1 /* 2 * Copyright 2015-2017 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/acpi.h> 25 #include "kfd_crat.h" 26 #include "kfd_priv.h" 27 #include "kfd_topology.h" 28 #include "kfd_iommu.h" 29 #include "amdgpu_amdkfd.h" 30 31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. 32 * GPU processor ID are expressed with Bit[31]=1. 33 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs 34 * used in the CRAT. 35 */ 36 static uint32_t gpu_processor_id_low = 0x80001000; 37 38 /* Return the next available gpu_processor_id and increment it for next GPU 39 * @total_cu_count - Total CUs present in the GPU including ones 40 * masked off 41 */ 42 static inline unsigned int get_and_inc_gpu_processor_id( 43 unsigned int total_cu_count) 44 { 45 int current_id = gpu_processor_id_low; 46 47 gpu_processor_id_low += total_cu_count; 48 return current_id; 49 } 50 51 /* Static table to describe GPU Cache information */ 52 struct kfd_gpu_cache_info { 53 uint32_t cache_size; 54 uint32_t cache_level; 55 uint32_t flags; 56 /* Indicates how many Compute Units share this cache 57 * Value = 1 indicates the cache is not shared 58 */ 59 uint32_t num_cu_shared; 60 }; 61 62 static struct kfd_gpu_cache_info kaveri_cache_info[] = { 63 { 64 /* TCP L1 Cache per CU */ 65 .cache_size = 16, 66 .cache_level = 1, 67 .flags = (CRAT_CACHE_FLAGS_ENABLED | 68 CRAT_CACHE_FLAGS_DATA_CACHE | 69 CRAT_CACHE_FLAGS_SIMD_CACHE), 70 .num_cu_shared = 1, 71 72 }, 73 { 74 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 75 .cache_size = 16, 76 .cache_level = 1, 77 .flags = (CRAT_CACHE_FLAGS_ENABLED | 78 CRAT_CACHE_FLAGS_INST_CACHE | 79 CRAT_CACHE_FLAGS_SIMD_CACHE), 80 .num_cu_shared = 2, 81 }, 82 { 83 /* Scalar L1 Data Cache (in SQC module) per bank */ 84 .cache_size = 8, 85 .cache_level = 1, 86 .flags = (CRAT_CACHE_FLAGS_ENABLED | 87 CRAT_CACHE_FLAGS_DATA_CACHE | 88 CRAT_CACHE_FLAGS_SIMD_CACHE), 89 .num_cu_shared = 2, 90 }, 91 92 /* TODO: Add L2 Cache information */ 93 }; 94 95 96 static struct kfd_gpu_cache_info carrizo_cache_info[] = { 97 { 98 /* TCP L1 Cache per CU */ 99 .cache_size = 16, 100 .cache_level = 1, 101 .flags = (CRAT_CACHE_FLAGS_ENABLED | 102 CRAT_CACHE_FLAGS_DATA_CACHE | 103 CRAT_CACHE_FLAGS_SIMD_CACHE), 104 .num_cu_shared = 1, 105 }, 106 { 107 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 108 .cache_size = 8, 109 .cache_level = 1, 110 .flags = (CRAT_CACHE_FLAGS_ENABLED | 111 CRAT_CACHE_FLAGS_INST_CACHE | 112 CRAT_CACHE_FLAGS_SIMD_CACHE), 113 .num_cu_shared = 4, 114 }, 115 { 116 /* Scalar L1 Data Cache (in SQC module) per bank. */ 117 .cache_size = 4, 118 .cache_level = 1, 119 .flags = (CRAT_CACHE_FLAGS_ENABLED | 120 CRAT_CACHE_FLAGS_DATA_CACHE | 121 CRAT_CACHE_FLAGS_SIMD_CACHE), 122 .num_cu_shared = 4, 123 }, 124 125 /* TODO: Add L2 Cache information */ 126 }; 127 128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info 129 * the following ASICs may need a separate table. 130 */ 131 #define hawaii_cache_info kaveri_cache_info 132 #define tonga_cache_info carrizo_cache_info 133 #define fiji_cache_info carrizo_cache_info 134 #define polaris10_cache_info carrizo_cache_info 135 #define polaris11_cache_info carrizo_cache_info 136 #define polaris12_cache_info carrizo_cache_info 137 #define vegam_cache_info carrizo_cache_info 138 /* TODO - check & update Vega10 cache details */ 139 #define vega10_cache_info carrizo_cache_info 140 #define raven_cache_info carrizo_cache_info 141 #define renoir_cache_info carrizo_cache_info 142 /* TODO - check & update Navi10 cache details */ 143 #define navi10_cache_info carrizo_cache_info 144 145 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, 146 struct crat_subtype_computeunit *cu) 147 { 148 dev->node_props.cpu_cores_count = cu->num_cpu_cores; 149 dev->node_props.cpu_core_id_base = cu->processor_id_low; 150 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) 151 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 152 153 pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, 154 cu->processor_id_low); 155 } 156 157 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, 158 struct crat_subtype_computeunit *cu) 159 { 160 dev->node_props.simd_id_base = cu->processor_id_low; 161 dev->node_props.simd_count = cu->num_simd_cores; 162 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; 163 dev->node_props.max_waves_per_simd = cu->max_waves_simd; 164 dev->node_props.wave_front_size = cu->wave_front_size; 165 dev->node_props.array_count = cu->array_count; 166 dev->node_props.cu_per_simd_array = cu->num_cu_per_array; 167 dev->node_props.simd_per_cu = cu->num_simd_per_cu; 168 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; 169 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) 170 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; 171 pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); 172 } 173 174 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct 175 * topology device present in the device_list 176 */ 177 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, 178 struct list_head *device_list) 179 { 180 struct kfd_topology_device *dev; 181 182 pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", 183 cu->proximity_domain, cu->hsa_capability); 184 list_for_each_entry(dev, device_list, list) { 185 if (cu->proximity_domain == dev->proximity_domain) { 186 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) 187 kfd_populated_cu_info_cpu(dev, cu); 188 189 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) 190 kfd_populated_cu_info_gpu(dev, cu); 191 break; 192 } 193 } 194 