xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_crat.c (revision 2359ccdd)
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 
30 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
31  * GPU processor ID are expressed with Bit[31]=1.
32  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
33  * used in the CRAT.
34  */
35 static uint32_t gpu_processor_id_low = 0x80001000;
36 
37 /* Return the next available gpu_processor_id and increment it for next GPU
38  *	@total_cu_count - Total CUs present in the GPU including ones
39  *			  masked off
40  */
41 static inline unsigned int get_and_inc_gpu_processor_id(
42 				unsigned int total_cu_count)
43 {
44 	int current_id = gpu_processor_id_low;
45 
46 	gpu_processor_id_low += total_cu_count;
47 	return current_id;
48 }
49 
50 /* Static table to describe GPU Cache information */
51 struct kfd_gpu_cache_info {
52 	uint32_t	cache_size;
53 	uint32_t	cache_level;
54 	uint32_t	flags;
55 	/* Indicates how many Compute Units share this cache
56 	 * Value = 1 indicates the cache is not shared
57 	 */
58 	uint32_t	num_cu_shared;
59 };
60 
61 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
62 	{
63 		/* TCP L1 Cache per CU */
64 		.cache_size = 16,
65 		.cache_level = 1,
66 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
67 				CRAT_CACHE_FLAGS_DATA_CACHE |
68 				CRAT_CACHE_FLAGS_SIMD_CACHE),
69 		.num_cu_shared = 1,
70 
71 	},
72 	{
73 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
74 		.cache_size = 16,
75 		.cache_level = 1,
76 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
77 				CRAT_CACHE_FLAGS_INST_CACHE |
78 				CRAT_CACHE_FLAGS_SIMD_CACHE),
79 		.num_cu_shared = 2,
80 	},
81 	{
82 		/* Scalar L1 Data Cache (in SQC module) per bank */
83 		.cache_size = 8,
84 		.cache_level = 1,
85 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
86 				CRAT_CACHE_FLAGS_DATA_CACHE |
87 				CRAT_CACHE_FLAGS_SIMD_CACHE),
88 		.num_cu_shared = 2,
89 	},
90 
91 	/* TODO: Add L2 Cache information */
92 };
93 
94 
95 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
96 	{
97 		/* TCP L1 Cache per CU */
98 		.cache_size = 16,
99 		.cache_level = 1,
100 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
101 				CRAT_CACHE_FLAGS_DATA_CACHE |
102 				CRAT_CACHE_FLAGS_SIMD_CACHE),
103 		.num_cu_shared = 1,
104 	},
105 	{
106 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
107 		.cache_size = 8,
108 		.cache_level = 1,
109 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
110 				CRAT_CACHE_FLAGS_INST_CACHE |
111 				CRAT_CACHE_FLAGS_SIMD_CACHE),
112 		.num_cu_shared = 4,
113 	},
114 	{
115 		/* Scalar L1 Data Cache (in SQC module) per bank. */
116 		.cache_size = 4,
117 		.cache_level = 1,
118 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
119 				CRAT_CACHE_FLAGS_DATA_CACHE |
120 				CRAT_CACHE_FLAGS_SIMD_CACHE),
121 		.num_cu_shared = 4,
122 	},
123 
124 	/* TODO: Add L2 Cache information */
125 };
126 
127 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
128  * the following ASICs may need a separate table.
