xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_crat.c (revision 2c86446f)
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu.h"
30 #include "amdgpu_amdkfd.h"
31 
32 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
33  * GPU processor ID are expressed with Bit[31]=1.
34  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
35  * used in the CRAT.
36  */
37 static uint32_t gpu_processor_id_low = 0x80001000;
38 
39 /* Return the next available gpu_processor_id and increment it for next GPU
40  *	@total_cu_count - Total CUs present in the GPU including ones
41  *			  masked off
42  */
43 static inline unsigned int get_and_inc_gpu_processor_id(
44 				unsigned int total_cu_count)
45 {
46 	int current_id = gpu_processor_id_low;
47 
48 	gpu_processor_id_low += total_cu_count;
49 	return current_id;
50 }
51 
52 /* Static table to describe GPU Cache information */
53 struct kfd_gpu_cache_info {
54 	uint32_t	cache_size;
55 	uint32_t	cache_level;
56 	uint32_t	flags;
57 	/* Indicates how many Compute Units share this cache
58 	 * within a SA. Value = 1 indicates the cache is not shared
59 	 */
60 	uint32_t	num_cu_shared;
61 };
62 
63 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
64 	{
65 		/* TCP L1 Cache per CU */
66 		.cache_size = 16,
67 		.cache_level = 1,
68 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
69 				CRAT_CACHE_FLAGS_DATA_CACHE |
70 				CRAT_CACHE_FLAGS_SIMD_CACHE),
71 		.num_cu_shared = 1,
72 	},
73 	{
74 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
75 		.cache_size = 16,
76 		.cache_level = 1,
77 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
78 				CRAT_CACHE_FLAGS_INST_CACHE |
79 				CRAT_CACHE_FLAGS_SIMD_CACHE),
80 		.num_cu_shared = 2,
81 	},
82 	{
83 		/* Scalar L1 Data Cache (in SQC module) per bank */
84 		.cache_size = 8,
85 		.cache_level = 1,
86 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
87 				CRAT_CACHE_FLAGS_DATA_CACHE |
88 				CRAT_CACHE_FLAGS_SIMD_CACHE),
89 		.num_cu_shared = 2,
90 	},
91 
92 	/* TODO: Add L2 Cache information */
93 };
94 
95 
96 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
97 	{
98 		/* TCP L1 Cache per CU */
99 		.cache_size = 16,
100 		.cache_level = 1,
101 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
102 				CRAT_CACHE_FLAGS_DATA_CACHE |
103 				CRAT_CACHE_FLAGS_SIMD_CACHE),
104 		.num_cu_shared = 1,
105 	},
106 	{
107 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
108 		.cache_size = 8,
109 		.cache_level = 1,
110 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
111 				CRAT_CACHE_FLAGS_INST_CACHE |
112 				CRAT_CACHE_FLAGS_SIMD_CACHE),
113 		.num_cu_shared = 4,
114 	},
115 	{
116 		/* Scalar L1 Data Cache (in SQC module) per bank. */
117 		.cache_size = 4,
118 		.cache_level = 1,
119 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
120 				CRAT_CACHE_FLAGS_DATA_CACHE |
121 				CRAT_CACHE_FLAGS_SIMD_CACHE),
122 		.num_cu_shared = 4,
123 	},
124 
125 	/* TODO: Add L2 Cache information */
126 };
127 
128 #define hawaii_cache_info kaveri_cache_info
129 #define tonga_cache_info carrizo_cache_info
130 #define fiji_cache_info  carrizo_cache_info
131 #define polaris10_cache_info carrizo_cache_info
132 #define polaris11_cache_info carrizo_cache_info
133 #define polaris12_cache_info carrizo_cache_info
134 #define vegam_cache_info carrizo_cache_info
135 
136 /* NOTE: L1 cache information has been updated and L2/L3
137  * cache information has been added for Vega10 and
138  * newer ASICs. The unit for cache_size is KiB.
139  * In future,  check & update cache details
140  * for every new ASIC is required.
141  */
142 
143 static struct kfd_gpu_cache_info vega10_cache_info[] = {
144 	{
145 		/* TCP L1 Cache per CU */
146 		.cache_size = 16,
147 		.cache_level = 1,
148 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
149 				CRAT_CACHE_FLAGS_DATA_CACHE |
150 				CRAT_CACHE_FLAGS_SIMD_CACHE),
151 		.num_cu_shared = 1,
152 	},
153 	{
154 		/* Scalar L1 Instruction Cache per SQC */
155 		.cache_size = 32,
156 		.cache_level = 1,
157 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
158 				CRAT_CACHE_FLAGS_INST_CACHE |
159 				CRAT_CACHE_FLAGS_SIMD_CACHE),
160 		.num_cu_shared = 3,
161 	},
162 	{
163 		/* Scalar L1 Data Cache per SQC */
164 		.cache_size = 16,
165 		.cache_level = 1,
166 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
167 				CRAT_CACHE_FLAGS_DATA_CACHE |
168 				CRAT_CACHE_FLAGS_SIMD_CACHE),
169 		.num_cu_shared = 3,
170 	},
171 	{
172 		/* L2 Data Cache per GPU (Total Tex Cache) */
173 		.cache_size = 4096,
174 		.cache_level = 2,
175 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
176 				CRAT_CACHE_FLAGS_DATA_CACHE |
177 				CRAT_CACHE_FLAGS_SIMD_CACHE),
178 		.num_cu_shared = 16,
179 	},
180 };
181 
182 static struct kfd_gpu_cache_info raven_cache_info[] = {
183 	{
184 		/* TCP L1 Cache per CU */
185 		.cache_size = 16,
186 		.cache_level = 1,
187 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
188 				CRAT_CACHE_FLAGS_DATA_CACHE |
189 				CRAT_CACHE_FLAGS_SIMD_CACHE),
190 		.num_cu_shared = 1,
191 	},
192 	{
193 		/* Scalar L1 Instruction Cache per SQC */
194 		.cache_size = 32,
195 		.cache_level = 1,
196 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
197 				CRAT_CACHE_FLAGS_INST_CACHE |
198 				CRAT_CACHE_FLAGS_SIMD_CACHE),
199 		.num_cu_shared = 3,
200 	},
201 	{
202 		/* Scalar L1 Data Cache per SQC */
203 		.cache_size = 16,
204 		.cache_level = 1,
205 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
206 				CRAT_CACHE_FLAGS_DATA_CACHE |
207 				CRAT_CACHE_FLAGS_SIMD_CACHE),
208 		.num_cu_shared = 3,
209 	},
210 	{
211 		/* L2 Data Cache per GPU (Total Tex Cache) */
212 		.cache_size = 1024,
213 		.cache_level = 2,
214 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
215 				CRAT_CACHE_FLAGS_DATA_CACHE |
216 				CRAT_CACHE_FLAGS_SIMD_CACHE),
217 		.num_cu_shared = 11,
218 	},
219 };
220 
221 static struct kfd_gpu_cache_info renoir_cache_info[] = {
222 	{
223 		/* TCP L1 Cache per CU */
224 		.cache_size = 16,
225 		.cache_level = 1,
226 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
227 				CRAT_CACHE_FLAGS_DATA_CACHE |
228 				CRAT_CACHE_FLAGS_SIMD_CACHE),
229 		.num_cu_shared = 1,
230 	},
231 	{
232 		/* Scalar L1 Instruction Cache per SQC */
233 		.cache_size = 32,
234 		.cache_level = 1,
235 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
236 				CRAT_CACHE_FLAGS_INST_CACHE |
237 				CRAT_CACHE_FLAGS_SIMD_CACHE),
238 		.num_cu_shared = 3,
239 	},
240 	{
241 		/* Scalar L1 Data Cache per SQC */
242 		.cache_size = 16,
243 		.cache_level = 1,
244 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
245 				CRAT_CACHE_FLAGS_DATA_CACHE |
246 				CRAT_CACHE_FLAGS_SIMD_CACHE),
247 		.num_cu_shared = 3,
248 	},
249 	{
250 		/* L2 Data Cache per GPU (Total Tex Cache) */
251 		.cache_size = 1024,
252 		.cache_level = 2,
253 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
254 				CRAT_CACHE_FLAGS_DATA_CACHE |
255 				CRAT_CACHE_FLAGS_SIMD_CACHE),
256 		.num_cu_shared = 8,
257 	},
258 };
259 
260 static struct kfd_gpu_cache_info vega12_cache_info[] = {
261 	{
262 		/* TCP L1 Cache per CU */
263 		.cache_size = 16,
264 		.cache_level = 1,
265 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
266 				CRAT_CACHE_FLAGS_DATA_CACHE |
267 				CRAT_CACHE_FLAGS_SIMD_CACHE),
268 		.num_cu_shared = 1,
269 	},
270 	{
271 		/* Scalar L1 Instruction Cache per SQC */
272 		.cache_size = 32,
273 		.cache_level = 1,
274 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
275 				CRAT_CACHE_FLAGS_INST_CACHE |
276 				CRAT_CACHE_FLAGS_SIMD_CACHE),
277 		.num_cu_shared = 3,
278 	},
279 	{
280 		/* Scalar L1 Data Cache per SQC */
281 		.cache_size = 16,
282 		.cache_level = 1,
283 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
284 				CRAT_CACHE_FLAGS_DATA_CACHE |
285 				CRAT_CACHE_FLAGS_SIMD_CACHE),
286 		.num_cu_shared = 3,
287 	},
288 	{
289 		/* L2 Data Cache per GPU (Total Tex Cache) */
290 		.cache_size = 2048,
291 		.cache_level = 2,
292 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
293 				CRAT_CACHE_FLAGS_DATA_CACHE |
294 				CRAT_CACHE_FLAGS_SIMD_CACHE),
295 		.num_cu_shared = 5,
296 	},
297 };
298 
299 static struct kfd_gpu_cache_info vega20_cache_info[] = {
300 	{
301 		/* TCP L1 Cache per CU */
302 		.cache_size = 16,
303 		.cache_level = 1,
304 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
305 				CRAT_CACHE_FLAGS_DATA_CACHE |
306 				CRAT_CACHE_FLAGS_SIMD_CACHE),
307 		.num_cu_shared = 1,
308 	},
309 	{
310 		/* Scalar L1 Instruction Cache per SQC */
311 		.cache_size = 32,
312 		.cache_level = 1,
313 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
314 				CRAT_CACHE_FLAGS_INST_CACHE |
315 				CRAT_CACHE_FLAGS_SIMD_CACHE),
316 		.num_cu_shared = 3,
317 	},
318 	{
319 		/* Scalar L1 Data Cache per SQC */
320 		.cache_size = 16,
321 		.cache_level = 1,
322 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