195 return 0; 196 } 197 198 static struct kfd_mem_properties * 199 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, 200 struct kfd_topology_device *dev) 201 { 202 struct kfd_mem_properties *props; 203 204 list_for_each_entry(props, &dev->mem_props, list) { 205 if (props->heap_type == heap_type 206 && props->flags == flags 207 && props->width == width) 208 return props; 209 } 210 211 return NULL; 212 } 213 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct 214 * topology device present in the device_list 215 */ 216 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, 217 struct list_head *device_list) 218 { 219 struct kfd_mem_properties *props; 220 struct kfd_topology_device *dev; 221 uint32_t heap_type; 222 uint64_t size_in_bytes; 223 uint32_t flags = 0; 224 uint32_t width; 225 226 pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", 227 mem->proximity_domain); 228 list_for_each_entry(dev, device_list, list) { 229 if (mem->proximity_domain == dev->proximity_domain) { 230 /* We're on GPU node */ 231 if (dev->node_props.cpu_cores_count == 0) { 232 /* APU */ 233 if (mem->visibility_type == 0) 234 heap_type = 235 HSA_MEM_HEAP_TYPE_FB_PRIVATE; 236 /* dGPU */ 237 else 238 heap_type = mem->visibility_type; 239 } else 240 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; 241 242 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) 243 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; 244 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) 245 flags |= HSA_MEM_FLAGS_NON_VOLATILE; 246 247 size_in_bytes = 248 ((uint64_t)mem->length_high << 32) + 249 mem->length_low; 250 width = mem->width; 251 252 /* Multiple banks of the same type are aggregated into 253 * one. User mode doesn't care about multiple physical 254 * memory segments. It's managed as a single virtual 255 * heap for user mode. 256 */ 257 props = find_subtype_mem(heap_type, flags, width, dev); 258 if (props) { 259 props->size_in_bytes += size_in_bytes; 260 break; 261 } 262 263 props = kfd_alloc_struct(props); 264 if (!props) 265 return -ENOMEM; 266 267 props->heap_type = heap_type; 268 props->flags = flags; 269 props->size_in_bytes = size_in_bytes; 270 props->width = width; 271 272 dev->node_props.mem_banks_count++; 273 list_add_tail(&props->list, &dev->mem_props); 274 275 break; 276 } 277 } 278 279 return 0; 280 } 281 282 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct 283 * topology device present in the device_list 284 */ 285 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, 286 struct list_head *device_list) 287 { 288 struct kfd_cache_properties *props; 289 struct kfd_topology_device *dev; 290 uint32_t id; 291 uint32_t total_num_of_cu; 292 293 id = cache->processor_id_low; 294 295 pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); 296 list_for_each_entry(dev, device_list, list) { 297 total_num_of_cu = (dev->node_props.array_count * 298 dev->node_props.cu_per_simd_array); 299 300 /* Cache infomration in CRAT doesn't have proximity_domain 301 * information as it is associated with a CPU core or GPU 302 * Compute Unit. So map the cache using CPU core Id or SIMD 303 * (GPU) ID. 304 * TODO: This works because currently we can safely assume that 305 * Compute Units are parsed before caches are parsed. In 306 * future, remove this dependency 307 */ 308 if ((id >= dev->node_props.cpu_core_id_base && 309 id <= dev->node_props.cpu_core_id_base + 310 dev->node_props.cpu_cores_count) || 311 (id >= dev->node_props.simd_id_base && 312 id < dev->node_props.simd_id_base + 313 total_num_of_cu)) { 314 props = kfd_alloc_struct(props); 315 if (!props) 316 return -ENOMEM; 317 318 props->processor_id_low = id; 319 props->cache_level = cache->cache_level; 320 props->cache_size = cache->cache_size; 321 props->cacheline_size = cache->cache_line_size; 322 props->cachelines_per_tag = cache->lines_per_tag; 323 props->cache_assoc = cache->associativity; 324 props->cache_latency = cache->cache_latency; 325 memcpy(props->sibling_map, cache->sibling_map, 326 sizeof(props->sibling_map)); 327 328 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) 329 props->cache_type |= HSA_CACHE_TYPE_DATA; 330 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) 331 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 332 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) 333 props->cache_type |= HSA_CACHE_TYPE_CPU; 334 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 335 props->cache_type |= HSA_CACHE_TYPE_HSACU; 336 337 dev->cache_count++; 338 dev->node_props.caches_count++; 339 list_add_tail(&props->list, &dev->cache_props); 340 341 break; 342 } 343 } 344 345 return 0; 346 } 347 348 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct 349 * topology device present in the device_list 350 */ 351 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, 352 struct list_head *device_list) 353 { 354 struct kfd_iolink_properties *props = NULL, *props2; 355 struct kfd_topology_device *dev, *to_dev; 356 uint32_t id_from; 357 uint32_t id_to; 358 359 id_from = iolink->proximity_domain_from; 360 id_to = iolink->proximity_domain_to; 361 362 pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n", 363 id_from, id_to); 364 list_for_each_entry(dev, device_list, list) { 365 if (id_from == dev->proximity_domain) { 366 props = kfd_alloc_struct(props); 367 if (!props) 368 return -ENOMEM; 369 370 props->node_from = id_from; 371 props->node_to = id_to; 372 props->ver_maj = iolink->version_major; 373 props->ver_min = iolink->version_minor; 374 props->iolink_type = iolink->io_interface_type; 375 376 if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 377 props->weight = 20; 378 else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI) 379 props->weight = 15 * iolink->num_hops_xgmi; 380 else 381 props->weight = node_distance(id_from, id_to); 382 383 props->min_latency = iolink->minimum_latency; 384 props->max_latency = iolink->maximum_latency; 385 props->min_bandwidth = iolink->minimum_bandwidth_mbs; 386 props->max_bandwidth = iolink->maximum_bandwidth_mbs; 387 props->rec_transfer_size = 388 iolink->recommended_transfer_size; 389 390 dev->io_link_count++; 391 dev->node_props.io_links_count++; 392 list_add_tail(&props->list, &dev->io_link_props); 393 break; 394 } 395 } 396 397 /* CPU topology is created before GPUs are detected, so CPU->GPU 398 * links are not built at that time. If a PCIe type is discovered, it 399 * means a GPU is detected and we are adding GPU->CPU to the topology. 400 * At this time, also add the corresponded CPU->GPU link if GPU 401 * is large bar. 402 * For xGMI, we only added the link with one direction in the crat 403 * table, add corresponded reversed direction link now. 404 */ 405 if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) { 406 to_dev = kfd_topology_device_by_proximity_domain(id_to); 407 if (!to_dev) 408 return -ENODEV; 409 /* same everything but the other direction */ 410 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); 411 props2->node_from = id_to; 412 props2->node_to = id_from; 413 props2->kobj = NULL; 414 to_dev->io_link_count++; 415 to_dev->node_props.io_links_count++; 416 list_add_tail(&props2->list, &to_dev->io_link_props); 417 } 418 419 return 0; 420 } 421 422 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device 423 * present in the device_list 424 * @sub_type_hdr - subtype section of crat_image 425 * @device_list - list of topology devices present in this crat_image 426 */ 427 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, 428 struct list_head *device_list) 429 { 430 struct crat_subtype_computeunit *cu; 431 struct crat_subtype_memory *mem; 432 struct crat_subtype_cache *cache; 433 struct crat_subtype_iolink *iolink; 434 int ret = 0; 435 436 switch (sub_type_hdr->type) { 437 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: 438 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 439 ret = kfd_parse_subtype_cu(cu, device_list); 440 break; 441 case CRAT_SUBTYPE_MEMORY_AFFINITY: 442 mem = (struct crat_subtype_memory *)sub_type_hdr; 443 ret = kfd_parse_subtype_mem(mem, device_list); 444 break; 445 case CRAT_SUBTYPE_CACHE_AFFINITY: 446 cache = (struct crat_subtype_cache *)sub_type_hdr; 447 ret = kfd_parse_subtype_cache(cache, device_list); 448 break; 449 case CRAT_SUBTYPE_TLB_AFFINITY: 450 /* 451 * For now, nothing to do here 452 */ 453 pr_debug("Found TLB entry in CRAT table (not processing)\n"); 454 break; 455 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: 456 /* 457 * For now, nothing to do here 458 */ 459 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); 460 break; 461 case CRAT_SUBTYPE_IOLINK_AFFINITY: 462 iolink = (struct crat_subtype_iolink *)sub_type_hdr; 463 ret = kfd_parse_subtype_iolink(iolink, device_list); 464 break; 465 default: 466 pr_warn("Unknown subtype %d in CRAT\n", 467 sub_type_hdr->type); 468 } 469 470 return ret; 471 } 472 473 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT 474 * create a kfd_topology_device and add in to device_list. Also parse 475 * CRAT subtypes and attach it to appropriate kfd_topology_device 476 * @crat_image - input image containing CRAT 477 * @device_list - [OUT] list of kfd_topology_device generated after 478 * parsing crat_image 479 * @proximity_domain - Proximity domain of the first device in the table 480 * 481 * Return - 0 if successful else -ve value 482 */ 483 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, 484 uint32_t proximity_domain) 485 { 486 struct kfd_topology_device *top_dev = NULL; 487 struct crat_subtype_generic *sub_type_hdr; 488 uint16_t node_id; 489 int ret = 0; 490 struct crat_header *crat_table = (struct crat_header *)crat_image; 491 uint16_t num_nodes; 492 uint32_t image_len; 493 494 if (!crat_image) 495 return -EINVAL; 496 497 if (!list_empty(device_list)) { 498 pr_warn("Error device list should be empty\n"); 499 return -EINVAL; 500 } 501 502 num_nodes = crat_table->num_domains; 503 image_len = crat_table->length; 504 505 pr_debug("Parsing CRAT table with %d nodes\n", num_nodes); 506 507 for (node_id = 0; node_id < num_nodes; node_id++) { 508 top_dev = kfd_create_topology_device(device_list); 509 if (!top_dev) 510 break; 511 top_dev->proximity_domain = proximity_domain++; 512 } 513 514 if (!top_dev) { 515 ret = -ENOMEM; 516 goto err; 517 } 518 519 memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); 520 memcpy(top_dev->oem_table_id, crat_table->oem_table_id, 521 CRAT_OEMTABLEID_LENGTH); 522 top_dev->oem_revision = crat_table->oem_revision; 523 524 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 525 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < 526 ((char *)crat_image) + image_len) { 527 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { 528 ret = kfd_parse_subtype(sub_type_hdr, device_list); 529 if (ret) 530 break; 531 } 532 533 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 534 sub_type_hdr->length); 535 } 536 537 err: 538 if (ret) 539 kfd_release_topology_device_list(device_list); 540 541 return ret; 542 } 543 544 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 545 static