129  */
130 #define hawaii_cache_info kaveri_cache_info
131 #define tonga_cache_info carrizo_cache_info
132 #define fiji_cache_info  carrizo_cache_info
133 #define polaris10_cache_info carrizo_cache_info
134 #define polaris11_cache_info carrizo_cache_info
135 
136 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
137 		struct crat_subtype_computeunit *cu)
138 {
139 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
140 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
141 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
142 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
143 
144 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
145 			cu->processor_id_low);
146 }
147 
148 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
149 		struct crat_subtype_computeunit *cu)
150 {
151 	dev->node_props.simd_id_base = cu->processor_id_low;
152 	dev->node_props.simd_count = cu->num_simd_cores;
153 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
154 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
155 	dev->node_props.wave_front_size = cu->wave_front_size;
156 	dev->node_props.array_count = cu->array_count;
157 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
158 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
159 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
160 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
161 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
162 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
163 }
164 
165 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
166  * topology device present in the device_list
167  */
168 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
169 				struct list_head *device_list)
170 {
171 	struct kfd_topology_device *dev;
172 
173 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
174 			cu->proximity_domain, cu->hsa_capability);
175 	list_for_each_entry(dev, device_list, list) {
176 		if (cu->proximity_domain == dev->proximity_domain) {
177 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
178 				kfd_populated_cu_info_cpu(dev, cu);
179 
180 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
181 				kfd_populated_cu_info_gpu(dev, cu);
182 			break;
183 		}
184 	}
185 
186 	return 0;
187 }
188 
189 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
190  * topology device present in the device_list
191  */
192 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
193 				struct list_head *device_list)
194 {
195 	struct kfd_mem_properties *props;
196 	struct kfd_topology_device *dev;
197 
198 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
199 			mem->proximity_domain);
200 	list_for_each_entry(dev, device_list, list) {
201 		if (mem->proximity_domain == dev->proximity_domain) {
202 			props = kfd_alloc_struct(props);
203 			if (!props)
204 				return -ENOMEM;
205 
206 			/* We're on GPU node */
207 			if (dev->node_props.cpu_cores_count == 0) {
208 				/* APU */
209 				if (mem->visibility_type == 0)
210 					props->heap_type =
211 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
212 				/* dGPU */
213 				else
214 					props->heap_type = mem->visibility_type;
215 			} else
216 				props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
217 
218 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
219 				props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
220 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
221 				props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
222 
223 			props->size_in_bytes =
224 				((uint64_t)mem->length_high << 32) +
225 							mem->length_low;
226 			props->width = mem->width;
227 
228 			dev->node_props.mem_banks_count++;
229 			list_add_tail(&props->list, &dev->mem_props);
230 
231 			break;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
239  * topology device present in the device_list
240  */
241 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
242 			struct list_head *device_list)
243 {
244 	struct kfd_cache_properties *props;
245 	struct kfd_topology_device *dev;
246 	uint32_t id;
247 	uint32_t total_num_of_cu;
248 
249 	id = cache->processor_id_low;
250 
251 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
252 	list_for_each_entry(dev, device_list, list) {
253 		total_num_of_cu = (dev->node_props.array_count *
254 					dev->node_props.cu_per_simd_array);
255 
256 		/* Cache infomration in CRAT doesn't have proximity_domain
257 		 * information as it is associated with a CPU core or GPU
258 		 * Compute Unit. So map the cache using CPU core Id or SIMD
259 		 * (GPU) ID.
260 		 * TODO: This works because currently we can safely assume that
261 		 *  Compute Units are parsed before caches are parsed. In
262 		 *  future, remove this dependency
263 		 */
264 		if ((id >= dev->node_props.cpu_core_id_base &&
265 			id <= dev->node_props.cpu_core_id_base +
266 				dev->node_props.cpu_cores_count) ||
267 			(id >= dev->node_props.simd_id_base &&
268 			id < dev->node_props.simd_id_base +
269 				total_num_of_cu)) {
270 			props = kfd_alloc_struct(props);
271 			if (!props)
272 				return -ENOMEM;
273 
274 			props->processor_id_low = id;
275 			props->cache_level = cache->cache_level;
276 			props->cache_size = cache->cache_size;
277 			props->cacheline_size = cache->cache_line_size;
278 			props->cachelines_per_tag = cache->lines_per_tag;
279 			props->cache_assoc = cache->associativity;
280 			props->cache_latency = cache->cache_latency;
281 			memcpy(props->sibling_map, cache->sibling_map,
282 					sizeof(props->sibling_map));
283 
284 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
285 				props->cache_type |= HSA_CACHE_TYPE_DATA;
286 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
287 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
288 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
289 				props->cache_type |= HSA_CACHE_TYPE_CPU;
290 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
291 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
292 
293 			dev->cache_count++;
294 			dev->node_props.caches_count++;
295 			list_add_tail(&props->list, &dev->cache_props);
296 
297 			break;
298 		}
299 	}
300 
301 	return 0;
302 }
303 
304 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
305  * topology device present in the device_list
306  */
307 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
308 					struct list_head *device_list)
309 {
310 	struct kfd_iolink_properties *props = NULL, *props2;
311 	struct kfd_topology_device *dev, *cpu_dev;
312 	uint32_t id_from;
313 	uint32_t id_to;
314 
315 	id_from = iolink->proximity_domain_from;
316 	id_to = iolink->proximity_domain_to;
317 
318 	pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
319 			id_from);
320 	list_for_each_entry(dev, device_list, list) {
321 		if (id_from == dev->proximity_domain) {
322 			props = kfd_alloc_struct(props);
323 			if (!props)
324 				return -ENOMEM;
325 
326 			props->node_from = id_from;
327 			props->node_to = id_to;
328 			props->ver_maj = iolink->version_major;
329 			props->ver_min = iolink->version_minor;
330 			props->iolink_type = iolink->io_interface_type;
331 
332 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
333 				props->weight = 20;
334 			else
335 				props->weight = node_distance(id_from, id_to);
336 
337 			props->min_latency = iolink->minimum_latency;
338 			props->max_latency = iolink->maximum_latency;
339 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
340 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
341 			props->rec_transfer_size =
342 					iolink->recommended_transfer_size;
343 
344 			dev->io_link_count++;
345 			dev->node_props.io_links_count++;
346 			list_add_tail(&props->list, &dev->io_link_props);
347 			break;
348 		}
349 	}
350 
351 	/* CPU topology is created before GPUs are detected, so CPU->GPU
352 	 * links are not built at that time. If a PCIe type is discovered, it
353 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
354 	 * At this time, also add the corresponded CPU->GPU link.
