1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_mmap(struct file *, struct vm_area_struct *);
46 
47 static const char kfd_dev_name[] = "kfd";
48 
49 static const struct file_operations kfd_fops = {
50 	.owner = THIS_MODULE,
51 	.unlocked_ioctl = kfd_ioctl,
52 	.compat_ioctl = kfd_ioctl,
53 	.open = kfd_open,
54 	.mmap = kfd_mmap,
55 };
56 
57 static int kfd_char_dev_major = -1;
58 static struct class *kfd_class;
59 struct device *kfd_device;
60 
61 int kfd_chardev_init(void)
62 {
63 	int err = 0;
64 
65 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
66 	err = kfd_char_dev_major;
67 	if (err < 0)
68 		goto err_register_chrdev;
69 
70 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
71 	err = PTR_ERR(kfd_class);
72 	if (IS_ERR(kfd_class))
73 		goto err_class_create;
74 
75 	kfd_device = device_create(kfd_class, NULL,
76 					MKDEV(kfd_char_dev_major, 0),
77 					NULL, kfd_dev_name);
78 	err = PTR_ERR(kfd_device);
79 	if (IS_ERR(kfd_device))
80 		goto err_device_create;
81 
82 	return 0;
83 
84 err_device_create:
85 	class_destroy(kfd_class);
86 err_class_create:
87 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
88 err_register_chrdev:
89 	return err;
90 }
91 
92 void kfd_chardev_exit(void)
93 {
94 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
95 	class_destroy(kfd_class);
96 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
97 }
98 
99 struct device *kfd_chardev(void)
100 {
101 	return kfd_device;
102 }
103 
104 
105 static int kfd_open(struct inode *inode, struct file *filep)
106 {
107 	struct kfd_process *process;
108 	bool is_32bit_user_mode;
109 
110 	if (iminor(inode) != 0)
111 		return -ENODEV;
112 
113 	is_32bit_user_mode = in_compat_syscall();
114 
115 	if (is_32bit_user_mode) {
116 		dev_warn(kfd_device,
117 			"Process %d (32-bit) failed to open /dev/kfd\n"
118 			"32-bit processes are not supported by amdkfd\n",
119 			current->pid);
120 		return -EPERM;
121 	}
122 
123 	process = kfd_create_process(filep);
124 	if (IS_ERR(process))
125 		return PTR_ERR(process);
126 
127 	if (kfd_is_locked())
128 		return -EAGAIN;
129 
130 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
131 		process->pasid, process->is_32bit_user_mode);
132 
133 	return 0;
134 }
135 
136 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
137 					void *data)
138 {
139 	struct kfd_ioctl_get_version_args *args = data;
140 
141 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
142 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
143 
144 	return 0;
145 }
146 
147 static int set_queue_properties_from_user(struct queue_properties *q_properties,
148 				struct kfd_ioctl_create_queue_args *args)
149 {
150 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
151 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
152 		return -EINVAL;
153 	}
154 
155 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
156 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
157 		return -EINVAL;
158 	}
159 
160 	if ((args->ring_base_address) &&
161 		(!access_ok((const void __user *) args->ring_base_address,
162 			sizeof(uint64_t)))) {
163 		pr_err("Can't access ring base address\n");
164 		return -EFAULT;
165 	}
166 
167 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
168 		pr_err("Ring size must be a power of 2 or 0\n");
169 		return -EINVAL;
170 	}
171 
172 	if (!access_ok((const void __user *) args->read_pointer_address,
173 			sizeof(uint32_t))) {
174 		pr_err("Can't access read pointer\n");
175 		return -EFAULT;
176 	}
177 
178 	if (!access_ok((const void __user *) args->write_pointer_address,
179 			sizeof(uint32_t))) {
180 		pr_err("Can't access write pointer\n");
181 		return -EFAULT;
182 	}
183 
184 	if (args->eop_buffer_address &&
185 		!access_ok((const void __user *) args->eop_buffer_address,
186 			sizeof(uint32_t))) {
187 		pr_debug("Can't access eop buffer");
188 		return -EFAULT;
189 	}
190 
191 	if (args->ctx_save_restore_address &&
192 		!access_ok((const void __user *) args->ctx_save_restore_address,
193 			sizeof(uint32_t))) {
194 		pr_debug("Can't access ctx save restore buffer");
195 		return -EFAULT;
196 	}
197 
198 	q_properties->is_interop = false;
199 	q_properties->queue_percent = args->queue_percentage;
200 	q_properties->priority = args->queue_priority;
201 	q_properties->queue_address = args->ring_base_address;
202 	q_properties->queue_size = args->ring_size;
203 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
204 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
205 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
206 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
207 	q_properties->ctx_save_restore_area_address =
208 			args->ctx_save_restore_address;
209 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
210 	q_properties->ctl_stack_size = args->ctl_stack_size;
211 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
212 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
213 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
214 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
215 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
216 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
217 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
218 	else
219 		return -ENOTSUPP;
220 
221 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
222 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
223 	else
224 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
225 
226 	pr_debug("Queue Percentage: %d, %d\n",
227 			q_properties->queue_percent, args->queue_percentage);
228 
229 	pr_debug("Queue Priority: %d, %d\n",
230 			q_properties->priority, args->queue_priority);
231 
232 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
233 			q_properties->queue_address, args->ring_base_address);
234 
235 	pr_debug("Queue Size: 0x%llX, %u\n",
236 			q_properties->queue_size, args->ring_size);
237 
238 	pr_debug("Queue r/w Pointers: %px, %px\n",
239 			q_properties->read_ptr,
240 			q_properties->write_ptr);
241 
242 	pr_debug("Queue Format: %d\n", q_properties->format);
243 
244 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
245 
246 	pr_debug("Queue CTX save area: 0x%llX\n",
247 			q_properties->ctx_save_restore_area_address);
248 
249 	return 0;
250 }
251 
252 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
253 					void *data)
254 {
255 	struct kfd_ioctl_create_queue_args *args = data;
256 	struct kfd_dev *dev;
257 	int err = 0;
258 	unsigned int queue_id;
259 	struct kfd_process_device *pdd;
260 	struct queue_properties q_properties;
261 	uint32_t doorbell_offset_in_process = 0;
262 
263 	memset(&q_properties, 0, sizeof(struct queue_properties));
264 
265 	pr_debug("Creating queue ioctl\n");
266 
267 	err = set_queue_properties_from_user(&q_properties, args);
268 	if (err)
269 		return err;
270 
271 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
272 	dev = kfd_device_by_id(args->gpu_id);
273 	if (!dev) {
274 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
275 		return -EINVAL;
276 	}
277 
278 	mutex_lock(&p->mutex);
279 
280 	pdd = kfd_bind_process_to_device(dev, p);
281 	if (IS_ERR(pdd)) {
282 		err = -ESRCH;
283 		goto err_bind_process;
284 	}
285 
286 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
287 			p->pasid,
288 			dev->id);
289 
290 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
291 			&doorbell_offset_in_process);
292 	if (err != 0)
293 		goto err_create_queue;
294 
295 	args->queue_id = queue_id;
296 
297 
298 	/* Return gpu_id as doorbell offset for mmap usage */
299 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
300 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
301 	if (KFD_IS_SOC15(dev->device_info->asic_family))
302 		/* On SOC15 ASICs, include the doorbell offset within the
303 		 * process doorbell frame, which is 2 pages.