int fill_in_pcache(struct crat_subtype_cache *pcache, 546 struct kfd_gpu_cache_info *pcache_info, 547 struct kfd_cu_info *cu_info, 548 int mem_available, 549 int cu_bitmask, 550 int cache_type, unsigned int cu_processor_id, 551 int cu_block) 552 { 553 unsigned int cu_sibling_map_mask; 554 int first_active_cu; 555 556 /* First check if enough memory is available */ 557 if (sizeof(struct crat_subtype_cache) > mem_available) 558 return -ENOMEM; 559 560 cu_sibling_map_mask = cu_bitmask; 561 cu_sibling_map_mask >>= cu_block; 562 cu_sibling_map_mask &= 563 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 564 first_active_cu = ffs(cu_sibling_map_mask); 565 566 /* CU could be inactive. In case of shared cache find the first active 567 * CU. and incase of non-shared cache check if the CU is inactive. If 568 * inactive active skip it 569 */ 570 if (first_active_cu) { 571 memset(pcache, 0, sizeof(struct crat_subtype_cache)); 572 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; 573 pcache->length = sizeof(struct crat_subtype_cache); 574 pcache->flags = pcache_info[cache_type].flags; 575 pcache->processor_id_low = cu_processor_id 576 + (first_active_cu - 1); 577 pcache->cache_level = pcache_info[cache_type].cache_level; 578 pcache->cache_size = pcache_info[cache_type].cache_size; 579 580 /* Sibling map is w.r.t processor_id_low, so shift out 581 * inactive CU 582 */ 583 cu_sibling_map_mask = 584 cu_sibling_map_mask >> (first_active_cu - 1); 585 586 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 587 pcache->sibling_map[1] = 588 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 589 pcache->sibling_map[2] = 590 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 591 pcache->sibling_map[3] = 592 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 593 return 0; 594 } 595 return 1; 596 } 597 598 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info 599 * tables 600 * 601 * @kdev - [IN] GPU device 602 * @gpu_processor_id - [IN] GPU processor ID to which these caches 603 * associate 604 * @available_size - [IN] Amount of memory available in pcache 605 * @cu_info - [IN] Compute Unit info obtained from KGD 606 * @pcache - [OUT] memory into which cache data is to be filled in. 607 * @size_filled - [OUT] amount of data used up in pcache. 608 * @num_of_entries - [OUT] number of caches added 609 */ 610 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, 611 int gpu_processor_id, 612 int available_size, 613 struct kfd_cu_info *cu_info, 614 struct crat_subtype_cache *pcache, 615 int *size_filled, 616 int *num_of_entries) 617 { 618 struct kfd_gpu_cache_info *pcache_info; 619 int num_of_cache_types = 0; 620 int i, j, k; 621 int ct = 0; 622 int mem_available = available_size; 623 unsigned int cu_processor_id; 624 int ret; 625 626 switch (kdev->device_info->asic_family) { 627 case CHIP_KAVERI: 628 pcache_info = kaveri_cache_info; 629 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); 630 break; 631 case CHIP_HAWAII: 632 pcache_info = hawaii_cache_info; 633 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); 634 break; 635 case CHIP_CARRIZO: 636 pcache_info = carrizo_cache_info; 637 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); 638 break; 639 case CHIP_TONGA: 640 pcache_info = tonga_cache_info; 641 num_of_cache_types = ARRAY_SIZE(tonga_cache_info); 642 break; 643 case CHIP_FIJI: 644 pcache_info = fiji_cache_info; 645 num_of_cache_types = ARRAY_SIZE(fiji_cache_info); 646 break; 647 case CHIP_POLARIS10: 648 pcache_info = polaris10_cache_info; 649 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); 650 break; 651 case CHIP_POLARIS11: 652 pcache_info = polaris11_cache_info; 653 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); 654 break; 655 case CHIP_POLARIS12: 656 pcache_info = polaris12_cache_info; 657 num_of_cache_types = ARRAY_SIZE(polaris12_cache_info); 658 break; 659 case CHIP_VEGAM: 660 pcache_info = vegam_cache_info; 661 num_of_cache_types = ARRAY_SIZE(vegam_cache_info); 662 break; 663 case CHIP_VEGA10: 664 case CHIP_VEGA12: 665 case CHIP_VEGA20: 666 case CHIP_ARCTURUS: 667 pcache_info = vega10_cache_info; 668 num_of_cache_types = ARRAY_SIZE(vega10_cache_info); 669 break; 670 case CHIP_RAVEN: 671 pcache_info = raven_cache_info; 672 num_of_cache_types = ARRAY_SIZE(raven_cache_info); 673 break; 674 case CHIP_RENOIR: 675 pcache_info = renoir_cache_info; 676 num_of_cache_types = ARRAY_SIZE(renoir_cache_info); 677 break; 678 case CHIP_NAVI10: 679 case CHIP_NAVI12: 680 case CHIP_NAVI14: 681 pcache_info = navi10_cache_info; 682 num_of_cache_types = ARRAY_SIZE(navi10_cache_info); 683 break; 684 default: 685 return -EINVAL; 686 } 687 688 *size_filled = 0; 689 *num_of_entries = 0; 690 691 /* For each type of cache listed in the kfd_gpu_cache_info table, 692 * go through all available Compute Units. 693 * The [i,j,k] loop will 694 * if kfd_gpu_cache_info.num_cu_shared = 1 695 * will parse through all available CU 696 * If (kfd_gpu_cache_info.num_cu_shared != 1) 697 * then it will consider only one CU from 698 * the shared unit 699 */ 700 701 for (ct = 0; ct < num_of_cache_types; ct++) { 702 cu_processor_id = gpu_processor_id; 703 for (i = 0; i < cu_info->num_shader_engines; i++) { 704 for (j = 0; j < cu_info->num_shader_arrays_per_engine; 705 j++) { 706 for (k = 0; k < cu_info->num_cu_per_sh; 707 k += pcache_info[ct].num_cu_shared) { 708 709 ret = fill_in_pcache(pcache, 710 pcache_info, 711 cu_info, 712 mem_available, 713 cu_info->cu_bitmap[i % 4][j + i / 4], 714 ct, 715 cu_processor_id, 716 k); 717 718 if (ret < 0) 719 break; 720 721 if (!ret) { 722 pcache++; 723 (*num_of_entries)++; 724 mem_available -= 725 sizeof(*pcache); 726 (*size_filled) += 727 sizeof(*pcache); 728 } 729 730 /* Move to next CU block */ 731 cu_processor_id += 732 pcache_info[ct].num_cu_shared; 733 } 734 } 735 } 736 } 737 738 pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); 739 740 return 0; 741 } 742 743 /* 744 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and 745 * copies CRAT from ACPI (if available). 