1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_mmap(struct file *, struct vm_area_struct *);
46 
47 static const char kfd_dev_name[] = "kfd";
48 
49 static const struct file_operations kfd_fops = {
50 	.owner = THIS_MODULE,
51 	.unlocked_ioctl = kfd_ioctl,
52 	.compat_ioctl = kfd_ioctl,
53 	.open = kfd_open,
54 	.mmap = kfd_mmap,
55 };
56 
57 static int kfd_char_dev_major = -1;
58 static struct class *kfd_class;
59 struct device *kfd_device;
60 
61 int kfd_chardev_init(void)
62 {
63 	int err = 0;
64 
65 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
66 	err = kfd_char_dev_major;
67 	if (err < 0)
68 		goto err_register_chrdev;
69 
70 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
71 	err = PTR_ERR(kfd_class);
72 	if (IS_ERR(kfd_class))
73 		goto err_class_create;
74 
75 	kfd_device = device_create(kfd_class, NULL,
76 					MKDEV(kfd_char_dev_major, 0),
77 					NULL, kfd_dev_name);
78 	err = PTR_ERR(kfd_device);
79 	if (IS_ERR(kfd_device))
80 		goto err_device_create;
81 
82 	return 0;
83 
84 err_device_create:
85 	class_destroy(kfd_class);
86 err_class_create:
87 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
88 err_register_chrdev:
89 	return err;
90 }
91 
92 void kfd_chardev_exit(void)
93 {
94 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
95 	class_destroy(kfd_class);
96 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
97 }
98 
99 struct device *kfd_chardev(void)
100 {
101 	return kfd_device;
102 }
103 
104 
105 static int kfd_open(struct inode *inode, struct file *filep)
106 {
107 	struct kfd_process *process;
108 	bool is_32bit_user_mode;
109 
110 	if (iminor(inode) != 0)
111 		return -ENODEV;
112 
113 	is_32bit_user_mode = in_compat_syscall();
114 
115 	if (is_32bit_user_mode) {
116 		dev_warn(kfd_device,
117 			"Process %d (32-bit) failed to open /dev/kfd\n"
118 			"32-bit processes are not supported by amdkfd\n",
119 			current->pid);
120 		return -EPERM;
121 	}
122 
123 	process = kfd_create_process(filep);
124 	if (IS_ERR(process))
125 		return PTR_ERR(process);
126 
127 	if (kfd_is_locked())
128 		return -EAGAIN;
129 
130 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
131 		process->pasid, process->is_32bit_user_mode);
132 
133 	return 0;
134 }
135 
136 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
137 					void *data)
138 {
139 	struct kfd_ioctl_get_version_args *args = data;
140 
141 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
142 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
143 
144 	return 0;
145 }
146 
147 static int set_queue_properties_from_user(struct queue_properties *q_properties,
148 				struct kfd_ioctl_create_queue_args *args)
149 {
150 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
151 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
152 		return -EINVAL;
153 	}
154 
155 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
156 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
157 		return -EINVAL;
158 	}
159 
160 	if ((args->ring_base_address) &&
161 		(!access_ok((const void __user *) args->ring_base_address,
162 			sizeof(uint64_t)))) {
163 		pr_err("Can't access ring base address\n");
164 		return -EFAULT;
165 	}
166 
167 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
168 		pr_err("Ring size must be a power of 2 or 0\n");
169 		return -EINVAL;
170 	}
171 
172 	if (!access_ok((const void __user *) args->read_pointer_address,
173 			sizeof(uint32_t))) {
174 		pr_err("Can't access read pointer\n");
175 		return -EFAULT;
176 	}
177 
178 	if (!access_ok((const void __user *) args->write_pointer_address,
179 			sizeof(uint32_t))) {
180 		pr_err("Can't access write pointer\n");
181 		return -EFAULT;
182 	}
183 
184 	if (args->eop_buffer_address &&
185 		!access_ok((const void __user *) args->eop_buffer_address,
186 			sizeof(uint32_t))) {
187 		pr_debug("Can't access eop buffer");
188 		return -EFAULT;
189 	}
190 
191 	if (args->ctx_save_restore_address &&
192 		!access_ok((const void __user *) args->ctx_save_restore_address,
193 			sizeof(uint32_t))) {
194 		pr_debug("Can't access ctx save restore buffer");
195 		return -EFAULT;
196 	}
197 
198 	q_properties->is_interop = false;
199 	q_properties->queue_percent = args->queue_percentage;
200 	q_properties->priority = args->queue_priority;
201 	q_properties->queue_address = args->ring_base_address;
202 	q_properties->queue_size = args->ring_size;
203 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
204 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
205 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
206 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
207 	q_properties->ctx_save_restore_area_address =
208 			args->ctx_save_restore_address;
209 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
210 	q_properties->ctl_stack_size = args->ctl_stack_size;
211 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
212 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
213 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
214 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
215 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
216 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
217 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
218 	else
219 		return -ENOTSUPP;
220 
221 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
222 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
223 	else
224 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
225 
226 	pr_debug("Queue Percentage: %d, %d\n",
227 			q_properties->queue_percent, args->queue_percentage);
228 
229 	pr_debug("Queue Priority: %d, %d\n",
230 			q_properties->priority, args->queue_priority);
231 
232 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
233 			q_properties->queue_address, args->ring_base_address);
234 
235 	pr_debug("Queue Size: 0x%llX, %u\n",
236 			q_properties->queue_size, args->ring_size);
237 
238 	pr_debug("Queue r/w Pointers: %px, %px\n",
239 			q_properties->read_ptr,
240 			q_properties->write_ptr);
241 
242 	pr_debug("Queue Format: %d\n", q_properties->format);
243 
244 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
245 
246 	pr_debug("Queue CTX save area: 0x%llX\n",
247 			q_properties->ctx_save_restore_area_address);
248 
249 	return 0;
250 }
251 
252 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
253 					void *data)
254 {
255 	struct kfd_ioctl_create_queue_args *args = data;
256 	struct kfd_dev *dev;
257 	int err = 0;
258 	unsigned int queue_id;
259 	struct kfd_process_device *pdd;
260 	struct queue_properties q_properties;
261 
262 	memset(&q_properties, 0, sizeof(struct queue_properties));
263 
264 	pr_debug("Creating queue ioctl\n");
265 
266 	err = set_queue_properties_from_user(&q_properties, args);
267 	if (err)
268 		return err;
269 
270 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
271 	dev = kfd_device_by_id(args->gpu_id);
272 	if (!dev) {
273 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
274 		return -EINVAL;
275 	}
276 
277 	mutex_lock(&p->mutex);
278 
279 	pdd = kfd_bind_process_to_device(dev, p);
280 	if (IS_ERR(pdd)) {
281 		err = -ESRCH;
282 		goto err_bind_process;
283 	}
284 
285 	pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
286 			p->pasid,
287 			dev->id);
288 
289 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
290 	if (err != 0)
291 		goto err_create_queue;
292 
293 	args->queue_id = queue_id;
294 
295 
296 	/* Return gpu_id as doorbell offset for mmap usage */
297 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
298 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
299 	args->doorbell_offset <<= PAGE_SHIFT;
300 	if (KFD_IS_SOC15(dev->device_info->asic_family))
301 		/* On SOC15 ASICs, doorbell allocation must be
302 		 * per-device, and independent from the per-process
303 		 * queue_id. Return the doorbell offset within the
304 		 * doorbell aperture to user mode.