323 				CRAT_CACHE_FLAGS_DATA_CACHE |
324 				CRAT_CACHE_FLAGS_SIMD_CACHE),
325 		.num_cu_shared = 3,
326 	},
327 	{
328 		/* L2 Data Cache per GPU (Total Tex Cache) */
329 		.cache_size = 8192,
330 		.cache_level = 2,
331 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
332 				CRAT_CACHE_FLAGS_DATA_CACHE |
333 				CRAT_CACHE_FLAGS_SIMD_CACHE),
334 		.num_cu_shared = 16,
335 	},
336 };
337 
338 static struct kfd_gpu_cache_info aldebaran_cache_info[] = {
339 	{
340 		/* TCP L1 Cache per CU */
341 		.cache_size = 16,
342 		.cache_level = 1,
343 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
344 				CRAT_CACHE_FLAGS_DATA_CACHE |
345 				CRAT_CACHE_FLAGS_SIMD_CACHE),
346 		.num_cu_shared = 1,
347 	},
348 	{
349 		/* Scalar L1 Instruction Cache per SQC */
350 		.cache_size = 32,
351 		.cache_level = 1,
352 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
353 				CRAT_CACHE_FLAGS_INST_CACHE |
354 				CRAT_CACHE_FLAGS_SIMD_CACHE),
355 		.num_cu_shared = 2,
356 	},
357 	{
358 		/* Scalar L1 Data Cache per SQC */
359 		.cache_size = 16,
360 		.cache_level = 1,
361 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
362 				CRAT_CACHE_FLAGS_DATA_CACHE |
363 				CRAT_CACHE_FLAGS_SIMD_CACHE),
364 		.num_cu_shared = 2,
365 	},
366 	{
367 		/* L2 Data Cache per GPU (Total Tex Cache) */
368 		.cache_size = 8192,
369 		.cache_level = 2,
370 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
371 				CRAT_CACHE_FLAGS_DATA_CACHE |
372 				CRAT_CACHE_FLAGS_SIMD_CACHE),
373 		.num_cu_shared = 14,
374 	},
375 };
376 
377 static struct kfd_gpu_cache_info navi10_cache_info[] = {
378 	{
379 		/* TCP L1 Cache per CU */
380 		.cache_size = 16,
381 		.cache_level = 1,
382 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
383 				CRAT_CACHE_FLAGS_DATA_CACHE |
384 				CRAT_CACHE_FLAGS_SIMD_CACHE),
385 		.num_cu_shared = 1,
386 	},
387 	{
388 		/* Scalar L1 Instruction Cache per SQC */
389 		.cache_size = 32,
390 		.cache_level = 1,
391 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
392 				CRAT_CACHE_FLAGS_INST_CACHE |
393 				CRAT_CACHE_FLAGS_SIMD_CACHE),
394 		.num_cu_shared = 2,
395 	},
396 	{
397 		/* Scalar L1 Data Cache per SQC */
398 		.cache_size = 16,
399 		.cache_level = 1,
400 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
401 				CRAT_CACHE_FLAGS_DATA_CACHE |
402 				CRAT_CACHE_FLAGS_SIMD_CACHE),
403 		.num_cu_shared = 2,
404 	},
405 	{
406 		/* GL1 Data Cache per SA */
407 		.cache_size = 128,
408 		.cache_level = 1,
409 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
410 				CRAT_CACHE_FLAGS_DATA_CACHE |
411 				CRAT_CACHE_FLAGS_SIMD_CACHE),
412 		.num_cu_shared = 10,
413 	},
414 	{
415 		/* L2 Data Cache per GPU (Total Tex Cache) */
416 		.cache_size = 4096,
417 		.cache_level = 2,
418 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
419 				CRAT_CACHE_FLAGS_DATA_CACHE |
420 				CRAT_CACHE_FLAGS_SIMD_CACHE),
421 		.num_cu_shared = 10,
422 	},
423 };
424 
425 static struct kfd_gpu_cache_info vangogh_cache_info[] = {
426 	{
427 		/* TCP L1 Cache per CU */
428 		.cache_size = 16,
429 		.cache_level = 1,
430 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
431 				CRAT_CACHE_FLAGS_DATA_CACHE |
432 				CRAT_CACHE_FLAGS_SIMD_CACHE),
433 		.num_cu_shared = 1,
434 	},
435 	{
436 		/* Scalar L1 Instruction Cache per SQC */
437 		.cache_size = 32,
438 		.cache_level = 1,
439 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
440 				CRAT_CACHE_FLAGS_INST_CACHE |
441 				CRAT_CACHE_FLAGS_SIMD_CACHE),
442 		.num_cu_shared = 2,
443 	},
444 	{
445 		/* Scalar L1 Data Cache per SQC */
446 		.cache_size = 16,
447 		.cache_level = 1,
448 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
449 				CRAT_CACHE_FLAGS_DATA_CACHE |
450 				CRAT_CACHE_FLAGS_SIMD_CACHE),
451 		.num_cu_shared = 2,
452 	},
453 	{
454 		/* GL1 Data Cache per SA */
455 		.cache_size = 128,
456 		.cache_level = 1,
457 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
458 				CRAT_CACHE_FLAGS_DATA_CACHE |
459 				CRAT_CACHE_FLAGS_SIMD_CACHE),
460 		.num_cu_shared = 8,
461 	},
462 	{
463 		/* L2 Data Cache per GPU (Total Tex Cache) */
464 		.cache_size = 1024,
465 		.cache_level = 2,
466 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
467 				CRAT_CACHE_FLAGS_DATA_CACHE |
468 				CRAT_CACHE_FLAGS_SIMD_CACHE),
469 		.num_cu_shared = 8,
470 	},
471 };
472 
473 static struct kfd_gpu_cache_info navi14_cache_info[] = {
474 	{
475 		/* TCP L1 Cache per CU */
476 		.cache_size = 16,
477 		.cache_level = 1,
478 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
479 				CRAT_CACHE_FLAGS_DATA_CACHE |
480 				CRAT_CACHE_FLAGS_SIMD_CACHE),
481 		.num_cu_shared = 1,
482 	},
483 	{
484 		/* Scalar L1 Instruction Cache per SQC */
485 		.cache_size = 32,
486 		.cache_level = 1,
487 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
488 				CRAT_CACHE_FLAGS_INST_CACHE |
489 				CRAT_CACHE_FLAGS_SIMD_CACHE),
490 		.num_cu_shared = 2,
491 	},
492 	{
493 		/* Scalar L1 Data Cache per SQC */
494 		.cache_size = 16,
495 		.cache_level = 1,
496 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
497 				CRAT_CACHE_FLAGS_DATA_CACHE |
498 				CRAT_CACHE_FLAGS_SIMD_CACHE),
499 		.num_cu_shared = 2,
500 	},
501 	{
502 		/* GL1 Data Cache per SA */
503 		.cache_size = 128,
504 		.cache_level = 1,
505 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
506 				CRAT_CACHE_FLAGS_DATA_CACHE |
507 				CRAT_CACHE_FLAGS_SIMD_CACHE),
508 		.num_cu_shared = 12,
509 	},
510 	{
511 		/* L2 Data Cache per GPU (Total Tex Cache) */
512 		.cache_size = 2048,
513 		.cache_level = 2,
514 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
515 				CRAT_CACHE_FLAGS_DATA_CACHE |
516 				CRAT_CACHE_FLAGS_SIMD_CACHE),
517 		.num_cu_shared = 12,
518 	},
519 };
520 
521 static struct kfd_gpu_cache_info sienna_cichlid_cache_info[] = {
522 	{
523 		/* TCP L1 Cache per CU */
524 		.cache_size = 16,
525 		.cache_level = 1,
526 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
527 				CRAT_CACHE_FLAGS_DATA_CACHE |
528 				CRAT_CACHE_FLAGS_SIMD_CACHE),
529 		.num_cu_shared = 1,
530 	},
531 	{
532 		/* Scalar L1 Instruction Cache per SQC */
533 		.cache_size = 32,
534 		.cache_level = 1,
535 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
536 				CRAT_CACHE_FLAGS_INST_CACHE |
537 				CRAT_CACHE_FLAGS_SIMD_CACHE),
538 		.num_cu_shared = 2,
539 	},
540 	{
541 		/* Scalar L1 Data Cache per SQC */
542 		.cache_size = 16,
543 		.cache_level = 1,
544 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
545 				CRAT_CACHE_FLAGS_DATA_CACHE |
546 				CRAT_CACHE_FLAGS_SIMD_CACHE),
547 		.num_cu_shared = 2,
548 	},
549 	{
550 		/* GL1 Data Cache per SA */
551 		.cache_size = 128,
552 		.cache_level = 1,
553 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
554 				CRAT_CACHE_FLAGS_DATA_CACHE |
555 				CRAT_CACHE_FLAGS_SIMD_CACHE),
556 		.num_cu_shared = 10,
557 	},
558 	{
559 		/* L2 Data Cache per GPU (Total Tex Cache) */
560 		.cache_size = 4096,
561 		.cache_level = 2,
562 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
563 				CRAT_CACHE_FLAGS_DATA_CACHE |
564 				CRAT_CACHE_FLAGS_SIMD_CACHE),
565 		.num_cu_shared = 10,
566 	},
567 	{
568 		/* L3 Data Cache per GPU */
569 		.cache_size = 128*1024,
570 		.cache_level = 3,
571 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
572 				CRAT_CACHE_FLAGS_DATA_CACHE |
573 				CRAT_CACHE_FLAGS_SIMD_CACHE),
574 		.num_cu_shared = 10,
575 	},
576 };
577 
578 static struct kfd_gpu_cache_info navy_flounder_cache_info[] = {
579 	{
580 		/* TCP L1 Cache per CU */
581 		.cache_size = 16,
582 		.cache_level = 1,
583 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
584 				CRAT_CACHE_FLAGS_DATA_CACHE |
585 				CRAT_CACHE_FLAGS_SIMD_CACHE),
586 		.num_cu_shared = 1,
587 	},
588 	{
589 		/* Scalar L1 Instruction Cache per SQC */
590 		.cache_size = 32,
591 		.cache_level = 1,
592 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
593 				CRAT_CACHE_FLAGS_INST_CACHE |
594 				CRAT_CACHE_FLAGS_SIMD_CACHE),
595 		.num_cu_shared = 2,
596 	},
597 	{
598 		/* Scalar L1 Data Cache per SQC */
599 		.cache_size = 16,
600 		.cache_level = 1,
601 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
602 				CRAT_CACHE_FLAGS_DATA_CACHE |
603 				CRAT_CACHE_FLAGS_SIMD_CACHE),
604 		.num_cu_shared = 2,
605 	},
606 	{
607 		/* GL1 Data Cache per SA */
608 		.cache_size = 128,
609 		.cache_level = 1,
610 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
611 				CRAT_CACHE_FLAGS_DATA_CACHE |
612 				CRAT_CACHE_FLAGS_SIMD_CACHE),
613 		.num_cu_shared = 10,
614 	},
615 	{
616 		/* L2 Data Cache per GPU (Total Tex Cache) */
617 		.cache_size = 3072,
618 		.cache_level = 2,
619 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
620 				CRAT_CACHE_FLAGS_DATA_CACHE |
621 				CRAT_CACHE_FLAGS_SIMD_CACHE),
622 		.num_cu_shared = 10,
623 	},
624 	{
625 		/* L3 Data Cache per GPU */
626 		.cache_size = 96*1024,
