xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52 
53 static const char kfd_dev_name[] = "kfd";
54 
55 static const struct file_operations kfd_fops = {
56 	.owner = THIS_MODULE,
57 	.unlocked_ioctl = kfd_ioctl,
58 	.compat_ioctl = compat_ptr_ioctl,
59 	.open = kfd_open,
60 	.release = kfd_release,
61 	.mmap = kfd_mmap,
62 };
63 
64 static int kfd_char_dev_major = -1;
65 static struct class *kfd_class;
66 struct device *kfd_device;
67 
68 int kfd_chardev_init(void)
69 {
70 	int err = 0;
71 
72 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
73 	err = kfd_char_dev_major;
74 	if (err < 0)
75 		goto err_register_chrdev;
76 
77 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
78 	err = PTR_ERR(kfd_class);
79 	if (IS_ERR(kfd_class))
80 		goto err_class_create;
81 
82 	kfd_device = device_create(kfd_class, NULL,
83 					MKDEV(kfd_char_dev_major, 0),
84 					NULL, kfd_dev_name);
85 	err = PTR_ERR(kfd_device);
86 	if (IS_ERR(kfd_device))
87 		goto err_device_create;
88 
89 	return 0;
90 
91 err_device_create:
92 	class_destroy(kfd_class);
93 err_class_create:
94 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
95 err_register_chrdev:
96 	return err;
97 }
98 
99 void kfd_chardev_exit(void)
100 {
101 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
102 	class_destroy(kfd_class);
103 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
104 	kfd_device = NULL;
105 }
106 
107 
108 static int kfd_open(struct inode *inode, struct file *filep)
109 {
110 	struct kfd_process *process;
111 	bool is_32bit_user_mode;
112 
113 	if (iminor(inode) != 0)
114 		return -ENODEV;
115 
116 	is_32bit_user_mode = in_compat_syscall();
117 
118 	if (is_32bit_user_mode) {
119 		dev_warn(kfd_device,
120 			"Process %d (32-bit) failed to open /dev/kfd\n"
121 			"32-bit processes are not supported by amdkfd\n",
122 			current->pid);
123 		return -EPERM;
124 	}
125 
126 	process = kfd_create_process(filep);
127 	if (IS_ERR(process))
128 		return PTR_ERR(process);
129 
130 	if (kfd_is_locked()) {
131 		dev_dbg(kfd_device, "kfd is locked!\n"
132 				"process %d unreferenced", process->pasid);
133 		kfd_unref_process(process);
134 		return -EAGAIN;
135 	}
136 
137 	/* filep now owns the reference returned by kfd_create_process */
138 	filep->private_data = process;
139 
140 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
141 		process->pasid, process->is_32bit_user_mode);
142 
143 	return 0;
144 }
145 
146 static int kfd_release(struct inode *inode, struct file *filep)
147 {
148 	struct kfd_process *process = filep->private_data;
149 
150 	if (process)
151 		kfd_unref_process(process);
152 
153 	return 0;
154 }
155 
156 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
157 					void *data)
158 {
159 	struct kfd_ioctl_get_version_args *args = data;
160 
161 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
162 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
163 
164 	return 0;
165 }
166 
167 static int set_queue_properties_from_user(struct queue_properties *q_properties,
168 				struct kfd_ioctl_create_queue_args *args)
169 {
170 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
171 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
172 		return -EINVAL;
173 	}
174 
175 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
176 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
177 		return -EINVAL;
178 	}
179 
180 	if ((args->ring_base_address) &&
181 		(!access_ok((const void __user *) args->ring_base_address,
182 			sizeof(uint64_t)))) {
183 		pr_err("Can't access ring base address\n");
184 		return -EFAULT;
185 	}
186 
187 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
188 		pr_err("Ring size must be a power of 2 or 0\n");
189 		return -EINVAL;
190 	}
191 
192 	if (!access_ok((const void __user *) args->read_pointer_address,
193 			sizeof(uint32_t))) {
194 		pr_err("Can't access read pointer\n");
195 		return -EFAULT;
196 	}
197 
198 	if (!access_ok((const void __user *) args->write_pointer_address,
199 			sizeof(uint32_t))) {
200 		pr_err("Can't access write pointer\n");
201 		return -EFAULT;
202 	}
203 
204 	if (args->eop_buffer_address &&
205 		!access_ok((const void __user *) args->eop_buffer_address,
206 			sizeof(uint32_t))) {
207 		pr_debug("Can't access eop buffer");
208 		return -EFAULT;
209 	}
210 
211 	if (args->ctx_save_restore_address &&
212 		!access_ok((const void __user *) args->ctx_save_restore_address,
213 			sizeof(uint32_t))) {
214 		pr_debug("Can't access ctx save restore buffer");
215 		return -EFAULT;
216 	}
217 
218 	q_properties->is_interop = false;
219 	q_properties->is_gws = false;
220 	q_properties->queue_percent = args->queue_percentage;
221 	q_properties->priority = args->queue_priority;
222 	q_properties->queue_address = args->ring_base_address;
223 	q_properties->queue_size = args->ring_size;
224 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
225 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
226 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
227 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
228 	q_properties->ctx_save_restore_area_address =
229 			args->ctx_save_restore_address;
230 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
231 	q_properties->ctl_stack_size = args->ctl_stack_size;
232 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
233 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
234 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
235 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
236 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
237 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
238 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
239 	else
240 		return -ENOTSUPP;
241 
242 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
243 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
244 	else
245 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
246 
247 	pr_debug("Queue Percentage: %d, %d\n",
248 			q_properties->queue_percent, args->queue_percentage);
249 
250 	pr_debug("Queue Priority: %d, %d\n",
251 			q_properties->priority, args->queue_priority);
252 
253 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
254 			q_properties->queue_address, args->ring_base_address);
255 
256 	pr_debug("Queue Size: 0x%llX, %u\n",
257 			q_properties->queue_size, args->ring_size);
258 
259 	pr_debug("Queue r/w Pointers: %px, %px\n",
260 			q_properties->read_ptr,
261 			q_properties->write_ptr);
262 
263 	pr_debug("Queue Format: %d\n", q_properties->format);
264 
265 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
266 
267 	pr_debug("Queue CTX save area: 0x%llX\n",
268 			q_properties->ctx_save_restore_area_address);
269 
270 	return 0;
271 }
272 
273 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
274 					void *data)
275 {
276 	struct kfd_ioctl_create_queue_args *args = data;
277 	struct kfd_dev *dev;
278 	int err = 0;
279 	unsigned int queue_id;
280 	struct kfd_process_device *pdd;
281 	struct queue_properties q_properties;
282 	uint32_t doorbell_offset_in_process = 0;
283 
284 	memset(&q_properties, 0, sizeof(struct queue_properties));
285 
286 	pr_debug("Creating queue ioctl\n");
287 
288 	err = set_queue_properties_from_user(&q_properties, args);
289 	if (err)
290 		return err;
291 
292 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
293 
294 	mutex_lock(&p->mutex);
295 
296 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
297 	if (!pdd) {
298 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
299 		err = -EINVAL;
300 		goto err_pdd;
301 	}
302 	dev = pdd->dev;
303 
304 	pdd = kfd_bind_process_to_device(dev, p);
305 	if (IS_ERR(pdd)) {
306 		err = -ESRCH;
307 		goto err_bind_process;
308 	}
309 
310 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
311 			p->pasid,
312 			dev->id);
313 
314 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, NULL, NULL, NULL,
315 			&doorbell_offset_in_process);
316 	if (err != 0)
317 		goto err_create_queue;
318 
319 	args->queue_id = queue_id;
320 
321 
322 	/* Return gpu_id as doorbell offset for mmap usage */
323 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
324 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
325 	if (KFD_IS_SOC15(dev))
326 		/* On SOC15 ASICs, include the doorbell offset within the
327 		 * process doorbell frame, which is 2 pages.
328 		 */
329 		args->doorbell_offset |= doorbell_offset_in_process;
330 
331 	mutex_unlock(&p->mutex);
332 
333 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
334 
335 	pr_debug("Ring buffer address == 0x%016llX\n",
336 			args->ring_base_address);
337 
338 	pr_debug("Read ptr address    == 0x%016llX\n",
339 			args->read_pointer_address);
340 
341 	pr_debug("Write ptr address   == 0x%016llX\n",
342 			args->write_pointer_address);
343 
344 	return 0;
345 
346 err_create_queue:
347 err_bind_process:
348 err_pdd:
349 	mutex_unlock(&p->mutex);
350 	return err;
351 }
352 
353 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
354 					void *data)
355 {
356 	int retval;
357 	struct kfd_ioctl_destroy_queue_args *args = data;
358 
359 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
360 				args->queue_id,
361 				p->pasid);
362 
363 	mutex_lock(&p->mutex);
364 
365 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
366 
367 	mutex_unlock(&p->mutex);
368 	return retval;
369 }
370 
371 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
372 					void *data)
373 {
374 	int retval;
375 	struct kfd_ioctl_update_queue_args *args = data;
376 	struct queue_properties properties;
377 
378 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
379 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
380 		return -EINVAL;
381 	}
382 
383 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
384 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
385 		return -EINVAL;
386 	}
387 
388 	if ((args->ring_base_address) &&
389 		(!access_ok((const void __user *) args->ring_base_address,
390 			sizeof(uint64_t)))) {
391 		pr_err("Can't access ring base address\n");
392 		return -EFAULT;
393 	}
394 
395 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
396 		pr_err("Ring size must be a power of 2 or 0\n");
397 		return -EINVAL;
398 	}
399 
400 	properties.queue_address = args->ring_base_address;
401 	properties.queue_size = args->ring_size;
402 	properties.queue_percent = args->queue_percentage;
403 	properties.priority = args->queue_priority;
404 
405 	pr_debug("Updating queue id %d for pasid 0x%x\n",
406 			args->queue_id, p->pasid);
407 
408 	mutex_lock(&p->mutex);
409 
410 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
411 
412 	mutex_unlock(&p->mutex);
413 
414 	return retval;
415 }
416 
417 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
418 					void *data)
419 {
420 	int retval;
421 	const int max_num_cus = 1024;
422 	struct kfd_ioctl_set_cu_mask_args *args = data;
423 	struct mqd_update_info minfo = {0};
424 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
425 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
426 
427 	if ((args->num_cu_mask % 32) != 0) {
428 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
429 				args->num_cu_mask);
430 		return -EINVAL;
431 	}
432 
433 	minfo.cu_mask.count = args->num_cu_mask;
434 	if (minfo.cu_mask.count == 0) {
435 		pr_debug("CU mask cannot be 0");
436 		return -EINVAL;
437 	}
438 
439 	/* To prevent an unreasonably large CU mask size, set an arbitrary
440 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
441 	 * past max_num_cus bits and just use the first max_num_cus bits.