305 		 */
306 		args->doorbell_offset |= q_properties.doorbell_off;
307 
308 	mutex_unlock(&p->mutex);
309 
310 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
311 
312 	pr_debug("Ring buffer address == 0x%016llX\n",
313 			args->ring_base_address);
314 
315 	pr_debug("Read ptr address    == 0x%016llX\n",
316 			args->read_pointer_address);
317 
318 	pr_debug("Write ptr address   == 0x%016llX\n",
319 			args->write_pointer_address);
320 
321 	return 0;
322 
323 err_create_queue:
324 err_bind_process:
325 	mutex_unlock(&p->mutex);
326 	return err;
327 }
328 
329 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
330 					void *data)
331 {
332 	int retval;
333 	struct kfd_ioctl_destroy_queue_args *args = data;
334 
335 	pr_debug("Destroying queue id %d for pasid %d\n",
336 				args->queue_id,
337 				p->pasid);
338 
339 	mutex_lock(&p->mutex);
340 
341 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
342 
343 	mutex_unlock(&p->mutex);
344 	return retval;
345 }
346 
347 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
348 					void *data)
349 {
350 	int retval;
351 	struct kfd_ioctl_update_queue_args *args = data;
352 	struct queue_properties properties;
353 
354 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
355 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
356 		return -EINVAL;
357 	}
358 
359 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
360 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
361 		return -EINVAL;
362 	}
363 
364 	if ((args->ring_base_address) &&
365 		(!access_ok((const void __user *) args->ring_base_address,
366 			sizeof(uint64_t)))) {
367 		pr_err("Can't access ring base address\n");
368 		return -EFAULT;
369 	}
370 
371 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
372 		pr_err("Ring size must be a power of 2 or 0\n");
373 		return -EINVAL;
374 	}
375 
376 	properties.queue_address = args->ring_base_address;
377 	properties.queue_size = args->ring_size;
378 	properties.queue_percent = args->queue_percentage;
379 	properties.priority = args->queue_priority;
380 
381 	pr_debug("Updating queue id %d for pasid %d\n",
382 			args->queue_id, p->pasid);
383 
384 	mutex_lock(&p->mutex);
385 
386 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
387 
388 	mutex_unlock(&p->mutex);
389 
390 	return retval;
391 }
392 
393 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
394 					void *data)
395 {
396 	int retval;
397 	const int max_num_cus = 1024;
398 	struct kfd_ioctl_set_cu_mask_args *args = data;
399 	struct queue_properties properties;
400 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
401 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
402 
403 	if ((args->num_cu_mask % 32) != 0) {
404 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
405 				args->num_cu_mask);
406 		return -EINVAL;
407 	}
408 
409 	properties.cu_mask_count = args->num_cu_mask;
410 	if (properties.cu_mask_count == 0) {
411 		pr_debug("CU mask cannot be 0");
412 		return -EINVAL;
413 	}
414 
415 	/* To prevent an unreasonably large CU mask size, set an arbitrary
416 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
417 	 * past max_num_cus bits and just use the first max_num_cus bits.
418 	 */
419 	if (properties.cu_mask_count > max_num_cus) {
420 		pr_debug("CU mask cannot be greater than 1024 bits");
421 		properties.cu_mask_count = max_num_cus;
422 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
423 	}
424 
425 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
426 	if (!properties.cu_mask)
427 		return -ENOMEM;
428 
429 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
430 	if (retval) {
431 		pr_debug("Could not copy CU mask from userspace");
432 		kfree(properties.cu_mask);
433 		return -EFAULT;
434 	}
435 
436 	mutex_lock(&p->mutex);
437 
438 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
439 
440 	mutex_unlock(&p->mutex);
441 
442 	if (retval)
443 		kfree(properties.cu_mask);
444 
445 	return retval;
446 }
447 
448 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
449 					  struct kfd_process *p, void *data)
450 {
451 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
452 	int r;
453 
454 	mutex_lock(&p->mutex);
455 
456 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
457 			       (void __user *)args->ctl_stack_address,
458 			       &args->ctl_stack_used_size,
459 			       &args->save_area_used_size);
460 
461 	mutex_unlock(&p->mutex);
462 
463 	return r;
464 }
465 
466 static int kfd_ioctl_set_memory_policy(struct file *filep,
467 					struct kfd_process *p, void *data)
468 {
469 	struct kfd_ioctl_set_memory_policy_args *args = data;
470 	struct kfd_dev *dev;
471 	int err = 0;
472 	struct kfd_process_device *pdd;
473 	enum cache_policy default_policy, alternate_policy;
474 
475 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
476 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
477 		return -EINVAL;
478 	}
479 
480 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
481 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
482 		return -EINVAL;
483 	}
484 
485 	dev = kfd_device_by_id(args->gpu_id);
486 	if (!dev)
487 		return -EINVAL;
488 
489 	mutex_lock(&p->mutex);
490 
491 	pdd = kfd_bind_process_to_device(dev, p);
492 	if (IS_ERR(pdd)) {
493 		err = -ESRCH;
494 		goto out;
495 	}
496 
497 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
498 			 ? cache_policy_coherent : cache_policy_noncoherent;
499 
500 	alternate_policy =
501 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
502 		   ? cache_policy_coherent : cache_policy_noncoherent;
503 
504 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
505 				&pdd->qpd,
506 				default_policy,
507 				alternate_policy,
508 				(void __user *)args->alternate_aperture_base,
509 				args->alternate_aperture_size))
510 		err = -EINVAL;
511 
512 out:
513 	mutex_unlock(&p->mutex);
514 
515 	return err;
516 }
517 
518 static int kfd_ioctl_set_trap_handler(struct file *filep,
519 					struct kfd_process *p, void *data)
520 {
521 	struct kfd_ioctl_set_trap_handler_args *args = data;
522 	struct kfd_dev *dev;
523 	int err = 0;
524 	struct kfd_process_device *pdd;
525 
526 	dev = kfd_device_by_id(args->gpu_id);
527 	if (!dev)
528 		return -EINVAL;
529 
530 	mutex_lock(&p->mutex);
531 
532 	pdd = kfd_bind_process_to_device(dev, p);
533 	if (IS_ERR(pdd)) {
534 		err = -ESRCH;
535 		goto out;
536 	}
537 
538 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
539 					&pdd->qpd,
540 					args->tba_addr,
541 					args->tma_addr))
542 		err = -EINVAL;
543 
544 out:
545 	mutex_unlock(&p->mutex);
546 
547 	return err;
548 }
549 
550 static int kfd_ioctl_dbg_register(struct file *filep,
551 				struct kfd_process *p, void *data)
552 {
553 	struct kfd_ioctl_dbg_register_args *args = data;
554 	struct kfd_dev *dev;
555 	struct kfd_dbgmgr *dbgmgr_ptr;