746 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 747 * 748 * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then 749 * crat_image will be NULL 750 * @size: [OUT] size of crat_image 751 * 752 * Return 0 if successful else return error code 753 */ 754 int kfd_create_crat_image_acpi(void **crat_image, size_t *size) 755 { 756 struct acpi_table_header *crat_table; 757 acpi_status status; 758 void *pcrat_image; 759 760 if (!crat_image) 761 return -EINVAL; 762 763 *crat_image = NULL; 764 765 /* Fetch the CRAT table from ACPI */ 766 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); 767 if (status == AE_NOT_FOUND) { 768 pr_warn("CRAT table not found\n"); 769 return -ENODATA; 770 } else if (ACPI_FAILURE(status)) { 771 const char *err = acpi_format_exception(status); 772 773 pr_err("CRAT table error: %s\n", err); 774 return -EINVAL; 775 } 776 777 if (ignore_crat) { 778 pr_info("CRAT table disabled by module option\n"); 779 return -ENODATA; 780 } 781 782 pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL); 783 if (!pcrat_image) 784 return -ENOMEM; 785 786 *crat_image = pcrat_image; 787 *size = crat_table->length; 788 789 return 0; 790 } 791 792 /* Memory required to create Virtual CRAT. 793 * Since there is no easy way to predict the amount of memory required, the 794 * following amount are allocated for CPU and GPU Virtual CRAT. This is 795 * expected to cover all known conditions. But to be safe additional check 796 * is put in the code to ensure we don't overwrite. 797 */ 798 #define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE) 799 #define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE) 800 801 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node 802 * 803 * @numa_node_id: CPU NUMA node id 804 * @avail_size: Available size in the memory 805 * @sub_type_hdr: Memory into which compute info will be filled in 806 * 807 * Return 0 if successful else return -ve value 808 */ 809 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, 810 int proximity_domain, 811 struct crat_subtype_computeunit *sub_type_hdr) 812 { 813 const struct cpumask *cpumask; 814 815 *avail_size -= sizeof(struct crat_subtype_computeunit); 816 if (*avail_size < 0) 817 return -ENOMEM; 818 819 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 820 821 /* Fill in subtype header data */ 822 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 823 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 824 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 825 826 cpumask = cpumask_of_node(numa_node_id); 827 828 /* Fill in CU data */ 829 sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; 830 sub_type_hdr->proximity_domain = proximity_domain; 831 sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); 832 if (sub_type_hdr->processor_id_low == -1) 833 return -EINVAL; 834 835 sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); 836 837 return 0; 838 } 839 840 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node 841 * 842 * @numa_node_id: CPU NUMA node id 843 * @avail_size: Available size in the memory 844 * @sub_type_hdr: Memory into which compute info will be filled in 845 * 846 * Return 0 if successful else return -ve value 847 */ 848 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, 849 int proximity_domain, 850 struct crat_subtype_memory *sub_type_hdr) 851 { 852 uint64_t mem_in_bytes = 0; 853 pg_data_t *pgdat; 854 int zone_type; 855 856 *avail_size -= sizeof(struct crat_subtype_memory); 857 if (*avail_size < 0) 858 return -ENOMEM; 859 860 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 861 862 /* Fill in subtype header data */ 863 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 864 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 865 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 866 867 /* Fill in Memory Subunit data */ 868 869 /* Unlike si_meminfo, si_meminfo_node is not exported. So 870 * the following lines are duplicated from si_meminfo_node 871 * function 872 */ 873 pgdat = NODE_DATA(numa_node_id); 874 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 875 mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]); 876 mem_in_bytes <<= PAGE_SHIFT; 877 878 sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); 879 sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); 880 sub_type_hdr->proximity_domain = proximity_domain; 881 882 return 0; 883 } 884 885 #ifdef CONFIG_X86_64 886 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, 887 uint32_t *num_entries, 888 struct crat_subtype_iolink *sub_type_hdr) 889 { 890 int nid; 891 struct cpuinfo_x86 *c = &cpu_data(0); 892 uint8_t link_type; 893 894 if (c->x86_vendor == X86_VENDOR_AMD) 895 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; 896 else 897 link_type = CRAT_IOLINK_TYPE_QPI_1_1; 898 899 *num_entries = 0; 900 901 /* Create IO links from this node to other CPU nodes */ 902 for_each_online_node(nid) { 903 if (nid == numa_node_id) /* node itself */ 904 continue; 905 906 *avail_size -= sizeof(struct crat_subtype_iolink); 907 if (*avail_size < 0) 908 return -ENOMEM; 909 910 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 911 912 /* Fill in subtype header data */ 913 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 914 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 915 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 916 917 /* Fill in IO link data */ 918 sub_type_hdr->proximity_domain_from = numa_node_id; 919 sub_type_hdr->proximity_domain_to = nid; 920 sub_type_hdr->io_interface_type = link_type; 921 922 (*num_entries)++; 923 sub_type_hdr++; 924 } 925 926 return 0; 927 } 928 #endif 929 930 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU 931 * 932 * @pcrat_image: Fill in VCRAT for CPU 933 * @size: [IN] allocated size of crat_image. 