355 	 */
356 	if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
357 		cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
358 		if (!cpu_dev)
359 			return -ENODEV;
360 		/* same everything but the other direction */
361 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
362 		props2->node_from = id_to;
363 		props2->node_to = id_from;
364 		props2->kobj = NULL;
365 		cpu_dev->io_link_count++;
366 		cpu_dev->node_props.io_links_count++;
367 		list_add_tail(&props2->list, &cpu_dev->io_link_props);
368 	}
369 
370 	return 0;
371 }
372 
373 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
374  * present in the device_list
375  *	@sub_type_hdr - subtype section of crat_image
376  *	@device_list - list of topology devices present in this crat_image
377  */
378 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
379 				struct list_head *device_list)
380 {
381 	struct crat_subtype_computeunit *cu;
382 	struct crat_subtype_memory *mem;
383 	struct crat_subtype_cache *cache;
384 	struct crat_subtype_iolink *iolink;
385 	int ret = 0;
386 
387 	switch (sub_type_hdr->type) {
388 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
389 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
390 		ret = kfd_parse_subtype_cu(cu, device_list);
391 		break;
392 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
393 		mem = (struct crat_subtype_memory *)sub_type_hdr;
394 		ret = kfd_parse_subtype_mem(mem, device_list);
395 		break;
396 	case CRAT_SUBTYPE_CACHE_AFFINITY:
397 		cache = (struct crat_subtype_cache *)sub_type_hdr;
398 		ret = kfd_parse_subtype_cache(cache, device_list);
399 		break;
400 	case CRAT_SUBTYPE_TLB_AFFINITY:
401 		/*
402 		 * For now, nothing to do here
403 		 */
404 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
405 		break;
406 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
407 		/*
408 		 * For now, nothing to do here
409 		 */
410 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
411 		break;
412 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
413 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
414 		ret = kfd_parse_subtype_iolink(iolink, device_list);
415 		break;
416 	default:
417 		pr_warn("Unknown subtype %d in CRAT\n",
418 				sub_type_hdr->type);
419 	}
420 
421 	return ret;
422 }
423 
424 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
425  * create a kfd_topology_device and add in to device_list. Also parse
426  * CRAT subtypes and attach it to appropriate kfd_topology_device
427  *	@crat_image - input image containing CRAT
428  *	@device_list - [OUT] list of kfd_topology_device generated after
429  *		       parsing crat_image
430  *	@proximity_domain - Proximity domain of the first device in the table
431  *
432  *	Return - 0 if successful else -ve value
433  */
434 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
435 			 uint32_t proximity_domain)
436 {
437 	struct kfd_topology_device *top_dev = NULL;
438 	struct crat_subtype_generic *sub_type_hdr;
439 	uint16_t node_id;
440 	int ret = 0;
441 	struct crat_header *crat_table = (struct crat_header *)crat_image;
442 	uint16_t num_nodes;
443 	uint32_t image_len;
444 
445 	if (!crat_image)
446 		return -EINVAL;
447 
448 	if (!list_empty(device_list)) {
449 		pr_warn("Error device list should be empty\n");
450 		return -EINVAL;
451 	}
452 
453 	num_nodes = crat_table->num_domains;
454 	image_len = crat_table->length;
455 
456 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
457 
458 	for (node_id = 0; node_id < num_nodes; node_id++) {
459 		top_dev = kfd_create_topology_device(device_list);
460 		if (!top_dev)
461 			break;
462 		top_dev->proximity_domain = proximity_domain++;
463 	}
464 
465 	if (!top_dev) {
466 		ret = -ENOMEM;
467 		goto err;
468 	}
469 
470 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
471 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
472 			CRAT_OEMTABLEID_LENGTH);
473 	top_dev->oem_revision = crat_table->oem_revision;
474 
475 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
476 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
477 			((char *)crat_image) + image_len) {
478 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
479 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
480 			if (ret)
481 				break;
482 		}
483 