556 	struct kfd_process_device *pdd;
557 	bool create_ok;
558 	long status = 0;
559 
560 	dev = kfd_device_by_id(args->gpu_id);
561 	if (!dev)
562 		return -EINVAL;
563 
564 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
565 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
566 		return -EINVAL;
567 	}
568 
569 	mutex_lock(&p->mutex);
570 	mutex_lock(kfd_get_dbgmgr_mutex());
571 
572 	/*
573 	 * make sure that we have pdd, if this the first queue created for
574 	 * this process
575 	 */
576 	pdd = kfd_bind_process_to_device(dev, p);
577 	if (IS_ERR(pdd)) {
578 		status = PTR_ERR(pdd);
579 		goto out;
580 	}
581 
582 	if (!dev->dbgmgr) {
583 		/* In case of a legal call, we have no dbgmgr yet */
584 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
585 		if (create_ok) {
586 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
587 			if (status != 0)
588 				kfd_dbgmgr_destroy(dbgmgr_ptr);
589 			else
590 				dev->dbgmgr = dbgmgr_ptr;
591 		}
592 	} else {
593 		pr_debug("debugger already registered\n");
594 		status = -EINVAL;
595 	}
596 
597 out:
598 	mutex_unlock(kfd_get_dbgmgr_mutex());
599 	mutex_unlock(&p->mutex);
600 
601 	return status;
602 }
603 
604 static int kfd_ioctl_dbg_unregister(struct file *filep,
605 				struct kfd_process *p, void *data)
606 {
607 	struct kfd_ioctl_dbg_unregister_args *args = data;
608 	struct kfd_dev *dev;
609 	long status;
610 
611 	dev = kfd_device_by_id(args->gpu_id);
612 	if (!dev || !dev->dbgmgr)
613 		return -EINVAL;
614 
615 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
616 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
617 		return -EINVAL;
618 	}
619 
620 	mutex_lock(kfd_get_dbgmgr_mutex());
621 
622 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
623 	if (!status) {
624 		kfd_dbgmgr_destroy(dev->dbgmgr);
625 		dev->dbgmgr = NULL;
626 	}
627 
628 	mutex_unlock(kfd_get_dbgmgr_mutex());
629 
630 	return status;
631 }
632 
633 /*
634  * Parse and generate variable size data structure for address watch.
635  * Total size of the buffer and # watch points is limited in order
636  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
637  * which is enforced by dbgdev module)
638  * please also note that the watch address itself are not "copied from user",
639  * since it be set into the HW in user mode values.
640  *
641  */
642 static int kfd_ioctl_dbg_address_watch(struct file *filep,
643 					struct kfd_process *p, void *data)
644 {
645 	struct kfd_ioctl_dbg_address_watch_args *args = data;
646 	struct kfd_dev *dev;
647 	struct dbg_address_watch_info aw_info;
648 	unsigned char *args_buff;
649 	long status;
650 	void __user *cmd_from_user;
651 	uint64_t watch_mask_value = 0;
652 	unsigned int args_idx = 0;
653 
654 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
655 
656 	dev = kfd_device_by_id(args->gpu_id);
657 	if (!dev)
658 		return -EINVAL;
659 
660 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
661 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
662 		return -EINVAL;
663 	}
664 
665 	cmd_from_user = (void __user *) args->content_ptr;
666 
667 	/* Validate arguments */
668 
669 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
670 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
671 		(cmd_from_user == NULL))
672 		return -EINVAL;
673 
674 	/* this is the actual buffer to work with */
675 	args_buff = memdup_user(cmd_from_user,
676 				args->buf_size_in_bytes - sizeof(*args));
677 	if (IS_ERR(args_buff))
678 		return PTR_ERR(args_buff);
679 
680 	aw_info.process = p;
681 
682 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
683 	args_idx += sizeof(aw_info.num_watch_points);
684 
685 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
686 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
687 
688 	/*
689 	 * set watch address base pointer to point on the array base
690 	 * within args_buff
691 	 */
692 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
693 
694 	/* skip over the addresses buffer */
695 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
696 
697 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
698 		status = -EINVAL;
699 		goto out;
700 	}
701 
702 	watch_mask_value = (uint64_t) args_buff[args_idx];
703 
704 	if (watch_mask_value > 0) {
705 		/*
706 		 * There is an array of masks.
707 		 * set watch mask base pointer to point on the array base
708 		 * within args_buff
709 		 */
710 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
711 
712 		/* skip over the masks buffer */
713 		args_idx += sizeof(aw_info.watch_mask) *
714 				aw_info.num_watch_points;
715 	} else {
716 		/* just the NULL mask, set to NULL and skip over it */
717 		aw_info.watch_mask = NULL;
718 		args_idx += sizeof(aw_info.watch_mask);
719 	}
720 
721 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
722 		status = -EINVAL;
723 		goto out;
724 	}
725 
726 	/* Currently HSA Event is not supported for DBG */
727 	aw_info.watch_event = NULL;
728 
729 	mutex_lock(kfd_get_dbgmgr_mutex());
730 
731 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
732 
733 	mutex_unlock(kfd_get_dbgmgr_mutex());
734 
735 out:
736 	kfree(args_buff);
737 
738 	return status;
739 }
740 
741 /* Parse and generate fixed size data structure for wave control */
742 static int kfd_ioctl_dbg_wave_control(struct file *filep,
743 					struct kfd_process *p, void *data)
744 {
745 	struct kfd_ioctl_dbg_wave_control_args *args = data;
746 	struct kfd_dev *dev;
747 	struct dbg_wave_control_info wac_info;
748 	unsigned char *args_buff;
749 	uint32_t computed_buff_size;
750 	long status;
751 	void __user *cmd_from_user;
752 	unsigned int args_idx = 0;
753 
754 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
755 
756 	/* we use compact form, independent of the packing attribute value */
757 	computed_buff_size = sizeof(*args) +
758 				sizeof(wac_info.mode) +
759 				sizeof(wac_info.operand) +
760 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
761 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
762 				sizeof(wac_info.trapId);
763 
764 	dev = kfd_device_by_id(args->gpu_id);
765 	if (!dev)
766 		return -EINVAL;
767 
768 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
769 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
770 		return -EINVAL;
771 	}
772 
773 	/* input size must match the computed "compact" size */
774 	if (args->buf_size_in_bytes != computed_buff_size) {
775 		pr_debug("size mismatch, computed : actual %u : %u\n",
776 				args->buf_size_in_bytes, computed_buff_size);
777 		return -EINVAL;
778 	}
779 
780 	cmd_from_user = (void __user *) args->content_ptr;
781 
782 	if (cmd_from_user == NULL)
783 		return -EINVAL;
784 
785 	/* copy the entire buffer from user */
786 
787 	args_buff = memdup_user(cmd_from_user,
788 				args->buf_size_in_bytes - sizeof(*args));