442 	 */
443 	if (minfo.cu_mask.count > max_num_cus) {
444 		pr_debug("CU mask cannot be greater than 1024 bits");
445 		minfo.cu_mask.count = max_num_cus;
446 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
447 	}
448 
449 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
450 	if (!minfo.cu_mask.ptr)
451 		return -ENOMEM;
452 
453 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
454 	if (retval) {
455 		pr_debug("Could not copy CU mask from userspace");
456 		retval = -EFAULT;
457 		goto out;
458 	}
459 
460 	minfo.update_flag = UPDATE_FLAG_CU_MASK;
461 
462 	mutex_lock(&p->mutex);
463 
464 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
465 
466 	mutex_unlock(&p->mutex);
467 
468 out:
469 	kfree(minfo.cu_mask.ptr);
470 	return retval;
471 }
472 
473 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
474 					  struct kfd_process *p, void *data)
475 {
476 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
477 	int r;
478 
479 	mutex_lock(&p->mutex);
480 
481 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
482 			       (void __user *)args->ctl_stack_address,
483 			       &args->ctl_stack_used_size,
484 			       &args->save_area_used_size);
485 
486 	mutex_unlock(&p->mutex);
487 
488 	return r;
489 }
490 
491 static int kfd_ioctl_set_memory_policy(struct file *filep,
492 					struct kfd_process *p, void *data)
493 {
494 	struct kfd_ioctl_set_memory_policy_args *args = data;
495 	int err = 0;
496 	struct kfd_process_device *pdd;
497 	enum cache_policy default_policy, alternate_policy;
498 
499 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
500 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
501 		return -EINVAL;
502 	}
503 
504 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
505 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
506 		return -EINVAL;
507 	}
508 
509 	mutex_lock(&p->mutex);
510 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
511 	if (!pdd) {
512 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
513 		err = -EINVAL;
514 		goto err_pdd;
515 	}
516 
517 	pdd = kfd_bind_process_to_device(pdd->dev, p);
518 	if (IS_ERR(pdd)) {
519 		err = -ESRCH;
520 		goto out;
521 	}
522 
523 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
524 			 ? cache_policy_coherent : cache_policy_noncoherent;
525 
526 	alternate_policy =
527 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
528 		   ? cache_policy_coherent : cache_policy_noncoherent;
529 
530 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
531 				&pdd->qpd,
532 				default_policy,
533 				alternate_policy,
534 				(void __user *)args->alternate_aperture_base,
535 				args->alternate_aperture_size))
536 		err = -EINVAL;
537 
538 out:
539 err_pdd:
540 	mutex_unlock(&p->mutex);
541 
542 	return err;
543 }
544 
545 static int kfd_ioctl_set_trap_handler(struct file *filep,
546 					struct kfd_process *p, void *data)
547 {
548 	struct kfd_ioctl_set_trap_handler_args *args = data;
549 	int err = 0;
550 	struct kfd_process_device *pdd;
551 
552 	mutex_lock(&p->mutex);
553 
554 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
555 	if (!pdd) {
556 		err = -EINVAL;
557 		goto err_pdd;
558 	}
559 
560 	pdd = kfd_bind_process_to_device(pdd->dev, p);
561 	if (IS_ERR(pdd)) {
562 		err = -ESRCH;
563 		goto out;
564 	}
565 
566 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
567 
568 out:
569 err_pdd:
570 	mutex_unlock(&p->mutex);
571 
572 	return err;
573 }
574 
575 static int kfd_ioctl_dbg_register(struct file *filep,
576 				struct kfd_process *p, void *data)
577 {
578 	return -EPERM;
579 }
580 
581 static int kfd_ioctl_dbg_unregister(struct file *filep,
582 				struct kfd_process *p, void *data)
583 {
584 	return -EPERM;
585 }
586 
587 static int kfd_ioctl_dbg_address_watch(struct file *filep,
588 					struct kfd_process *p, void *data)
589 {
590 	return -EPERM;
591 }
592 
593 /* Parse and generate fixed size data structure for wave control */
594 static int kfd_ioctl_dbg_wave_control(struct file *filep,
595 					struct kfd_process *p, void *data)
596 {
597 	return -EPERM;
598 }
599 
600 static int kfd_ioctl_get_clock_counters(struct file *filep,
601 				struct kfd_process *p, void *data)
602 {
603 	struct kfd_ioctl_get_clock_counters_args *args = data;
604 	struct kfd_process_device *pdd;
605 
606 	mutex_lock(&p->mutex);
607 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
608 	mutex_unlock(&p->mutex);
609 	if (pdd)
610 		/* Reading GPU clock counter from KGD */
611 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
612 	else
613 		/* Node without GPU resource */
614 		args->gpu_clock_counter = 0;
615 
616 	/* No access to rdtsc. Using raw monotonic time */
617 	args->cpu_clock_counter = ktime_get_raw_ns();
618 	args->system_clock_counter = ktime_get_boottime_ns();
619 
620 	/* Since the counter is in nano-seconds we use 1GHz frequency */
621 	args->system_clock_freq = 1000000000;
622 
623 	return 0;
624 }
625 
626 
627 static int kfd_ioctl_get_process_apertures(struct file *filp,
628 				struct kfd_process *p, void *data)
629 {
630 	struct kfd_ioctl_get_process_apertures_args *args = data;
631 	struct kfd_process_device_apertures *pAperture;
632 	int i;
633 
634 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
635 
636 	args->num_of_nodes = 0;
637 
638 	mutex_lock(&p->mutex);
639 	/* Run over all pdd of the process */
640 	for (i = 0; i < p->n_pdds; i++) {
641 		struct kfd_process_device *pdd = p->pdds[i];
642 
643 		pAperture =
644 			&args->process_apertures[args->num_of_nodes];
645 		pAperture->gpu_id = pdd->dev->id;
646 		pAperture->lds_base = pdd->lds_base;
647 		pAperture->lds_limit = pdd->lds_limit;
648 		pAperture->gpuvm_base = pdd->gpuvm_base;
649 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
650 		pAperture->scratch_base = pdd->scratch_base;
651 		pAperture->scratch_limit = pdd->scratch_limit;
652 
653 		dev_dbg(kfd_device,
654 			"node id %u\n", args->num_of_nodes);
655 		dev_dbg(kfd_device,
656 			"gpu id %u\n", pdd->dev->id);
657 		dev_dbg(kfd_device,
658 			"lds_base %llX\n", pdd->lds_base);
659 		dev_dbg(kfd_device,
660 			"lds_limit %llX\n", pdd->lds_limit);
661 		dev_dbg(kfd_device,
662 			"gpuvm_base %llX\n", pdd->gpuvm_base);
663 		dev_dbg(kfd_device,
664 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
665 		dev_dbg(kfd_device,
666 			"scratch_base %llX\n", pdd->scratch_base);
667 		dev_dbg(kfd_device,
668 			"scratch_limit %llX\n", pdd->scratch_limit);
669 
670 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
671 			break;
672 	}
673 	mutex_unlock(&p->mutex);
674 
675 	return 0;
676 }
677 
678 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
679 				struct kfd_process *p, void *data)
680 {
681 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
682 	struct kfd_process_device_apertures *pa;
683 	int ret;
684 	int i;
685 
686 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
687 
688 	if (args->num_of_nodes == 0) {
689 		/* Return number of nodes, so that user space can alloacate
690 		 * sufficient memory
691 		 */
692 		mutex_lock(&p->mutex);
693 		args->num_of_nodes = p->n_pdds;
694 		goto out_unlock;
695 	}
696 
697 	/* Fill in process-aperture information for all available
698 	 * nodes, but not more than args->num_of_nodes as that is
699 	 * the amount of memory allocated by user
700 	 */
701 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
702 				args->num_of_nodes), GFP_KERNEL);
703 	if (!pa)
704 		return -ENOMEM;
705 
706 	mutex_lock(&p->mutex);
707 
708 	if (!p->n_pdds) {
709 		args->num_of_nodes = 0;
710 		kfree(pa);
711 		goto out_unlock;
712 	}
713 
714 	/* Run over all pdd of the process */
715 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
716 		struct kfd_process_device *pdd = p->pdds[i];
717 
718 		pa[i].gpu_id = pdd->dev->id;
719 		pa[i].lds_base = pdd->lds_base;
720 		pa[i].lds_limit = pdd->lds_limit;
721 		pa[i].gpuvm_base = pdd->gpuvm_base;
722 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
723 		pa[i].scratch_base = pdd->scratch_base;
724 		pa[i].scratch_limit = pdd->scratch_limit;
725 
726 		dev_dbg(kfd_device,
727 			"gpu id %u\n", pdd->dev->id);
728 		dev_dbg(kfd_device,
729 			"lds_base %llX\n", pdd->lds_base);
730 		dev_dbg(kfd_device,
731 			"lds_limit %llX\n", pdd->lds_limit);
732 		dev_dbg(kfd_device,
733 			"gpuvm_base %llX\n", pdd->gpuvm_base);
734 		dev_dbg(kfd_device,
735 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
736 		dev_dbg(kfd_device,
737 			"scratch_base %llX\n", pdd->scratch_base);
738 		dev_dbg(kfd_device,
739 			"scratch_limit %llX\n", pdd->scratch_limit);
740 	}
741 	mutex_unlock(&p->mutex);
742 
743 	args->num_of_nodes = i;
744 	ret = copy_to_user(
745 			(void __user *)args->kfd_process_device_apertures_ptr,
746 			pa,
747 			(i * sizeof(struct kfd_process_device_apertures)));
748 	kfree(pa);
749 	return ret ? -EFAULT : 0;
750 
751 out_unlock:
752 	mutex_unlock(&p->mutex);
753 	return 0;
754 }
755 
756 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
757 					void *data)
758 {
759 	struct kfd_ioctl_create_event_args *args = data;
760 	int err;
761 
762 	/* For dGPUs the event page is allocated in user mode. The
763 	 * handle is passed to KFD with the first call to this IOCTL
764 	 * through the event_page_offset field.