484 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
485 				sub_type_hdr->length);
486 	}
487 
488 err:
489 	if (ret)
490 		kfd_release_topology_device_list(device_list);
491 
492 	return ret;
493 }
494 
495 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
496 static int fill_in_pcache(struct crat_subtype_cache *pcache,
497 				struct kfd_gpu_cache_info *pcache_info,
498 				struct kfd_cu_info *cu_info,
499 				int mem_available,
500 				int cu_bitmask,
501 				int cache_type, unsigned int cu_processor_id,
502 				int cu_block)
503 {
504 	unsigned int cu_sibling_map_mask;
505 	int first_active_cu;
506 
507 	/* First check if enough memory is available */
508 	if (sizeof(struct crat_subtype_cache) > mem_available)
509 		return -ENOMEM;
510 
511 	cu_sibling_map_mask = cu_bitmask;
512 	cu_sibling_map_mask >>= cu_block;
513 	cu_sibling_map_mask &=
514 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
515 	first_active_cu = ffs(cu_sibling_map_mask);
516 
517 	/* CU could be inactive. In case of shared cache find the first active
518 	 * CU. and incase of non-shared cache check if the CU is inactive. If
519 	 * inactive active skip it
520 	 */
521 	if (first_active_cu) {
522 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
523 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
524 		pcache->length = sizeof(struct crat_subtype_cache);
525 		pcache->flags = pcache_info[cache_type].flags;
526 		pcache->processor_id_low = cu_processor_id
527 					 + (first_active_cu - 1);
528 		pcache->cache_level = pcache_info[cache_type].cache_level;
529 		pcache->cache_size = pcache_info[cache_type].cache_size;
530 
531 		/* Sibling map is w.r.t processor_id_low, so shift out
532 		 * inactive CU
533 		 */
534 		cu_sibling_map_mask =
535 			cu_sibling_map_mask >> (first_active_cu - 1);
536 
537 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
538 		pcache->sibling_map[1] =
539 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
540 		pcache->sibling_map[2] =
541 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
542 		pcache->sibling_map[3] =
543 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
544 		return 0;
545 	}
546 	return 1;
547 }
548 
549 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
550  * tables
551  *
552  *	@kdev - [IN] GPU device
553  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
554  *			    associate
555  *	@available_size - [IN] Amount of memory available in pcache
556  *	@cu_info - [IN] Compute Unit info obtained from KGD
557  *	@pcache - [OUT] memory into which cache data is to be filled in.
558  *	@size_filled - [OUT] amount of data used up in pcache.
559  *	@num_of_entries - [OUT] number of caches added
560  */
561 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
562 			int gpu_processor_id,
563 			int available_size,
564 			struct kfd_cu_info *cu_info,
565 			struct crat_subtype_cache *pcache,
566 			int *size_filled,
567 			int *num_of_entries)
568 {
569 	struct kfd_gpu_cache_info *pcache_info;
570 	int num_of_cache_types = 0;
571 	int i, j, k;
572 	int ct = 0;
573 	int mem_available = available_size;
574 	unsigned int cu_processor_id;
575 	int ret;
576 
577 	switch (kdev->device_info->asic_family) {
578 	case CHIP_KAVERI:
579 		pcache_info = kaveri_cache_info;
580 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
581 		break;
582 	case CHIP_HAWAII:
583 		pcache_info = hawaii_cache_info;
584 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
585 		break;
586 	case CHIP_CARRIZO:
587 		pcache_info = carrizo_cache_info;
588 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
589 		break;
590 	case CHIP_TONGA:
591 		pcache_info = tonga_cache_info;
592 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
593 		break;
594 	case CHIP_FIJI:
595 		pcache_info = fiji_cache_info;
596 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
597 		break;
598 	case CHIP_POLARIS10:
599 		pcache_info = polaris10_cache_info;
600 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
601 		break;
602 	case CHIP_POLARIS11:
603 		pcache_info = polaris11_cache_info;
604 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 
610 	*size_filled = 0;
611 	*num_of_entries = 0;
612 
613 	/* For each type of cache listed in the kfd_gpu_cache_info table,
614 	 * go through all available Compute Units.