627 		.cache_level = 3,
628 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
629 				CRAT_CACHE_FLAGS_DATA_CACHE |
630 				CRAT_CACHE_FLAGS_SIMD_CACHE),
631 		.num_cu_shared = 10,
632 	},
633 };
634 
635 static struct kfd_gpu_cache_info dimgrey_cavefish_cache_info[] = {
636 	{
637 		/* TCP L1 Cache per CU */
638 		.cache_size = 16,
639 		.cache_level = 1,
640 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
641 				CRAT_CACHE_FLAGS_DATA_CACHE |
642 				CRAT_CACHE_FLAGS_SIMD_CACHE),
643 		.num_cu_shared = 1,
644 	},
645 	{
646 		/* Scalar L1 Instruction Cache per SQC */
647 		.cache_size = 32,
648 		.cache_level = 1,
649 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
650 				CRAT_CACHE_FLAGS_INST_CACHE |
651 				CRAT_CACHE_FLAGS_SIMD_CACHE),
652 		.num_cu_shared = 2,
653 	},
654 	{
655 		/* Scalar L1 Data Cache per SQC */
656 		.cache_size = 16,
657 		.cache_level = 1,
658 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
659 				CRAT_CACHE_FLAGS_DATA_CACHE |
660 				CRAT_CACHE_FLAGS_SIMD_CACHE),
661 		.num_cu_shared = 2,
662 	},
663 	{
664 		/* GL1 Data Cache per SA */
665 		.cache_size = 128,
666 		.cache_level = 1,
667 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
668 				CRAT_CACHE_FLAGS_DATA_CACHE |
669 				CRAT_CACHE_FLAGS_SIMD_CACHE),
670 		.num_cu_shared = 8,
671 	},
672 	{
673 		/* L2 Data Cache per GPU (Total Tex Cache) */
674 		.cache_size = 2048,
675 		.cache_level = 2,
676 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
677 				CRAT_CACHE_FLAGS_DATA_CACHE |
678 				CRAT_CACHE_FLAGS_SIMD_CACHE),
679 		.num_cu_shared = 8,
680 	},
681 	{
682 		/* L3 Data Cache per GPU */
683 		.cache_size = 32*1024,
684 		.cache_level = 3,
685 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
686 				CRAT_CACHE_FLAGS_DATA_CACHE |
687 				CRAT_CACHE_FLAGS_SIMD_CACHE),
688 		.num_cu_shared = 8,
689 	},
690 };
691 
692 static struct kfd_gpu_cache_info beige_goby_cache_info[] = {
693 	{
694 		/* TCP L1 Cache per CU */
695 		.cache_size = 16,
696 		.cache_level = 1,
697 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
698 				CRAT_CACHE_FLAGS_DATA_CACHE |
699 				CRAT_CACHE_FLAGS_SIMD_CACHE),
700 		.num_cu_shared = 1,
701 	},
702 	{
703 		/* Scalar L1 Instruction Cache per SQC */
704 		.cache_size = 32,
705 		.cache_level = 1,
706 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
707 				CRAT_CACHE_FLAGS_INST_CACHE |
708 				CRAT_CACHE_FLAGS_SIMD_CACHE),
709 		.num_cu_shared = 2,
710 	},
711 	{
712 		/* Scalar L1 Data Cache per SQC */
713 		.cache_size = 16,
714 		.cache_level = 1,
715 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
716 				CRAT_CACHE_FLAGS_DATA_CACHE |
717 				CRAT_CACHE_FLAGS_SIMD_CACHE),
718 		.num_cu_shared = 2,
719 	},
720 	{
721 		/* GL1 Data Cache per SA */
722 		.cache_size = 128,
723 		.cache_level = 1,
724 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
725 				CRAT_CACHE_FLAGS_DATA_CACHE |
726 				CRAT_CACHE_FLAGS_SIMD_CACHE),
727 		.num_cu_shared = 8,
728 	},
729 	{
730 		/* L2 Data Cache per GPU (Total Tex Cache) */
731 		.cache_size = 1024,
732 		.cache_level = 2,
733 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
734 				CRAT_CACHE_FLAGS_DATA_CACHE |
735 				CRAT_CACHE_FLAGS_SIMD_CACHE),
736 		.num_cu_shared = 8,
737 	},
738 	{
739 		/* L3 Data Cache per GPU */
740 		.cache_size = 16*1024,
741 		.cache_level = 3,
742 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
743 				CRAT_CACHE_FLAGS_DATA_CACHE |
744 				CRAT_CACHE_FLAGS_SIMD_CACHE),
745 		.num_cu_shared = 8,
746 	},
747 };
748 
749 static struct kfd_gpu_cache_info yellow_carp_cache_info[] = {
750 	{
751 		/* TCP L1 Cache per CU */
752 		.cache_size = 16,
753 		.cache_level = 1,
754 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
755 				CRAT_CACHE_FLAGS_DATA_CACHE |
756 				CRAT_CACHE_FLAGS_SIMD_CACHE),
757 		.num_cu_shared = 1,
758 	},
759 	{
760 		/* Scalar L1 Instruction Cache per SQC */
761 		.cache_size = 32,
762 		.cache_level = 1,
763 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
764 				CRAT_CACHE_FLAGS_INST_CACHE |
765 				CRAT_CACHE_FLAGS_SIMD_CACHE),
766 		.num_cu_shared = 2,
767 	},
768 	{
769 		/* Scalar L1 Data Cache per SQC */
770 		.cache_size = 16,
771 		.cache_level = 1,
772 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
773 				CRAT_CACHE_FLAGS_DATA_CACHE |
774 				CRAT_CACHE_FLAGS_SIMD_CACHE),
775 		.num_cu_shared = 2,
776 	},
777 	{
778 		/* GL1 Data Cache per SA */
779 		.cache_size = 128,
780 		.cache_level = 1,
781 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
782 				CRAT_CACHE_FLAGS_DATA_CACHE |
783 				CRAT_CACHE_FLAGS_SIMD_CACHE),
784 		.num_cu_shared = 6,
785 	},
786 	{
787 		/* L2 Data Cache per GPU (Total Tex Cache) */
788 		.cache_size = 2048,
789 		.cache_level = 2,
790 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
791 				CRAT_CACHE_FLAGS_DATA_CACHE |
792 				CRAT_CACHE_FLAGS_SIMD_CACHE),
793 		.num_cu_shared = 6,
794 	},
795 };
796 
797 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
798 		struct crat_subtype_computeunit *cu)
799 {
800 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
801 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
802 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
803 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
804 
805 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
806 			cu->processor_id_low);
807 }
808 
809 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
810 		struct crat_subtype_computeunit *cu)
811 {
812 	dev->node_props.simd_id_base = cu->processor_id_low;
813 	dev->node_props.simd_count = cu->num_simd_cores;
814 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
815 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
816 	dev->node_props.wave_front_size = cu->wave_front_size;
817 	dev->node_props.array_count = cu->array_count;
818 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
819 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
820 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
821 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
822 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
823 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
824 }
825 
826 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
827  * topology device present in the device_list
828  */
829 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
830 				struct list_head *device_list)
831 {
832 	struct kfd_topology_device *dev;
833 
834 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
835 			cu->proximity_domain, cu->hsa_capability);
836 	list_for_each_entry(dev, device_list, list) {
837 		if (cu->proximity_domain == dev->proximity_domain) {
838 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
839 				kfd_populated_cu_info_cpu(dev, cu);
840 
841 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
842 				kfd_populated_cu_info_gpu(dev, cu);
843 			break;
844 		}
845 	}
846 
847 	return 0;
848 }
849 
850 static struct kfd_mem_properties *
851 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
852 		struct kfd_topology_device *dev)
853 {
854 	struct kfd_mem_properties *props;
855 
856 	list_for_each_entry(props, &dev->mem_props, list) {
857 		if (props->heap_type == heap_type
858 				&& props->flags == flags
859 				&& props->width == width)
860 			return props;
861 	}
862 
863 	return NULL;
864 }
865 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
866  * topology device present in the device_list
867  */
868 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
869 				struct list_head *device_list)
870 {
871 	struct kfd_mem_properties *props;
872 	struct kfd_topology_device *dev;
873 	uint32_t heap_type;
874 	uint64_t size_in_bytes;
875 	uint32_t flags = 0;
876 	uint32_t width;
877 
878 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
879 			mem->proximity_domain);
880 	list_for_each_entry(dev, device_list, list) {
881 		if (mem->proximity_domain == dev->proximity_domain) {
882 			/* We're on GPU node */
883 			if (dev->node_props.cpu_cores_count == 0) {
884 				/* APU */
885 				if (mem->visibility_type == 0)
886 					heap_type =
887 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
888 				/* dGPU */
889 				else
890 					heap_type = mem->visibility_type;
891 			} else
892 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
893 
894 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
895 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
896 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
897 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
898 
899 			size_in_bytes =
900 				((uint64_t)mem->length_high << 32) +
901 							mem->length_low;
902 			width = mem->width;
903 
904 			/* Multiple banks of the same type are aggregated into
905 			 * one. User mode doesn't care about multiple physical
906 			 * memory segments. It's managed as a single virtual
907 			 * heap for user mode.
