 return -ENOMEM; 935 936 memset(crat_table, 0, sizeof(struct crat_header)); 937 memcpy(&crat_table->signature, CRAT_SIGNATURE, 938 sizeof(crat_table->signature)); 939 crat_table->length = sizeof(struct crat_header); 940 941 status = acpi_get_table("DSDT", 0, &acpi_table); 942 if (status != AE_OK) 943 pr_warn("DSDT table not found for OEM information\n"); 944 else { 945 crat_table->oem_revision = acpi_table->revision; 946 memcpy(crat_table->oem_id, acpi_table->oem_id, 947 CRAT_OEMID_LENGTH); 948 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, 949 CRAT_OEMTABLEID_LENGTH); 950 } 951 crat_table->total_entries = 0; 952 crat_table->num_domains = 0; 953 954 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 955 956 for_each_online_node(numa_node_id) { 957 if (kfd_numa_node_to_apic_id(numa_node_id) == -1) 958 continue; 959 960 /* Fill in Subtype: Compute Unit */ 961 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, 962 crat_table->num_domains, 963 (struct crat_subtype_computeunit *)sub_type_hdr); 964 if (ret < 0) 965 return ret; 966 crat_table->length += sub_type_hdr->length; 967 crat_table->total_entries++; 968 969 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 970 sub_type_hdr->length); 971 972 /* Fill in Subtype: Memory */ 973 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, 974 crat_table->num_domains, 975 (struct crat_subtype_memory *)sub_type_hdr); 976 if (ret < 0) 977 return ret; 978 crat_table->length += sub_type_hdr->length; 979 crat_table->total_entries++; 980 981 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 982 sub_type_hdr->length); 983 984 /* Fill in Subtype: IO Link */ 985 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, 986 &entries, 987 (struct crat_subtype_iolink *)sub_type_hdr); 988 if (ret < 0) 989 return ret; 990 crat_table->length += (sub_type_hdr->length * entries); 991 crat_table->total_entries += entries; 992 993 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 994 sub_type_hdr->length * entries); 995 996 crat_table->num_domains++; 997 } 998 999 /* TODO: Add cache Subtype for CPU. 1000 * Currently, CPU cache information is available in function 1001 * detect_cache_attributes(cpu) defined in the file 1002 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not 1003 * exported and to get the same information the code needs to be 1004 * duplicated. 1005 */ 1006 1007 *size = crat_table->length; 1008 pr_info("Virtual CRAT table created for CPU\n"); 1009 1010 return 0; 1011 } 1012 1013 static int kfd_fill_gpu_memory_affinity(int *avail_size, 1014 struct kfd_dev *kdev, uint8_t type, uint64_t size, 1015 struct crat_subtype_memory *sub_type_hdr, 1016 uint32_t proximity_domain, 1017 const struct kfd_local_mem_info *local_mem_info) 1018 { 1019 *avail_size -= sizeof(struct crat_subtype_memory); 1020 if (*avail_size < 0) 1021 return -ENOMEM; 1022 1023 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 1024 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 1025 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 1026 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1027 1028 sub_type_hdr->proximity_domain = proximity_domain; 1029 1030 pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", 1031 type, size); 1032 1033 sub_type_hdr->length_low = lower_32_bits(size); 1034 sub_type_hdr->length_high = upper_32_bits(size); 1035 1036 sub_type_hdr->width = local_mem_info->vram_width; 1037 sub_type_hdr->visibility_type = type; 1038 1039 return 0; 1040 } 1041 1042 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU 1043 * to its NUMA node 1044 * @avail_size: Available size in the memory 1045 * @kdev - [IN] GPU device 1046 * @sub_type_hdr: Memory into which io link info will be filled in 1047 * @proximity_domain - proximity domain of the GPU node 1048 * 1049 * Return 0 if successful else return -ve value 1050 */ 1051 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size, 1052 struct kfd_dev *kdev, 1053 struct crat_subtype_iolink *sub_type_hdr, 1054 uint32_t proximity_domain) 1055 { 1056 *avail_size -= sizeof(struct crat_subtype_iolink); 1057 if (*avail_size < 0) 1058 return -ENOMEM; 1059 1060 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1061 1062 /* Fill in subtype header data */ 1063 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1064 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1065 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1066 if (kfd_dev_is_large_bar(kdev)) 1067 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1068 1069 /* Fill in IOLINK subtype. 