304 		 */
305 		args->doorbell_offset |= doorbell_offset_in_process;
306 
307 	mutex_unlock(&p->mutex);
308 
309 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
310 
311 	pr_debug("Ring buffer address == 0x%016llX\n",
312 			args->ring_base_address);
313 
314 	pr_debug("Read ptr address    == 0x%016llX\n",
315 			args->read_pointer_address);
316 
317 	pr_debug("Write ptr address   == 0x%016llX\n",
318 			args->write_pointer_address);
319 
320 	return 0;
321 
322 err_create_queue:
323 err_bind_process:
324 	mutex_unlock(&p->mutex);
325 	return err;
326 }
327 
328 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
329 					void *data)
330 {
331 	int retval;
332 	struct kfd_ioctl_destroy_queue_args *args = data;
333 
334 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
335 				args->queue_id,
336 				p->pasid);
337 
338 	mutex_lock(&p->mutex);
339 
340 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
341 
342 	mutex_unlock(&p->mutex);
343 	return retval;
344 }
345 
346 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
347 					void *data)
348 {
349 	int retval;
350 	struct kfd_ioctl_update_queue_args *args = data;
351 	struct queue_properties properties;
352 
353 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
354 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
355 		return -EINVAL;
356 	}
357 
358 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
359 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
360 		return -EINVAL;
361 	}
362 
363 	if ((args->ring_base_address) &&
364 		(!access_ok((const void __user *) args->ring_base_address,
365 			sizeof(uint64_t)))) {
366 		pr_err("Can't access ring base address\n");
367 		return -EFAULT;
368 	}
369 
370 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
371 		pr_err("Ring size must be a power of 2 or 0\n");
372 		return -EINVAL;
373 	}
374 
375 	properties.queue_address = args->ring_base_address;
376 	properties.queue_size = args->ring_size;
377 	properties.queue_percent = args->queue_percentage;
378 	properties.priority = args->queue_priority;
379 
380 	pr_debug("Updating queue id %d for pasid 0x%x\n",
381 			args->queue_id, p->pasid);
382 
383 	mutex_lock(&p->mutex);
384 
385 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
386 
387 	mutex_unlock(&p->mutex);
388 
389 	return retval;
390 }
391 
392 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
393 					void *data)
394 {
395 	int retval;
396 	const int max_num_cus = 1024;
397 	struct kfd_ioctl_set_cu_mask_args *args = data;
398 	struct queue_properties properties;
399 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
400 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
401 
402 	if ((args->num_cu_mask % 32) != 0) {
403 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
404 				args->num_cu_mask);
405 		return -EINVAL;
406 	}
407 
408 	properties.cu_mask_count = args->num_cu_mask;
409 	if (properties.cu_mask_count == 0) {
410 		pr_debug("CU mask cannot be 0");
411 		return -EINVAL;
412 	}
413 
414 	/* To prevent an unreasonably large CU mask size, set an arbitrary
415 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
416 	 * past max_num_cus bits and just use the first max_num_cus bits.
417 	 */
418 	if (properties.cu_mask_count > max_num_cus) {
419 		pr_debug("CU mask cannot be greater than 1024 bits");
420 		properties.cu_mask_count = max_num_cus;
421 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
422 	}
423 
424 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
425 	if (!properties.cu_mask)
426 		return -ENOMEM;
427 
428 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
429 	if (retval) {
430 		pr_debug("Could not copy CU mask from userspace");
431 		kfree(properties.cu_mask);
432 		return -EFAULT;
433 	}
434 
435 	mutex_lock(&p->mutex);
436 
437 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
438 
439 	mutex_unlock(&p->mutex);
440 
441 	if (retval)
442 		kfree(properties.cu_mask);
443 
444 	return retval;
445 }
446 
447 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
448 					  struct kfd_process *p, void *data)
449 {
450 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
451 	int r;
452 
453 	mutex_lock(&p->mutex);
454 
455 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
456 			       (void __user *)args->ctl_stack_address,
457 			       &args->ctl_stack_used_size,
458 			       &args->save_area_used_size);
459 
460 	mutex_unlock(&p->mutex);
461 
462 	return r;
463 }
464 
465 static int kfd_ioctl_set_memory_policy(struct file *filep,
466 					struct kfd_process *p, void *data)
467 {
468 	struct kfd_ioctl_set_memory_policy_args *args = data;
469 	struct kfd_dev *dev;
470 	int err = 0;
471 	struct kfd_process_device *pdd;
472 	enum cache_policy default_policy, alternate_policy;
473 
474 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
475 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
476 		return -EINVAL;
477 	}
478 
479 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
480 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
481 		return -EINVAL;
482 	}
483 
484 	dev = kfd_device_by_id(args->gpu_id);
485 	if (!dev)
486 		return -EINVAL;
487 
488 	mutex_lock(&p->mutex);
489 
490 	pdd = kfd_bind_process_to_device(dev, p);
491 	if (IS_ERR(pdd)) {
492 		err = -ESRCH;
493 		goto out;
494 	}
495 
496 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
497 			 ? cache_policy_coherent : cache_policy_noncoherent;
498 
499 	alternate_policy =
500 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
501 		   ? cache_policy_coherent : cache_policy_noncoherent;
502 
503 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
504 				&pdd->qpd,
505 				default_policy,
506 				alternate_policy,
507 				(void __user *)args->alternate_aperture_base,
508 				args->alternate_aperture_size))
509 		err = -EINVAL;
510 
511 out:
512 	mutex_unlock(&p->mutex);
513 
514 	return err;
515 }
516 
517 static int kfd_ioctl_set_trap_handler(struct file *filep,
518 					struct kfd_process *p, void *data)
519 {
520 	struct kfd_ioctl_set_trap_handler_args *args = data;
521 	struct kfd_dev *dev;
522 	int err = 0;
523 	struct kfd_process_device *pdd;
524 
525 	dev = kfd_device_by_id(args->gpu_id);
526 	if (!dev)
527 		return -EINVAL;
528 
529 	mutex_lock(&p->mutex);
530 
531 	pdd = kfd_bind_process_to_device(dev, p);
532 	if (IS_ERR(pdd)) {
533 		err = -ESRCH;
534 		goto out;
535 	}
536 
537 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
538 					&pdd->qpd,
539 					args->tba_addr,
540 					args->tma_addr))
541 		err = -EINVAL;
542 
543 out:
544 	mutex_unlock(&p->mutex);
545 
546 	return err;
547 }
548 
549 static int kfd_ioctl_dbg_register(struct file *filep,
550 				struct kfd_process *p, void *data)
551 {
552 	struct kfd_ioctl_dbg_register_args *args = data;
553 	struct kfd_dev *dev;
554 	struct kfd_dbgmgr *dbgmgr_ptr;