908 			 */
909 			props = find_subtype_mem(heap_type, flags, width, dev);
910 			if (props) {
911 				props->size_in_bytes += size_in_bytes;
912 				break;
913 			}
914 
915 			props = kfd_alloc_struct(props);
916 			if (!props)
917 				return -ENOMEM;
918 
919 			props->heap_type = heap_type;
920 			props->flags = flags;
921 			props->size_in_bytes = size_in_bytes;
922 			props->width = width;
923 
924 			dev->node_props.mem_banks_count++;
925 			list_add_tail(&props->list, &dev->mem_props);
926 
927 			break;
928 		}
929 	}
930 
931 	return 0;
932 }
933 
934 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
935  * topology device present in the device_list
936  */
937 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
938 			struct list_head *device_list)
939 {
940 	struct kfd_cache_properties *props;
941 	struct kfd_topology_device *dev;
942 	uint32_t id;
943 	uint32_t total_num_of_cu;
944 
945 	id = cache->processor_id_low;
946 
947 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
948 	list_for_each_entry(dev, device_list, list) {
949 		total_num_of_cu = (dev->node_props.array_count *
950 					dev->node_props.cu_per_simd_array);
951 
952 		/* Cache infomration in CRAT doesn't have proximity_domain
953 		 * information as it is associated with a CPU core or GPU
954 		 * Compute Unit. So map the cache using CPU core Id or SIMD
955 		 * (GPU) ID.
956 		 * TODO: This works because currently we can safely assume that
957 		 *  Compute Units are parsed before caches are parsed. In
958 		 *  future, remove this dependency
959 		 */
960 		if ((id >= dev->node_props.cpu_core_id_base &&
961 			id <= dev->node_props.cpu_core_id_base +
962 				dev->node_props.cpu_cores_count) ||
963 			(id >= dev->node_props.simd_id_base &&
964 			id < dev->node_props.simd_id_base +
965 				total_num_of_cu)) {
966 			props = kfd_alloc_struct(props);
967 			if (!props)
968 				return -ENOMEM;
969 
970 			props->processor_id_low = id;
971 			props->cache_level = cache->cache_level;
972 			props->cache_size = cache->cache_size;
973 			props->cacheline_size = cache->cache_line_size;
974 			props->cachelines_per_tag = cache->lines_per_tag;
975 			props->cache_assoc = cache->associativity;
976 			props->cache_latency = cache->cache_latency;
977 			memcpy(props->sibling_map, cache->sibling_map,
978 					sizeof(props->sibling_map));
979 
980 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
981 				props->cache_type |= HSA_CACHE_TYPE_DATA;
982 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
983 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
984 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
985 				props->cache_type |= HSA_CACHE_TYPE_CPU;
986 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
987 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
988 
989 			dev->cache_count++;
990 			dev->node_props.caches_count++;
991 			list_add_tail(&props->list, &dev->cache_props);
992 
993 			break;
994 		}
995 	}
996 
997 	return 0;
998 }
999 
1000 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
1001  * topology device present in the device_list
1002  */
1003 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
1004 					struct list_head *device_list)
1005 {
1006 	struct kfd_iolink_properties *props = NULL, *props2;
1007 	struct kfd_topology_device *dev, *to_dev;
1008 	uint32_t id_from;
1009 	uint32_t id_to;
1010 
1011 	id_from = iolink->proximity_domain_from;
1012 	id_to = iolink->proximity_domain_to;
1013 
1014 	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
1015 			id_from, id_to);
1016 	list_for_each_entry(dev, device_list, list) {
1017 		if (id_from == dev->proximity_domain) {
1018 			props = kfd_alloc_struct(props);
1019 			if (!props)
1020 				return -ENOMEM;
1021 
1022 			props->node_from = id_from;
1023 			props->node_to = id_to;
1024 			props->ver_maj = iolink->version_major;
1025 			props->ver_min = iolink->version_minor;
1026 			props->iolink_type = iolink->io_interface_type;
1027 
1028 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1029 				props->weight = 20;
1030 			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1031 				props->weight = 15 * iolink->num_hops_xgmi;
1032 			else
1033 				props->weight = node_distance(id_from, id_to);
1034 
1035 			props->min_latency = iolink->minimum_latency;
1036 			props->max_latency = iolink->maximum_latency;
1037 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
1038 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
1039 			props->rec_transfer_size =
1040 					iolink->recommended_transfer_size;
1041 
1042 			dev->io_link_count++;
1043 			dev->node_props.io_links_count++;
1044 			list_add_tail(&props->list, &dev->io_link_props);
1045 			break;
1046 		}
1047 	}
1048 
1049 	/* CPU topology is created before GPUs are detected, so CPU->GPU
1050 	 * links are not built at that time. If a PCIe type is discovered, it
1051 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
1052 	 * At this time, also add the corresponded CPU->GPU link if GPU
1053 	 * is large bar.
1054 	 * For xGMI, we only added the link with one direction in the crat
1055 	 * table, add corresponded reversed direction link now.
1056 	 */
1057 	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
1058 		to_dev = kfd_topology_device_by_proximity_domain(id_to);
1059 		if (!to_dev)
1060 			return -ENODEV;
1061 		/* same everything but the other direction */
1062 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
1063 		props2->node_from = id_to;
1064 		props2->node_to = id_from;
1065 		props2->kobj = NULL;
1066 		to_dev->io_link_count++;
1067 		to_dev->node_props.io_links_count++;
1068 		list_add_tail(&props2->list, &to_dev->io_link_props);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
1075  * present in the device_list
1076  *	@sub_type_hdr - subtype section of crat_image
1077  *	@device_list - list of topology devices present in this crat_image
1078  */
1079 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
1080 				struct list_head *device_list)
1081 {
1082 	struct crat_subtype_computeunit *cu;
1083 	struct crat_subtype_memory *mem;
1084 	struct crat_subtype_cache *cache;
1085 	struct crat_subtype_iolink *iolink;
1086 	int ret = 0;
1087 
1088 	switch (sub_type_hdr->type) {
1089 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
1090 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1091 		ret = kfd_parse_subtype_cu(cu, device_list);
1092 		break;
1093 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
1094 		mem = (struct crat_subtype_memory *)sub_type_hdr;
1095 		ret = kfd_parse_subtype_mem(mem, device_list);
1096 		break;
1097 	case CRAT_SUBTYPE_CACHE_AFFINITY:
1098 		cache = (struct crat_subtype_cache *)sub_type_hdr;
1099 		ret = kfd_parse_subtype_cache(cache, device_list);
1100 		break;
1101 	case CRAT_SUBTYPE_TLB_AFFINITY:
1102 		/*
1103 		 * For now, nothing to do here
1104 		 */
1105 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
1106 		break;
1107 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
1108 		/*
1109 		 * For now, nothing to do here
1110 		 */
1111 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
1112 		break;
1113 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
1114 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
1115 		ret = kfd_parse_subtype_iolink(iolink, device_list);
1116 		break;
1117 	default:
1118 		pr_warn("Unknown subtype %d in CRAT\n",
1119 				sub_type_hdr->type);
1120 	}
1121 
1122 	return ret;
1123 }
1124 
1125 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
1126  * create a kfd_topology_device and add in to device_list. Also parse
1127  * CRAT subtypes and attach it to appropriate kfd_topology_device
1128  *	@crat_image - input image containing CRAT
1129  *	@device_list - [OUT] list of kfd_topology_device generated after
1130  *		       parsing crat_image
1131  *	@proximity_domain - Proximity domain of the first device in the table
1132  *
1133  *	Return - 0 if successful else -ve value
1134  */
1135 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
1136 			 uint32_t proximity_domain)
1137 {
1138 	struct kfd_topology_device *top_dev = NULL;
1139 	struct crat_subtype_generic *sub_type_hdr;
1140 	uint16_t node_id;
1141 	int ret = 0;
1142 	struct crat_header *crat_table = (struct crat_header *)crat_image;
1143 	uint16_t num_nodes;
1144 	uint32_t image_len;
1145 
1146 	if (!crat_image)
1147 		return -EINVAL;
1148 
1149 	if (!list_empty(device_list)) {
1150 		pr_warn("Error device list should be empty\n");
1151 		return -EINVAL;
1152 	}
1153 
1154 	num_nodes = crat_table->num_domains;
1155 	image_len = crat_table->length;
1156 
1157 	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
1158 
1159 	for (node_id = 0; node_id < num_nodes; node_id++) {
1160 		top_dev = kfd_create_topology_device(device_list);
1161 		if (!top_dev)
1162 			break;
1163 		top_dev->proximity_domain = proximity_domain++;
1164 	}
1165 
1166 	if (!top_dev) {
1167 		ret = -ENOMEM;
1168 		goto err;
1169 	}
1170 
1171 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
1172 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
1173 			CRAT_OEMTABLEID_LENGTH);
1174 	top_dev->oem_revision = crat_table->oem_revision;
1175 
1176 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1177 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
1178 			((char *)crat_image) + image_len) {