615 	 * The [i,j,k] loop will
616 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
617 	 *			will parse through all available CU
618 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
619 	 *			then it will consider only one CU from
620 	 *			the shared unit
621 	 */
622 
623 	for (ct = 0; ct < num_of_cache_types; ct++) {
624 		cu_processor_id = gpu_processor_id;
625 		for (i = 0; i < cu_info->num_shader_engines; i++) {
626 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
627 				j++) {
628 				for (k = 0; k < cu_info->num_cu_per_sh;
629 					k += pcache_info[ct].num_cu_shared) {
630 
631 					ret = fill_in_pcache(pcache,
632 						pcache_info,
633 						cu_info,
634 						mem_available,
635 						cu_info->cu_bitmap[i][j],
636 						ct,
637 						cu_processor_id,
638 						k);
639 
640 					if (ret < 0)
641 						break;
642 
643 					if (!ret) {
644 						pcache++;
645 						(*num_of_entries)++;
646 						mem_available -=
647 							sizeof(*pcache);
648 						(*size_filled) +=
649 							sizeof(*pcache);
650 					}
651 
652 					/* Move to next CU block */
653 					cu_processor_id +=
654 						pcache_info[ct].num_cu_shared;
655 				}
656 			}
657 		}
658 	}
659 
660 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
661 
662 	return 0;
663 }
664 
665 /*
666  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
667  * copies CRAT from ACPI (if available).
668  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
669  *
670  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
671  *		     crat_image will be NULL
672  *	@size: [OUT] size of crat_image
673  *
674  *	Return 0 if successful else return error code
675  */
676 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
677 {
678 	struct acpi_table_header *crat_table;
679 	acpi_status status;
680 	void *pcrat_image;
681 
682 	if (!crat_image)
683 		return -EINVAL;
684 
685 	*crat_image = NULL;
686 
687 	/* Fetch the CRAT table from ACPI */
688 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
689 	if (status == AE_NOT_FOUND) {
690 		pr_warn("CRAT table not found\n");
691 		return -ENODATA;
692 	} else if (ACPI_FAILURE(status)) {
693 		const char *err = acpi_format_exception(status);
694 
695 		pr_err("CRAT table error: %s\n", err);
696 		return -EINVAL;
697 	}
698 
699 	if (ignore_crat) {
700 		pr_info("CRAT table disabled by module option\n");
701 		return -ENODATA;
702 	}
703 
704 	pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
705 	if (!pcrat_image)
706 		return -ENOMEM;
707 
708 	memcpy(pcrat_image, crat_table, crat_table->length);
709 
710 	*crat_image = pcrat_image;
711 	*size = crat_table->length;
712 
713 	return 0;
714 }
715 
716 /* Memory required to create Virtual CRAT.
717  * Since there is no easy way to predict the amount of memory required, the
718  * following amount are allocated for CPU and GPU Virtual CRAT. This is
719  * expected to cover all known conditions. But to be safe additional check
720  * is put in the code to ensure we don't overwrite.
721  */
722 #define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
723 #define VCRAT_SIZE_FOR_GPU	(3 * PAGE_SIZE)
724 
725 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
726  *
727  *	@numa_node_id: CPU NUMA node id
728  *	@avail_size: Available size in the memory
729  *	@sub_type_hdr: Memory into which compute info will be filled in
730  *
731  *	Return 0 if successful else return -ve value
732  */
733 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
734 				int proximity_domain,
735 				struct crat_subtype_computeunit *sub_type_hdr)
736 {
737 	const struct cpumask *cpumask;
738 
739 	*avail_size -= sizeof(struct crat_subtype_computeunit);
740 	if (*avail_size < 0)
741 		return -ENOMEM;
742 
743 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
744 
745 	/* Fill in subtype header data */
746 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
747 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
748 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
749 
750 	cpumask = cpumask_of_node(numa_node_id);
751 
752 	/* Fill in CU data */
753 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
754 	sub_type_hdr->proximity_domain = proximity_domain;
755 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
756 	if (sub_type_hdr->processor_id_low == -1)
757 		return -EINVAL;
758 
759 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
760 
761 	return 0;
762 }
763 
764 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
765  *
766  *	@numa_node_id: CPU NUMA node id
767  *	@avail_size: Available size in the memory
768  *	@sub_type_hdr: Memory into which compute info will be filled in
769  *
770  *	Return 0 if successful else return -ve value
771  */
772 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
773 			int proximity_domain,
774 			struct crat_subtype_memory *sub_type_hdr)
775 {
776 	uint64_t mem_in_bytes = 0;
777 	pg_data_t *pgdat;
778 	int zone_type;
779 
780 	*avail_size -= sizeof(struct crat_subtype_memory);
781 	if (*avail_size < 0)
782 		return -ENOMEM;
783 
784 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
785 
786 	/* Fill in subtype header data */
787 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
788 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
789 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
790 
791 	/* Fill in Memory Subunit data */
792 
793 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
794 	 * the following lines are duplicated from si_meminfo_node
795 	 * function
796 	 */
797 	pgdat = NODE_DATA(numa_node_id);
798 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
799 		mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
800 	mem_in_bytes <<= PAGE_SHIFT;
801 
802 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
803 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
804 	sub_type_hdr->proximity_domain = proximity_domain;
805 
806 	return 0;
807 }
808 
809 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
810 				uint32_t *num_entries,
811 				struct crat_subtype_iolink *sub_type_hdr)
812 {
813 	int nid;
814 	struct cpuinfo_x86 *c = &cpu_data(0);
815 	uint8_t link_type;
816 
817 	if (c->x86_vendor == X86_VENDOR_AMD)
818 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
819 	else
820 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
821 
822 	*num_entries = 0;
823 
824 	/* Create IO links from this node to other CPU nodes */
825 	for_each_online_node(nid) {
826 		if (nid == numa_node_id) /* node itself */
827 			continue;
828 
829 		*avail_size -= sizeof(struct crat_subtype_iolink);
830 		if (*avail_size < 0)
831 			return -ENOMEM;
832 
833 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
834 
835 		/* Fill in subtype header data */
836 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
837 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
838 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
839 
840 		/* Fill in IO link data */
841 		sub_type_hdr->proximity_domain_from = numa_node_id;
842 		sub_type_hdr->proximity_domain_to = nid;
843 		sub_type_hdr->io_interface_type = link_type;
844 
845 		(*num_entries)++;
846 		sub_type_hdr++;
847 	}
848 
849 	return 0;
850 }
851 
852 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
853  *
854  *	@pcrat_image: Fill in VCRAT for CPU
855  *	@size:	[IN] allocated size of crat_image.
