1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 48 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 49 static int kfd_open(struct inode *, struct file *); 50 static int kfd_release(struct inode *, struct file *); 51 static int kfd_mmap(struct file *, struct vm_area_struct *); 52 53 static const char kfd_dev_name[] = "kfd"; 54 55 static const struct file_operations kfd_fops = { 56 .owner = THIS_MODULE, 57 .unlocked_ioctl = kfd_ioctl, 58 .compat_ioctl = compat_ptr_ioctl, 59 .open = kfd_open, 60 .release = kfd_release, 61 .mmap = kfd_mmap, 62 }; 63 64 static int kfd_char_dev_major = -1; 65 static struct class *kfd_class; 66 struct device *kfd_device; 67 68 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) 69 { 70 struct kfd_process_device *pdd; 71 72 mutex_lock(&p->mutex); 73 pdd = kfd_process_device_data_by_id(p, gpu_id); 74 75 if (pdd) 76 return pdd; 77 78 mutex_unlock(&p->mutex); 79 return NULL; 80 } 81 82 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) 83 { 84 mutex_unlock(&pdd->process->mutex); 85 } 86 87 int kfd_chardev_init(void) 88 { 89 int err = 0; 90 91 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 92 err = kfd_char_dev_major; 93 if (err < 0) 94 goto err_register_chrdev; 95 96 kfd_class = class_create(THIS_MODULE, kfd_dev_name); 97 err = PTR_ERR(kfd_class); 98 if (IS_ERR(kfd_class)) 99 goto err_class_create; 100 101 kfd_device = device_create(kfd_class, NULL, 102 MKDEV(kfd_char_dev_major, 0), 103 NULL, kfd_dev_name); 104 err = PTR_ERR(kfd_device); 105 if (IS_ERR(kfd_device)) 106 goto err_device_create; 107 108 return 0; 109 110 err_device_create: 111 class_destroy(kfd_class); 112 err_class_create: 113 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 114 err_register_chrdev: 115 return err; 116 } 117 118 void kfd_chardev_exit(void) 119 { 120 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); 121 class_destroy(kfd_class); 122 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 123 kfd_device = NULL; 124 } 125 126 127 static int kfd_open(struct inode *inode, struct file *filep) 128 { 129 struct kfd_process *process; 130 bool is_32bit_user_mode; 131 132 if (iminor(inode) != 0) 133 return -ENODEV; 134 135 is_32bit_user_mode = in_compat_syscall(); 136 137 if (is_32bit_user_mode) { 138 dev_warn(kfd_device, 139 "Process %d (32-bit) failed to open /dev/kfd\n" 140 "32-bit processes are not supported by amdkfd\n", 141 current->pid); 142 return -EPERM; 143 } 144 145 process = kfd_create_process(filep); 146 if (IS_ERR(process)) 147 return PTR_ERR(process); 148 149 if (kfd_is_locked()) { 150 dev_dbg(kfd_device, "kfd is locked!\n" 151 "process %d unreferenced", process->pasid); 152 kfd_unref_process(process); 153 return -EAGAIN; 154 } 155 156 /* filep now owns the reference returned by kfd_create_process */ 157 filep->private_data = process; 158 159 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 160 process->pasid, process->is_32bit_user_mode); 161 162 return 0; 163 } 164 165 static int kfd_release(struct inode *inode, struct file *filep) 166 { 167 struct kfd_process *process = filep->private_data; 168 169 if (process) 170 kfd_unref_process(process); 171 172 return 0; 173 } 174 175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 176 void *data) 177 { 178 struct kfd_ioctl_get_version_args *args = data; 179 180 args->major_version = KFD_IOCTL_MAJOR_VERSION; 181 args->minor_version = KFD_IOCTL_MINOR_VERSION; 182 183 return 0; 184 } 185 186 static int set_queue_properties_from_user(struct queue_properties *q_properties, 187 struct kfd_ioctl_create_queue_args *args) 188 { 189 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 190 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 191 return -EINVAL; 192 } 193 194 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 195 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 196 return -EINVAL; 197 } 198 199 if ((args->ring_base_address) && 200 (!access_ok((const void __user *) args->ring_base_address, 201 sizeof(uint64_t)))) { 202 pr_err("Can't access ring base address\n"); 203 return -EFAULT; 204 } 205 206 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 207 pr_err("Ring size must be a power of 2 or 0\n"); 208 return -EINVAL; 209 } 210 211 if (!access_ok((const void __user *) args->read_pointer_address, 212 sizeof(uint32_t))) { 213 pr_err("Can't access read pointer\n"); 214 return -EFAULT; 215 } 216 217 if (!access_ok((const void __user *) args->write_pointer_address, 218 sizeof(uint32_t))) { 219 pr_err("Can't access write pointer\n"); 220 return -EFAULT; 221 } 222 223 if (args->eop_buffer_address && 224 !access_ok((const void __user *) args->eop_buffer_address, 225 sizeof(uint32_t))) { 226 pr_debug("Can't access eop buffer"); 227 return -EFAULT; 228 } 229 230 if (args->ctx_save_restore_address && 231 !access_ok((const void __user *) args->ctx_save_restore_address, 232 sizeof(uint32_t))) { 233 pr_debug("Can't access ctx save restore buffer"); 234 return -EFAULT; 235 } 236 237 q_properties->is_interop = false; 238 q_properties->is_gws = false; 