1179 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
1180 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
1181 			if (ret)
1182 				break;
1183 		}
1184 
1185 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1186 				sub_type_hdr->length);
1187 	}
1188 
1189 err:
1190 	if (ret)
1191 		kfd_release_topology_device_list(device_list);
1192 
1193 	return ret;
1194 }
1195 
1196 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1197 static int fill_in_l1_pcache(struct crat_subtype_cache *pcache,
1198 				struct kfd_gpu_cache_info *pcache_info,
1199 				struct kfd_cu_info *cu_info,
1200 				int mem_available,
1201 				int cu_bitmask,
1202 				int cache_type, unsigned int cu_processor_id,
1203 				int cu_block)
1204 {
1205 	unsigned int cu_sibling_map_mask;
1206 	int first_active_cu;
1207 
1208 	/* First check if enough memory is available */
1209 	if (sizeof(struct crat_subtype_cache) > mem_available)
1210 		return -ENOMEM;
1211 
1212 	cu_sibling_map_mask = cu_bitmask;
1213 	cu_sibling_map_mask >>= cu_block;
1214 	cu_sibling_map_mask &=
1215 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1216 	first_active_cu = ffs(cu_sibling_map_mask);
1217 
1218 	/* CU could be inactive. In case of shared cache find the first active
1219 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1220 	 * inactive active skip it
1221 	 */
1222 	if (first_active_cu) {
1223 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
1224 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
1225 		pcache->length = sizeof(struct crat_subtype_cache);
1226 		pcache->flags = pcache_info[cache_type].flags;
1227 		pcache->processor_id_low = cu_processor_id
1228 					 + (first_active_cu - 1);
1229 		pcache->cache_level = pcache_info[cache_type].cache_level;
1230 		pcache->cache_size = pcache_info[cache_type].cache_size;
1231 
1232 		/* Sibling map is w.r.t processor_id_low, so shift out
1233 		 * inactive CU
1234 		 */
1235 		cu_sibling_map_mask =
1236 			cu_sibling_map_mask >> (first_active_cu - 1);
1237 
1238 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1239 		pcache->sibling_map[1] =
1240 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1241 		pcache->sibling_map[2] =
1242 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1243 		pcache->sibling_map[3] =
1244 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1245 		return 0;
1246 	}
1247 	return 1;
1248 }
1249 
1250 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1251 static int fill_in_l2_l3_pcache(struct crat_subtype_cache *pcache,
1252 				struct kfd_gpu_cache_info *pcache_info,
1253 				struct kfd_cu_info *cu_info,
1254 				int mem_available,
1255 				int cache_type, unsigned int cu_processor_id)
1256 {
1257 	unsigned int cu_sibling_map_mask;
1258 	int first_active_cu;
1259 	int i, j, k;
1260 
1261 	/* First check if enough memory is available */
1262 	if (sizeof(struct crat_subtype_cache) > mem_available)
1263 		return -ENOMEM;
1264 
1265 	cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1266 	cu_sibling_map_mask &=
1267 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1268 	first_active_cu = ffs(cu_sibling_map_mask);
1269 
1270 	/* CU could be inactive. In case of shared cache find the first active
1271 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1272 	 * inactive active skip it
1273 	 */
1274 	if (first_active_cu) {
1275 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
1276 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
1277 		pcache->length = sizeof(struct crat_subtype_cache);
1278 		pcache->flags = pcache_info[cache_type].flags;
1279 		pcache->processor_id_low = cu_processor_id
1280 					 + (first_active_cu - 1);
1281 		pcache->cache_level = pcache_info[cache_type].cache_level;
1282 		pcache->cache_size = pcache_info[cache_type].cache_size;
1283 
1284 		/* Sibling map is w.r.t processor_id_low, so shift out
1285 		 * inactive CU
1286 		 */
1287 		cu_sibling_map_mask =
1288 			cu_sibling_map_mask >> (first_active_cu - 1);
1289 		k = 0;
1290 		for (i = 0; i < cu_info->num_shader_engines; i++) {
1291 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
1292 				j++) {
1293 				pcache->sibling_map[k] =
1294 				 (uint8_t)(cu_sibling_map_mask & 0xFF);
1295 				pcache->sibling_map[k+1] =
1296 				 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1297 				pcache->sibling_map[k+2] =
1298 				 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1299 				pcache->sibling_map[k+3] =
1300 				 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1301 				k += 4;
1302 				cu_sibling_map_mask =
1303 					cu_info->cu_bitmap[i % 4][j + i / 4];
1304 				cu_sibling_map_mask &= (
1305 				 (1 << pcache_info[cache_type].num_cu_shared)
1306 				 - 1);
1307 			}
1308 		}
1309 		return 0;
1310 	}
1311 	return 1;
1312 }
1313 
1314 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
1315  * tables
1316  *
1317  *	@kdev - [IN] GPU device
1318  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
1319  *			    associate
1320  *	@available_size - [IN] Amount of memory available in pcache
1321  *	@cu_info - [IN] Compute Unit info obtained from KGD
1322  *	@pcache - [OUT] memory into which cache data is to be filled in.
1323  *	@size_filled - [OUT] amount of data used up in pcache.
1324  *	@num_of_entries - [OUT] number of caches added
1325  */
1326 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
1327 			int gpu_processor_id,
1328 			int available_size,
1329 			struct kfd_cu_info *cu_info,
1330 			struct crat_subtype_cache *pcache,
1331 			int *size_filled,
1332 			int *num_of_entries)
1333 {
1334 	struct kfd_gpu_cache_info *pcache_info;
1335 	int num_of_cache_types = 0;
1336 	int i, j, k;
1337 	int ct = 0;
1338 	int mem_available = available_size;
1339 	unsigned int cu_processor_id;
1340 	int ret;
1341 	unsigned int num_cu_shared;
1342 
1343 	switch (kdev->device_info->asic_family) {
1344 	case CHIP_KAVERI:
1345 		pcache_info = kaveri_cache_info;
1346 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
1347 		break;
1348 	case CHIP_HAWAII:
1349 		pcache_info = hawaii_cache_info;
1350 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
1351 		break;
1352 	case CHIP_CARRIZO:
1353 		pcache_info = carrizo_cache_info;
1354 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
1355 		break;
1356 	case CHIP_TONGA:
1357 		pcache_info = tonga_cache_info;
1358 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
1359 		break;
1360 	case CHIP_FIJI:
1361 		pcache_info = fiji_cache_info;
1362 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
1363 		break;
1364 	case CHIP_POLARIS10:
1365 		pcache_info = polaris10_cache_info;
1366 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
1367 		break;
1368 	case CHIP_POLARIS11:
1369 		pcache_info = polaris11_cache_info;
1370 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
1371 		break;
1372 	case CHIP_POLARIS12:
1373 		pcache_info = polaris12_cache_info;
1374 		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
1375 		break;
1376 	case CHIP_VEGAM:
1377 		pcache_info = vegam_cache_info;
1378 		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
1379 		break;
1380 	case CHIP_VEGA10:
1381 		pcache_info = vega10_cache_info;
1382 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
1383 		break;
1384 	case CHIP_VEGA12:
1385 		pcache_info = vega12_cache_info;
1386 		num_of_cache_types = ARRAY_SIZE(vega12_cache_info);
1387 		break;
1388 	case CHIP_VEGA20:
1389 	case CHIP_ARCTURUS:
1390 		pcache_info = vega20_cache_info;
1391 		num_of_cache_types = ARRAY_SIZE(vega20_cache_info);
1392 		break;
1393 	case CHIP_ALDEBARAN:
1394 		pcache_info = aldebaran_cache_info;
1395 		num_of_cache_types = ARRAY_SIZE(aldebaran_cache_info);
1396 		break;
1397 	case CHIP_RAVEN:
1398 		pcache_info = raven_cache_info;
1399 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
1400 		break;
1401 	case CHIP_RENOIR:
1402 		pcache_info = renoir_cache_info;
1403 		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
1404 		break;
1405 	case CHIP_NAVI10:
1406 	case CHIP_NAVI12:
1407 		pcache_info = navi10_cache_info;
1408 		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
1409 		break;
1410 	case CHIP_NAVI14:
1411 		pcache_info = navi14_cache_info;
1412 		num_of_cache_types = ARRAY_SIZE(navi14_cache_info);
1413 		break;
1414 	case CHIP_SIENNA_CICHLID:
1415 		pcache_info = sienna_cichlid_cache_info;
1416 		num_of_cache_types = ARRAY_SIZE(sienna_cichlid_cache_info);
1417 		break;
1418 	case CHIP_NAVY_FLOUNDER:
1419 		pcache_info = navy_flounder_cache_info;
1420 		num_of_cache_types = ARRAY_SIZE(navy_flounder_cache_info);
1421 		break;
1422 	case CHIP_DIMGREY_CAVEFISH:
1423 		pcache_info = dimgrey_cavefish_cache_info;
1424 		num_of_cache_types = ARRAY_SIZE(dimgrey_cavefish_cache_info);
1425 		break;
1426 	case CHIP_VANGOGH:
1427 		pcache_info = vangogh_cache_info;
1428 		num_of_cache_types = ARRAY_SIZE(vangogh_cache_info);
1429 		break;
1430 	case CHIP_BEIGE_GOBY:
1431 		pcache_info = beige_goby_cache_info;
1432 		num_of_cache_types = ARRAY_SIZE(beige_goby_cache_info);
1433 		break;
1434 	case CHIP_YELLOW_CARP:
1435 		pcache_info = yellow_carp_cache_info;
1436 		num_of_cache_types = ARRAY_SIZE(yellow_carp_cache_info);
1437 		break;
1438 	default:
1439 		return -EINVAL;
1440 	}
1441 
1442 	*size_filled = 0;
1443 	*num_of_entries = 0;
1444 
1445 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1446 	 * go through all available Compute Units.