555 	struct kfd_process_device *pdd;
556 	bool create_ok;
557 	long status = 0;
558 
559 	dev = kfd_device_by_id(args->gpu_id);
560 	if (!dev)
561 		return -EINVAL;
562 
563 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
564 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
565 		return -EINVAL;
566 	}
567 
568 	mutex_lock(&p->mutex);
569 	mutex_lock(kfd_get_dbgmgr_mutex());
570 
571 	/*
572 	 * make sure that we have pdd, if this the first queue created for
573 	 * this process
574 	 */
575 	pdd = kfd_bind_process_to_device(dev, p);
576 	if (IS_ERR(pdd)) {
577 		status = PTR_ERR(pdd);
578 		goto out;
579 	}
580 
581 	if (!dev->dbgmgr) {
582 		/* In case of a legal call, we have no dbgmgr yet */
583 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
584 		if (create_ok) {
585 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
586 			if (status != 0)
587 				kfd_dbgmgr_destroy(dbgmgr_ptr);
588 			else
589 				dev->dbgmgr = dbgmgr_ptr;
590 		}
591 	} else {
592 		pr_debug("debugger already registered\n");
593 		status = -EINVAL;
594 	}
595 
596 out:
597 	mutex_unlock(kfd_get_dbgmgr_mutex());
598 	mutex_unlock(&p->mutex);
599 
600 	return status;
601 }
602 
603 static int kfd_ioctl_dbg_unregister(struct file *filep,
604 				struct kfd_process *p, void *data)
605 {
606 	struct kfd_ioctl_dbg_unregister_args *args = data;
607 	struct kfd_dev *dev;
608 	long status;
609 
610 	dev = kfd_device_by_id(args->gpu_id);
611 	if (!dev || !dev->dbgmgr)
612 		return -EINVAL;
613 
614 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
615 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
616 		return -EINVAL;
617 	}
618 
619 	mutex_lock(kfd_get_dbgmgr_mutex());
620 
621 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
622 	if (!status) {
623 		kfd_dbgmgr_destroy(dev->dbgmgr);
624 		dev->dbgmgr = NULL;
625 	}
626 
627 	mutex_unlock(kfd_get_dbgmgr_mutex());
628 
629 	return status;
630 }
631 
632 /*
633  * Parse and generate variable size data structure for address watch.
634  * Total size of the buffer and # watch points is limited in order
635  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
636  * which is enforced by dbgdev module)
637  * please also note that the watch address itself are not "copied from user",
638  * since it be set into the HW in user mode values.
639  *
640  */
641 static int kfd_ioctl_dbg_address_watch(struct file *filep,
642 					struct kfd_process *p, void *data)
643 {
644 	struct kfd_ioctl_dbg_address_watch_args *args = data;
645 	struct kfd_dev *dev;
646 	struct dbg_address_watch_info aw_info;
647 	unsigned char *args_buff;
648 	long status;
649 	void __user *cmd_from_user;
650 	uint64_t watch_mask_value = 0;
651 	unsigned int args_idx = 0;
652 
653 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
654 
655 	dev = kfd_device_by_id(args->gpu_id);
656 	if (!dev)
657 		return -EINVAL;
658 
659 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
660 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
661 		return -EINVAL;
662 	}
663 
664 	cmd_from_user = (void __user *) args->content_ptr;
665 
666 	/* Validate arguments */
667 
668 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
669 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
670 		(cmd_from_user == NULL))
671 		return -EINVAL;
672 
673 	/* this is the actual buffer to work with */
674 	args_buff = memdup_user(cmd_from_user,
675 				args->buf_size_in_bytes - sizeof(*args));
676 	if (IS_ERR(args_buff))
677 		return PTR_ERR(args_buff);
678 
679 	aw_info.process = p;
680 
681 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
682 	args_idx += sizeof(aw_info.num_watch_points);
683 
684 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
685 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
686 
687 	/*
688 	 * set watch address base pointer to point on the array base
689 	 * within args_buff
690 	 */
691 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
692 
693 	/* skip over the addresses buffer */
694 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
695 
696 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
697 		status = -EINVAL;
698 		goto out;
699 	}
700 
701 	watch_mask_value = (uint64_t) args_buff[args_idx];
702 
703 	if (watch_mask_value > 0) {
704 		/*
705 		 * There is an array of masks.
706 		 * set watch mask base pointer to point on the array base
707 		 * within args_buff
708 		 */
709 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
710 
711 		/* skip over the masks buffer */
712 		args_idx += sizeof(aw_info.watch_mask) *
713 				aw_info.num_watch_points;
714 	} else {
715 		/* just the NULL mask, set to NULL and skip over it */
716 		aw_info.watch_mask = NULL;
717 		args_idx += sizeof(aw_info.watch_mask);
718 	}
719 
720 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
721 		status = -EINVAL;
722 		goto out;
723 	}
724 
725 	/* Currently HSA Event is not supported for DBG */
726 	aw_info.watch_event = NULL;
727 
728 	mutex_lock(kfd_get_dbgmgr_mutex());
729 
730 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
731 
732 	mutex_unlock(kfd_get_dbgmgr_mutex());
733 
734 out:
735 	kfree(args_buff);
736 
737 	return status;
738 }
739 
740 /* Parse and generate fixed size data structure for wave control */
741 static int kfd_ioctl_dbg_wave_control(struct file *filep,
742 					struct kfd_process *p, void *data)
743 {
744 	struct kfd_ioctl_dbg_wave_control_args *args = data;
745 	struct kfd_dev *dev;
746 	struct dbg_wave_control_info wac_info;
747 	unsigned char *args_buff;
748 	uint32_t computed_buff_size;
749 	long status;
750 	void __user *cmd_from_user;
751 	unsigned int args_idx = 0;
752 
753 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
754 
755 	/* we use compact form, independent of the packing attribute value */
756 	computed_buff_size = sizeof(*args) +
757 				sizeof(wac_info.mode) +
758 				sizeof(wac_info.operand) +
759 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
760 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
761 				sizeof(wac_info.trapId);
762 
763 	dev = kfd_device_by_id(args->gpu_id);
764 	if (!dev)
765 		return -EINVAL;
766 
767 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
768 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
769 		return -EINVAL;
770 	}
771 
772 	/* input size must match the computed "compact" size */
773 	if (args->buf_size_in_bytes != computed_buff_size) {
774 		pr_debug("size mismatch, computed : actual %u : %u\n",
775 				args->buf_size_in_bytes, computed_buff_size);
776 		return -EINVAL;
777 	}
778 
779 	cmd_from_user = (void __user *) args->content_ptr;
780 
781 	if (cmd_from_user == NULL)
782 		return -EINVAL;
783 
784 	/* copy the entire buffer from user */
785 
786 	args_buff = memdup_user(cmd_from_user,
787 				args->buf_size_in_bytes - sizeof(*args));