1070 * TODO: Fill-in other fields of iolink subtype 1071 */ 1072 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; 1073 sub_type_hdr->proximity_domain_from = proximity_domain; 1074 #ifdef CONFIG_NUMA 1075 if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) 1076 sub_type_hdr->proximity_domain_to = 0; 1077 else 1078 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; 1079 #else 1080 sub_type_hdr->proximity_domain_to = 0; 1081 #endif 1082 return 0; 1083 } 1084 1085 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size, 1086 struct kfd_dev *kdev, 1087 struct crat_subtype_iolink *sub_type_hdr, 1088 uint32_t proximity_domain_from, 1089 uint32_t proximity_domain_to) 1090 { 1091 *avail_size -= sizeof(struct crat_subtype_iolink); 1092 if (*avail_size < 0) 1093 return -ENOMEM; 1094 1095 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1096 1097 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1098 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1099 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED | 1100 CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1101 1102 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; 1103 sub_type_hdr->proximity_domain_from = proximity_domain_from; 1104 sub_type_hdr->proximity_domain_to = proximity_domain_to; 1105 return 0; 1106 } 1107 1108 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU 1109 * 1110 * @pcrat_image: Fill in VCRAT for GPU 1111 * @size: [IN] allocated size of crat_image. 1112 * [OUT] actual size of data filled in crat_image 1113 */ 1114 static int kfd_create_vcrat_image_gpu(void *pcrat_image, 1115 size_t *size, struct kfd_dev *kdev, 1116 uint32_t proximity_domain) 1117 { 1118 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 1119 struct crat_subtype_generic *sub_type_hdr; 1120 struct kfd_local_mem_info local_mem_info; 1121 struct kfd_topology_device *peer_dev; 1122 struct crat_subtype_computeunit *cu; 1123 struct kfd_cu_info cu_info; 1124 int avail_size = *size; 1125 uint32_t total_num_of_cu; 1126 int num_of_cache_entries = 0; 1127 int cache_mem_filled = 0; 1128 uint32_t nid = 0; 1129 int ret = 0; 1130 1131 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) 1132 return -EINVAL; 1133 1134 /* Fill the CRAT Header. 1135 * Modify length and total_entries as subunits are added. 1136 */ 1137 avail_size -= sizeof(struct crat_header); 1138 if (avail_size < 0) 1139 return -ENOMEM; 1140 1141 memset(crat_table, 0, sizeof(struct crat_header)); 1142 1143 memcpy(&crat_table->signature, CRAT_SIGNATURE, 1144 sizeof(crat_table->signature)); 1145 /* Change length as we add more subtypes*/ 1146 crat_table->length = sizeof(struct crat_header); 1147 crat_table->num_domains = 1; 1148 crat_table->total_entries = 0; 1149 1150 /* Fill in Subtype: Compute Unit 1151 * First fill in the sub type header and then sub type data 1152 */ 1153 avail_size -= sizeof(struct crat_subtype_computeunit); 1154 if (avail_size < 0) 1155 return -ENOMEM; 1156 1157 sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); 1158 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 1159 1160 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 1161 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 1162 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1163 1164 /* Fill CU subtype data */ 1165 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 1166 cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; 1167 cu->proximity_domain = proximity_domain; 1168 1169 amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info); 1170 cu->num_simd_per_cu = cu_info.simd_per_cu; 1171 cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; 1172 cu->max_waves_simd = cu_info.max_waves_per_simd; 1173 1174 cu->wave_front_size = cu_info.wave_front_size; 1175 cu->array_count = cu_info.num_shader_arrays_per_engine * 1176 cu_info.num_shader_engines; 1177 total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); 1178 cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); 1179 cu->num_cu_per_array = cu_info.num_cu_per_sh; 1180 cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; 1181 cu->num_banks = cu_info.num_shader_engines; 1182 cu->lds_size_in_kb = cu_info.lds_size; 1183 1184 cu->hsa_capability = 0; 1185 1186 /* Check if this node supports IOMMU. During parsing this flag will 1187 * translate to HSA_CAP_ATS_PRESENT 1188 */ 1189 if (!kfd_iommu_check_device(kdev)) 1190 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; 1191 1192 crat_table->length += sub_type_hdr->length; 1193 crat_table->total_entries++; 1194 1195 /* Fill in Subtype: Memory. Only on systems with large BAR (no 1196 * private FB), report memory as public. On other systems 1197 * report the total FB size (public+private) as a single 1198 * private heap. 1199 */ 1200 amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info); 1201 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1202 sub_type_hdr->length); 1203 1204 if (debug_largebar) 1205 local_mem_info.local_mem_size_private = 0; 1206 1207 if (local_mem_info.local_mem_size_private == 0) 1208 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1209 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, 1210 local_mem_info.local_mem_size_public, 1211 (struct crat_subtype_memory *)sub_type_hdr, 1212 proximity_domain, 1213 &local_mem_info); 1214 else 1215 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1216 