789 	if (IS_ERR(args_buff))
790 		return PTR_ERR(args_buff);
791 
792 	/* move ptr to the start of the "pay-load" area */
793 	wac_info.process = p;
794 
795 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
796 	args_idx += sizeof(wac_info.operand);
797 
798 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
799 	args_idx += sizeof(wac_info.mode);
800 
801 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
802 	args_idx += sizeof(wac_info.trapId);
803 
804 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
805 					*((uint32_t *)(&args_buff[args_idx]));
806 	wac_info.dbgWave_msg.MemoryVA = NULL;
807 
808 	mutex_lock(kfd_get_dbgmgr_mutex());
809 
810 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
811 			wac_info.process, wac_info.operand,
812 			wac_info.mode, wac_info.trapId,
813 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
814 
815 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
816 
817 	pr_debug("Returned status of dbg manager is %ld\n", status);
818 
819 	mutex_unlock(kfd_get_dbgmgr_mutex());
820 
821 	kfree(args_buff);
822 
823 	return status;
824 }
825 
826 static int kfd_ioctl_get_clock_counters(struct file *filep,
827 				struct kfd_process *p, void *data)
828 {
829 	struct kfd_ioctl_get_clock_counters_args *args = data;
830 	struct kfd_dev *dev;
831 
832 	dev = kfd_device_by_id(args->gpu_id);
833 	if (dev)
834 		/* Reading GPU clock counter from KGD */
835 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
836 	else
837 		/* Node without GPU resource */
838 		args->gpu_clock_counter = 0;
839 
840 	/* No access to rdtsc. Using raw monotonic time */
841 	args->cpu_clock_counter = ktime_get_raw_ns();
842 	args->system_clock_counter = ktime_get_boottime_ns();
843 
844 	/* Since the counter is in nano-seconds we use 1GHz frequency */
845 	args->system_clock_freq = 1000000000;
846 
847 	return 0;
848 }
849 
850 
851 static int kfd_ioctl_get_process_apertures(struct file *filp,
852 				struct kfd_process *p, void *data)
853 {
854 	struct kfd_ioctl_get_process_apertures_args *args = data;
855 	struct kfd_process_device_apertures *pAperture;
856 	struct kfd_process_device *pdd;
857 
858 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
859 
860 	args->num_of_nodes = 0;
861 
862 	mutex_lock(&p->mutex);
863 
864 	/*if the process-device list isn't empty*/
865 	if (kfd_has_process_device_data(p)) {
866 		/* Run over all pdd of the process */
867 		pdd = kfd_get_first_process_device_data(p);
868 		do {
869 			pAperture =
870 				&args->process_apertures[args->num_of_nodes];
871 			pAperture->gpu_id = pdd->dev->id;
872 			pAperture->lds_base = pdd->lds_base;
873 			pAperture->lds_limit = pdd->lds_limit;
874 			pAperture->gpuvm_base = pdd->gpuvm_base;
875 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
876 			pAperture->scratch_base = pdd->scratch_base;
877 			pAperture->scratch_limit = pdd->scratch_limit;
878 
879 			dev_dbg(kfd_device,
880 				"node id %u\n", args->num_of_nodes);
881 			dev_dbg(kfd_device,
882 				"gpu id %u\n", pdd->dev->id);
883 			dev_dbg(kfd_device,
884 				"lds_base %llX\n", pdd->lds_base);
885 			dev_dbg(kfd_device,
886 				"lds_limit %llX\n", pdd->lds_limit);
887 			dev_dbg(kfd_device,
888 				"gpuvm_base %llX\n", pdd->gpuvm_base);
889 			dev_dbg(kfd_device,
890 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
891 			dev_dbg(kfd_device,
892 				"scratch_base %llX\n", pdd->scratch_base);
893 			dev_dbg(kfd_device,
894 				"scratch_limit %llX\n", pdd->scratch_limit);
895 
896 			args->num_of_nodes++;
897 
898 			pdd = kfd_get_next_process_device_data(p, pdd);
899 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
900 	}
901 
902 	mutex_unlock(&p->mutex);
903 
904 	return 0;
905 }
906 
907 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
908 				struct kfd_process *p, void *data)
909 {
910 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
911 	struct kfd_process_device_apertures *pa;
912 	struct kfd_process_device *pdd;
913 	uint32_t nodes = 0;
914 	int ret;
915 
916 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
917 
918 	if (args->num_of_nodes == 0) {
919 		/* Return number of nodes, so that user space can alloacate
920 		 * sufficient memory
921 		 */
922 		mutex_lock(&p->mutex);
923 
924 		if (!kfd_has_process_device_data(p))
925 			goto out_unlock;
926 
927 		/* Run over all pdd of the process */
928 		pdd = kfd_get_first_process_device_data(p);
929 		do {
930 			args->num_of_nodes++;
931 			pdd = kfd_get_next_process_device_data(p, pdd);
932 		} while (pdd);
933 
934 		goto out_unlock;
935 	}
936 
937 	/* Fill in process-aperture information for all available
938 	 * nodes, but not more than args->num_of_nodes as that is
939 	 * the amount of memory allocated by user
940 	 */
941 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
942 				args->num_of_nodes), GFP_KERNEL);
943 	if (!pa)
944 		return -ENOMEM;
945 
946 	mutex_lock(&p->mutex);
947 
948 	if (!kfd_has_process_device_data(p)) {
949 		args->num_of_nodes = 0;
950 		kfree(pa);
951 		goto out_unlock;
952 	}
953 
954 	/* Run over all pdd of the process */
955 	pdd = kfd_get_first_process_device_data(p);
956 	do {
957 		pa[nodes].gpu_id = pdd->dev->id;
958 		pa[nodes].lds_base = pdd->lds_base;
959 		pa[nodes].lds_limit = pdd->lds_limit;
960 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
961 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
962 		pa[nodes].scratch_base = pdd->scratch_base;
963 		pa[nodes].scratch_limit = pdd->scratch_limit;
964 
965 		dev_dbg(kfd_device,
966 			"gpu id %u\n", pdd->dev->id);
967 		dev_dbg(kfd_device,
968 			"lds_base %llX\n", pdd->lds_base);
969 		dev_dbg(kfd_device,
970 			"lds_limit %llX\n", pdd->lds_limit);
971 		dev_dbg(kfd_device,
972 			"gpuvm_base %llX\n", pdd->gpuvm_base);
973 		dev_dbg(kfd_device,
974 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
975 		dev_dbg(kfd_device,
976 			"scratch_base %llX\n", pdd->scratch_base);
977 		dev_dbg(kfd_device,
978 			"scratch_limit %llX\n", pdd->scratch_limit);
979 		nodes++;
980 
981 		pdd = kfd_get_next_process_device_data(p, pdd);
982 	} while (pdd && (nodes < args->num_of_nodes));
983 	mutex_unlock(&p->mutex);
984 
985 	args->num_of_nodes = nodes;
986 	ret = copy_to_user(
987 			(void __user *)args->kfd_process_device_apertures_ptr,
988 			pa,
989 			(nodes * sizeof(struct kfd_process_device_apertures)));
990 	kfree(pa);
991 	return ret ? -EFAULT : 0;
992 
993 out_unlock:
994 	mutex_unlock(&p->mutex);
995 	return 0;
996 }
997 
998 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
999 					void *data)
1000 {
1001 	struct kfd_ioctl_create_event_args *args = data;
1002 	int err;
1003 
1004 	/* For dGPUs the event page is allocated in user mode. The
1005 	 * handle is passed to KFD with the first call to this IOCTL
1006 	 * through the event_page_offset field.