788 	if (IS_ERR(args_buff))
789 		return PTR_ERR(args_buff);
790 
791 	/* move ptr to the start of the "pay-load" area */
792 	wac_info.process = p;
793 
794 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
795 	args_idx += sizeof(wac_info.operand);
796 
797 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
798 	args_idx += sizeof(wac_info.mode);
799 
800 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
801 	args_idx += sizeof(wac_info.trapId);
802 
803 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
804 					*((uint32_t *)(&args_buff[args_idx]));
805 	wac_info.dbgWave_msg.MemoryVA = NULL;
806 
807 	mutex_lock(kfd_get_dbgmgr_mutex());
808 
809 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
810 			wac_info.process, wac_info.operand,
811 			wac_info.mode, wac_info.trapId,
812 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
813 
814 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
815 
816 	pr_debug("Returned status of dbg manager is %ld\n", status);
817 
818 	mutex_unlock(kfd_get_dbgmgr_mutex());
819 
820 	kfree(args_buff);
821 
822 	return status;
823 }
824 
825 static int kfd_ioctl_get_clock_counters(struct file *filep,
826 				struct kfd_process *p, void *data)
827 {
828 	struct kfd_ioctl_get_clock_counters_args *args = data;
829 	struct kfd_dev *dev;
830 
831 	dev = kfd_device_by_id(args->gpu_id);
832 	if (dev)
833 		/* Reading GPU clock counter from KGD */
834 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
835 	else
836 		/* Node without GPU resource */
837 		args->gpu_clock_counter = 0;
838 
839 	/* No access to rdtsc. Using raw monotonic time */
840 	args->cpu_clock_counter = ktime_get_raw_ns();
841 	args->system_clock_counter = ktime_get_boottime_ns();
842 
843 	/* Since the counter is in nano-seconds we use 1GHz frequency */
844 	args->system_clock_freq = 1000000000;
845 
846 	return 0;
847 }
848 
849 
850 static int kfd_ioctl_get_process_apertures(struct file *filp,
851 				struct kfd_process *p, void *data)
852 {
853 	struct kfd_ioctl_get_process_apertures_args *args = data;
854 	struct kfd_process_device_apertures *pAperture;
855 	struct kfd_process_device *pdd;
856 
857 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
858 
859 	args->num_of_nodes = 0;
860 
861 	mutex_lock(&p->mutex);
862 
863 	/*if the process-device list isn't empty*/
864 	if (kfd_has_process_device_data(p)) {
865 		/* Run over all pdd of the process */
866 		pdd = kfd_get_first_process_device_data(p);
867 		do {
868 			pAperture =
869 				&args->process_apertures[args->num_of_nodes];
870 			pAperture->gpu_id = pdd->dev->id;
871 			pAperture->lds_base = pdd->lds_base;
872 			pAperture->lds_limit = pdd->lds_limit;
873 			pAperture->gpuvm_base = pdd->gpuvm_base;
874 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
875 			pAperture->scratch_base = pdd->scratch_base;
876 			pAperture->scratch_limit = pdd->scratch_limit;
877 
878 			dev_dbg(kfd_device,
879 				"node id %u\n", args->num_of_nodes);
880 			dev_dbg(kfd_device,
881 				"gpu id %u\n", pdd->dev->id);
882 			dev_dbg(kfd_device,
883 				"lds_base %llX\n", pdd->lds_base);
884 			dev_dbg(kfd_device,
885 				"lds_limit %llX\n", pdd->lds_limit);
886 			dev_dbg(kfd_device,
887 				"gpuvm_base %llX\n", pdd->gpuvm_base);
888 			dev_dbg(kfd_device,
889 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
890 			dev_dbg(kfd_device,
891 				"scratch_base %llX\n", pdd->scratch_base);
892 			dev_dbg(kfd_device,
893 				"scratch_limit %llX\n", pdd->scratch_limit);
894 
895 			args->num_of_nodes++;
896 
897 			pdd = kfd_get_next_process_device_data(p, pdd);
898 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
899 	}
900 
901 	mutex_unlock(&p->mutex);
902 
903 	return 0;
904 }
905 
906 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
907 				struct kfd_process *p, void *data)
908 {
909 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
910 	struct kfd_process_device_apertures *pa;
911 	struct kfd_process_device *pdd;
912 	uint32_t nodes = 0;
913 	int ret;
914 
915 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
916 
917 	if (args->num_of_nodes == 0) {
918 		/* Return number of nodes, so that user space can alloacate
919 		 * sufficient memory
920 		 */
921 		mutex_lock(&p->mutex);
922 
923 		if (!kfd_has_process_device_data(p))
924 			goto out_unlock;
925 
926 		/* Run over all pdd of the process */
927 		pdd = kfd_get_first_process_device_data(p);
928 		do {
929 			args->num_of_nodes++;
930 			pdd = kfd_get_next_process_device_data(p, pdd);
931 		} while (pdd);
932 
933 		goto out_unlock;
934 	}
935 
936 	/* Fill in process-aperture information for all available
937 	 * nodes, but not more than args->num_of_nodes as that is
938 	 * the amount of memory allocated by user
939 	 */
940 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
941 				args->num_of_nodes), GFP_KERNEL);
942 	if (!pa)
943 		return -ENOMEM;
944 
945 	mutex_lock(&p->mutex);
946 
947 	if (!kfd_has_process_device_data(p)) {
948 		args->num_of_nodes = 0;
949 		kfree(pa);
950 		goto out_unlock;
951 	}
952 
953 	/* Run over all pdd of the process */
954 	pdd = kfd_get_first_process_device_data(p);
955 	do {
956 		pa[nodes].gpu_id = pdd->dev->id;
957 		pa[nodes].lds_base = pdd->lds_base;
958 		pa[nodes].lds_limit = pdd->lds_limit;
959 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
960 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
961 		pa[nodes].scratch_base = pdd->scratch_base;
962 		pa[nodes].scratch_limit = pdd->scratch_limit;
963 
964 		dev_dbg(kfd_device,
965 			"gpu id %u\n", pdd->dev->id);
966 		dev_dbg(kfd_device,
967 			"lds_base %llX\n", pdd->lds_base);
968 		dev_dbg(kfd_device,
969 			"lds_limit %llX\n", pdd->lds_limit);
970 		dev_dbg(kfd_device,
971 			"gpuvm_base %llX\n", pdd->gpuvm_base);
972 		dev_dbg(kfd_device,
973 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
974 		dev_dbg(kfd_device,
975 			"scratch_base %llX\n", pdd->scratch_base);
976 		dev_dbg(kfd_device,
977 			"scratch_limit %llX\n", pdd->scratch_limit);
978 		nodes++;
979 
980 		pdd = kfd_get_next_process_device_data(p, pdd);
981 	} while (pdd && (nodes < args->num_of_nodes));
982 	mutex_unlock(&p->mutex);
983 
984 	args->num_of_nodes = nodes;
985 	ret = copy_to_user(
986 			(void __user *)args->kfd_process_device_apertures_ptr,
987 			pa,
988 			(nodes * sizeof(struct kfd_process_device_apertures)));
989 	kfree(pa);
990 	return ret ? -EFAULT : 0;
991 
992 out_unlock:
993 	mutex_unlock(&p->mutex);
994 	return 0;
995 }
996 
997 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
998 					void *data)
999 {
1000 	struct kfd_ioctl_create_event_args *args = data;
1001 	int err;
1002 
1003 	/* For dGPUs the event page is allocated in user mode. The
1004 	 * handle is passed to KFD with the first call to this IOCTL
1005 	 * through the event_page_offset field.