765 	 */
766 	if (args->event_page_offset) {
767 		mutex_lock(&p->mutex);
768 		err = kfd_kmap_event_page(p, args->event_page_offset);
769 		mutex_unlock(&p->mutex);
770 		if (err)
771 			return err;
772 	}
773 
774 	err = kfd_event_create(filp, p, args->event_type,
775 				args->auto_reset != 0, args->node_id,
776 				&args->event_id, &args->event_trigger_data,
777 				&args->event_page_offset,
778 				&args->event_slot_index);
779 
780 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
781 	return err;
782 }
783 
784 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
785 					void *data)
786 {
787 	struct kfd_ioctl_destroy_event_args *args = data;
788 
789 	return kfd_event_destroy(p, args->event_id);
790 }
791 
792 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
793 				void *data)
794 {
795 	struct kfd_ioctl_set_event_args *args = data;
796 
797 	return kfd_set_event(p, args->event_id);
798 }
799 
800 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
801 				void *data)
802 {
803 	struct kfd_ioctl_reset_event_args *args = data;
804 
805 	return kfd_reset_event(p, args->event_id);
806 }
807 
808 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
809 				void *data)
810 {
811 	struct kfd_ioctl_wait_events_args *args = data;
812 	int err;
813 
814 	err = kfd_wait_on_events(p, args->num_events,
815 			(void __user *)args->events_ptr,
816 			(args->wait_for_all != 0),
817 			args->timeout, &args->wait_result);
818 
819 	return err;
820 }
821 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
822 					struct kfd_process *p, void *data)
823 {
824 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
825 	struct kfd_process_device *pdd;
826 	struct kfd_dev *dev;
827 	long err;
828 
829 	mutex_lock(&p->mutex);
830 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
831 	if (!pdd) {
832 		err = -EINVAL;
833 		goto err_pdd;
834 	}
835 	dev = pdd->dev;
836 
837 	pdd = kfd_bind_process_to_device(dev, p);
838 	if (IS_ERR(pdd)) {
839 		err = PTR_ERR(pdd);
840 		goto bind_process_to_device_fail;
841 	}
842 
843 	pdd->qpd.sh_hidden_private_base = args->va_addr;
844 
845 	mutex_unlock(&p->mutex);
846 
847 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
848 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
849 		dev->kfd2kgd->set_scratch_backing_va(
850 			dev->adev, args->va_addr, pdd->qpd.vmid);
851 
852 	return 0;
853 
854 bind_process_to_device_fail:
855 err_pdd:
856 	mutex_unlock(&p->mutex);
857 	return err;
858 }
859 
860 static int kfd_ioctl_get_tile_config(struct file *filep,
861 		struct kfd_process *p, void *data)
862 {
863 	struct kfd_ioctl_get_tile_config_args *args = data;
864 	struct kfd_process_device *pdd;
865 	struct tile_config config;
866 	int err = 0;
867 
868 	mutex_lock(&p->mutex);
869 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
870 	mutex_unlock(&p->mutex);
871 	if (!pdd)
872 		return -EINVAL;
873 
874 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
875 
876 	args->gb_addr_config = config.gb_addr_config;
877 	args->num_banks = config.num_banks;
878 	args->num_ranks = config.num_ranks;
879 
880 	if (args->num_tile_configs > config.num_tile_configs)
881 		args->num_tile_configs = config.num_tile_configs;
882 	err = copy_to_user((void __user *)args->tile_config_ptr,
883 			config.tile_config_ptr,
884 			args->num_tile_configs * sizeof(uint32_t));
885 	if (err) {
886 		args->num_tile_configs = 0;
887 		return -EFAULT;
888 	}
889 
890 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
891 		args->num_macro_tile_configs =
892 				config.num_macro_tile_configs;
893 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
894 			config.macro_tile_config_ptr,
895 			args->num_macro_tile_configs * sizeof(uint32_t));
896 	if (err) {
897 		args->num_macro_tile_configs = 0;
898 		return -EFAULT;
899 	}
900 
901 	return 0;
902 }
903 
904 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
905 				void *data)
906 {
907 	struct kfd_ioctl_acquire_vm_args *args = data;
908 	struct kfd_process_device *pdd;
909 	struct file *drm_file;
910 	int ret;
911 
912 	drm_file = fget(args->drm_fd);
913 	if (!drm_file)
914 		return -EINVAL;
915 
916 	mutex_lock(&p->mutex);
917 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
918 	if (!pdd) {
919 		ret = -EINVAL;
920 		goto err_pdd;
921 	}
922 
923 	if (pdd->drm_file) {
924 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
925 		goto err_drm_file;
926 	}
927 
928 	ret = kfd_process_device_init_vm(pdd, drm_file);
929 	if (ret)
930 		goto err_unlock;
931 
932 	/* On success, the PDD keeps the drm_file reference */
933 	mutex_unlock(&p->mutex);
934 
935 	return 0;
936 
937 err_unlock:
938 err_pdd:
939 err_drm_file:
940 	mutex_unlock(&p->mutex);
941 	fput(drm_file);
942 	return ret;
943 }
944 
945 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
946 {
947 	if (debug_largebar) {
948 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
949 		return true;
950 	}
951 
952 	if (dev->use_iommu_v2)
953 		return false;
954 
955 	if (dev->local_mem_info.local_mem_size_private == 0 &&
956 			dev->local_mem_info.local_mem_size_public > 0)
957 		return true;
958 	return false;
959 }
960 
961 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
962 					struct kfd_process *p, void *data)
963 {
964 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
965 	struct kfd_process_device *pdd;
966 	void *mem;
967 	struct kfd_dev *dev;
968 	int idr_handle;
969 	long err;
970 	uint64_t offset = args->mmap_offset;
971 	uint32_t flags = args->flags;
972 
973 	if (args->size == 0)
974 		return -EINVAL;
975 
976 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
977 	/* Flush pending deferred work to avoid racing with deferred actions
978 	 * from previous memory map changes (e.g. munmap).
979 	 */
980 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
981 	mutex_lock(&p->svms.lock);
982 	mmap_write_unlock(current->mm);
983 	if (interval_tree_iter_first(&p->svms.objects,
984 				     args->va_addr >> PAGE_SHIFT,
985 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
986 		pr_err("Address: 0x%llx already allocated by SVM\n",
987 			args->va_addr);
988 		mutex_unlock(&p->svms.lock);
989 		return -EADDRINUSE;
990 	}
991 	mutex_unlock(&p->svms.lock);
992 #endif
993 	mutex_lock(&p->mutex);
994 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
995 	if (!pdd) {
996 		err = -EINVAL;
997 		goto err_pdd;
998 	}
999 
1000 	dev = pdd->dev;
1001 
1002 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1003 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1004 		!kfd_dev_is_large_bar(dev)) {
1005 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1006 		err = -EINVAL;
1007 		goto err_large_bar;
1008 	}
1009 
1010 	pdd = kfd_bind_process_to_device(dev, p);
1011 	if (IS_ERR(pdd)) {
1012 		err = PTR_ERR(pdd);
1013 		goto err_unlock;
1014 	}
1015 
1016 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1017 		if (args->size != kfd_doorbell_process_slice(dev)) {
1018 			err = -EINVAL;
1019 			goto err_unlock;
1020 		}
1021 		offset = kfd_get_process_doorbells(pdd);
1022 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1023 		if (args->size != PAGE_SIZE) {
1024 			err = -EINVAL;
1025 			goto err_unlock;
1026 		}
1027 		offset = dev->adev->rmmio_remap.bus_addr;
1028 		if (!offset) {
1029 			err = -ENOMEM;
1030 			goto err_unlock;
1031 		}
1032 	}
1033 
1034 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1035 		dev->adev, args->va_addr, args->size,
1036 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1037 		flags, false);
1038 
1039 	if (err)
1040 		goto err_unlock;
1041 
1042 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1043 	if (idr_handle < 0) {
1044 		err = -EFAULT;
1045 		goto err_free;
1046 	}
1047 
1048 	/* Update the VRAM usage count */
1049 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1050 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1051 
1052 	mutex_unlock(&p->mutex);
1053 
1054 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1055 	args->mmap_offset = offset;
1056 
1057 	/* MMIO is mapped through kfd device
1058 	 * Generate a kfd mmap offset
1059 	 */
1060 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1061 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1062 					| KFD_MMAP_GPU_ID(args->gpu_id);
1063 
1064 	return 0;
1065 
1066 err_free:
1067 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1068 					       pdd->drm_priv, NULL);
1069 err_unlock:
1070 err_pdd:
1071 err_large_bar:
1072 	mutex_unlock(&p->mutex);
1073 	return err;
1074 }
1075 
1076 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1077 					struct kfd_process *p, void *data)
1078 {
1079 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1080 	struct kfd_process_device *pdd;
1081 	void *mem;
1082 	int ret;
1083 	uint64_t size = 0;
1084 
1085 	mutex_lock(&p->mutex);
1086 	/*
1087 	 * Safeguard to prevent user space from freeing signal BO.
1088 	 * It will be freed at process termination.
1089 	 */
1090 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1091 		pr_err("Free signal BO is not allowed\n");
1092 		ret = -EPERM;
1093 		goto err_unlock;
1094 	}
1095 
1096 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1097 	if (!pdd) {
1098 		pr_err("Process device data doesn't exist\n");
1099 		ret = -EINVAL;
1100 		goto err_pdd;
1101 	}
1102 
1103 	mem = kfd_process_device_translate_handle(
1104 		pdd, GET_IDR_HANDLE(args->handle));
1105 	if (!mem) {
1106 		ret = -EINVAL;
1107 		goto err_unlock;
1108 	}
1109 
1110 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1111 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1112 
1113 	/* If freeing the buffer failed, leave the handle in place for
1114 	 * clean-up during process tear-down.