1007 	 */
1008 	if (args->event_page_offset) {
1009 		struct kfd_dev *kfd;
1010 		struct kfd_process_device *pdd;
1011 		void *mem, *kern_addr;
1012 		uint64_t size;
1013 
1014 		if (p->signal_page) {
1015 			pr_err("Event page is already set\n");
1016 			return -EINVAL;
1017 		}
1018 
1019 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020 		if (!kfd) {
1021 			pr_err("Getting device by id failed in %s\n", __func__);
1022 			return -EINVAL;
1023 		}
1024 
1025 		mutex_lock(&p->mutex);
1026 		pdd = kfd_bind_process_to_device(kfd, p);
1027 		if (IS_ERR(pdd)) {
1028 			err = PTR_ERR(pdd);
1029 			goto out_unlock;
1030 		}
1031 
1032 		mem = kfd_process_device_translate_handle(pdd,
1033 				GET_IDR_HANDLE(args->event_page_offset));
1034 		if (!mem) {
1035 			pr_err("Can't find BO, offset is 0x%llx\n",
1036 			       args->event_page_offset);
1037 			err = -EINVAL;
1038 			goto out_unlock;
1039 		}
1040 		mutex_unlock(&p->mutex);
1041 
1042 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043 						mem, &kern_addr, &size);
1044 		if (err) {
1045 			pr_err("Failed to map event page to kernel\n");
1046 			return err;
1047 		}
1048 
1049 		err = kfd_event_page_set(p, kern_addr, size);
1050 		if (err) {
1051 			pr_err("Failed to set event page\n");
1052 			return err;
1053 		}
1054 	}
1055 
1056 	err = kfd_event_create(filp, p, args->event_type,
1057 				args->auto_reset != 0, args->node_id,
1058 				&args->event_id, &args->event_trigger_data,
1059 				&args->event_page_offset,
1060 				&args->event_slot_index);
1061 
1062 	return err;
1063 
1064 out_unlock:
1065 	mutex_unlock(&p->mutex);
1066 	return err;
1067 }
1068 
1069 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070 					void *data)
1071 {
1072 	struct kfd_ioctl_destroy_event_args *args = data;
1073 
1074 	return kfd_event_destroy(p, args->event_id);
1075 }
1076 
1077 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078 				void *data)
1079 {
1080 	struct kfd_ioctl_set_event_args *args = data;
1081 
1082 	return kfd_set_event(p, args->event_id);
1083 }
1084 
1085 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086 				void *data)
1087 {
1088 	struct kfd_ioctl_reset_event_args *args = data;
1089 
1090 	return kfd_reset_event(p, args->event_id);
1091 }
1092 
1093 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094 				void *data)
1095 {
1096 	struct kfd_ioctl_wait_events_args *args = data;
1097 	int err;
1098 
1099 	err = kfd_wait_on_events(p, args->num_events,
1100 			(void __user *)args->events_ptr,
1101 			(args->wait_for_all != 0),
1102 			args->timeout, &args->wait_result);
1103 
1104 	return err;
1105 }
1106 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107 					struct kfd_process *p, void *data)
1108 {
1109 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110 	struct kfd_process_device *pdd;
1111 	struct kfd_dev *dev;
1112 	long err;
1113 
1114 	dev = kfd_device_by_id(args->gpu_id);
1115 	if (!dev)
1116 		return -EINVAL;
1117 
1118 	mutex_lock(&p->mutex);
1119 
1120 	pdd = kfd_bind_process_to_device(dev, p);
1121 	if (IS_ERR(pdd)) {
1122 		err = PTR_ERR(pdd);
1123 		goto bind_process_to_device_fail;
1124 	}
1125 
1126 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1127 
1128 	mutex_unlock(&p->mutex);
1129 
1130 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131 	    pdd->qpd.vmid != 0)
1132 		dev->kfd2kgd->set_scratch_backing_va(
1133 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1134 
1135 	return 0;
1136 
1137 bind_process_to_device_fail:
1138 	mutex_unlock(&p->mutex);
1139 	return err;
1140 }
1141 
1142 static int kfd_ioctl_get_tile_config(struct file *filep,
1143 		struct kfd_process *p, void *data)
1144 {
1145 	struct kfd_ioctl_get_tile_config_args *args = data;
1146 	struct kfd_dev *dev;
1147 	struct tile_config config;
1148 	int err = 0;
1149 
1150 	dev = kfd_device_by_id(args->gpu_id);
1151 	if (!dev)
1152 		return -EINVAL;
1153 
1154 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1155 
1156 	args->gb_addr_config = config.gb_addr_config;
1157 	args->num_banks = config.num_banks;
1158 	args->num_ranks = config.num_ranks;
1159 
1160 	if (args->num_tile_configs > config.num_tile_configs)
1161 		args->num_tile_configs = config.num_tile_configs;
1162 	err = copy_to_user((void __user *)args->tile_config_ptr,
1163 			config.tile_config_ptr,
1164 			args->num_tile_configs * sizeof(uint32_t));
1165 	if (err) {
1166 		args->num_tile_configs = 0;
1167 		return -EFAULT;
1168 	}
1169 
1170 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171 		args->num_macro_tile_configs =
1172 				config.num_macro_tile_configs;
1173 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174 			config.macro_tile_config_ptr,
1175 			args->num_macro_tile_configs * sizeof(uint32_t));
1176 	if (err) {
1177 		args->num_macro_tile_configs = 0;
1178 		return -EFAULT;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185 				void *data)
1186 {
1187 	struct kfd_ioctl_acquire_vm_args *args = data;
1188 	struct kfd_process_device *pdd;
1189 	struct kfd_dev *dev;
1190 	struct file *drm_file;
1191 	int ret;
1192 
1193 	dev = kfd_device_by_id(args->gpu_id);
1194 	if (!dev)
1195 		return -EINVAL;
1196 
1197 	drm_file = fget(args->drm_fd);
1198 	if (!drm_file)
1199 		return -EINVAL;
1200 
1201 	mutex_lock(&p->mutex);
1202 
1203 	pdd = kfd_get_process_device_data(dev, p);
1204 	if (!pdd) {
1205 		ret = -EINVAL;
1206 		goto err_unlock;
1207 	}
1208 
1209 	if (pdd->drm_file) {
1210 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211 		goto err_unlock;
1212 	}
1213 
1214 	ret = kfd_process_device_init_vm(pdd, drm_file);
1215 	if (ret)
1216 		goto err_unlock;
1217 	/* On success, the PDD keeps the drm_file reference */
1218 	mutex_unlock(&p->mutex);
1219 
1220 	return 0;
1221 
1222 err_unlock:
1223 	mutex_unlock(&p->mutex);
1224 	fput(drm_file);
1225 	return ret;
1226 }
1227 
1228 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229 {
1230 	struct kfd_local_mem_info mem_info;
1231 
1232 	if (debug_largebar) {
1233 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234 		return true;
1235 	}
1236 
1237 	if (dev->device_info->needs_iommu_device)
1238 		return false;
1239 
1240 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241 	if (mem_info.local_mem_size_private == 0 &&
1242 			mem_info.local_mem_size_public > 0)
1243 		return true;
1244 	return false;
1245 }
1246 
1247 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248 					struct kfd_process *p, void *data)