1447 	 * The [i,j,k] loop will
1448 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1449 	 *			will parse through all available CU
1450 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1451 	 *			then it will consider only one CU from
1452 	 *			the shared unit
1453 	 */
1454 
1455 	for (ct = 0; ct < num_of_cache_types; ct++) {
1456 	  cu_processor_id = gpu_processor_id;
1457 	  if (pcache_info[ct].cache_level == 1) {
1458 	    for (i = 0; i < cu_info->num_shader_engines; i++) {
1459 	      for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1460 	        for (k = 0; k < cu_info->num_cu_per_sh;
1461 		  k += pcache_info[ct].num_cu_shared) {
1462 		  ret = fill_in_l1_pcache(pcache,
1463 					pcache_info,
1464 					cu_info,
1465 					mem_available,
1466 					cu_info->cu_bitmap[i % 4][j + i / 4],
1467 					ct,
1468 					cu_processor_id,
1469 					k);
1470 
1471 		  if (ret < 0)
1472 			break;
1473 
1474 		  if (!ret) {
1475 				pcache++;
1476 				(*num_of_entries)++;
1477 				mem_available -= sizeof(*pcache);
1478 				(*size_filled) += sizeof(*pcache);
1479 		  }
1480 
1481 		  /* Move to next CU block */
1482 		  num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1483 					cu_info->num_cu_per_sh) ?
1484 					pcache_info[ct].num_cu_shared :
1485 					(cu_info->num_cu_per_sh - k);
1486 		  cu_processor_id += num_cu_shared;
1487 		}
1488 	      }
1489 	    }
1490 	  } else {
1491 			ret = fill_in_l2_l3_pcache(pcache,
1492 				pcache_info,
1493 				cu_info,
1494 				mem_available,
1495 				ct,
1496 				cu_processor_id);
1497 
1498 			if (ret < 0)
1499 				break;
1500 
1501 			if (!ret) {
1502 				pcache++;
1503 				(*num_of_entries)++;
1504 				mem_available -= sizeof(*pcache);
1505 				(*size_filled) += sizeof(*pcache);
1506 			}
1507 	  }
1508 	}
1509 
1510 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
1511 
1512 	return 0;
1513 }
1514 
1515 static bool kfd_ignore_crat(void)
1516 {
1517 	bool ret;
1518 
1519 	if (ignore_crat)
1520 		return true;
1521 
1522 #ifndef KFD_SUPPORT_IOMMU_V2
1523 	ret = true;
1524 #else
1525 	ret = false;
1526 #endif
1527 
1528 	return ret;
1529 }
1530 
1531 /*
1532  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
1533  * copies CRAT from ACPI (if available).
1534  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1535  *
1536  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
1537  *		     crat_image will be NULL
1538  *	@size: [OUT] size of crat_image
1539  *
1540  *	Return 0 if successful else return error code
1541  */
1542 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
1543 {
1544 	struct acpi_table_header *crat_table;
1545 	acpi_status status;
1546 	void *pcrat_image;
1547 	int rc = 0;
1548 
1549 	if (!crat_image)
1550 		return -EINVAL;
1551 
1552 	*crat_image = NULL;
1553 
1554 	if (kfd_ignore_crat()) {
1555 		pr_info("CRAT table disabled by module option\n");
1556 		return -ENODATA;
1557 	}
1558 
1559 	/* Fetch the CRAT table from ACPI */
1560 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
1561 	if (status == AE_NOT_FOUND) {
1562 		pr_warn("CRAT table not found\n");
1563 		return -ENODATA;
1564 	} else if (ACPI_FAILURE(status)) {
1565 		const char *err = acpi_format_exception(status);
1566 
1567 		pr_err("CRAT table error: %s\n", err);
1568 		return -EINVAL;
1569 	}
1570 
1571 	pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
1572 	if (!pcrat_image) {
1573 		rc = -ENOMEM;
1574 		goto out;
1575 	}
1576 
1577 	memcpy(pcrat_image, crat_table, crat_table->length);
1578 	*crat_image = pcrat_image;
1579 	*size = crat_table->length;
1580 out:
1581 	acpi_put_table(crat_table);
1582 	return rc;
1583 }
1584 
1585 /* Memory required to create Virtual CRAT.
1586  * Since there is no easy way to predict the amount of memory required, the
1587  * following amount is allocated for GPU Virtual CRAT. This is
1588  * expected to cover all known conditions. But to be safe additional check
1589  * is put in the code to ensure we don't overwrite.
1590  */
1591 #define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
1592 
1593 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
1594  *
1595  *	@numa_node_id: CPU NUMA node id
1596  *	@avail_size: Available size in the memory
1597  *	@sub_type_hdr: Memory into which compute info will be filled in
1598  *
1599  *	Return 0 if successful else return -ve value
1600  */
1601 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
1602 				int proximity_domain,
1603 				struct crat_subtype_computeunit *sub_type_hdr)
1604 {
1605 	const struct cpumask *cpumask;
1606 
1607 	*avail_size -= sizeof(struct crat_subtype_computeunit);
1608 	if (*avail_size < 0)
1609 		return -ENOMEM;
1610 
1611 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1612 
1613 	/* Fill in subtype header data */
1614 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1615 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1616 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1617 
1618 	cpumask = cpumask_of_node(numa_node_id);
1619 
1620 	/* Fill in CU data */
1621 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
1622 	sub_type_hdr->proximity_domain = proximity_domain;
1623 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
1624 	if (sub_type_hdr->processor_id_low == -1)
1625 		return -EINVAL;
1626 
1627 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
1628 
1629 	return 0;
1630 }
1631 
1632 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
1633  *
1634  *	@numa_node_id: CPU NUMA node id
1635  *	@avail_size: Available size in the memory
1636  *	@sub_type_hdr: Memory into which compute info will be filled in
1637  *
1638  *	Return 0 if successful else return -ve value
1639  */
1640 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
1641 			int proximity_domain,
1642 			struct crat_subtype_memory *sub_type_hdr)
1643 {
1644 	uint64_t mem_in_bytes = 0;
1645 	pg_data_t *pgdat;
1646 	int zone_type;
1647 
1648 	*avail_size -= sizeof(struct crat_subtype_memory);
1649 	if (*avail_size < 0)
1650 		return -ENOMEM;
1651 
1652 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1653 
1654 	/* Fill in subtype header data */
1655 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1656 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1657 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1658 
1659 	/* Fill in Memory Subunit data */
1660 
1661 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
1662 	 * the following lines are duplicated from si_meminfo_node
1663 	 * function
1664 	 */
1665 	pgdat = NODE_DATA(numa_node_id);
1666 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
1667 		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
1668 	mem_in_bytes <<= PAGE_SHIFT;
1669 
1670 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
1671 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
1672 	sub_type_hdr->proximity_domain = proximity_domain;
1673 
1674 	return 0;
1675 }
1676 
1677 #ifdef CONFIG_X86_64
1678 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
1679 				uint32_t *num_entries,
1680 				struct crat_subtype_iolink *sub_type_hdr)
1681 {
1682 	int nid;
1683 	struct cpuinfo_x86 *c = &cpu_data(0);
1684 	uint8_t link_type;
1685 
1686 	if (c->x86_vendor == X86_VENDOR_AMD)
1687 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
1688 	else
1689 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
1690 
1691 	*num_entries = 0;
1692 
1693 	/* Create IO links from this node to other CPU nodes */
1694 	for_each_online_node(nid) {
1695 		if (nid == numa_node_id) /* node itself */
1696 			continue;
1697 
1698 		*avail_size -= sizeof(struct crat_subtype_iolink);
1699 		if (*avail_size < 0)
1700 			return -ENOMEM;
1701 
1702 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1703 
1704 		/* Fill in subtype header data */
1705 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1706 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1707 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1708 
1709 		/* Fill in IO link data */
1710 		sub_type_hdr->proximity_domain_from = numa_node_id;
1711 		sub_type_hdr->proximity_domain_to = nid;
1712 		sub_type_hdr->io_interface_type = link_type;
1713 
1714 		(*num_entries)++;
1715 		sub_type_hdr++;
1716 	}
1717 
1718 	return 0;
1719 }
1720 #endif
1721 
1722 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
1723  *
1724  *	@pcrat_image: Fill in VCRAT for CPU
1725  *	@size:	[IN] allocated size of crat_image.
1726  *		[OUT] actual size of data filled in crat_image
1727  */
1728 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
1729 {
1730 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1731 	struct acpi_table_header *acpi_table;
1732 	acpi_status status;
1733 	struct crat_subtype_generic *sub_type_hdr;
1734 	int avail_size = *size;
1735 	int numa_node_id;
1736 #ifdef CONFIG_X86_64
1737 	uint32_t entries = 0;
1738 #endif
1739 	int ret = 0;
1740 
1741 	if (!pcrat_image)
1742 		return -EINVAL;
1743 
1744 	/* Fill in CRAT Header.