934 * [OUT] actual size of data filled in crat_image 935 */ 936 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) 937 { 938 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 939 struct acpi_table_header *acpi_table; 940 acpi_status status; 941 struct crat_subtype_generic *sub_type_hdr; 942 int avail_size = *size; 943 int numa_node_id; 944 #ifdef CONFIG_X86_64 945 uint32_t entries = 0; 946 #endif 947 int ret = 0; 948 949 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU) 950 return -EINVAL; 951 952 /* Fill in CRAT Header. 953 * Modify length and total_entries as subunits are added. 954 */ 955 avail_size -= sizeof(struct crat_header); 956 if (avail_size < 0) 957 return -ENOMEM; 958 959 memset(crat_table, 0, sizeof(struct crat_header)); 960 memcpy(&crat_table->signature, CRAT_SIGNATURE, 961 sizeof(crat_table->signature)); 962 crat_table->length = sizeof(struct crat_header); 963 964 status = acpi_get_table("DSDT", 0, &acpi_table); 965 if (status != AE_OK) 966 pr_warn("DSDT table not found for OEM information\n"); 967 else { 968 crat_table->oem_revision = acpi_table->revision; 969 memcpy(crat_table->oem_id, acpi_table->oem_id, 970 CRAT_OEMID_LENGTH); 971 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, 972 CRAT_OEMTABLEID_LENGTH); 973 } 974 crat_table->total_entries = 0; 975 crat_table->num_domains = 0; 976 977 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 978 979 for_each_online_node(numa_node_id) { 980 if (kfd_numa_node_to_apic_id(numa_node_id) == -1) 981 continue; 982 983 /* Fill in Subtype: Compute Unit */ 984 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, 985 crat_table->num_domains, 986 (struct crat_subtype_computeunit *)sub_type_hdr); 987 if (ret < 0) 988 return ret; 989 crat_table->length += sub_type_hdr->length; 990 crat_table->total_entries++; 991 992 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 993 sub_type_hdr->length); 994 995 /* Fill in Subtype: Memory */ 996 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, 997 crat_table->num_domains, 998 (struct crat_subtype_memory *)sub_type_hdr); 999 if (ret < 0) 1000 return ret; 1001 crat_table->length += sub_type_hdr->length; 1002 crat_table->total_entries++; 1003 1004 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1005 sub_type_hdr->length); 1006 1007 /* Fill in Subtype: IO Link */ 1008 #ifdef CONFIG_X86_64 1009 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, 1010 &entries, 1011 (struct crat_subtype_iolink *)sub_type_hdr); 1012 if (ret < 0) 1013 return ret; 1014 crat_table->length += (sub_type_hdr->length * entries); 1015 crat_table->total_entries += entries; 1016 1017 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1018 sub_type_hdr->length * entries); 1019 #else 1020 pr_info("IO link not available for non x86 platforms\n"); 1021 #endif 1022 1023 crat_table->num_domains++; 1024 } 1025 1026 /* TODO: Add cache Subtype for CPU. 1027 * Currently, CPU cache information is available in function 1028 * detect_cache_attributes(cpu) defined in the file 1029 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not 1030 * exported and to get the same information the code needs to be 1031 * duplicated. 1032 */ 1033 1034 *size = crat_table->length; 1035 pr_info("Virtual CRAT table created for CPU\n"); 1036 1037 return 0; 1038 } 1039 1040 static int kfd_fill_gpu_memory_affinity(int *avail_size, 1041 struct kfd_dev *kdev, uint8_t type, uint64_t size, 1042 struct crat_subtype_memory *sub_type_hdr, 1043 uint32_t proximity_domain, 1044 const struct kfd_local_mem_info *local_mem_info) 1045 { 1046 *avail_size -= sizeof(struct crat_subtype_memory); 1047 if (*avail_size < 0) 1048 return -ENOMEM; 1049 1050 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 1051 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 1052 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 1053 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1054 1055 sub_type_hdr->proximity_domain = proximity_domain; 1056 1057 pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", 1058 type, size); 1059 1060 sub_type_hdr->length_low = lower_32_bits(size); 1061 sub_type_hdr->length_high = upper_32_bits(size); 1062 1063 sub_type_hdr->width = local_mem_info->vram_width; 1064 sub_type_hdr->visibility_type = type; 1065 1066 return 0; 1067 } 1068 1069 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU 1070 * to its NUMA node 1071 * @avail_size: Available size in the memory 1072 * @kdev - [IN] GPU device 1073 * @sub_type_hdr: Memory into which io link info will be filled in 1074 * @proximity_domain - proximity domain of the GPU node 1075 * 1076 * Return 0 if successful else return -ve value 1077 */ 1078 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size, 1079 struct kfd_dev *kdev, 1080 struct crat_subtype_iolink *sub_type_hdr, 1081 uint32_t proximity_domain) 1082 { 1083 *avail_size -= sizeof(struct crat_subtype_iolink); 1084 if (*avail_size < 0) 1085 return -ENOMEM; 1086 1087 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1088 1089 /* Fill in subtype header data */ 1090 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1091 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1092 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1093 if (kfd_dev_is_large_bar(kdev)) 1094 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1095 1096 /* Fill in IOLINK subtype. 