1249 {
1250 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251 	struct kfd_process_device *pdd;
1252 	void *mem;
1253 	struct kfd_dev *dev;
1254 	int idr_handle;
1255 	long err;
1256 	uint64_t offset = args->mmap_offset;
1257 	uint32_t flags = args->flags;
1258 
1259 	if (args->size == 0)
1260 		return -EINVAL;
1261 
1262 	dev = kfd_device_by_id(args->gpu_id);
1263 	if (!dev)
1264 		return -EINVAL;
1265 
1266 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268 		!kfd_dev_is_large_bar(dev)) {
1269 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1270 		return -EINVAL;
1271 	}
1272 
1273 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1274 		if (args->size != kfd_doorbell_process_slice(dev))
1275 			return -EINVAL;
1276 		offset = kfd_get_process_doorbells(dev, p);
1277 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1278 		if (args->size != PAGE_SIZE)
1279 			return -EINVAL;
1280 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1281 		if (!offset)
1282 			return -ENOMEM;
1283 	}
1284 
1285 	mutex_lock(&p->mutex);
1286 
1287 	pdd = kfd_bind_process_to_device(dev, p);
1288 	if (IS_ERR(pdd)) {
1289 		err = PTR_ERR(pdd);
1290 		goto err_unlock;
1291 	}
1292 
1293 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1294 		dev->kgd, args->va_addr, args->size,
1295 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1296 		flags);
1297 
1298 	if (err)
1299 		goto err_unlock;
1300 
1301 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1302 	if (idr_handle < 0) {
1303 		err = -EFAULT;
1304 		goto err_free;
1305 	}
1306 
1307 	mutex_unlock(&p->mutex);
1308 
1309 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1310 	args->mmap_offset = offset;
1311 
1312 	/* MMIO is mapped through kfd device
1313 	 * Generate a kfd mmap offset
1314 	 */
1315 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1316 		args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id);
1317 		args->mmap_offset <<= PAGE_SHIFT;
1318 	}
1319 
1320 	return 0;
1321 
1322 err_free:
1323 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1324 err_unlock:
1325 	mutex_unlock(&p->mutex);
1326 	return err;
1327 }
1328 
1329 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1330 					struct kfd_process *p, void *data)
1331 {
1332 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1333 	struct kfd_process_device *pdd;
1334 	void *mem;
1335 	struct kfd_dev *dev;
1336 	int ret;
1337 
1338 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1339 	if (!dev)
1340 		return -EINVAL;
1341 
1342 	mutex_lock(&p->mutex);
1343 
1344 	pdd = kfd_get_process_device_data(dev, p);
1345 	if (!pdd) {
1346 		pr_err("Process device data doesn't exist\n");
1347 		ret = -EINVAL;
1348 		goto err_unlock;
1349 	}
1350 
1351 	mem = kfd_process_device_translate_handle(
1352 		pdd, GET_IDR_HANDLE(args->handle));
1353 	if (!mem) {
1354 		ret = -EINVAL;
1355 		goto err_unlock;
1356 	}
1357 
1358 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1359 						(struct kgd_mem *)mem);
1360 
1361 	/* If freeing the buffer failed, leave the handle in place for
1362 	 * clean-up during process tear-down.
1363 	 */
1364 	if (!ret)
1365 		kfd_process_device_remove_obj_handle(
1366 			pdd, GET_IDR_HANDLE(args->handle));
1367 
1368 err_unlock:
1369 	mutex_unlock(&p->mutex);
1370 	return ret;
1371 }
1372 
1373 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1374 					struct kfd_process *p, void *data)
1375 {
1376 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1377 	struct kfd_process_device *pdd, *peer_pdd;
1378 	void *mem;
1379 	struct kfd_dev *dev, *peer;
1380 	long err = 0;
1381 	int i;
1382 	uint32_t *devices_arr = NULL;
1383 
1384 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1385 	if (!dev)
1386 		return -EINVAL;
1387 
1388 	if (!args->n_devices) {
1389 		pr_debug("Device IDs array empty\n");
1390 		return -EINVAL;
1391 	}
1392 	if (args->n_success > args->n_devices) {
1393 		pr_debug("n_success exceeds n_devices\n");
1394 		return -EINVAL;
1395 	}
1396 
1397 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1398 				    GFP_KERNEL);
1399 	if (!devices_arr)
1400 		return -ENOMEM;
1401 
1402 	err = copy_from_user(devices_arr,
1403 			     (void __user *)args->device_ids_array_ptr,
1404 			     args->n_devices * sizeof(*devices_arr));
1405 	if (err != 0) {
1406 		err = -EFAULT;
1407 		goto copy_from_user_failed;
1408 	}
1409 
1410 	mutex_lock(&p->mutex);
1411 
1412 	pdd = kfd_bind_process_to_device(dev, p);
1413 	if (IS_ERR(pdd)) {
1414 		err = PTR_ERR(pdd);
1415 		goto bind_process_to_device_failed;
1416 	}
1417 
1418 	mem = kfd_process_device_translate_handle(pdd,
1419 						GET_IDR_HANDLE(args->handle));
1420 	if (!mem) {
1421 		err = -ENOMEM;
1422 		goto get_mem_obj_from_handle_failed;
1423 	}
1424 
1425 	for (i = args->n_success; i < args->n_devices; i++) {
1426 		peer = kfd_device_by_id(devices_arr[i]);
1427 		if (!peer) {
1428 			pr_debug("Getting device by id failed for 0x%x\n",
1429 				 devices_arr[i]);
1430 			err = -EINVAL;
1431 			goto get_mem_obj_from_handle_failed;
1432 		}
1433 
1434 		peer_pdd = kfd_bind_process_to_device(peer, p);
1435 		if (IS_ERR(peer_pdd)) {
1436 			err = PTR_ERR(peer_pdd);
1437 			goto get_mem_obj_from_handle_failed;
1438 		}
1439 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1440 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1441 		if (err) {
1442 			pr_err("Failed to map to gpu %d/%d\n",
1443 			       i, args->n_devices);
1444 			goto map_memory_to_gpu_failed;
1445 		}
1446 		args->n_success = i+1;
1447 	}
1448 
1449 	mutex_unlock(&p->mutex);
1450 
1451 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1452 	if (err) {
1453 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1454 		goto sync_memory_failed;
1455 	}
1456 
1457 	/* Flush TLBs after waiting for the page table updates to complete */
1458 	for (i = 0; i < args->n_devices; i++) {
1459 		peer = kfd_device_by_id(devices_arr[i]);
1460 		if (WARN_ON_ONCE(!peer))
1461 			continue;
1462 		peer_pdd = kfd_get_process_device_data(peer, p);
1463 		if (WARN_ON_ONCE(!peer_pdd))
1464 			continue;
1465 		kfd_flush_tlb(peer_pdd);
1466 	}
1467 
1468 	kfree(devices_arr);
1469 
1470 	return err;
1471 
1472 bind_process_to_device_failed:
1473 get_mem_obj_from_handle_failed:
1474 map_memory_to_gpu_failed:
1475 	mutex_unlock(&p->mutex);
1476 copy_from_user_failed:
1477 sync_memory_failed:
1478 	kfree(devices_arr);
1479 
1480 	return err;
1481 }
1482 