1006 	 */
1007 	if (args->event_page_offset) {
1008 		struct kfd_dev *kfd;
1009 		struct kfd_process_device *pdd;
1010 		void *mem, *kern_addr;
1011 		uint64_t size;
1012 
1013 		if (p->signal_page) {
1014 			pr_err("Event page is already set\n");
1015 			return -EINVAL;
1016 		}
1017 
1018 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1019 		if (!kfd) {
1020 			pr_err("Getting device by id failed in %s\n", __func__);
1021 			return -EINVAL;
1022 		}
1023 
1024 		mutex_lock(&p->mutex);
1025 		pdd = kfd_bind_process_to_device(kfd, p);
1026 		if (IS_ERR(pdd)) {
1027 			err = PTR_ERR(pdd);
1028 			goto out_unlock;
1029 		}
1030 
1031 		mem = kfd_process_device_translate_handle(pdd,
1032 				GET_IDR_HANDLE(args->event_page_offset));
1033 		if (!mem) {
1034 			pr_err("Can't find BO, offset is 0x%llx\n",
1035 			       args->event_page_offset);
1036 			err = -EINVAL;
1037 			goto out_unlock;
1038 		}
1039 		mutex_unlock(&p->mutex);
1040 
1041 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1042 						mem, &kern_addr, &size);
1043 		if (err) {
1044 			pr_err("Failed to map event page to kernel\n");
1045 			return err;
1046 		}
1047 
1048 		err = kfd_event_page_set(p, kern_addr, size);
1049 		if (err) {
1050 			pr_err("Failed to set event page\n");
1051 			return err;
1052 		}
1053 	}
1054 
1055 	err = kfd_event_create(filp, p, args->event_type,
1056 				args->auto_reset != 0, args->node_id,
1057 				&args->event_id, &args->event_trigger_data,
1058 				&args->event_page_offset,
1059 				&args->event_slot_index);
1060 
1061 	return err;
1062 
1063 out_unlock:
1064 	mutex_unlock(&p->mutex);
1065 	return err;
1066 }
1067 
1068 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1069 					void *data)
1070 {
1071 	struct kfd_ioctl_destroy_event_args *args = data;
1072 
1073 	return kfd_event_destroy(p, args->event_id);
1074 }
1075 
1076 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1077 				void *data)
1078 {
1079 	struct kfd_ioctl_set_event_args *args = data;
1080 
1081 	return kfd_set_event(p, args->event_id);
1082 }
1083 
1084 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1085 				void *data)
1086 {
1087 	struct kfd_ioctl_reset_event_args *args = data;
1088 
1089 	return kfd_reset_event(p, args->event_id);
1090 }
1091 
1092 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1093 				void *data)
1094 {
1095 	struct kfd_ioctl_wait_events_args *args = data;
1096 	int err;
1097 
1098 	err = kfd_wait_on_events(p, args->num_events,
1099 			(void __user *)args->events_ptr,
1100 			(args->wait_for_all != 0),
1101 			args->timeout, &args->wait_result);
1102 
1103 	return err;
1104 }
1105 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1106 					struct kfd_process *p, void *data)
1107 {
1108 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1109 	struct kfd_process_device *pdd;
1110 	struct kfd_dev *dev;
1111 	long err;
1112 
1113 	dev = kfd_device_by_id(args->gpu_id);
1114 	if (!dev)
1115 		return -EINVAL;
1116 
1117 	mutex_lock(&p->mutex);
1118 
1119 	pdd = kfd_bind_process_to_device(dev, p);
1120 	if (IS_ERR(pdd)) {
1121 		err = PTR_ERR(pdd);
1122 		goto bind_process_to_device_fail;
1123 	}
1124 
1125 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1126 
1127 	mutex_unlock(&p->mutex);
1128 
1129 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1130 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1131 		dev->kfd2kgd->set_scratch_backing_va(
1132 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1133 
1134 	return 0;
1135 
1136 bind_process_to_device_fail:
1137 	mutex_unlock(&p->mutex);
1138 	return err;
1139 }
1140 
1141 static int kfd_ioctl_get_tile_config(struct file *filep,
1142 		struct kfd_process *p, void *data)
1143 {
1144 	struct kfd_ioctl_get_tile_config_args *args = data;
1145 	struct kfd_dev *dev;
1146 	struct tile_config config;
1147 	int err = 0;
1148 
1149 	dev = kfd_device_by_id(args->gpu_id);
1150 	if (!dev)
1151 		return -EINVAL;
1152 
1153 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1154 
1155 	args->gb_addr_config = config.gb_addr_config;
1156 	args->num_banks = config.num_banks;
1157 	args->num_ranks = config.num_ranks;
1158 
1159 	if (args->num_tile_configs > config.num_tile_configs)
1160 		args->num_tile_configs = config.num_tile_configs;
1161 	err = copy_to_user((void __user *)args->tile_config_ptr,
1162 			config.tile_config_ptr,
1163 			args->num_tile_configs * sizeof(uint32_t));
1164 	if (err) {
1165 		args->num_tile_configs = 0;
1166 		return -EFAULT;
1167 	}
1168 
1169 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1170 		args->num_macro_tile_configs =
1171 				config.num_macro_tile_configs;
1172 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1173 			config.macro_tile_config_ptr,
1174 			args->num_macro_tile_configs * sizeof(uint32_t));
1175 	if (err) {
1176 		args->num_macro_tile_configs = 0;
1177 		return -EFAULT;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1184 				void *data)
1185 {
1186 	struct kfd_ioctl_acquire_vm_args *args = data;
1187 	struct kfd_process_device *pdd;
1188 	struct kfd_dev *dev;
1189 	struct file *drm_file;
1190 	int ret;
1191 
1192 	dev = kfd_device_by_id(args->gpu_id);
1193 	if (!dev)
1194 		return -EINVAL;
1195 
1196 	drm_file = fget(args->drm_fd);
1197 	if (!drm_file)
1198 		return -EINVAL;
1199 
1200 	mutex_lock(&p->mutex);
1201 
1202 	pdd = kfd_get_process_device_data(dev, p);
1203 	if (!pdd) {
1204 		ret = -EINVAL;
1205 		goto err_unlock;
1206 	}
1207 
1208 	if (pdd->drm_file) {
1209 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1210 		goto err_unlock;
1211 	}
1212 
1213 	ret = kfd_process_device_init_vm(pdd, drm_file);
1214 	if (ret)
1215 		goto err_unlock;
1216 	/* On success, the PDD keeps the drm_file reference */
1217 	mutex_unlock(&p->mutex);
1218 
1219 	return 0;
1220 
1221 err_unlock:
1222 	mutex_unlock(&p->mutex);
1223 	fput(drm_file);
1224 	return ret;
1225 }
1226 
1227 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1228 {
1229 	struct kfd_local_mem_info mem_info;
1230 
1231 	if (debug_largebar) {
1232 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1233 		return true;
1234 	}
1235 
1236 	if (dev->device_info->needs_iommu_device)
1237 		return false;
1238 
1239 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1240 	if (mem_info.local_mem_size_private == 0 &&
1241 			mem_info.local_mem_size_public > 0)
1242 		return true;
1243 	return false;
1244 }
1245 
1246 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1247 					struct kfd_process *p, void *data)