1115 	 */
1116 	if (!ret)
1117 		kfd_process_device_remove_obj_handle(
1118 			pdd, GET_IDR_HANDLE(args->handle));
1119 
1120 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1121 
1122 err_unlock:
1123 err_pdd:
1124 	mutex_unlock(&p->mutex);
1125 	return ret;
1126 }
1127 
1128 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1129 					struct kfd_process *p, void *data)
1130 {
1131 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1132 	struct kfd_process_device *pdd, *peer_pdd;
1133 	void *mem;
1134 	struct kfd_dev *dev;
1135 	long err = 0;
1136 	int i;
1137 	uint32_t *devices_arr = NULL;
1138 
1139 	if (!args->n_devices) {
1140 		pr_debug("Device IDs array empty\n");
1141 		return -EINVAL;
1142 	}
1143 	if (args->n_success > args->n_devices) {
1144 		pr_debug("n_success exceeds n_devices\n");
1145 		return -EINVAL;
1146 	}
1147 
1148 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1149 				    GFP_KERNEL);
1150 	if (!devices_arr)
1151 		return -ENOMEM;
1152 
1153 	err = copy_from_user(devices_arr,
1154 			     (void __user *)args->device_ids_array_ptr,
1155 			     args->n_devices * sizeof(*devices_arr));
1156 	if (err != 0) {
1157 		err = -EFAULT;
1158 		goto copy_from_user_failed;
1159 	}
1160 
1161 	mutex_lock(&p->mutex);
1162 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1163 	if (!pdd) {
1164 		err = -EINVAL;
1165 		goto get_process_device_data_failed;
1166 	}
1167 	dev = pdd->dev;
1168 
1169 	pdd = kfd_bind_process_to_device(dev, p);
1170 	if (IS_ERR(pdd)) {
1171 		err = PTR_ERR(pdd);
1172 		goto bind_process_to_device_failed;
1173 	}
1174 
1175 	mem = kfd_process_device_translate_handle(pdd,
1176 						GET_IDR_HANDLE(args->handle));
1177 	if (!mem) {
1178 		err = -ENOMEM;
1179 		goto get_mem_obj_from_handle_failed;
1180 	}
1181 
1182 	for (i = args->n_success; i < args->n_devices; i++) {
1183 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1184 		if (!peer_pdd) {
1185 			pr_debug("Getting device by id failed for 0x%x\n",
1186 				 devices_arr[i]);
1187 			err = -EINVAL;
1188 			goto get_mem_obj_from_handle_failed;
1189 		}
1190 
1191 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1192 		if (IS_ERR(peer_pdd)) {
1193 			err = PTR_ERR(peer_pdd);
1194 			goto get_mem_obj_from_handle_failed;
1195 		}
1196 
1197 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1198 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1199 			peer_pdd->drm_priv);
1200 		if (err) {
1201 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1202 
1203 			dev_err(dev->adev->dev,
1204 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1205 			       pci_domain_nr(pdev->bus),
1206 			       pdev->bus->number,
1207 			       PCI_SLOT(pdev->devfn),
1208 			       PCI_FUNC(pdev->devfn),
1209 			       ((struct kgd_mem *)mem)->domain);
1210 			goto map_memory_to_gpu_failed;
1211 		}
1212 		args->n_success = i+1;
1213 	}
1214 
1215 	mutex_unlock(&p->mutex);
1216 
1217 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1218 	if (err) {
1219 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1220 		goto sync_memory_failed;
1221 	}
1222 
1223 	/* Flush TLBs after waiting for the page table updates to complete */
1224 	for (i = 0; i < args->n_devices; i++) {
1225 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1226 		if (WARN_ON_ONCE(!peer_pdd))
1227 			continue;
1228 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1229 	}
1230 	kfree(devices_arr);
1231 
1232 	return err;
1233 
1234 get_process_device_data_failed:
1235 bind_process_to_device_failed:
1236 get_mem_obj_from_handle_failed:
1237 map_memory_to_gpu_failed:
1238 	mutex_unlock(&p->mutex);
1239 copy_from_user_failed:
1240 sync_memory_failed:
1241 	kfree(devices_arr);
1242 
1243 	return err;
1244 }
1245 
1246 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1247 					struct kfd_process *p, void *data)
1248 {
1249 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1250 	struct kfd_process_device *pdd, *peer_pdd;
1251 	void *mem;
1252 	long err = 0;
1253 	uint32_t *devices_arr = NULL, i;
1254 
1255 	if (!args->n_devices) {
1256 		pr_debug("Device IDs array empty\n");
1257 		return -EINVAL;
1258 	}
1259 	if (args->n_success > args->n_devices) {
1260 		pr_debug("n_success exceeds n_devices\n");
1261 		return -EINVAL;
1262 	}
1263 
1264 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1265 				    GFP_KERNEL);
1266 	if (!devices_arr)
1267 		return -ENOMEM;
1268 
1269 	err = copy_from_user(devices_arr,
1270 			     (void __user *)args->device_ids_array_ptr,
1271 			     args->n_devices * sizeof(*devices_arr));
1272 	if (err != 0) {
1273 		err = -EFAULT;
1274 		goto copy_from_user_failed;
1275 	}
1276 
1277 	mutex_lock(&p->mutex);
1278 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1279 	if (!pdd) {
1280 		err = -EINVAL;
1281 		goto bind_process_to_device_failed;
1282 	}
1283 
1284 	mem = kfd_process_device_translate_handle(pdd,
1285 						GET_IDR_HANDLE(args->handle));
1286 	if (!mem) {
1287 		err = -ENOMEM;
1288 		goto get_mem_obj_from_handle_failed;
1289 	}
1290 
1291 	for (i = args->n_success; i < args->n_devices; i++) {
1292 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1293 		if (!peer_pdd) {
1294 			err = -EINVAL;
1295 			goto get_mem_obj_from_handle_failed;
1296 		}
1297 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1298 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1299 		if (err) {
1300 			pr_err("Failed to unmap from gpu %d/%d\n",
1301 			       i, args->n_devices);
1302 			goto unmap_memory_from_gpu_failed;
1303 		}
1304 		args->n_success = i+1;
1305 	}
1306 	mutex_unlock(&p->mutex);
1307 
1308 	if (kfd_flush_tlb_after_unmap(pdd->dev)) {
1309 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1310 				(struct kgd_mem *) mem, true);
1311 		if (err) {
1312 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1313 			goto sync_memory_failed;
1314 		}
1315 
1316 		/* Flush TLBs after waiting for the page table updates to complete */
1317 		for (i = 0; i < args->n_devices; i++) {
1318 			peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1319 			if (WARN_ON_ONCE(!peer_pdd))
1320 				continue;
1321 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1322 		}
1323 	}
1324 	kfree(devices_arr);
1325 
1326 	return 0;
1327 
1328 bind_process_to_device_failed:
1329 get_mem_obj_from_handle_failed:
1330 unmap_memory_from_gpu_failed:
1331 	mutex_unlock(&p->mutex);
1332 copy_from_user_failed:
1333 sync_memory_failed:
1334 	kfree(devices_arr);
1335 	return err;
1336 }
1337 
1338 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1339 		struct kfd_process *p, void *data)
1340 {
1341 	int retval;
1342 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1343 	struct queue *q;
1344 	struct kfd_dev *dev;
1345 
1346 	mutex_lock(&p->mutex);
1347 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1348 
1349 	if (q) {
1350 		dev = q->device;
1351 	} else {
1352 		retval = -EINVAL;
1353 		goto out_unlock;
1354 	}
1355 
1356 	if (!dev->gws) {
1357 		retval = -ENODEV;
1358 		goto out_unlock;
1359 	}
1360 
1361 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1362 		retval = -ENODEV;
1363 		goto out_unlock;
1364 	}
1365 
1366 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1367 	mutex_unlock(&p->mutex);
1368 
1369 	args->first_gws = 0;
1370 	return retval;
1371 
1372 out_unlock:
1373 	mutex_unlock(&p->mutex);
1374 	return retval;
1375 }
1376 
1377 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1378 		struct kfd_process *p, void *data)
1379 {
1380 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1381 	struct kfd_dev *dev = NULL;
1382 	struct amdgpu_device *dmabuf_adev;
1383 	void *metadata_buffer = NULL;
1384 	uint32_t flags;
1385 	unsigned int i;
1386 	int r;
1387 
1388 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1389 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1390 		if (dev)
1391 			break;
1392 	if (!dev)
1393 		return -EINVAL;
1394 
1395 	if (args->metadata_ptr) {
1396 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1397 		if (!metadata_buffer)
1398 			return -ENOMEM;
1399 	}
1400 
1401 	/* Get dmabuf info from KGD */
1402 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1403 					  &dmabuf_adev, &args->size,
1404 					  metadata_buffer, args->metadata_size,
1405 					  &args->metadata_size, &flags);
1406 	if (r)
1407 		goto exit;
1408 
1409 	/* Reverse-lookup gpu_id from kgd pointer */
1410 	dev = kfd_device_by_adev(dmabuf_adev);
1411 	if (!dev) {
1412 		r = -EINVAL;
1413 		goto exit;
1414 	}
1415 	args->gpu_id = dev->id;
1416 	args->flags = flags;
1417 
1418 	/* Copy metadata buffer to user mode */
1419 	if (metadata_buffer) {
1420 		r = copy_to_user((void __user *)args->metadata_ptr,
1421 				 metadata_buffer, args->metadata_size);
1422 		if (r != 0)
1423 			r = -EFAULT;
1424 	}
1425 
1426 exit:
1427 	kfree(metadata_buffer);
1428 
1429 	return r;
1430 }
1431 
1432 static int kfd_ioctl_import_dmabuf(struct file *filep,
1433 				   struct kfd_process *p, void *data)
1434 {
1435 	struct kfd_ioctl_import_dmabuf_args *args = data;
1436 	struct kfd_process_device *pdd;
1437 	struct dma_buf *dmabuf;
1438 	int idr_handle;
1439 	uint64_t size;
1440 	void *mem;
1441 	int r;
1442 
1443 	dmabuf = dma_buf_get(args->dmabuf_fd);
1444 	if (IS_ERR(dmabuf))
1445 		return PTR_ERR(dmabuf);
1446 