1483 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1484 					struct kfd_process *p, void *data)
1485 {
1486 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1487 	struct kfd_process_device *pdd, *peer_pdd;
1488 	void *mem;
1489 	struct kfd_dev *dev, *peer;
1490 	long err = 0;
1491 	uint32_t *devices_arr = NULL, i;
1492 
1493 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1494 	if (!dev)
1495 		return -EINVAL;
1496 
1497 	if (!args->n_devices) {
1498 		pr_debug("Device IDs array empty\n");
1499 		return -EINVAL;
1500 	}
1501 	if (args->n_success > args->n_devices) {
1502 		pr_debug("n_success exceeds n_devices\n");
1503 		return -EINVAL;
1504 	}
1505 
1506 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1507 				    GFP_KERNEL);
1508 	if (!devices_arr)
1509 		return -ENOMEM;
1510 
1511 	err = copy_from_user(devices_arr,
1512 			     (void __user *)args->device_ids_array_ptr,
1513 			     args->n_devices * sizeof(*devices_arr));
1514 	if (err != 0) {
1515 		err = -EFAULT;
1516 		goto copy_from_user_failed;
1517 	}
1518 
1519 	mutex_lock(&p->mutex);
1520 
1521 	pdd = kfd_get_process_device_data(dev, p);
1522 	if (!pdd) {
1523 		err = -EINVAL;
1524 		goto bind_process_to_device_failed;
1525 	}
1526 
1527 	mem = kfd_process_device_translate_handle(pdd,
1528 						GET_IDR_HANDLE(args->handle));
1529 	if (!mem) {
1530 		err = -ENOMEM;
1531 		goto get_mem_obj_from_handle_failed;
1532 	}
1533 
1534 	for (i = args->n_success; i < args->n_devices; i++) {
1535 		peer = kfd_device_by_id(devices_arr[i]);
1536 		if (!peer) {
1537 			err = -EINVAL;
1538 			goto get_mem_obj_from_handle_failed;
1539 		}
1540 
1541 		peer_pdd = kfd_get_process_device_data(peer, p);
1542 		if (!peer_pdd) {
1543 			err = -ENODEV;
1544 			goto get_mem_obj_from_handle_failed;
1545 		}
1546 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1547 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1548 		if (err) {
1549 			pr_err("Failed to unmap from gpu %d/%d\n",
1550 			       i, args->n_devices);
1551 			goto unmap_memory_from_gpu_failed;
1552 		}
1553 		args->n_success = i+1;
1554 	}
1555 	kfree(devices_arr);
1556 
1557 	mutex_unlock(&p->mutex);
1558 
1559 	return 0;
1560 
1561 bind_process_to_device_failed:
1562 get_mem_obj_from_handle_failed:
1563 unmap_memory_from_gpu_failed:
1564 	mutex_unlock(&p->mutex);
1565 copy_from_user_failed:
1566 	kfree(devices_arr);
1567 	return err;
1568 }
1569 
1570 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1571 		struct kfd_process *p, void *data)
1572 {
1573 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1574 	struct kfd_dev *dev = NULL;
1575 	struct kgd_dev *dma_buf_kgd;
1576 	void *metadata_buffer = NULL;
1577 	uint32_t flags;
1578 	unsigned int i;
1579 	int r;
1580 
1581 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1582 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1583 		if (dev)
1584 			break;
1585 	if (!dev)
1586 		return -EINVAL;
1587 
1588 	if (args->metadata_ptr) {
1589 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1590 		if (!metadata_buffer)
1591 			return -ENOMEM;
1592 	}
1593 
1594 	/* Get dmabuf info from KGD */
1595 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1596 					  &dma_buf_kgd, &args->size,
1597 					  metadata_buffer, args->metadata_size,
1598 					  &args->metadata_size, &flags);
1599 	if (r)
1600 		goto exit;
1601 
1602 	/* Reverse-lookup gpu_id from kgd pointer */
1603 	dev = kfd_device_by_kgd(dma_buf_kgd);
1604 	if (!dev) {
1605 		r = -EINVAL;
1606 		goto exit;
1607 	}
1608 	args->gpu_id = dev->id;
1609 	args->flags = flags;
1610 
1611 	/* Copy metadata buffer to user mode */
1612 	if (metadata_buffer) {
1613 		r = copy_to_user((void __user *)args->metadata_ptr,
1614 				 metadata_buffer, args->metadata_size);
1615 		if (r != 0)
1616 			r = -EFAULT;
1617 	}
1618 
1619 exit:
1620 	kfree(metadata_buffer);
1621 
1622 	return r;
1623 }
1624 
1625 static int kfd_ioctl_import_dmabuf(struct file *filep,
1626 				   struct kfd_process *p, void *data)
1627 {
1628 	struct kfd_ioctl_import_dmabuf_args *args = data;
1629 	struct kfd_process_device *pdd;
1630 	struct dma_buf *dmabuf;
1631 	struct kfd_dev *dev;
1632 	int idr_handle;
1633 	uint64_t size;
1634 	void *mem;
1635 	int r;
1636 
1637 	dev = kfd_device_by_id(args->gpu_id);
1638 	if (!dev)
1639 		return -EINVAL;
1640 
1641 	dmabuf = dma_buf_get(args->dmabuf_fd);
1642 	if (IS_ERR(dmabuf))
1643 		return PTR_ERR(dmabuf);
1644 
1645 	mutex_lock(&p->mutex);
1646 
1647 	pdd = kfd_bind_process_to_device(dev, p);
1648 	if (IS_ERR(pdd)) {
1649 		r = PTR_ERR(pdd);
1650 		goto err_unlock;
1651 	}
1652 
1653 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1654 					      args->va_addr, pdd->vm,
1655 					      (struct kgd_mem **)&mem, &size,
1656 					      NULL);
1657 	if (r)
1658 		goto err_unlock;
1659 
1660 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1661 	if (idr_handle < 0) {
1662 		r = -EFAULT;
1663 		goto err_free;
1664 	}
1665 
1666 	mutex_unlock(&p->mutex);
1667 
1668 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1669 
1670 	return 0;
1671 
1672 err_free:
1673 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1674 err_unlock:
1675 	mutex_unlock(&p->mutex);
1676 	return r;
1677 }
1678 
1679 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1680 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1681 			    .cmd_drv = 0, .name = #ioctl}
1682 
1683 /** Ioctl table */
1684 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1685 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1686 			kfd_ioctl_get_version, 0),
1687 
1688 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1689 			kfd_ioctl_create_queue, 0),
1690 
1691 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1692 			kfd_ioctl_destroy_queue, 0),
1693 
1694 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1695 			kfd_ioctl_set_memory_policy, 0),
1696 
1697 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1698 			kfd_ioctl_get_clock_counters, 0),
1699 
1700 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1701 			kfd_ioctl_get_process_apertures, 0),
1702 
1703 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1704 			kfd_ioctl_update_queue, 0),
1705 
1706 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1707 			kfd_ioctl_create_event, 0),
1708 
1709 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1710 			kfd_ioctl_destroy_event, 0),
1711 
1712 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1713 			kfd_ioctl_set_event, 0),