1248 {
1249 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1250 	struct kfd_process_device *pdd;
1251 	void *mem;
1252 	struct kfd_dev *dev;
1253 	int idr_handle;
1254 	long err;
1255 	uint64_t offset = args->mmap_offset;
1256 	uint32_t flags = args->flags;
1257 
1258 	if (args->size == 0)
1259 		return -EINVAL;
1260 
1261 	dev = kfd_device_by_id(args->gpu_id);
1262 	if (!dev)
1263 		return -EINVAL;
1264 
1265 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1266 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1267 		!kfd_dev_is_large_bar(dev)) {
1268 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1269 		return -EINVAL;
1270 	}
1271 
1272 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1273 		if (args->size != kfd_doorbell_process_slice(dev))
1274 			return -EINVAL;
1275 		offset = kfd_get_process_doorbells(dev, p);
1276 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1277 		if (args->size != PAGE_SIZE)
1278 			return -EINVAL;
1279 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1280 		if (!offset)
1281 			return -ENOMEM;
1282 	}
1283 
1284 	mutex_lock(&p->mutex);
1285 
1286 	pdd = kfd_bind_process_to_device(dev, p);
1287 	if (IS_ERR(pdd)) {
1288 		err = PTR_ERR(pdd);
1289 		goto err_unlock;
1290 	}
1291 
1292 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1293 		dev->kgd, args->va_addr, args->size,
1294 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1295 		flags);
1296 
1297 	if (err)
1298 		goto err_unlock;
1299 
1300 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1301 	if (idr_handle < 0) {
1302 		err = -EFAULT;
1303 		goto err_free;
1304 	}
1305 
1306 	mutex_unlock(&p->mutex);
1307 
1308 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1309 	args->mmap_offset = offset;
1310 
1311 	/* MMIO is mapped through kfd device
1312 	 * Generate a kfd mmap offset
1313 	 */
1314 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1315 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1316 					| KFD_MMAP_GPU_ID(args->gpu_id);
1317 
1318 	return 0;
1319 
1320 err_free:
1321 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1322 err_unlock:
1323 	mutex_unlock(&p->mutex);
1324 	return err;
1325 }
1326 
1327 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1328 					struct kfd_process *p, void *data)
1329 {
1330 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1331 	struct kfd_process_device *pdd;
1332 	void *mem;
1333 	struct kfd_dev *dev;
1334 	int ret;
1335 
1336 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1337 	if (!dev)
1338 		return -EINVAL;
1339 
1340 	mutex_lock(&p->mutex);
1341 
1342 	pdd = kfd_get_process_device_data(dev, p);
1343 	if (!pdd) {
1344 		pr_err("Process device data doesn't exist\n");
1345 		ret = -EINVAL;
1346 		goto err_unlock;
1347 	}
1348 
1349 	mem = kfd_process_device_translate_handle(
1350 		pdd, GET_IDR_HANDLE(args->handle));
1351 	if (!mem) {
1352 		ret = -EINVAL;
1353 		goto err_unlock;
1354 	}
1355 
1356 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1357 						(struct kgd_mem *)mem);
1358 
1359 	/* If freeing the buffer failed, leave the handle in place for
1360 	 * clean-up during process tear-down.
1361 	 */
1362 	if (!ret)
1363 		kfd_process_device_remove_obj_handle(
1364 			pdd, GET_IDR_HANDLE(args->handle));
1365 
1366 err_unlock:
1367 	mutex_unlock(&p->mutex);
1368 	return ret;
1369 }
1370 
1371 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1372 					struct kfd_process *p, void *data)
1373 {
1374 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1375 	struct kfd_process_device *pdd, *peer_pdd;
1376 	void *mem;
1377 	struct kfd_dev *dev, *peer;
1378 	long err = 0;
1379 	int i;
1380 	uint32_t *devices_arr = NULL;
1381 
1382 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1383 	if (!dev)
1384 		return -EINVAL;
1385 
1386 	if (!args->n_devices) {
1387 		pr_debug("Device IDs array empty\n");
1388 		return -EINVAL;
1389 	}
1390 	if (args->n_success > args->n_devices) {
1391 		pr_debug("n_success exceeds n_devices\n");
1392 		return -EINVAL;
1393 	}
1394 
1395 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1396 				    GFP_KERNEL);
1397 	if (!devices_arr)
1398 		return -ENOMEM;
1399 
1400 	err = copy_from_user(devices_arr,
1401 			     (void __user *)args->device_ids_array_ptr,
1402 			     args->n_devices * sizeof(*devices_arr));
1403 	if (err != 0) {
1404 		err = -EFAULT;
1405 		goto copy_from_user_failed;
1406 	}
1407 
1408 	mutex_lock(&p->mutex);
1409 
1410 	pdd = kfd_bind_process_to_device(dev, p);
1411 	if (IS_ERR(pdd)) {
1412 		err = PTR_ERR(pdd);
1413 		goto bind_process_to_device_failed;
1414 	}
1415 
1416 	mem = kfd_process_device_translate_handle(pdd,
1417 						GET_IDR_HANDLE(args->handle));
1418 	if (!mem) {
1419 		err = -ENOMEM;
1420 		goto get_mem_obj_from_handle_failed;
1421 	}
1422 
1423 	for (i = args->n_success; i < args->n_devices; i++) {
1424 		peer = kfd_device_by_id(devices_arr[i]);
1425 		if (!peer) {
1426 			pr_debug("Getting device by id failed for 0x%x\n",
1427 				 devices_arr[i]);
1428 			err = -EINVAL;
1429 			goto get_mem_obj_from_handle_failed;
1430 		}
1431 
1432 		peer_pdd = kfd_bind_process_to_device(peer, p);
1433 		if (IS_ERR(peer_pdd)) {
1434 			err = PTR_ERR(peer_pdd);
1435 			goto get_mem_obj_from_handle_failed;
1436 		}
1437 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1438 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1439 		if (err) {
1440 			pr_err("Failed to map to gpu %d/%d\n",
1441 			       i, args->n_devices);
1442 			goto map_memory_to_gpu_failed;
1443 		}
1444 		args->n_success = i+1;
1445 	}
1446 
1447 	mutex_unlock(&p->mutex);
1448 
1449 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1450 	if (err) {
1451 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1452 		goto sync_memory_failed;
1453 	}
1454 
1455 	/* Flush TLBs after waiting for the page table updates to complete */
1456 	for (i = 0; i < args->n_devices; i++) {
1457 		peer = kfd_device_by_id(devices_arr[i]);
1458 		if (WARN_ON_ONCE(!peer))
1459 			continue;
1460 		peer_pdd = kfd_get_process_device_data(peer, p);
1461 		if (WARN_ON_ONCE(!peer_pdd))
1462 			continue;
1463 		kfd_flush_tlb(peer_pdd);
1464 	}
1465 
1466 	kfree(devices_arr);
1467 
1468 	return err;
1469 
1470 bind_process_to_device_failed:
1471 get_mem_obj_from_handle_failed:
1472 map_memory_to_gpu_failed:
1473 	mutex_unlock(&p->mutex);
1474 copy_from_user_failed:
1475 sync_memory_failed:
1476 	kfree(devices_arr);