1447 	mutex_lock(&p->mutex);
1448 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1449 	if (!pdd) {
1450 		r = -EINVAL;
1451 		goto err_unlock;
1452 	}
1453 
1454 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1455 	if (IS_ERR(pdd)) {
1456 		r = PTR_ERR(pdd);
1457 		goto err_unlock;
1458 	}
1459 
1460 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1461 					      args->va_addr, pdd->drm_priv,
1462 					      (struct kgd_mem **)&mem, &size,
1463 					      NULL);
1464 	if (r)
1465 		goto err_unlock;
1466 
1467 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1468 	if (idr_handle < 0) {
1469 		r = -EFAULT;
1470 		goto err_free;
1471 	}
1472 
1473 	mutex_unlock(&p->mutex);
1474 	dma_buf_put(dmabuf);
1475 
1476 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1477 
1478 	return 0;
1479 
1480 err_free:
1481 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1482 					       pdd->drm_priv, NULL);
1483 err_unlock:
1484 	mutex_unlock(&p->mutex);
1485 	dma_buf_put(dmabuf);
1486 	return r;
1487 }
1488 
1489 /* Handle requests for watching SMI events */
1490 static int kfd_ioctl_smi_events(struct file *filep,
1491 				struct kfd_process *p, void *data)
1492 {
1493 	struct kfd_ioctl_smi_events_args *args = data;
1494 	struct kfd_process_device *pdd;
1495 
1496 	mutex_lock(&p->mutex);
1497 
1498 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1499 	mutex_unlock(&p->mutex);
1500 	if (!pdd)
1501 		return -EINVAL;
1502 
1503 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1504 }
1505 
1506 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1507 				    struct kfd_process *p, void *data)
1508 {
1509 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1510 	int r = 0;
1511 
1512 	mutex_lock(&p->mutex);
1513 	if (args->xnack_enabled >= 0) {
1514 		if (!list_empty(&p->pqm.queues)) {
1515 			pr_debug("Process has user queues running\n");
1516 			mutex_unlock(&p->mutex);
1517 			return -EBUSY;
1518 		}
1519 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
1520 			r = -EPERM;
1521 		else
1522 			p->xnack_enabled = args->xnack_enabled;
1523 	} else {
1524 		args->xnack_enabled = p->xnack_enabled;
1525 	}
1526 	mutex_unlock(&p->mutex);
1527 
1528 	return r;
1529 }
1530 
1531 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1532 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1533 {
1534 	struct kfd_ioctl_svm_args *args = data;
1535 	int r = 0;
1536 
1537 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1538 		 args->start_addr, args->size, args->op, args->nattr);
1539 
1540 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1541 		return -EINVAL;
1542 	if (!args->start_addr || !args->size)
1543 		return -EINVAL;
1544 
1545 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1546 		      args->attrs);
1547 
1548 	return r;
1549 }
1550 #else
1551 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1552 {
1553 	return -EPERM;
1554 }
1555 #endif
1556 
1557 static int criu_checkpoint_process(struct kfd_process *p,
1558 			     uint8_t __user *user_priv_data,
1559 			     uint64_t *priv_offset)
1560 {
1561 	struct kfd_criu_process_priv_data process_priv;
1562 	int ret;
1563 
1564 	memset(&process_priv, 0, sizeof(process_priv));
1565 
1566 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1567 	/* For CR, we don't consider negative xnack mode which is used for
1568 	 * querying without changing it, here 0 simply means disabled and 1
1569 	 * means enabled so retry for finding a valid PTE.
1570 	 */
1571 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1572 
1573 	ret = copy_to_user(user_priv_data + *priv_offset,
1574 				&process_priv, sizeof(process_priv));
1575 
1576 	if (ret) {
1577 		pr_err("Failed to copy process information to user\n");
1578 		ret = -EFAULT;
1579 	}
1580 
1581 	*priv_offset += sizeof(process_priv);
1582 	return ret;
1583 }
1584 
1585 static int criu_checkpoint_devices(struct kfd_process *p,
1586 			     uint32_t num_devices,
1587 			     uint8_t __user *user_addr,
1588 			     uint8_t __user *user_priv_data,
1589 			     uint64_t *priv_offset)
1590 {
1591 	struct kfd_criu_device_priv_data *device_priv = NULL;
1592 	struct kfd_criu_device_bucket *device_buckets = NULL;
1593 	int ret = 0, i;
1594 
1595 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1596 	if (!device_buckets) {
1597 		ret = -ENOMEM;
1598 		goto exit;
1599 	}
1600 
1601 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1602 	if (!device_priv) {
1603 		ret = -ENOMEM;
1604 		goto exit;
1605 	}
1606 
1607 	for (i = 0; i < num_devices; i++) {
1608 		struct kfd_process_device *pdd = p->pdds[i];
1609 
1610 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1611 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1612 
1613 		/*
1614 		 * priv_data does not contain useful information for now and is reserved for
1615 		 * future use, so we do not set its contents.
1616 		 */
1617 	}
1618 
1619 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1620 	if (ret) {
1621 		pr_err("Failed to copy device information to user\n");
1622 		ret = -EFAULT;
1623 		goto exit;
1624 	}
1625 
1626 	ret = copy_to_user(user_priv_data + *priv_offset,
1627 			   device_priv,
1628 			   num_devices * sizeof(*device_priv));
1629 	if (ret) {
1630 		pr_err("Failed to copy device information to user\n");
1631 		ret = -EFAULT;
1632 	}
1633 	*priv_offset += num_devices * sizeof(*device_priv);
1634 
1635 exit:
1636 	kvfree(device_buckets);
1637 	kvfree(device_priv);
1638 	return ret;
1639 }
1640 
1641 static uint32_t get_process_num_bos(struct kfd_process *p)
1642 {
1643 	uint32_t num_of_bos = 0;
1644 	int i;
1645 
1646 	/* Run over all PDDs of the process */
1647 	for (i = 0; i < p->n_pdds; i++) {
1648 		struct kfd_process_device *pdd = p->pdds[i];
1649 		void *mem;
1650 		int id;
1651 
1652 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1653 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1654 
1655 			if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1656 				num_of_bos++;
1657 		}
1658 	}
1659 	return num_of_bos;
1660 }
1661 
1662 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1663 				      u32 *shared_fd)
1664 {
1665 	struct dma_buf *dmabuf;
1666 	int ret;
1667 
1668 	dmabuf = amdgpu_gem_prime_export(gobj, flags);
1669 	if (IS_ERR(dmabuf)) {
1670 		ret = PTR_ERR(dmabuf);
1671 		pr_err("dmabuf export failed for the BO\n");
1672 		return ret;
1673 	}
1674 
1675 	ret = dma_buf_fd(dmabuf, flags);
1676 	if (ret < 0) {
1677 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1678 		goto out_free_dmabuf;
1679 	}
1680 
1681 	*shared_fd = ret;
1682 	return 0;
1683 
1684 out_free_dmabuf:
1685 	dma_buf_put(dmabuf);
1686 	return ret;
1687 }
1688 
1689 static int criu_checkpoint_bos(struct kfd_process *p,
1690 			       uint32_t num_bos,
1691 			       uint8_t __user *user_bos,
1692 			       uint8_t __user *user_priv_data,
1693 			       uint64_t *priv_offset)
1694 {
1695 	struct kfd_criu_bo_bucket *bo_buckets;
1696 	struct kfd_criu_bo_priv_data *bo_privs;
1697 	int ret = 0, pdd_index, bo_index = 0, id;
1698 	void *mem;
1699 
1700 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1701 	if (!bo_buckets)
1702 		return -ENOMEM;
1703 
1704 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1705 	if (!bo_privs) {
1706 		ret = -ENOMEM;
1707 		goto exit;
1708 	}
1709 
1710 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1711 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1712 		struct amdgpu_bo *dumper_bo;
1713 		struct kgd_mem *kgd_mem;
1714 
1715 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1716 			struct kfd_criu_bo_bucket *bo_bucket;
1717 			struct kfd_criu_bo_priv_data *bo_priv;
1718 			int i, dev_idx = 0;
1719 
1720 			if (!mem) {
1721 				ret = -ENOMEM;
1722 				goto exit;
1723 			}
1724 
1725 			kgd_mem = (struct kgd_mem *)mem;
1726 			dumper_bo = kgd_mem->bo;
1727 
1728 			if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
1729 				continue;
1730 
1731 			bo_bucket = &bo_buckets[bo_index];
1732 			bo_priv = &bo_privs[bo_index];
1733 
1734 			bo_bucket->gpu_id = pdd->user_gpu_id;
1735 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1736 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1737 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1738 			bo_priv->idr_handle = id;
1739 
1740 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1741 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1742 								&bo_priv->user_addr);
1743 				if (ret) {
1744 					pr_err("Failed to obtain user address for user-pointer bo\n");
1745 					goto exit;
1746 				}
1747 			}
1748 			if (bo_bucket->alloc_flags
1749 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1750 				ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1751 						bo_bucket->alloc_flags &
1752 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1753 						&bo_bucket->dmabuf_fd);
1754 				if (ret)
1755 					goto exit;
1756 			} else {
1757 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1758 			}
1759 
1760 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1761 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1762 					KFD_MMAP_GPU_ID(pdd->dev->id);
1763 			else if (bo_bucket->alloc_flags &
1764 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1765 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1766 					KFD_MMAP_GPU_ID(pdd->dev->id);