856  *		[OUT] actual size of data filled in crat_image
857  */
858 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
859 {
860 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
861 	struct acpi_table_header *acpi_table;
862 	acpi_status status;
863 	struct crat_subtype_generic *sub_type_hdr;
864 	int avail_size = *size;
865 	int numa_node_id;
866 	uint32_t entries = 0;
867 	int ret = 0;
868 
869 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
870 		return -EINVAL;
871 
872 	/* Fill in CRAT Header.
873 	 * Modify length and total_entries as subunits are added.
874 	 */
875 	avail_size -= sizeof(struct crat_header);
876 	if (avail_size < 0)
877 		return -ENOMEM;
878 
879 	memset(crat_table, 0, sizeof(struct crat_header));
880 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
881 			sizeof(crat_table->signature));
882 	crat_table->length = sizeof(struct crat_header);
883 
884 	status = acpi_get_table("DSDT", 0, &acpi_table);
885 	if (status != AE_OK)
886 		pr_warn("DSDT table not found for OEM information\n");
887 	else {
888 		crat_table->oem_revision = acpi_table->revision;
889 		memcpy(crat_table->oem_id, acpi_table->oem_id,
890 				CRAT_OEMID_LENGTH);
891 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
892 				CRAT_OEMTABLEID_LENGTH);
893 	}
894 	crat_table->total_entries = 0;
895 	crat_table->num_domains = 0;
896 
897 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
898 
899 	for_each_online_node(numa_node_id) {
900 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
901 			continue;
902 
903 		/* Fill in Subtype: Compute Unit */
904 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
905 			crat_table->num_domains,
906 			(struct crat_subtype_computeunit *)sub_type_hdr);
907 		if (ret < 0)
908 			return ret;
909 		crat_table->length += sub_type_hdr->length;
910 		crat_table->total_entries++;
911 
912 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
913 			sub_type_hdr->length);
914 
915 		/* Fill in Subtype: Memory */
916 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
917 			crat_table->num_domains,
918 			(struct crat_subtype_memory *)sub_type_hdr);
919 		if (ret < 0)
920 			return ret;
921 		crat_table->length += sub_type_hdr->length;
922 		crat_table->total_entries++;
923 
924 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
925 			sub_type_hdr->length);
926 
927 		/* Fill in Subtype: IO Link */
928 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
929 				&entries,
930 				(struct crat_subtype_iolink *)sub_type_hdr);
931 		if (ret < 0)
932 			return ret;
933 		crat_table->length += (sub_type_hdr->length * entries);
934 		crat_table->total_entries += entries;
935 
936 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
937 				sub_type_hdr->length * entries);
938 
939 		crat_table->num_domains++;
940 	}
941 
942 	/* TODO: Add cache Subtype for CPU.
943 	 * Currently, CPU cache information is available in function
944 	 * detect_cache_attributes(cpu) defined in the file
945 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
946 	 * exported and to get the same information the code needs to be
947 	 * duplicated.