1477 
1478 	return err;
1479 }
1480 
1481 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1482 					struct kfd_process *p, void *data)
1483 {
1484 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1485 	struct kfd_process_device *pdd, *peer_pdd;
1486 	void *mem;
1487 	struct kfd_dev *dev, *peer;
1488 	long err = 0;
1489 	uint32_t *devices_arr = NULL, i;
1490 
1491 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1492 	if (!dev)
1493 		return -EINVAL;
1494 
1495 	if (!args->n_devices) {
1496 		pr_debug("Device IDs array empty\n");
1497 		return -EINVAL;
1498 	}
1499 	if (args->n_success > args->n_devices) {
1500 		pr_debug("n_success exceeds n_devices\n");
1501 		return -EINVAL;
1502 	}
1503 
1504 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1505 				    GFP_KERNEL);
1506 	if (!devices_arr)
1507 		return -ENOMEM;
1508 
1509 	err = copy_from_user(devices_arr,
1510 			     (void __user *)args->device_ids_array_ptr,
1511 			     args->n_devices * sizeof(*devices_arr));
1512 	if (err != 0) {
1513 		err = -EFAULT;
1514 		goto copy_from_user_failed;
1515 	}
1516 
1517 	mutex_lock(&p->mutex);
1518 
1519 	pdd = kfd_get_process_device_data(dev, p);
1520 	if (!pdd) {
1521 		err = -EINVAL;
1522 		goto bind_process_to_device_failed;
1523 	}
1524 
1525 	mem = kfd_process_device_translate_handle(pdd,
1526 						GET_IDR_HANDLE(args->handle));
1527 	if (!mem) {
1528 		err = -ENOMEM;
1529 		goto get_mem_obj_from_handle_failed;
1530 	}
1531 
1532 	for (i = args->n_success; i < args->n_devices; i++) {
1533 		peer = kfd_device_by_id(devices_arr[i]);
1534 		if (!peer) {
1535 			err = -EINVAL;
1536 			goto get_mem_obj_from_handle_failed;
1537 		}
1538 
1539 		peer_pdd = kfd_get_process_device_data(peer, p);
1540 		if (!peer_pdd) {
1541 			err = -ENODEV;
1542 			goto get_mem_obj_from_handle_failed;
1543 		}
1544 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1545 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1546 		if (err) {
1547 			pr_err("Failed to unmap from gpu %d/%d\n",
1548 			       i, args->n_devices);
1549 			goto unmap_memory_from_gpu_failed;
1550 		}
1551 		args->n_success = i+1;
1552 	}
1553 	kfree(devices_arr);
1554 
1555 	mutex_unlock(&p->mutex);
1556 
1557 	return 0;
1558 
1559 bind_process_to_device_failed:
1560 get_mem_obj_from_handle_failed:
1561 unmap_memory_from_gpu_failed:
1562 	mutex_unlock(&p->mutex);
1563 copy_from_user_failed:
1564 	kfree(devices_arr);
1565 	return err;
1566 }
1567 
1568 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1569 		struct kfd_process *p, void *data)
1570 {
1571 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1572 	struct kfd_dev *dev = NULL;
1573 	struct kgd_dev *dma_buf_kgd;
1574 	void *metadata_buffer = NULL;
1575 	uint32_t flags;
1576 	unsigned int i;
1577 	int r;
1578 
1579 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1580 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1581 		if (dev)
1582 			break;
1583 	if (!dev)
1584 		return -EINVAL;
1585 
1586 	if (args->metadata_ptr) {
1587 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1588 		if (!metadata_buffer)
1589 			return -ENOMEM;
1590 	}
1591 
1592 	/* Get dmabuf info from KGD */
1593 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1594 					  &dma_buf_kgd, &args->size,
1595 					  metadata_buffer, args->metadata_size,
1596 					  &args->metadata_size, &flags);
1597 	if (r)
1598 		goto exit;
1599 
1600 	/* Reverse-lookup gpu_id from kgd pointer */
1601 	dev = kfd_device_by_kgd(dma_buf_kgd);
1602 	if (!dev) {
1603 		r = -EINVAL;
1604 		goto exit;
1605 	}
1606 	args->gpu_id = dev->id;
1607 	args->flags = flags;
1608 
1609 	/* Copy metadata buffer to user mode */
1610 	if (metadata_buffer) {
1611 		r = copy_to_user((void __user *)args->metadata_ptr,
1612 				 metadata_buffer, args->metadata_size);
1613 		if (r != 0)
1614 			r = -EFAULT;
1615 	}
1616 
1617 exit:
1618 	kfree(metadata_buffer);
1619 
1620 	return r;
1621 }
1622 
1623 static int kfd_ioctl_import_dmabuf(struct file *filep,
1624 				   struct kfd_process *p, void *data)
1625 {
1626 	struct kfd_ioctl_import_dmabuf_args *args = data;
1627 	struct kfd_process_device *pdd;
1628 	struct dma_buf *dmabuf;
1629 	struct kfd_dev *dev;
1630 	int idr_handle;
1631 	uint64_t size;
1632 	void *mem;
1633 	int r;
1634 
1635 	dev = kfd_device_by_id(args->gpu_id);
1636 	if (!dev)
1637 		return -EINVAL;
1638 
1639 	dmabuf = dma_buf_get(args->dmabuf_fd);
1640 	if (IS_ERR(dmabuf))
1641 		return PTR_ERR(dmabuf);
1642 
1643 	mutex_lock(&p->mutex);
1644 
1645 	pdd = kfd_bind_process_to_device(dev, p);
1646 	if (IS_ERR(pdd)) {
1647 		r = PTR_ERR(pdd);
1648 		goto err_unlock;
1649 	}
1650 
1651 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1652 					      args->va_addr, pdd->vm,
1653 					      (struct kgd_mem **)&mem, &size,
1654 					      NULL);
1655 	if (r)
1656 		goto err_unlock;
1657 
1658 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1659 	if (idr_handle < 0) {
1660 		r = -EFAULT;
1661 		goto err_free;
1662 	}
1663 
1664 	mutex_unlock(&p->mutex);
1665 
1666 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1667 
1668 	return 0;
1669 
1670 err_free:
1671 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1672 err_unlock:
1673 	mutex_unlock(&p->mutex);
1674 	return r;
1675 }
1676 
1677 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1678 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1679 			    .cmd_drv = 0, .name = #ioctl}
1680 
1681 /** Ioctl table */
1682 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1683 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1684 			kfd_ioctl_get_version, 0),
1685 
1686 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1687 			kfd_ioctl_create_queue, 0),
1688 
1689 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1690 			kfd_ioctl_destroy_queue, 0),
1691 
1692 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1693 			kfd_ioctl_set_memory_policy, 0),
1694 
1695 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1696 			kfd_ioctl_get_clock_counters, 0),
1697 
1698 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1699 			kfd_ioctl_get_process_apertures, 0),
1700 
1701 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1702 			kfd_ioctl_update_queue, 0),
1703 
1704 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1705 			kfd_ioctl_create_event, 0),
1706 
1707 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1708 			kfd_ioctl_destroy_event, 0),
1709 