1745 	 * Modify length and total_entries as subunits are added.
1746 	 */
1747 	avail_size -= sizeof(struct crat_header);
1748 	if (avail_size < 0)
1749 		return -ENOMEM;
1750 
1751 	memset(crat_table, 0, sizeof(struct crat_header));
1752 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1753 			sizeof(crat_table->signature));
1754 	crat_table->length = sizeof(struct crat_header);
1755 
1756 	status = acpi_get_table("DSDT", 0, &acpi_table);
1757 	if (status != AE_OK)
1758 		pr_warn("DSDT table not found for OEM information\n");
1759 	else {
1760 		crat_table->oem_revision = acpi_table->revision;
1761 		memcpy(crat_table->oem_id, acpi_table->oem_id,
1762 				CRAT_OEMID_LENGTH);
1763 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
1764 				CRAT_OEMTABLEID_LENGTH);
1765 		acpi_put_table(acpi_table);
1766 	}
1767 	crat_table->total_entries = 0;
1768 	crat_table->num_domains = 0;
1769 
1770 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1771 
1772 	for_each_online_node(numa_node_id) {
1773 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
1774 			continue;
1775 
1776 		/* Fill in Subtype: Compute Unit */
1777 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
1778 			crat_table->num_domains,
1779 			(struct crat_subtype_computeunit *)sub_type_hdr);
1780 		if (ret < 0)
1781 			return ret;
1782 		crat_table->length += sub_type_hdr->length;
1783 		crat_table->total_entries++;
1784 
1785 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1786 			sub_type_hdr->length);
1787 
1788 		/* Fill in Subtype: Memory */
1789 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
1790 			crat_table->num_domains,
1791 			(struct crat_subtype_memory *)sub_type_hdr);
1792 		if (ret < 0)
1793 			return ret;
1794 		crat_table->length += sub_type_hdr->length;
1795 		crat_table->total_entries++;
1796 
1797 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1798 			sub_type_hdr->length);
1799 
1800 		/* Fill in Subtype: IO Link */
1801 #ifdef CONFIG_X86_64
1802 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1803 				&entries,
1804 				(struct crat_subtype_iolink *)sub_type_hdr);
1805 		if (ret < 0)
1806 			return ret;
1807 
1808 		if (entries) {
1809 			crat_table->length += (sub_type_hdr->length * entries);
1810 			crat_table->total_entries += entries;
1811 
1812 			sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1813 					sub_type_hdr->length * entries);
1814 		}
1815 #else
1816 		pr_info("IO link not available for non x86 platforms\n");
1817 #endif
1818 
1819 		crat_table->num_domains++;
1820 	}
1821 
1822 	/* TODO: Add cache Subtype for CPU.
1823 	 * Currently, CPU cache information is available in function
1824 	 * detect_cache_attributes(cpu) defined in the file
1825 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1826 	 * exported and to get the same information the code needs to be
1827 	 * duplicated.
1828 	 */
1829 
1830 	*size = crat_table->length;
1831 	pr_info("Virtual CRAT table created for CPU\n");
1832 
1833 	return 0;
1834 }
1835 
1836 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1837 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1838 		struct crat_subtype_memory *sub_type_hdr,
1839 		uint32_t proximity_domain,
1840 		const struct kfd_local_mem_info *local_mem_info)
1841 {
1842 	*avail_size -= sizeof(struct crat_subtype_memory);
1843 	if (*avail_size < 0)
1844 		return -ENOMEM;
1845 
1846 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1847 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1848 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1849 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1850 
1851 	sub_type_hdr->proximity_domain = proximity_domain;
1852 
1853 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1854 			type, size);
1855 
1856 	sub_type_hdr->length_low = lower_32_bits(size);
1857 	sub_type_hdr->length_high = upper_32_bits(size);
1858 
1859 	sub_type_hdr->width = local_mem_info->vram_width;
1860 	sub_type_hdr->visibility_type = type;
1861 
1862 	return 0;
1863 }
1864 
1865 #ifdef CONFIG_ACPI_NUMA
1866 static void kfd_find_numa_node_in_srat(struct kfd_dev *kdev)
1867 {
1868 	struct acpi_table_header *table_header = NULL;
1869 	struct acpi_subtable_header *sub_header = NULL;
1870 	unsigned long table_end, subtable_len;
1871 	u32 pci_id = pci_domain_nr(kdev->pdev->bus) << 16 |
1872 			pci_dev_id(kdev->pdev);
1873 	u32 bdf;
1874 	acpi_status status;
1875 	struct acpi_srat_cpu_affinity *cpu;
1876 	struct acpi_srat_generic_affinity *gpu;
1877 	int pxm = 0, max_pxm = 0;
1878 	int numa_node = NUMA_NO_NODE;
1879 	bool found = false;
1880 
1881 	/* Fetch the SRAT table from ACPI */
1882 	status = acpi_get_table(ACPI_SIG_SRAT, 0, &table_header);
1883 	if (status == AE_NOT_FOUND) {
1884 		pr_warn("SRAT table not found\n");
1885 		return;
1886 	} else if (ACPI_FAILURE(status)) {
1887 		const char *err = acpi_format_exception(status);
1888 		pr_err("SRAT table error: %s\n", err);
1889 		return;
1890 	}
1891 
1892 	table_end = (unsigned long)table_header + table_header->length;
1893 
1894 	/* Parse all entries looking for a match. */
1895 	sub_header = (struct acpi_subtable_header *)
1896 			((unsigned long)table_header +
1897 			sizeof(struct acpi_table_srat));
1898 	subtable_len = sub_header->length;
1899 
1900 	while (((unsigned long)sub_header) + subtable_len  < table_end) {
1901 		/*
1902 		 * If length is 0, break from this loop to avoid
1903 		 * infinite loop.
1904 		 */
1905 		if (subtable_len == 0) {
1906 			pr_err("SRAT invalid zero length\n");
1907 			break;
1908 		}
1909 
1910 		switch (sub_header->type) {
1911 		case ACPI_SRAT_TYPE_CPU_AFFINITY:
1912 			cpu = (struct acpi_srat_cpu_affinity *)sub_header;
1913 			pxm = *((u32 *)cpu->proximity_domain_hi) << 8 |
1914 					cpu->proximity_domain_lo;
1915 			if (pxm > max_pxm)
1916 				max_pxm = pxm;
1917 			break;
1918 		case ACPI_SRAT_TYPE_GENERIC_AFFINITY:
1919 			gpu = (struct acpi_srat_generic_affinity *)sub_header;
1920 			bdf = *((u16 *)(&gpu->device_handle[0])) << 16 |
1921 					*((u16 *)(&gpu->device_handle[2]));
1922 			if (bdf == pci_id) {
1923 				found = true;
1924 				numa_node = pxm_to_node(gpu->proximity_domain);
1925 			}
1926 			break;
1927 		default:
1928 			break;
1929 		}
1930 
1931 		if (found)
1932 			break;
1933 
1934 		sub_header = (struct acpi_subtable_header *)
1935 				((unsigned long)sub_header + subtable_len);
1936 		subtable_len = sub_header->length;
1937 	}
1938 
1939 	acpi_put_table(table_header);
1940 
1941 	/* Workaround bad cpu-gpu binding case */
1942 	if (found && (numa_node < 0 ||
1943 			numa_node > pxm_to_node(max_pxm)))
1944 		numa_node = 0;
1945 
1946 	if (numa_node != NUMA_NO_NODE)
1947 		set_dev_node(&kdev->pdev->dev, numa_node);
1948 }
1949 #endif
1950 
1951 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1952  * to its NUMA node
1953  *	@avail_size: Available size in the memory
1954  *	@kdev - [IN] GPU device
1955  *	@sub_type_hdr: Memory into which io link info will be filled in
1956  *	@proximity_domain - proximity domain of the GPU node
1957  *
1958  *	Return 0 if successful else return -ve value
1959  */
1960 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1961 			struct kfd_dev *kdev,
1962 			struct crat_subtype_iolink *sub_type_hdr,
1963 			uint32_t proximity_domain)
1964 {
1965 	struct amdgpu_device *adev = (struct amdgpu_device *)kdev->kgd;
1966 
1967 	*avail_size -= sizeof(struct crat_subtype_iolink);
1968 	if (*avail_size < 0)
1969 		return -ENOMEM;
1970 
1971 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1972 
1973 	/* Fill in subtype header data */
1974 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1975 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1976 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1977 	if (kfd_dev_is_large_bar(kdev))
1978 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1979 
1980 	/* Fill in IOLINK subtype.
1981 	 * TODO: Fill-in other fields of iolink subtype
1982 	 */
1983 	if (adev->gmc.xgmi.connected_to_cpu) {
1984 		/*
1985 		 * with host gpu xgmi link, host can access gpu memory whether
1986 		 * or not pcie bar type is large, so always create bidirectional
1987 		 * io link.
1988 		 */
1989 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1990 		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1991 		sub_type_hdr->num_hops_xgmi = 1;
1992 	} else {
1993 		sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1994 	}
1995 
1996 	sub_type_hdr->proximity_domain_from = proximity_domain;
1997 
1998 #ifdef CONFIG_ACPI_NUMA
1999 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
2000 		kfd_find_numa_node_in_srat(kdev);
2001 #endif
2002 #ifdef CONFIG_NUMA
2003 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
2004 		sub_type_hdr->proximity_domain_to = 0;
2005 	else
2006 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
2007 #else
2008 	sub_type_hdr->proximity_domain_to = 0;
2009 #endif
2010 	return 0;
2011 }
2012 
2013 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
2014 			struct kfd_dev *kdev,
2015 			struct kfd_dev *peer_kdev,
2016 			struct crat_subtype_iolink *sub_type_hdr,
2017 			uint32_t proximity_domain_from,
2018 			uint32_t proximity_domain_to)
2019 {
2020 	*avail_size -= sizeof(struct crat_subtype_iolink);
2021 	if (*avail_size < 0)
2022 		return -ENOMEM;
2023 
2024 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
2025 
2026 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
2027 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
2028 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
2029 			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
2030 
2031 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
2032 	sub_type_hdr->proximity_domain_from = proximity_domain_from;
2033 	sub_type_hdr->proximity_domain_to = proximity_domain_to;
2034 	sub_type_hdr->num_hops_xgmi =
2035 		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
2036 	return 0;
2037 }
2038 
2039 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
2040  *
2041  *	@pcrat_image: Fill in VCRAT for GPU
2042  *	@size:	[IN] allocated size of crat_image.