1097 * TODO: Fill-in other fields of iolink subtype 1098 */ 1099 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; 1100 sub_type_hdr->proximity_domain_from = proximity_domain; 1101 #ifdef CONFIG_NUMA 1102 if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) 1103 sub_type_hdr->proximity_domain_to = 0; 1104 else 1105 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; 1106 #else 1107 sub_type_hdr->proximity_domain_to = 0; 1108 #endif 1109 return 0; 1110 } 1111 1112 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size, 1113 struct kfd_dev *kdev, 1114 struct kfd_dev *peer_kdev, 1115 struct crat_subtype_iolink *sub_type_hdr, 1116 uint32_t proximity_domain_from, 1117 uint32_t proximity_domain_to) 1118 { 1119 *avail_size -= sizeof(struct crat_subtype_iolink); 1120 if (*avail_size < 0) 1121 return -ENOMEM; 1122 1123 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1124 1125 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1126 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1127 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED | 1128 CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1129 1130 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; 1131 sub_type_hdr->proximity_domain_from = proximity_domain_from; 1132 sub_type_hdr->proximity_domain_to = proximity_domain_to; 1133 sub_type_hdr->num_hops_xgmi = 1134 amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd); 1135 return 0; 1136 } 1137 1138 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU 1139 * 1140 * @pcrat_image: Fill in VCRAT for GPU 1141 * @size: [IN] allocated size of crat_image. 1142 * [OUT] actual size of data filled in crat_image 1143 */ 1144 static int kfd_create_vcrat_image_gpu(void *pcrat_image, 1145 size_t *size, struct kfd_dev *kdev, 1146 uint32_t proximity_domain) 1147 { 1148 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 1149 struct crat_subtype_generic *sub_type_hdr; 1150 struct kfd_local_mem_info local_mem_info; 1151 struct kfd_topology_device *peer_dev; 1152 struct crat_subtype_computeunit *cu; 1153 struct kfd_cu_info cu_info; 1154 int avail_size = *size; 1155 uint32_t total_num_of_cu; 1156 int num_of_cache_entries = 0; 1157 int cache_mem_filled = 0; 1158 uint32_t nid = 0; 1159 int ret = 0; 1160 1161 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) 1162 return -EINVAL; 1163 1164 /* Fill the CRAT Header. 1165 * Modify length and total_entries as subunits are added. 1166 */ 1167 avail_size -= sizeof(struct crat_header); 1168 if (avail_size < 0) 1169 return -ENOMEM; 1170 1171 memset(crat_table, 0, sizeof(struct crat_header)); 1172 1173 memcpy(&crat_table->signature, CRAT_SIGNATURE, 1174 sizeof(crat_table->signature)); 1175 /* Change length as we add more subtypes*/ 1176 crat_table->length = sizeof(struct crat_header); 1177 crat_table->num_domains = 1; 1178 crat_table->total_entries = 0; 1179 1180 /* Fill in Subtype: Compute Unit 1181 * First fill in the sub type header and then sub type data 1182 */ 1183 avail_size -= sizeof(struct crat_subtype_computeunit); 1184 if (avail_size < 0) 1185 return -ENOMEM; 1186 1187 sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); 1188 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 1189 1190 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 1191 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 1192 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1193 1194 /* Fill CU subtype data */ 1195 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 1196 cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; 1197 cu->proximity_domain = proximity_domain; 1198 1199 amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info); 1200 cu->num_simd_per_cu = cu_info.simd_per_cu; 1201 cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; 1202 cu->max_waves_simd = cu_info.max_waves_per_simd; 1203 1204 cu->wave_front_size = cu_info.wave_front_size; 1205 cu->array_count = cu_info.num_shader_arrays_per_engine * 1206 cu_info.num_shader_engines; 1207 total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); 1208 cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); 1209 cu->num_cu_per_array = cu_info.num_cu_per_sh; 1210 cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; 1211 cu->num_banks = cu_info.num_shader_engines; 1212 cu->lds_size_in_kb = cu_info.lds_size; 1213 1214 cu->hsa_capability = 0; 1215 1216 /* Check if this node supports IOMMU. During parsing this flag will 1217 * translate to HSA_CAP_ATS_PRESENT 1218 */ 1219 if (!kfd_iommu_check_device(kdev)) 1220 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; 1221 1222 crat_table->length += sub_type_hdr->length; 1223 crat_table->total_entries++; 1224 1225 /* Fill in Subtype: Memory. Only on systems with large BAR (no 1226 * private FB), report memory as public. On other systems 1227 * report the total FB size (public+private) as a single 1228 * private heap. 1229 */ 1230 amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info); 