1710 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1711 			kfd_ioctl_set_event, 0),
1712 
1713 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1714 			kfd_ioctl_reset_event, 0),
1715 
1716 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1717 			kfd_ioctl_wait_events, 0),
1718 
1719 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1720 			kfd_ioctl_dbg_register, 0),
1721 
1722 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1723 			kfd_ioctl_dbg_unregister, 0),
1724 
1725 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1726 			kfd_ioctl_dbg_address_watch, 0),
1727 
1728 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1729 			kfd_ioctl_dbg_wave_control, 0),
1730 
1731 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1732 			kfd_ioctl_set_scratch_backing_va, 0),
1733 
1734 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1735 			kfd_ioctl_get_tile_config, 0),
1736 
1737 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1738 			kfd_ioctl_set_trap_handler, 0),
1739 
1740 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1741 			kfd_ioctl_get_process_apertures_new, 0),
1742 
1743 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1744 			kfd_ioctl_acquire_vm, 0),
1745 
1746 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1747 			kfd_ioctl_alloc_memory_of_gpu, 0),
1748 
1749 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1750 			kfd_ioctl_free_memory_of_gpu, 0),
1751 
1752 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1753 			kfd_ioctl_map_memory_to_gpu, 0),
1754 
1755 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1756 			kfd_ioctl_unmap_memory_from_gpu, 0),
1757 
1758 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1759 			kfd_ioctl_set_cu_mask, 0),
1760 
1761 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1762 			kfd_ioctl_get_queue_wave_state, 0),
1763 
1764 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1765 				kfd_ioctl_get_dmabuf_info, 0),
1766 
1767 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1768 				kfd_ioctl_import_dmabuf, 0),
1769 
1770 };
1771 
1772 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1773 
1774 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1775 {
1776 	struct kfd_process *process;
1777 	amdkfd_ioctl_t *func;
1778 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1779 	unsigned int nr = _IOC_NR(cmd);
1780 	char stack_kdata[128];
1781 	char *kdata = NULL;
1782 	unsigned int usize, asize;
1783 	int retcode = -EINVAL;
1784 
1785 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1786 		goto err_i1;
1787 
1788 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1789 		u32 amdkfd_size;
1790 
1791 		ioctl = &amdkfd_ioctls[nr];
1792 
1793 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1794 		usize = asize = _IOC_SIZE(cmd);
1795 		if (amdkfd_size > asize)
1796 			asize = amdkfd_size;
1797 
1798 		cmd = ioctl->cmd;
1799 	} else
1800 		goto err_i1;
1801 
1802 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1803 
1804 	process = kfd_get_process(current);
1805 	if (IS_ERR(process)) {
1806 		dev_dbg(kfd_device, "no process\n");
1807 		goto err_i1;
1808 	}
1809 
1810 	/* Do not trust userspace, use our own definition */
1811 	func = ioctl->func;
1812 
1813 	if (unlikely(!func)) {
1814 		dev_dbg(kfd_device, "no function\n");
1815 		retcode = -EINVAL;
1816 		goto err_i1;
1817 	}
1818 
1819 	if (cmd & (IOC_IN | IOC_OUT)) {
1820 		if (asize <= sizeof(stack_kdata)) {
1821 			kdata = stack_kdata;
1822 		} else {
1823 			kdata = kmalloc(asize, GFP_KERNEL);
1824 			if (!kdata) {
1825 				retcode = -ENOMEM;
1826 				goto err_i1;
1827 			}
1828 		}
1829 		if (asize > usize)
1830 			memset(kdata + usize, 0, asize - usize);
1831 	}
1832 
1833 	if (cmd & IOC_IN) {
1834 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1835 			retcode = -EFAULT;
1836 			goto err_i1;
1837 		}
1838 	} else if (cmd & IOC_OUT) {
1839 		memset(kdata, 0, usize);
1840 	}
1841 
1842 	retcode = func(filep, process, kdata);
1843 
1844 	if (cmd & IOC_OUT)
1845 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1846 			retcode = -EFAULT;
1847 
1848 err_i1:
1849 	if (!ioctl)
1850 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1851 			  task_pid_nr(current), cmd, nr);
1852 
1853 	if (kdata != stack_kdata)
1854 		kfree(kdata);
1855 
1856 	if (retcode)
1857 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1858 				nr, arg, retcode);
1859 
1860 	return retcode;
1861 }
1862 
1863 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1864 		      struct vm_area_struct *vma)
1865 {
1866 	phys_addr_t address;
1867 	int ret;
1868 
1869 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1870 		return -EINVAL;
1871 
1872 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1873 
1874 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1875 				VM_DONTDUMP | VM_PFNMAP;
1876 
1877 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1878 
1879 	pr_debug("pasid 0x%x mapping mmio page\n"
1880 		 "     target user address == 0x%08llX\n"
1881 		 "     physical address    == 0x%08llX\n"
1882 		 "     vm_flags            == 0x%04lX\n"
1883 		 "     size                == 0x%04lX\n",
1884 		 process->pasid, (unsigned long long) vma->vm_start,
1885 		 address, vma->vm_flags, PAGE_SIZE);
1886 
1887 	ret = io_remap_pfn_range(vma,
1888 				vma->vm_start,
1889 				address >> PAGE_SHIFT,
1890 				PAGE_SIZE,
1891 				vma->vm_page_prot);
1892 	return ret;
1893 }
1894 
1895 
1896 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1897 {
1898 	struct kfd_process *process;
1899 	struct kfd_dev *dev = NULL;
1900 	unsigned long mmap_offset;
1901 	unsigned int gpu_id;
1902 
1903 	process = kfd_get_process(current);
1904 	if (IS_ERR(process))
1905 		return PTR_ERR(process);
1906 
1907 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
1908 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
1909 	if (gpu_id)
1910 		dev = kfd_device_by_id(gpu_id);
1911 
1912 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
1913 	case KFD_MMAP_TYPE_DOORBELL:
1914 		if (!dev)
1915 			return -ENODEV;
1916 		return kfd_doorbell_mmap(dev, process, vma);
1917 
1918 	case KFD_MMAP_TYPE_EVENTS:
1919 		return kfd_event_mmap(process, vma);
1920 
1921 	case KFD_MMAP_TYPE_RESERVED_MEM:
1922 		if (!dev)
1923 			return -ENODEV;
1924 		return kfd_reserved_mem_mmap(dev, process, vma);
1925 	case KFD_MMAP_TYPE_MMIO:
1926 		if (!dev)
1927 			return -ENODEV;
1928 		return kfd_mmio_mmap(dev, process, vma);
1929 	}
1930 
1931 	return -EFAULT;
1932 }
1933