1714 
1715 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1716 			kfd_ioctl_reset_event, 0),
1717 
1718 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1719 			kfd_ioctl_wait_events, 0),
1720 
1721 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1722 			kfd_ioctl_dbg_register, 0),
1723 
1724 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1725 			kfd_ioctl_dbg_unregister, 0),
1726 
1727 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1728 			kfd_ioctl_dbg_address_watch, 0),
1729 
1730 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1731 			kfd_ioctl_dbg_wave_control, 0),
1732 
1733 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1734 			kfd_ioctl_set_scratch_backing_va, 0),
1735 
1736 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1737 			kfd_ioctl_get_tile_config, 0),
1738 
1739 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1740 			kfd_ioctl_set_trap_handler, 0),
1741 
1742 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1743 			kfd_ioctl_get_process_apertures_new, 0),
1744 
1745 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1746 			kfd_ioctl_acquire_vm, 0),
1747 
1748 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1749 			kfd_ioctl_alloc_memory_of_gpu, 0),
1750 
1751 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1752 			kfd_ioctl_free_memory_of_gpu, 0),
1753 
1754 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1755 			kfd_ioctl_map_memory_to_gpu, 0),
1756 
1757 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1758 			kfd_ioctl_unmap_memory_from_gpu, 0),
1759 
1760 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1761 			kfd_ioctl_set_cu_mask, 0),
1762 
1763 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1764 			kfd_ioctl_get_queue_wave_state, 0),
1765 
1766 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1767 				kfd_ioctl_get_dmabuf_info, 0),
1768 
1769 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1770 				kfd_ioctl_import_dmabuf, 0),
1771 
1772 };
1773 
1774 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1775 
1776 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1777 {
1778 	struct kfd_process *process;
1779 	amdkfd_ioctl_t *func;
1780 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1781 	unsigned int nr = _IOC_NR(cmd);
1782 	char stack_kdata[128];
1783 	char *kdata = NULL;
1784 	unsigned int usize, asize;
1785 	int retcode = -EINVAL;
1786 
1787 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1788 		goto err_i1;
1789 
1790 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1791 		u32 amdkfd_size;
1792 
1793 		ioctl = &amdkfd_ioctls[nr];
1794 
1795 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1796 		usize = asize = _IOC_SIZE(cmd);
1797 		if (amdkfd_size > asize)
1798 			asize = amdkfd_size;
1799 
1800 		cmd = ioctl->cmd;
1801 	} else
1802 		goto err_i1;
1803 
1804 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1805 
1806 	process = kfd_get_process(current);
1807 	if (IS_ERR(process)) {
1808 		dev_dbg(kfd_device, "no process\n");
1809 		goto err_i1;
1810 	}
1811 
1812 	/* Do not trust userspace, use our own definition */
1813 	func = ioctl->func;
1814 
1815 	if (unlikely(!func)) {
1816 		dev_dbg(kfd_device, "no function\n");
1817 		retcode = -EINVAL;
1818 		goto err_i1;
1819 	}
1820 
1821 	if (cmd & (IOC_IN | IOC_OUT)) {
1822 		if (asize <= sizeof(stack_kdata)) {
1823 			kdata = stack_kdata;
1824 		} else {
1825 			kdata = kmalloc(asize, GFP_KERNEL);
1826 			if (!kdata) {
1827 				retcode = -ENOMEM;
1828 				goto err_i1;
1829 			}
1830 		}
1831 		if (asize > usize)
1832 			memset(kdata + usize, 0, asize - usize);
1833 	}
1834 
1835 	if (cmd & IOC_IN) {
1836 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1837 			retcode = -EFAULT;
1838 			goto err_i1;
1839 		}
1840 	} else if (cmd & IOC_OUT) {
1841 		memset(kdata, 0, usize);
1842 	}
1843 
1844 	retcode = func(filep, process, kdata);
1845 
1846 	if (cmd & IOC_OUT)
1847 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1848 			retcode = -EFAULT;
1849 
1850 err_i1:
1851 	if (!ioctl)
1852 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1853 			  task_pid_nr(current), cmd, nr);
1854 
1855 	if (kdata != stack_kdata)
1856 		kfree(kdata);
1857 
1858 	if (retcode)
1859 		dev_dbg(kfd_device, "ret = %d\n", retcode);
1860 
1861 	return retcode;
1862 }
1863 
1864 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1865 		      struct vm_area_struct *vma)
1866 {
1867 	phys_addr_t address;
1868 	int ret;
1869 
1870 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1871 		return -EINVAL;
1872 
1873 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1874 
1875 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1876 				VM_DONTDUMP | VM_PFNMAP;
1877 
1878 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1879 
1880 	pr_debug("Process %d mapping mmio page\n"
1881 		 "     target user address == 0x%08llX\n"
1882 		 "     physical address    == 0x%08llX\n"
1883 		 "     vm_flags            == 0x%04lX\n"
1884 		 "     size                == 0x%04lX\n",
1885 		 process->pasid, (unsigned long long) vma->vm_start,
1886 		 address, vma->vm_flags, PAGE_SIZE);
1887 
1888 	ret = io_remap_pfn_range(vma,
1889 				vma->vm_start,
1890 				address >> PAGE_SHIFT,
1891 				PAGE_SIZE,
1892 				vma->vm_page_prot);
1893 	return ret;
1894 }
1895 
1896 
1897 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1898 {
1899 	struct kfd_process *process;
1900 	struct kfd_dev *dev = NULL;
1901 	unsigned long vm_pgoff;
1902 	unsigned int gpu_id;
1903 
1904 	process = kfd_get_process(current);
1905 	if (IS_ERR(process))
1906 		return PTR_ERR(process);
1907 
1908 	vm_pgoff = vma->vm_pgoff;
1909 	vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1910 	gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1911 	if (gpu_id)
1912 		dev = kfd_device_by_id(gpu_id);
1913 
1914 	switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1915 	case KFD_MMAP_TYPE_DOORBELL:
1916 		if (!dev)
1917 			return -ENODEV;
1918 		return kfd_doorbell_mmap(dev, process, vma);
1919 
1920 	case KFD_MMAP_TYPE_EVENTS:
1921 		return kfd_event_mmap(process, vma);
1922 
1923 	case KFD_MMAP_TYPE_RESERVED_MEM:
1924 		if (!dev)
1925 			return -ENODEV;
1926 		return kfd_reserved_mem_mmap(dev, process, vma);
1927 	case KFD_MMAP_TYPE_MMIO:
1928 		if (!dev)
1929 			return -ENODEV;
1930 		return kfd_mmio_mmap(dev, process, vma);
1931 	}
1932 
1933 	return -EFAULT;
1934 }
1935