948 	 */
949 
950 	*size = crat_table->length;
951 	pr_info("Virtual CRAT table created for CPU\n");
952 
953 	return 0;
954 }
955 
956 static int kfd_fill_gpu_memory_affinity(int *avail_size,
957 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
958 		struct crat_subtype_memory *sub_type_hdr,
959 		uint32_t proximity_domain,
960 		const struct kfd_local_mem_info *local_mem_info)
961 {
962 	*avail_size -= sizeof(struct crat_subtype_memory);
963 	if (*avail_size < 0)
964 		return -ENOMEM;
965 
966 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
967 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
968 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
969 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
970 
971 	sub_type_hdr->proximity_domain = proximity_domain;
972 
973 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
974 			type, size);
975 
976 	sub_type_hdr->length_low = lower_32_bits(size);
977 	sub_type_hdr->length_high = upper_32_bits(size);
978 
979 	sub_type_hdr->width = local_mem_info->vram_width;
980 	sub_type_hdr->visibility_type = type;
981 
982 	return 0;
983 }
984 
985 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
986  * to its NUMA node
987  *	@avail_size: Available size in the memory
988  *	@kdev - [IN] GPU device
989  *	@sub_type_hdr: Memory into which io link info will be filled in
990  *	@proximity_domain - proximity domain of the GPU node
991  *
992  *	Return 0 if successful else return -ve value
993  */
994 static int kfd_fill_gpu_direct_io_link(int *avail_size,
995 			struct kfd_dev *kdev,
996 			struct crat_subtype_iolink *sub_type_hdr,
997 			uint32_t proximity_domain)
998 {
999 	*avail_size -= sizeof(struct crat_subtype_iolink);
1000 	if (*avail_size < 0)
1001 		return -ENOMEM;
1002 
1003 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1004 
1005 	/* Fill in subtype header data */
1006 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1007 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1008 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1009 
1010 	/* Fill in IOLINK subtype.
1011 	 * TODO: Fill-in other fields of iolink subtype
1012 	 */
1013 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1014 	sub_type_hdr->proximity_domain_from = proximity_domain;
1015 #ifdef CONFIG_NUMA
1016 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1017 		sub_type_hdr->proximity_domain_to = 0;
1018 	else
1019 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1020 #else
1021 	sub_type_hdr->proximity_domain_to = 0;
1022 #endif
1023 	return 0;
1024 }
1025 
1026 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1027  *
1028  *	@pcrat_image: Fill in VCRAT for GPU
1029  *	@size:	[IN] allocated size of crat_image.
1030  *		[OUT] actual size of data filled in crat_image
1031  */
1032 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1033 				      size_t *size, struct kfd_dev *kdev,
1034 				      uint32_t proximity_domain)
1035 {
1036 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1037 	struct crat_subtype_generic *sub_type_hdr;
1038 	struct crat_subtype_computeunit *cu;
1039 	struct kfd_cu_info cu_info;
1040 	int avail_size = *size;
1041 	uint32_t total_num_of_cu;
1042 	int num_of_cache_entries = 0;
1043 	int cache_mem_filled = 0;
1044 	int ret = 0;
1045 	struct kfd_local_mem_info local_mem_info;
1046 
1047 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1048 		return -EINVAL;
1049 
1050 	/* Fill the CRAT Header.
1051 	 * Modify length and total_entries as subunits are added.
1052 	 */
1053 	avail_size -= sizeof(struct crat_header);
1054 	if (avail_size < 0)
1055 		return -ENOMEM;
1056 
1057 	memset(crat_table, 0, sizeof(struct crat_header));
1058 
1059 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1060 			sizeof(crat_table->signature));
1061 	/* Change length as we add more subtypes*/
1062 	crat_table->length = sizeof(struct crat_header);
1063 	crat_table->num_domains = 1;
1064 	crat_table->total_entries = 0;
1065 
1066 	/* Fill in Subtype: Compute Unit
1067 	 * First fill in the sub type header and then sub type data
1068 	 */
1069 	avail_size -= sizeof(struct crat_subtype_computeunit);
1070 	if (avail_size < 0)
1071 		return -ENOMEM;
1072 
1073 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1074 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1075 
1076 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1077 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1078 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1079 
1080 	/* Fill CU subtype data */
1081 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1082 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1083 	cu->proximity_domain = proximity_domain;
1084 
1085 	kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
1086 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1087 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1088 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1089 
1090 	cu->wave_front_size = cu_info.wave_front_size;
1091 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1092 		cu_info.num_shader_engines;
1093 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1094 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1095 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1096 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1097 	cu->num_banks = cu_info.num_shader_engines;
1098 	cu->lds_size_in_kb = cu_info.lds_size;
1099 
1100 	cu->hsa_capability = 0;
1101 
1102 	/* Check if this node supports IOMMU. During parsing this flag will
1103 	 * translate to HSA_CAP_ATS_PRESENT
1104 	 */
1105 	if (!kfd_iommu_check_device(kdev))
1106 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1107 
1108 	crat_table->length += sub_type_hdr->length;
1109 	crat_table->total_entries++;
1110 
1111 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1112 	 * private FB), report memory as public. On other systems
1113 	 * report the total FB size (public+private) as a single
1114 	 * private heap.