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, 1217 local_mem_info.local_mem_size_public + 1218 local_mem_info.local_mem_size_private, 1219 (struct crat_subtype_memory *)sub_type_hdr, 1220 proximity_domain, 1221 &local_mem_info); 1222 if (ret < 0) 1223 return ret; 1224 1225 crat_table->length += sizeof(struct crat_subtype_memory); 1226 crat_table->total_entries++; 1227 1228 /* TODO: Fill in cache information. This information is NOT readily 1229 * available in KGD 1230 */ 1231 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1232 sub_type_hdr->length); 1233 ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, 1234 avail_size, 1235 &cu_info, 1236 (struct crat_subtype_cache *)sub_type_hdr, 1237 &cache_mem_filled, 1238 &num_of_cache_entries); 1239 1240 if (ret < 0) 1241 return ret; 1242 1243 crat_table->length += cache_mem_filled; 1244 crat_table->total_entries += num_of_cache_entries; 1245 avail_size -= cache_mem_filled; 1246 1247 /* Fill in Subtype: IO_LINKS 1248 * Only direct links are added here which is Link from GPU to 1249 * to its NUMA node. Indirect links are added by userspace. 1250 */ 1251 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1252 cache_mem_filled); 1253 ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev, 1254 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); 1255 1256 if (ret < 0) 1257 return ret; 1258 1259 crat_table->length += sub_type_hdr->length; 1260 crat_table->total_entries++; 1261 1262 1263 /* Fill in Subtype: IO_LINKS 1264 * Direct links from GPU to other GPUs through xGMI. 1265 * We will loop GPUs that already be processed (with lower value 1266 * of proximity_domain), add the link for the GPUs with same 1267 * hive id (from this GPU to other GPU) . The reversed iolink 1268 * (from other GPU to this GPU) will be added 1269 * in kfd_parse_subtype_iolink. 1270 */ 1271 if (kdev->hive_id) { 1272 for (nid = 0; nid < proximity_domain; ++nid) { 1273 peer_dev = kfd_topology_device_by_proximity_domain(nid); 1274 if (!peer_dev->gpu) 1275 continue; 1276 if (peer_dev->gpu->hive_id != kdev->hive_id) 1277 continue; 1278 sub_type_hdr = (typeof(sub_type_hdr))( 1279 (char *)sub_type_hdr + 1280 sizeof(struct crat_subtype_iolink)); 1281 ret = kfd_fill_gpu_xgmi_link_to_gpu( 1282 &avail_size, kdev, 1283 (struct crat_subtype_iolink *)sub_type_hdr, 1284 proximity_domain, nid); 1285 if (ret < 0) 1286 return ret; 1287 crat_table->length += sub_type_hdr->length; 1288 crat_table->total_entries++; 1289 } 1290 } 1291 *size = crat_table->length; 1292 pr_info("Virtual CRAT table created for GPU\n"); 1293 1294 return ret; 1295 } 1296 1297 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and 1298 * creates a Virtual CRAT (VCRAT) image 1299 * 1300 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 1301 * 1302 * @crat_image: VCRAT image created because ACPI does not have a 1303 * CRAT for this device 1304 * @size: [OUT] size of virtual crat_image 1305 * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device 1306 * COMPUTE_UNIT_GPU - Create VCRAT for GPU 1307 * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU 1308 * -- this option is not currently implemented. 1309 * The assumption is that all AMD APUs will have CRAT 1310 * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU 1311 * 1312 * Return 0 if successful else return -ve value 1313 */ 1314 int kfd_create_crat_image_virtual(void **crat_image, size_t *size, 1315 int flags, struct kfd_dev *kdev, 1316 uint32_t proximity_domain) 1317 { 1318 void *pcrat_image = NULL; 1319 int ret = 0; 1320 1321 if (!crat_image) 1322 return -EINVAL; 1323 1324 *crat_image = NULL; 1325 1326 /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and 1327 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover 1328 * all the current conditions. A check is put not to overwrite beyond 1329 * allocated size 1330 */ 1331 switch (flags) { 1332 case COMPUTE_UNIT_CPU: 1333 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL); 1334 if (!pcrat_image) 1335 return -ENOMEM; 1336 *size = VCRAT_SIZE_FOR_CPU; 1337 ret = kfd_create_vcrat_image_cpu(pcrat_image, size); 1338 break; 1339 case COMPUTE_UNIT_GPU: 1340 if (!kdev) 1341 return -EINVAL; 1342 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); 1343 if (!pcrat_image) 1344 return -ENOMEM; 1345 *size = VCRAT_SIZE_FOR_GPU; 1346 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, 1347 proximity_domain); 1348 break; 1349 case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): 1350 /* TODO: */ 1351 ret = -EINVAL; 1352 pr_err("VCRAT not implemented for APU\n"); 1353 break; 1354 default: 1355 ret = -EINVAL; 1356 } 1357 1358 if (!ret) 1359 *crat_image = pcrat_image; 1360 else 1361 kfree(pcrat_image); 1362 1363 return ret; 1364 } 1365 1366 1367 /* kfd_destroy_crat_image 1368 * 1369 * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) 1370 * 1371 */ 1372 void kfd_destroy_crat_image(void *crat_image) 1373 { 1374 kfree(crat_image); 1375 } 1376