2043  *		[OUT] actual size of data filled in crat_image
2044  */
2045 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
2046 				      size_t *size, struct kfd_dev *kdev,
2047 				      uint32_t proximity_domain)
2048 {
2049 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
2050 	struct crat_subtype_generic *sub_type_hdr;
2051 	struct kfd_local_mem_info local_mem_info;
2052 	struct kfd_topology_device *peer_dev;
2053 	struct crat_subtype_computeunit *cu;
2054 	struct kfd_cu_info cu_info;
2055 	int avail_size = *size;
2056 	uint32_t total_num_of_cu;
2057 	int num_of_cache_entries = 0;
2058 	int cache_mem_filled = 0;
2059 	uint32_t nid = 0;
2060 	int ret = 0;
2061 
2062 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
2063 		return -EINVAL;
2064 
2065 	/* Fill the CRAT Header.
2066 	 * Modify length and total_entries as subunits are added.
2067 	 */
2068 	avail_size -= sizeof(struct crat_header);
2069 	if (avail_size < 0)
2070 		return -ENOMEM;
2071 
2072 	memset(crat_table, 0, sizeof(struct crat_header));
2073 
2074 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
2075 			sizeof(crat_table->signature));
2076 	/* Change length as we add more subtypes*/
2077 	crat_table->length = sizeof(struct crat_header);
2078 	crat_table->num_domains = 1;
2079 	crat_table->total_entries = 0;
2080 
2081 	/* Fill in Subtype: Compute Unit
2082 	 * First fill in the sub type header and then sub type data
2083 	 */
2084 	avail_size -= sizeof(struct crat_subtype_computeunit);
2085 	if (avail_size < 0)
2086 		return -ENOMEM;
2087 
2088 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
2089 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
2090 
2091 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
2092 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
2093 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
2094 
2095 	/* Fill CU subtype data */
2096 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
2097 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
2098 	cu->proximity_domain = proximity_domain;
2099 
2100 	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
2101 	cu->num_simd_per_cu = cu_info.simd_per_cu;
2102 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
2103 	cu->max_waves_simd = cu_info.max_waves_per_simd;
2104 
2105 	cu->wave_front_size = cu_info.wave_front_size;
2106 	cu->array_count = cu_info.num_shader_arrays_per_engine *
2107 		cu_info.num_shader_engines;
2108 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
2109 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
2110 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
2111 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
2112 	cu->num_banks = cu_info.num_shader_engines;
2113 	cu->lds_size_in_kb = cu_info.lds_size;
2114 
2115 	cu->hsa_capability = 0;
2116 
2117 	/* Check if this node supports IOMMU. During parsing this flag will
2118 	 * translate to HSA_CAP_ATS_PRESENT
2119 	 */
2120 	if (!kfd_iommu_check_device(kdev))
2121 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
2122 
2123 	crat_table->length += sub_type_hdr->length;
2124 	crat_table->total_entries++;
2125 
2126 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
2127 	 * private FB), report memory as public. On other systems
2128 	 * report the total FB size (public+private) as a single
2129 	 * private heap.
2130 	 */
2131 	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
2132 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2133 			sub_type_hdr->length);
2134 
2135 	if (debug_largebar)
2136 		local_mem_info.local_mem_size_private = 0;
2137 
2138 	if (local_mem_info.local_mem_size_private == 0)
2139 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
2140 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
2141 				local_mem_info.local_mem_size_public,
2142 				(struct crat_subtype_memory *)sub_type_hdr,
2143 				proximity_domain,
2144 				&local_mem_info);
2145 	else
2146 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
2147 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
2148 				local_mem_info.local_mem_size_public +
2149 				local_mem_info.local_mem_size_private,
2150 				(struct crat_subtype_memory *)sub_type_hdr,
2151 				proximity_domain,
2152 				&local_mem_info);
2153 	if (ret < 0)
2154 		return ret;
2155 
2156 	crat_table->length += sizeof(struct crat_subtype_memory);
2157 	crat_table->total_entries++;
2158 
2159 	/* TODO: Fill in cache information. This information is NOT readily
2160 	 * available in KGD
2161 	 */
2162 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2163 		sub_type_hdr->length);
2164 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
2165 				avail_size,
2166 				&cu_info,
2167 				(struct crat_subtype_cache *)sub_type_hdr,
2168 				&cache_mem_filled,
2169 				&num_of_cache_entries);
2170 
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	crat_table->length += cache_mem_filled;
2175 	crat_table->total_entries += num_of_cache_entries;
2176 	avail_size -= cache_mem_filled;
2177 
2178 	/* Fill in Subtype: IO_LINKS
2179 	 *  Only direct links are added here which is Link from GPU to
2180 	 *  to its NUMA node. Indirect links are added by userspace.
2181 	 */
2182 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
2183 		cache_mem_filled);
2184 	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
2185 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
2186 
2187 	if (ret < 0)
2188 		return ret;
2189 
2190 	crat_table->length += sub_type_hdr->length;
2191 	crat_table->total_entries++;
2192 
2193 
2194 	/* Fill in Subtype: IO_LINKS
2195 	 * Direct links from GPU to other GPUs through xGMI.
2196 	 * We will loop GPUs that already be processed (with lower value
2197 	 * of proximity_domain), add the link for the GPUs with same
2198 	 * hive id (from this GPU to other GPU) . The reversed iolink
2199 	 * (from other GPU to this GPU) will be added
2200 	 * in kfd_parse_subtype_iolink.
2201 	 */
2202 	if (kdev->hive_id) {
2203 		for (nid = 0; nid < proximity_domain; ++nid) {
2204 			peer_dev = kfd_topology_device_by_proximity_domain(nid);
2205 			if (!peer_dev->gpu)
2206 				continue;
2207 			if (peer_dev->gpu->hive_id != kdev->hive_id)
2208 				continue;
2209 			sub_type_hdr = (typeof(sub_type_hdr))(
2210 				(char *)sub_type_hdr +
2211 				sizeof(struct crat_subtype_iolink));
2212 			ret = kfd_fill_gpu_xgmi_link_to_gpu(
2213 				&avail_size, kdev, peer_dev->gpu,
2214 				(struct crat_subtype_iolink *)sub_type_hdr,
2215 				proximity_domain, nid);
2216 			if (ret < 0)
2217 				return ret;
2218 			crat_table->length += sub_type_hdr->length;
2219 			crat_table->total_entries++;
2220 		}
2221 	}
2222 	*size = crat_table->length;
2223 	pr_info("Virtual CRAT table created for GPU\n");
2224 
2225 	return ret;
2226 }
2227 
2228 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
2229  *		creates a Virtual CRAT (VCRAT) image
2230  *
2231  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
2232  *
2233  *	@crat_image: VCRAT image created because ACPI does not have a
2234  *		     CRAT for this device
2235  *	@size: [OUT] size of virtual crat_image
2236  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
2237  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
2238  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
2239  *			-- this option is not currently implemented.
2240  *			The assumption is that all AMD APUs will have CRAT
2241  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
2242  *
2243  *	Return 0 if successful else return -ve value
2244  */
2245 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
2246 				  int flags, struct kfd_dev *kdev,
2247 				  uint32_t proximity_domain)
2248 {
2249 	void *pcrat_image = NULL;
2250 	int ret = 0, num_nodes;
2251 	size_t dyn_size;
2252 
2253 	if (!crat_image)
2254 		return -EINVAL;
2255 
2256 	*crat_image = NULL;
2257 
2258 	/* Allocate the CPU Virtual CRAT size based on the number of online
2259 	 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
2260 	 * This should cover all the current conditions. A check is put not
2261 	 * to overwrite beyond allocated size for GPUs
2262 	 */
2263 	switch (flags) {
2264 	case COMPUTE_UNIT_CPU:
2265 		num_nodes = num_online_nodes();
2266 		dyn_size = sizeof(struct crat_header) +
2267 			num_nodes * (sizeof(struct crat_subtype_computeunit) +
2268 			sizeof(struct crat_subtype_memory) +
2269 			(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
2270 		pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
2271 		if (!pcrat_image)
2272 			return -ENOMEM;
2273 		*size = dyn_size;
2274 		pr_debug("CRAT size is %ld", dyn_size);
2275 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
2276 		break;
2277 	case COMPUTE_UNIT_GPU:
2278 		if (!kdev)
2279 			return -EINVAL;
2280 		pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
2281 		if (!pcrat_image)
2282 			return -ENOMEM;
2283 		*size = VCRAT_SIZE_FOR_GPU;
2284 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
2285 						 proximity_domain);
2286 		break;
2287 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
2288 		/* TODO: */
2289 		ret = -EINVAL;
2290 		pr_err("VCRAT not implemented for APU\n");
2291 		break;
2292 	default:
2293 		ret = -EINVAL;
2294 	}
2295 
2296 	if (!ret)
2297 		*crat_image = pcrat_image;
2298 	else
2299 		kvfree(pcrat_image);
2300 
2301 	return ret;
2302 }
2303 
2304 
2305 /* kfd_destroy_crat_image
2306  *
2307  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
2308  *
2309  */
2310 void kfd_destroy_crat_image(void *crat_image)
2311 {
2312 	kvfree(crat_image);
2313 }
2314