1767 			else
1768 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1769 
1770 			for (i = 0; i < p->n_pdds; i++) {
1771 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1772 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1773 			}
1774 
1775 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1776 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1777 					bo_bucket->size,
1778 					bo_bucket->addr,
1779 					bo_bucket->offset,
1780 					bo_bucket->gpu_id,
1781 					bo_bucket->alloc_flags,
1782 					bo_priv->idr_handle);
1783 			bo_index++;
1784 		}
1785 	}
1786 
1787 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1788 	if (ret) {
1789 		pr_err("Failed to copy BO information to user\n");
1790 		ret = -EFAULT;
1791 		goto exit;
1792 	}
1793 
1794 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1795 	if (ret) {
1796 		pr_err("Failed to copy BO priv information to user\n");
1797 		ret = -EFAULT;
1798 		goto exit;
1799 	}
1800 
1801 	*priv_offset += num_bos * sizeof(*bo_privs);
1802 
1803 exit:
1804 	while (ret && bo_index--) {
1805 		if (bo_buckets[bo_index].alloc_flags
1806 		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1807 			close_fd(bo_buckets[bo_index].dmabuf_fd);
1808 	}
1809 
1810 	kvfree(bo_buckets);
1811 	kvfree(bo_privs);
1812 	return ret;
1813 }
1814 
1815 static int criu_get_process_object_info(struct kfd_process *p,
1816 					uint32_t *num_devices,
1817 					uint32_t *num_bos,
1818 					uint32_t *num_objects,
1819 					uint64_t *objs_priv_size)
1820 {
1821 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
1822 	uint32_t num_queues, num_events, num_svm_ranges;
1823 	int ret;
1824 
1825 	*num_devices = p->n_pdds;
1826 	*num_bos = get_process_num_bos(p);
1827 
1828 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
1829 	if (ret)
1830 		return ret;
1831 
1832 	num_events = kfd_get_num_events(p);
1833 
1834 	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
1835 	if (ret)
1836 		return ret;
1837 
1838 	*num_objects = num_queues + num_events + num_svm_ranges;
1839 
1840 	if (objs_priv_size) {
1841 		priv_size = sizeof(struct kfd_criu_process_priv_data);
1842 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
1843 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
1844 		priv_size += queues_priv_data_size;
1845 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
1846 		priv_size += svm_priv_data_size;
1847 		*objs_priv_size = priv_size;
1848 	}
1849 	return 0;
1850 }
1851 
1852 static int criu_checkpoint(struct file *filep,
1853 			   struct kfd_process *p,
1854 			   struct kfd_ioctl_criu_args *args)
1855 {
1856 	int ret;
1857 	uint32_t num_devices, num_bos, num_objects;
1858 	uint64_t priv_size, priv_offset = 0;
1859 
1860 	if (!args->devices || !args->bos || !args->priv_data)
1861 		return -EINVAL;
1862 
1863 	mutex_lock(&p->mutex);
1864 
1865 	if (!p->n_pdds) {
1866 		pr_err("No pdd for given process\n");
1867 		ret = -ENODEV;
1868 		goto exit_unlock;
1869 	}
1870 
1871 	/* Confirm all process queues are evicted */
1872 	if (!p->queues_paused) {
1873 		pr_err("Cannot dump process when queues are not in evicted state\n");
1874 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
1875 		ret = -EINVAL;
1876 		goto exit_unlock;
1877 	}
1878 
1879 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
1880 	if (ret)
1881 		goto exit_unlock;
1882 
1883 	if (num_devices != args->num_devices ||
1884 	    num_bos != args->num_bos ||
1885 	    num_objects != args->num_objects ||
1886 	    priv_size != args->priv_data_size) {
1887 
1888 		ret = -EINVAL;
1889 		goto exit_unlock;
1890 	}
1891 
1892 	/* each function will store private data inside priv_data and adjust priv_offset */
1893 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
1894 	if (ret)
1895 		goto exit_unlock;
1896 
1897 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
1898 				(uint8_t __user *)args->priv_data, &priv_offset);
1899 	if (ret)
1900 		goto exit_unlock;
1901 
1902 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
1903 			    (uint8_t __user *)args->priv_data, &priv_offset);
1904 	if (ret)
1905 		goto exit_unlock;
1906 
1907 	if (num_objects) {
1908 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
1909 						 &priv_offset);
1910 		if (ret)
1911 			goto close_bo_fds;
1912 
1913 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
1914 						 &priv_offset);
1915 		if (ret)
1916 			goto close_bo_fds;
1917 
1918 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
1919 		if (ret)
1920 			goto close_bo_fds;
1921 	}
1922 
1923 close_bo_fds:
1924 	if (ret) {
1925 		/* If IOCTL returns err, user assumes all FDs opened in criu_dump_bos are closed */
1926 		uint32_t i;
1927 		struct kfd_criu_bo_bucket *bo_buckets = (struct kfd_criu_bo_bucket *) args->bos;
1928 
1929 		for (i = 0; i < num_bos; i++) {
1930 			if (bo_buckets[i].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1931 				close_fd(bo_buckets[i].dmabuf_fd);
1932 		}
1933 	}
1934 
1935 exit_unlock:
1936 	mutex_unlock(&p->mutex);
1937 	if (ret)
1938 		pr_err("Failed to dump CRIU ret:%d\n", ret);
1939 	else
1940 		pr_debug("CRIU dump ret:%d\n", ret);
1941 
1942 	return ret;
1943 }
1944 
1945 static int criu_restore_process(struct kfd_process *p,
1946 				struct kfd_ioctl_criu_args *args,
1947 				uint64_t *priv_offset,
1948 				uint64_t max_priv_data_size)
1949 {
1950 	int ret = 0;
1951 	struct kfd_criu_process_priv_data process_priv;
1952 
1953 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
1954 		return -EINVAL;
1955 
1956 	ret = copy_from_user(&process_priv,
1957 				(void __user *)(args->priv_data + *priv_offset),
1958 				sizeof(process_priv));
1959 	if (ret) {
1960 		pr_err("Failed to copy process private information from user\n");
1961 		ret = -EFAULT;
1962 		goto exit;
1963 	}
1964 	*priv_offset += sizeof(process_priv);
1965 
1966 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
1967 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
1968 			process_priv.version, KFD_CRIU_PRIV_VERSION);
1969 		return -EINVAL;
1970 	}
1971 
1972 	pr_debug("Setting XNACK mode\n");
1973 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
1974 		pr_err("xnack mode cannot be set\n");
1975 		ret = -EPERM;
1976 		goto exit;
1977 	} else {
1978 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
1979 		p->xnack_enabled = process_priv.xnack_mode;
1980 	}
1981 
1982 exit:
1983 	return ret;
1984 }
1985 
1986 static int criu_restore_devices(struct kfd_process *p,
1987 				struct kfd_ioctl_criu_args *args,
1988 				uint64_t *priv_offset,
1989 				uint64_t max_priv_data_size)
1990 {
1991 	struct kfd_criu_device_bucket *device_buckets;
1992 	struct kfd_criu_device_priv_data *device_privs;
1993 	int ret = 0;
1994 	uint32_t i;
1995 
1996 	if (args->num_devices != p->n_pdds)
1997 		return -EINVAL;
1998 
1999 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2000 		return -EINVAL;
2001 
2002 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2003 	if (!device_buckets)
2004 		return -ENOMEM;
2005 
2006 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2007 				args->num_devices * sizeof(*device_buckets));
2008 	if (ret) {
2009 		pr_err("Failed to copy devices buckets from user\n");
2010 		ret = -EFAULT;
2011 		goto exit;
2012 	}
2013 
2014 	for (i = 0; i < args->num_devices; i++) {
2015 		struct kfd_dev *dev;
2016 		struct kfd_process_device *pdd;
2017 		struct file *drm_file;
2018 
2019 		/* device private data is not currently used */
2020 
2021 		if (!device_buckets[i].user_gpu_id) {
2022 			pr_err("Invalid user gpu_id\n");
2023 			ret = -EINVAL;
2024 			goto exit;
2025 		}
2026 
2027 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2028 		if (!dev) {
2029 			pr_err("Failed to find device with gpu_id = %x\n",
2030 				device_buckets[i].actual_gpu_id);
2031 			ret = -EINVAL;
2032 			goto exit;
2033 		}
2034 
2035 		pdd = kfd_get_process_device_data(dev, p);
2036 		if (!pdd) {
2037 			pr_err("Failed to get pdd for gpu_id = %x\n",
2038 					device_buckets[i].actual_gpu_id);
2039 			ret = -EINVAL;
2040 			goto exit;
2041 		}
2042 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2043 
2044 		drm_file = fget(device_buckets[i].drm_fd);
2045 		if (!drm_file) {
2046 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2047 				device_buckets[i].drm_fd);
2048 			ret = -EINVAL;
2049 			goto exit;
2050 		}
2051 
2052 		if (pdd->drm_file) {
2053 			ret = -EINVAL;
2054 			goto exit;
2055 		}
2056 
2057 		/* create the vm using render nodes for kfd pdd */
2058 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2059 			pr_err("could not init vm for given pdd\n");
2060 			/* On success, the PDD keeps the drm_file reference */
2061 			fput(drm_file);
2062 			ret = -EINVAL;
2063 			goto exit;
2064 		}
2065 		/*
2066 		 * pdd now already has the vm bound to render node so below api won't create a new
2067 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2068 		 * for iommu v2 binding  and runtime pm.
2069 		 */
2070 		pdd = kfd_bind_process_to_device(dev, p);
2071 		if (IS_ERR(pdd)) {
2072 			ret = PTR_ERR(pdd);
2073 			goto exit;
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * We are not copying device private data from user as we are not using the data for now,
2079 	 * but we still adjust for its private data.