1231 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1232 sub_type_hdr->length); 1233 1234 if (debug_largebar) 1235 local_mem_info.local_mem_size_private = 0; 1236 1237 if (local_mem_info.local_mem_size_private == 0) 1238 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1239 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, 1240 local_mem_info.local_mem_size_public, 1241 (struct crat_subtype_memory *)sub_type_hdr, 1242 proximity_domain, 1243 &local_mem_info); 1244 else 1245 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1246 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, 1247 local_mem_info.local_mem_size_public + 1248 local_mem_info.local_mem_size_private, 1249 (struct crat_subtype_memory *)sub_type_hdr, 1250 proximity_domain, 1251 &local_mem_info); 1252 if (ret < 0) 1253 return ret; 1254 1255 crat_table->length += sizeof(struct crat_subtype_memory); 1256 crat_table->total_entries++; 1257 1258 /* TODO: Fill in cache information. This information is NOT readily 1259 * available in KGD 1260 */ 1261 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1262 sub_type_hdr->length); 1263 ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, 1264 avail_size, 1265 &cu_info, 1266 (struct crat_subtype_cache *)sub_type_hdr, 1267 &cache_mem_filled, 1268 &num_of_cache_entries); 1269 1270 if (ret < 0) 1271 return ret; 1272 1273 crat_table->length += cache_mem_filled; 1274 crat_table->total_entries += num_of_cache_entries; 1275 avail_size -= cache_mem_filled; 1276 1277 /* Fill in Subtype: IO_LINKS 1278 * Only direct links are added here which is Link from GPU to 1279 * to its NUMA node. Indirect links are added by userspace. 1280 */ 1281 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1282 cache_mem_filled); 1283 ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev, 1284 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); 1285 1286 if (ret < 0) 1287 return ret; 1288 1289 crat_table->length += sub_type_hdr->length; 1290 crat_table->total_entries++; 1291 1292 1293 /* Fill in Subtype: IO_LINKS 1294 * Direct links from GPU to other GPUs through xGMI. 1295 * We will loop GPUs that already be processed (with lower value 1296 * of proximity_domain), add the link for the GPUs with same 1297 * hive id (from this GPU to other GPU) . The reversed iolink 1298 * (from other GPU to this GPU) will be added 1299 * in kfd_parse_subtype_iolink. 1300 */ 1301 if (kdev->hive_id) { 1302 for (nid = 0; nid < proximity_domain; ++nid) { 1303 peer_dev = kfd_topology_device_by_proximity_domain(nid); 1304 if (!peer_dev->gpu) 1305 continue; 1306 if (peer_dev->gpu->hive_id != kdev->hive_id) 1307 continue; 1308 sub_type_hdr = (typeof(sub_type_hdr))( 1309 (char *)sub_type_hdr + 1310 sizeof(struct crat_subtype_iolink)); 1311 ret = kfd_fill_gpu_xgmi_link_to_gpu( 1312 &avail_size, kdev, peer_dev->gpu, 1313 (struct crat_subtype_iolink *)sub_type_hdr, 1314 proximity_domain, nid); 1315 if (ret < 0) 1316 return ret; 1317 crat_table->length += sub_type_hdr->length; 1318 crat_table->total_entries++; 1319 } 1320 } 1321 *size = crat_table->length; 1322 pr_info("Virtual CRAT table created for GPU\n"); 1323 1324 return ret; 1325 } 1326 1327 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and 1328 * creates a Virtual CRAT (VCRAT) image 1329 * 1330 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 1331 * 1332 * @crat_image: VCRAT image created because ACPI does not have a 1333 * CRAT for this device 1334 * @size: [OUT] size of virtual crat_image 1335 * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device 1336 * COMPUTE_UNIT_GPU - Create VCRAT for GPU 1337 * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU 1338 * -- this option is not currently implemented. 1339 * The assumption is that all AMD APUs will have CRAT 1340 * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU 1341 * 1342 * Return 0 if successful else return -ve value 1343 */ 1344 int kfd_create_crat_image_virtual(void **crat_image, size_t *size, 1345 int flags, struct kfd_dev *kdev, 1346 uint32_t proximity_domain) 1347 { 1348 void *pcrat_image = NULL; 1349 int ret = 0; 1350 1351 if (!crat_image) 1352 return -EINVAL; 1353 1354 *crat_image = NULL; 1355 1356 /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and 1357 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover 1358 * all the current conditions. A check is put not to overwrite beyond 1359 * allocated size 1360 */ 1361 switch (flags) { 1362 case COMPUTE_UNIT_CPU: 1363 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL); 1364 if (!pcrat_image) 1365 return -ENOMEM; 1366 *size = VCRAT_SIZE_FOR_CPU; 1367 ret = kfd_create_vcrat_image_cpu(pcrat_image, size); 1368 break; 1369 case COMPUTE_UNIT_GPU: 1370 if (!kdev) 1371 return -EINVAL; 1372 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); 1373 if (!pcrat_image) 1374 return -ENOMEM; 1375 *size = VCRAT_SIZE_FOR_GPU; 1376 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, 1377 proximity_domain); 1378 break; 1379 case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): 1380 /* TODO: */ 1381 ret = -EINVAL; 1382 pr_err("VCRAT not implemented for APU\n"); 1383 break; 1384 default: 1385 ret = -EINVAL; 1386 } 1387 1388 if (!ret) 1389 *crat_image = pcrat_image; 1390 else 1391 kfree(pcrat_image); 1392 1393 return ret; 1394 } 1395 1396 1397 /* kfd_destroy_crat_image 1398 * 1399 * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) 1400 * 1401 */ 1402 void kfd_destroy_crat_image(void *crat_image) 1403 { 1404 kfree(crat_image); 1405 } 1406