1115 	 */
1116 	kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
1117 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1118 			sub_type_hdr->length);
1119 
1120 	if (debug_largebar)
1121 		local_mem_info.local_mem_size_private = 0;
1122 
1123 	if (local_mem_info.local_mem_size_private == 0)
1124 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1125 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1126 				local_mem_info.local_mem_size_public,
1127 				(struct crat_subtype_memory *)sub_type_hdr,
1128 				proximity_domain,
1129 				&local_mem_info);
1130 	else
1131 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1132 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1133 				local_mem_info.local_mem_size_public +
1134 				local_mem_info.local_mem_size_private,
1135 				(struct crat_subtype_memory *)sub_type_hdr,
1136 				proximity_domain,
1137 				&local_mem_info);
1138 	if (ret < 0)
1139 		return ret;
1140 
1141 	crat_table->length += sizeof(struct crat_subtype_memory);
1142 	crat_table->total_entries++;
1143 
1144 	/* TODO: Fill in cache information. This information is NOT readily
1145 	 * available in KGD
1146 	 */
1147 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1148 		sub_type_hdr->length);
1149 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1150 				avail_size,
1151 				&cu_info,
1152 				(struct crat_subtype_cache *)sub_type_hdr,
1153 				&cache_mem_filled,
1154 				&num_of_cache_entries);
1155 
1156 	if (ret < 0)
1157 		return ret;
1158 
1159 	crat_table->length += cache_mem_filled;
1160 	crat_table->total_entries += num_of_cache_entries;
1161 	avail_size -= cache_mem_filled;
1162 
1163 	/* Fill in Subtype: IO_LINKS
1164 	 *  Only direct links are added here which is Link from GPU to
1165 	 *  to its NUMA node. Indirect links are added by userspace.
1166 	 */
1167 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1168 		cache_mem_filled);
1169 	ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
1170 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1171 
1172 	if (ret < 0)
1173 		return ret;
1174 
1175 	crat_table->length += sub_type_hdr->length;
1176 	crat_table->total_entries++;
1177 
1178 	*size = crat_table->length;
1179 	pr_info("Virtual CRAT table created for GPU\n");
1180 
1181 	return ret;
1182 }
1183 
1184 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1185  *		creates a Virtual CRAT (VCRAT) image
1186  *
1187  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1188  *
1189  *	@crat_image: VCRAT image created because ACPI does not have a
1190  *		     CRAT for this device
1191  *	@size: [OUT] size of virtual crat_image
1192  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1193  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1194  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1195  *			-- this option is not currently implemented.
1196  *			The assumption is that all AMD APUs will have CRAT
1197  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1198  *
1199  *	Return 0 if successful else return -ve value
1200  */
1201 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1202 				  int flags, struct kfd_dev *kdev,
1203 				  uint32_t proximity_domain)
1204 {
1205 	void *pcrat_image = NULL;
1206 	int ret = 0;
1207 
1208 	if (!crat_image)
1209 		return -EINVAL;
1210 
1211 	*crat_image = NULL;
1212 
1213 	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1214 	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1215 	 * all the current conditions. A check is put not to overwrite beyond
1216 	 * allocated size
1217 	 */
1218 	switch (flags) {
1219 	case COMPUTE_UNIT_CPU:
1220 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1221 		if (!pcrat_image)
1222 			return -ENOMEM;
1223 		*size = VCRAT_SIZE_FOR_CPU;
1224 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1225 		break;
1226 	case COMPUTE_UNIT_GPU:
1227 		if (!kdev)
1228 			return -EINVAL;
1229 		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1230 		if (!pcrat_image)
1231 			return -ENOMEM;
1232 		*size = VCRAT_SIZE_FOR_GPU;
1233 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1234 						 proximity_domain);
1235 		break;
1236 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1237 		/* TODO: */
1238 		ret = -EINVAL;
1239 		pr_err("VCRAT not implemented for APU\n");
1240 		break;
1241 	default:
1242 		ret = -EINVAL;
1243 	}
1244 
1245 	if (!ret)
1246 		*crat_image = pcrat_image;
1247 	else
1248 		kfree(pcrat_image);
1249 
1250 	return ret;
1251 }
1252 
1253 
1254 /* kfd_destroy_crat_image
1255  *
1256  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1257  *
1258  */
1259 void kfd_destroy_crat_image(void *crat_image)
1260 {
1261 	kfree(crat_image);
1262 }
1263