2080 	 */
2081 	*priv_offset += args->num_devices * sizeof(*device_privs);
2082 
2083 exit:
2084 	kfree(device_buckets);
2085 	return ret;
2086 }
2087 
2088 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2089 				      struct kfd_criu_bo_bucket *bo_bucket,
2090 				      struct kfd_criu_bo_priv_data *bo_priv,
2091 				      struct kgd_mem **kgd_mem)
2092 {
2093 	int idr_handle;
2094 	int ret;
2095 	const bool criu_resume = true;
2096 	u64 offset;
2097 
2098 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2099 		if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev))
2100 			return -EINVAL;
2101 
2102 		offset = kfd_get_process_doorbells(pdd);
2103 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2104 		/* MMIO BOs need remapped bus address */
2105 		if (bo_bucket->size != PAGE_SIZE) {
2106 			pr_err("Invalid page size\n");
2107 			return -EINVAL;
2108 		}
2109 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2110 		if (!offset) {
2111 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2112 			return -ENOMEM;
2113 		}
2114 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2115 		offset = bo_priv->user_addr;
2116 	}
2117 	/* Create the BO */
2118 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2119 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2120 						      &offset, bo_bucket->alloc_flags, criu_resume);
2121 	if (ret) {
2122 		pr_err("Could not create the BO\n");
2123 		return ret;
2124 	}
2125 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2126 		 bo_bucket->size, bo_bucket->addr, offset);
2127 
2128 	/* Restore previous IDR handle */
2129 	pr_debug("Restoring old IDR handle for the BO");
2130 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2131 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2132 
2133 	if (idr_handle < 0) {
2134 		pr_err("Could not allocate idr\n");
2135 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2136 						       NULL);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2141 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2142 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2143 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2144 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2145 		bo_bucket->restored_offset = offset;
2146 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2147 		bo_bucket->restored_offset = offset;
2148 		/* Update the VRAM usage count */
2149 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2150 	}
2151 	return 0;
2152 }
2153 
2154 static int criu_restore_bo(struct kfd_process *p,
2155 			   struct kfd_criu_bo_bucket *bo_bucket,
2156 			   struct kfd_criu_bo_priv_data *bo_priv)
2157 {
2158 	struct kfd_process_device *pdd;
2159 	struct kgd_mem *kgd_mem;
2160 	int ret;
2161 	int j;
2162 
2163 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2164 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2165 		 bo_priv->idr_handle);
2166 
2167 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2168 	if (!pdd) {
2169 		pr_err("Failed to get pdd\n");
2170 		return -ENODEV;
2171 	}
2172 
2173 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2174 	if (ret)
2175 		return ret;
2176 
2177 	/* now map these BOs to GPU/s */
2178 	for (j = 0; j < p->n_pdds; j++) {
2179 		struct kfd_dev *peer;
2180 		struct kfd_process_device *peer_pdd;
2181 
2182 		if (!bo_priv->mapped_gpuids[j])
2183 			break;
2184 
2185 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2186 		if (!peer_pdd)
2187 			return -EINVAL;
2188 
2189 		peer = peer_pdd->dev;
2190 
2191 		peer_pdd = kfd_bind_process_to_device(peer, p);
2192 		if (IS_ERR(peer_pdd))
2193 			return PTR_ERR(peer_pdd);
2194 
2195 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2196 							    peer_pdd->drm_priv);
2197 		if (ret) {
2198 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2199 			return ret;
2200 		}
2201 	}
2202 
2203 	pr_debug("map memory was successful for the BO\n");
2204 	/* create the dmabuf object and export the bo */
2205 	if (bo_bucket->alloc_flags
2206 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2207 		ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2208 					    &bo_bucket->dmabuf_fd);
2209 		if (ret)
2210 			return ret;
2211 	} else {
2212 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 static int criu_restore_bos(struct kfd_process *p,
2219 			    struct kfd_ioctl_criu_args *args,
2220 			    uint64_t *priv_offset,
2221 			    uint64_t max_priv_data_size)
2222 {
2223 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2224 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2225 	int ret = 0;
2226 	uint32_t i = 0;
2227 
2228 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2229 		return -EINVAL;
2230 
2231 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2232 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2233 
2234 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2235 	if (!bo_buckets)
2236 		return -ENOMEM;
2237 
2238 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2239 			     args->num_bos * sizeof(*bo_buckets));
2240 	if (ret) {
2241 		pr_err("Failed to copy BOs information from user\n");
2242 		ret = -EFAULT;
2243 		goto exit;
2244 	}
2245 
2246 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2247 	if (!bo_privs) {
2248 		ret = -ENOMEM;
2249 		goto exit;
2250 	}
2251 
2252 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2253 			     args->num_bos * sizeof(*bo_privs));
2254 	if (ret) {
2255 		pr_err("Failed to copy BOs information from user\n");
2256 		ret = -EFAULT;
2257 		goto exit;
2258 	}
2259 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2260 
2261 	/* Create and map new BOs */
2262 	for (; i < args->num_bos; i++) {
2263 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2264 		if (ret) {
2265 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2266 			goto exit;
2267 		}
2268 	} /* done */
2269 
2270 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2271 	ret = copy_to_user((void __user *)args->bos,
2272 				bo_buckets,
2273 				(args->num_bos * sizeof(*bo_buckets)));
2274 	if (ret)
2275 		ret = -EFAULT;
2276 
2277 exit:
2278 	while (ret && i--) {
2279 		if (bo_buckets[i].alloc_flags
2280 		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2281 			close_fd(bo_buckets[i].dmabuf_fd);
2282 	}
2283 	kvfree(bo_buckets);
2284 	kvfree(bo_privs);
2285 	return ret;
2286 }
2287 
2288 static int criu_restore_objects(struct file *filep,
2289 				struct kfd_process *p,
2290 				struct kfd_ioctl_criu_args *args,
2291 				uint64_t *priv_offset,
2292 				uint64_t max_priv_data_size)
2293 {
2294 	int ret = 0;
2295 	uint32_t i;
2296 
2297 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2298 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2299 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2300 
2301 	for (i = 0; i < args->num_objects; i++) {
2302 		uint32_t object_type;
2303 
2304 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2305 			pr_err("Invalid private data size\n");
2306 			return -EINVAL;
2307 		}
2308 
2309 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2310 		if (ret) {
2311 			pr_err("Failed to copy private information from user\n");
2312 			goto exit;
2313 		}
2314 
2315 		switch (object_type) {
2316 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2317 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2318 						     priv_offset, max_priv_data_size);
2319 			if (ret)
2320 				goto exit;
2321 			break;
2322 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2323 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2324 						     priv_offset, max_priv_data_size);
2325 			if (ret)
2326 				goto exit;
2327 			break;
2328 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2329 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2330 						     priv_offset, max_priv_data_size);
2331 			if (ret)
2332 				goto exit;
2333 			break;
2334 		default:
2335 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2336 			ret = -EINVAL;
2337 			goto exit;
2338 		}
2339 	}
2340 exit:
2341 	return ret;
2342 }
2343 
2344 static int criu_restore(struct file *filep,
2345 			struct kfd_process *p,
2346 			struct kfd_ioctl_criu_args *args)
2347 {
2348 	uint64_t priv_offset = 0;
2349 	int ret = 0;
2350 
2351 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2352 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2353 
2354 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2355 	    !args->num_devices || !args->num_bos)
2356 		return -EINVAL;
2357 
2358 	mutex_lock(&p->mutex);
2359 
2360 	/*
2361 	 * Set the process to evicted state to avoid running any new queues before all the memory
2362 	 * mappings are ready.
2363 	 */
2364 	ret = kfd_process_evict_queues(p);
2365 	if (ret)
2366 		goto exit_unlock;
2367 
2368 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2369 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2370 	if (ret)
2371 		goto exit_unlock;
2372 
2373 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2374 	if (ret)
2375 		goto exit_unlock;
2376 
2377 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2378 	if (ret)
2379 		goto exit_unlock;
2380 
2381 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2382 	if (ret)
2383 		goto exit_unlock;
2384 
2385 	if (priv_offset != args->priv_data_size) {
2386 		pr_err("Invalid private data size\n");
2387 		ret = -EINVAL;
2388 	}
2389 
2390 exit_unlock:
2391 	mutex_unlock(&p->mutex);
2392 	if (ret)
2393 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2394 	else
2395 		pr_debug("CRIU restore successful\n");
2396 
2397 	return ret;
2398 }
2399 
2400 static int criu_unpause(struct file *filep,
2401 			struct kfd_process *p,
2402 			struct kfd_ioctl_criu_args *args)
2403 {
2404 	int ret;
2405 
2406 	mutex_lock(&p->mutex);
2407 
2408 	if (!p->queues_paused) {
2409 		mutex_unlock(&p->mutex);
2410 		return -EINVAL;
2411 	}
2412 
2413 	ret = kfd_process_restore_queues(p);
2414 	if (ret)
2415 		pr_err("Failed to unpause queues ret:%d\n", ret);
2416 	else
2417 		p->queues_paused = false;
2418 
2419 	mutex_unlock(&p->mutex);
2420 
2421 	return ret;
2422 }
2423 
2424 static int criu_resume(struct file *filep,
2425 			struct kfd_process *p,
2426 			struct kfd_ioctl_criu_args *args)
2427 {
2428 	struct kfd_process *target = NULL;
2429 	struct pid *pid = NULL;
2430 	int ret = 0;
2431 
2432 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2433 		 args->pid);
2434 
2435 	pid = find_get_pid(args->pid);
2436 	if (!pid) {
2437 		pr_err("Cannot find pid info for %i\n", args->pid);
2438 		return -ESRCH;
2439 	}
2440 
2441 	pr_debug("calling kfd_lookup_process_by_pid\n");
2442 	target = kfd_lookup_process_by_pid(pid);
2443 
2444 	put_pid(pid);
2445 
2446 	if (!target) {
2447 		pr_debug("Cannot find process info for %i\n", args->pid);
2448 		return -ESRCH;
2449 	}
2450 
2451 	mutex_lock(&target->mutex);
2452 	ret = kfd_criu_resume_svm(target);
2453 	if (ret) {
2454 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2455 		goto exit;
2456 	}
2457 
2458 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2459 	if (ret)
2460 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2461 
2462 exit:
2463 	mutex_unlock(&target->mutex);
2464 
2465 	kfd_unref_process(target);
2466 	return ret;
2467 }
2468 
2469 static int criu_process_info(struct file *filep,
2470 				struct kfd_process *p,
2471 				struct kfd_ioctl_criu_args *args)
2472 {
2473 	int ret = 0;
2474 
2475 	mutex_lock(&p->mutex);
2476 
2477 	if (!p->n_pdds) {
2478 		pr_err("No pdd for given process\n");
2479 		ret = -ENODEV;
2480 		goto err_unlock;
2481 	}
2482 
2483 	ret = kfd_process_evict_queues(p);
2484 	if (ret)
2485 		goto err_unlock;
2486 
2487 	p->queues_paused = true;
2488 
2489 	args->pid = task_pid_nr_ns(p->lead_thread,
2490 					task_active_pid_ns(p->lead_thread));
2491 
2492 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2493 					   &args->num_objects, &args->priv_data_size);
2494 	if (ret)
2495 		goto err_unlock;
2496 
2497 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2498 				args->num_devices, args->num_bos, args->num_objects,
2499 				args->priv_data_size);
2500 
2501 err_unlock:
2502 	if (ret) {
2503 		kfd_process_restore_queues(p);
2504 		p->queues_paused = false;
2505 	}
2506 	mutex_unlock(&p->mutex);
2507 	return ret;
2508 }
2509 
2510 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2511 {
2512 	struct kfd_ioctl_criu_args *args = data;
2513 	int ret;
2514 
2515 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2516 	switch (args->op) {
2517 	case KFD_CRIU_OP_PROCESS_INFO:
2518 		ret = criu_process_info(filep, p, args);
2519 		break;
2520 	case KFD_CRIU_OP_CHECKPOINT:
2521 		ret = criu_checkpoint(filep, p, args);
2522 		break;
2523 	case KFD_CRIU_OP_UNPAUSE:
2524 		ret = criu_unpause(filep, p, args);
2525 		break;
2526 	case KFD_CRIU_OP_RESTORE:
2527 		ret = criu_restore(filep, p, args);
2528 		break;
2529 	case KFD_CRIU_OP_RESUME:
2530 		ret = criu_resume(filep, p, args);
2531 		break;
2532 	default:
2533 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2534 		ret = -EINVAL;
2535 		break;
2536 	}
2537 
2538 	if (ret)
2539 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2540 
2541 	return ret;
2542 }
2543 
2544 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2545 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2546 			    .cmd_drv = 0, .name = #ioctl}
2547 
2548 /** Ioctl table */
2549 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2550 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2551 			kfd_ioctl_get_version, 0),
2552 
2553 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2554 			kfd_ioctl_create_queue, 0),
2555 
2556 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2557 			kfd_ioctl_destroy_queue, 0),
2558 
2559 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2560 			kfd_ioctl_set_memory_policy, 0),
2561 
2562 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2563 			kfd_ioctl_get_clock_counters, 0),
2564 
2565 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2566 			kfd_ioctl_get_process_apertures, 0),
2567 
2568 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2569 			kfd_ioctl_update_queue, 0),
2570 
2571 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2572 			kfd_ioctl_create_event, 0),
2573 
2574 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2575 			kfd_ioctl_destroy_event, 0),
2576 
2577 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2578 			kfd_ioctl_set_event, 0),
2579 
2580 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2581 			kfd_ioctl_reset_event, 0),
2582 
2583 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2584 			kfd_ioctl_wait_events, 0),
2585 
2586 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2587 			kfd_ioctl_dbg_register, 0),
2588 
2589 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2590 			kfd_ioctl_dbg_unregister, 0),
2591 
2592 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2593 			kfd_ioctl_dbg_address_watch, 0),
2594 
2595 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2596 			kfd_ioctl_dbg_wave_control, 0),
2597 
2598 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2599 			kfd_ioctl_set_scratch_backing_va, 0),
2600 
2601 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2602 			kfd_ioctl_get_tile_config, 0),
2603 
2604 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2605 			kfd_ioctl_set_trap_handler, 0),
2606 
2607 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2608 			kfd_ioctl_get_process_apertures_new, 0),
2609 
2610 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2611 			kfd_ioctl_acquire_vm, 0),
2612 
2613 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2614 			kfd_ioctl_alloc_memory_of_gpu, 0),
2615 
2616 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2617 			kfd_ioctl_free_memory_of_gpu, 0),
2618 
2619 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2620 			kfd_ioctl_map_memory_to_gpu, 0),
2621 
2622 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2623 			kfd_ioctl_unmap_memory_from_gpu, 0),
2624 
2625 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2626 			kfd_ioctl_set_cu_mask, 0),
2627 
2628 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2629 			kfd_ioctl_get_queue_wave_state, 0),
2630 
2631 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2632 				kfd_ioctl_get_dmabuf_info, 0),
2633 
2634 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2635 				kfd_ioctl_import_dmabuf, 0),
2636 
2637 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2638 			kfd_ioctl_alloc_queue_gws, 0),
2639 
2640 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2641 			kfd_ioctl_smi_events, 0),
2642 
2643 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2644 
2645 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2646 			kfd_ioctl_set_xnack_mode, 0),
2647 
2648 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2649 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2650 
2651 };
2652 
2653 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
2654 
2655 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2656 {
2657 	struct kfd_process *process;
2658 	amdkfd_ioctl_t *func;
2659 	const struct amdkfd_ioctl_desc *ioctl = NULL;
2660 	unsigned int nr = _IOC_NR(cmd);
2661 	char stack_kdata[128];
2662 	char *kdata = NULL;
2663 	unsigned int usize, asize;
2664 	int retcode = -EINVAL;
2665 	bool ptrace_attached = false;
2666 
2667 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2668 		goto err_i1;
2669 
2670 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2671 		u32 amdkfd_size;
2672 
2673 		ioctl = &amdkfd_ioctls[nr];
2674 
2675 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
2676 		usize = asize = _IOC_SIZE(cmd);
2677 		if (amdkfd_size > asize)
2678 			asize = amdkfd_size;
2679 
2680 		cmd = ioctl->cmd;
2681 	} else
2682 		goto err_i1;
2683 
2684 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2685 
2686 	/* Get the process struct from the filep. Only the process
2687 	 * that opened /dev/kfd can use the file descriptor. Child
2688 	 * processes need to create their own KFD device context.
2689 	 */
2690 	process = filep->private_data;
2691 
2692 	rcu_read_lock();
2693 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2694 	    ptrace_parent(process->lead_thread) == current)
2695 		ptrace_attached = true;
2696 	rcu_read_unlock();
2697 
2698 	if (process->lead_thread != current->group_leader
2699 	    && !ptrace_attached) {
2700 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2701 		retcode = -EBADF;
2702 		goto err_i1;
2703 	}
2704 
2705 	/* Do not trust userspace, use our own definition */
2706 	func = ioctl->func;
2707 
2708 	if (unlikely(!func)) {
2709 		dev_dbg(kfd_device, "no function\n");
2710 		retcode = -EINVAL;
2711 		goto err_i1;
2712 	}
2713 
2714 	/*
2715 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2716 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2717 	 * more priviledged access.
2718 	 */
2719 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2720 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
2721 						!capable(CAP_SYS_ADMIN)) {
2722 			retcode = -EACCES;
2723 			goto err_i1;
2724 		}
2725 	}
2726 
2727 	if (cmd & (IOC_IN | IOC_OUT)) {
2728 		if (asize <= sizeof(stack_kdata)) {
2729 			kdata = stack_kdata;
2730 		} else {
2731 			kdata = kmalloc(asize, GFP_KERNEL);
2732 			if (!kdata) {
2733 				retcode = -ENOMEM;
2734 				goto err_i1;
2735 			}
2736 		}
2737 		if (asize > usize)
2738 			memset(kdata + usize, 0, asize - usize);
2739 	}
2740 
2741 	if (cmd & IOC_IN) {
2742 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2743 			retcode = -EFAULT;
2744 			goto err_i1;
2745 		}
2746 	} else if (cmd & IOC_OUT) {
2747 		memset(kdata, 0, usize);
2748 	}
2749 
2750 	retcode = func(filep, process, kdata);
2751 
2752 	if (cmd & IOC_OUT)
2753 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2754 			retcode = -EFAULT;
2755 
2756 err_i1:
2757 	if (!ioctl)
2758 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2759 			  task_pid_nr(current), cmd, nr);
2760 
2761 	if (kdata != stack_kdata)
2762 		kfree(kdata);
2763 
2764 	if (retcode)
2765 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2766 				nr, arg, retcode);
2767 
2768 	return retcode;
2769 }
2770 
2771 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2772 		      struct vm_area_struct *vma)
2773 {
2774 	phys_addr_t address;
2775 	int ret;
2776 
2777 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2778 		return -EINVAL;
2779 
2780 	address = dev->adev->rmmio_remap.bus_addr;
2781 
2782 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2783 				VM_DONTDUMP | VM_PFNMAP;
2784 
2785 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2786 
2787 	pr_debug("pasid 0x%x mapping mmio page\n"
2788 		 "     target user address == 0x%08llX\n"
2789 		 "     physical address    == 0x%08llX\n"
2790 		 "     vm_flags            == 0x%04lX\n"
2791 		 "     size                == 0x%04lX\n",
2792 		 process->pasid, (unsigned long long) vma->vm_start,
2793 		 address, vma->vm_flags, PAGE_SIZE);
2794 
2795 	ret = io_remap_pfn_range(vma,
2796 				vma->vm_start,
2797 				address >> PAGE_SHIFT,
2798 				PAGE_SIZE,
2799 				vma->vm_page_prot);
2800 	return ret;
2801 }
2802 
2803 
2804 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2805 {
2806 	struct kfd_process *process;
2807 	struct kfd_dev *dev = NULL;
2808 	unsigned long mmap_offset;
2809 	unsigned int gpu_id;
2810 
2811 	process = kfd_get_process(current);
2812 	if (IS_ERR(process))
2813 		return PTR_ERR(process);
2814 
2815 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2816 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2817 	if (gpu_id)
2818 		dev = kfd_device_by_id(gpu_id);
2819 
2820 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2821 	case KFD_MMAP_TYPE_DOORBELL:
2822 		if (!dev)
2823 			return -ENODEV;
2824 		return kfd_doorbell_mmap(dev, process, vma);
2825 
2826 	case KFD_MMAP_TYPE_EVENTS:
2827 		return kfd_event_mmap(process, vma);
2828 
2829 	case KFD_MMAP_TYPE_RESERVED_MEM:
2830 		if (!dev)
2831 			return -ENODEV;
2832 		return kfd_reserved_mem_mmap(dev, process, vma);
2833 	case KFD_MMAP_TYPE_MMIO:
2834 		if (!dev)
2835 			return -ENODEV;
2836 		return kfd_mmio_mmap(dev, process, vma);
2837 	}
2838 
2839 	return -EFAULT;
2840 }
2841