239 q_properties->queue_percent = args->queue_percentage; 240 q_properties->priority = args->queue_priority; 241 q_properties->queue_address = args->ring_base_address; 242 q_properties->queue_size = args->ring_size; 243 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 244 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 245 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 246 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 247 q_properties->ctx_save_restore_area_address = 248 args->ctx_save_restore_address; 249 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 250 q_properties->ctl_stack_size = args->ctl_stack_size; 251 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 252 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 253 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 254 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 255 q_properties->type = KFD_QUEUE_TYPE_SDMA; 256 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 257 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 258 else 259 return -ENOTSUPP; 260 261 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 262 q_properties->format = KFD_QUEUE_FORMAT_AQL; 263 else 264 q_properties->format = KFD_QUEUE_FORMAT_PM4; 265 266 pr_debug("Queue Percentage: %d, %d\n", 267 q_properties->queue_percent, args->queue_percentage); 268 269 pr_debug("Queue Priority: %d, %d\n", 270 q_properties->priority, args->queue_priority); 271 272 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 273 q_properties->queue_address, args->ring_base_address); 274 275 pr_debug("Queue Size: 0x%llX, %u\n", 276 q_properties->queue_size, args->ring_size); 277 278 pr_debug("Queue r/w Pointers: %px, %px\n", 279 q_properties->read_ptr, 280 q_properties->write_ptr); 281 282 pr_debug("Queue Format: %d\n", q_properties->format); 283 284 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 285 286 pr_debug("Queue CTX save area: 0x%llX\n", 287 q_properties->ctx_save_restore_area_address); 288 289 return 0; 290 } 291 292 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 293 void *data) 294 { 295 struct kfd_ioctl_create_queue_args *args = data; 296 struct kfd_dev *dev; 297 int err = 0; 298 unsigned int queue_id; 299 struct kfd_process_device *pdd; 300 struct queue_properties q_properties; 301 uint32_t doorbell_offset_in_process = 0; 302 struct amdgpu_bo *wptr_bo = NULL; 303 304 memset(&q_properties, 0, sizeof(struct queue_properties)); 305 306 pr_debug("Creating queue ioctl\n"); 307 308 err = set_queue_properties_from_user(&q_properties, args); 309 if (err) 310 return err; 311 312 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 313 314 mutex_lock(&p->mutex); 315 316 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 317 if (!pdd) { 318 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 319 err = -EINVAL; 320 goto err_pdd; 321 } 322 dev = pdd->dev; 323 324 pdd = kfd_bind_process_to_device(dev, p); 325 if (IS_ERR(pdd)) { 326 err = -ESRCH; 327 goto err_bind_process; 328 } 329 330 if (!pdd->doorbell_index && 331 kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 332 err = -ENOMEM; 333 goto err_alloc_doorbells; 334 } 335 336 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work 337 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell) 338 */ 339 if (dev->shared_resources.enable_mes && 340 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) 341 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) { 342 struct amdgpu_bo_va_mapping *wptr_mapping; 343 struct amdgpu_vm *wptr_vm; 344 345 wptr_vm = drm_priv_to_vm(pdd->drm_priv); 346 err = amdgpu_bo_reserve(wptr_vm->root.bo, false); 347 if (err) 348 goto err_wptr_map_gart; 349 350 wptr_mapping = amdgpu_vm_bo_lookup_mapping( 351 wptr_vm, args->write_pointer_address >> PAGE_SHIFT); 352 amdgpu_bo_unreserve(wptr_vm->root.bo); 353 if (!wptr_mapping) { 354 pr_err("Failed to lookup wptr bo\n"); 355 err = -EINVAL; 356 goto err_wptr_map_gart; 357 } 358 359 wptr_bo = wptr_mapping->bo_va->base.bo; 360 if (wptr_bo->tbo.base.size > PAGE_SIZE) { 361 pr_err("Requested GART mapping for wptr bo larger than one page\n"); 362 err = -EINVAL; 363 goto err_wptr_map_gart; 364 } 365 366 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo); 367 if (err) { 368 pr_err("Failed to map wptr bo to GART\n"); 369 goto err_wptr_map_gart; 370 } 371 } 372 373 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 374 p->pasid, 375 dev->id); 376 377 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo, 378 NULL, NULL, NULL, &doorbell_offset_in_process); 379 if (err != 0) 380 goto err_create_queue; 381 382 args->queue_id = queue_id; 383 384 385 /* Return gpu_id as doorbell offset for mmap usage */ 386 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 387 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 388 if (KFD_IS_SOC15(dev)) 389 /* On SOC15 ASICs, include the doorbell offset within the 390 * process doorbell frame, which is 2 pages. 391 */ 392 args->doorbell_offset |= doorbell_offset_in_process; 393 394 mutex_unlock(&p->mutex); 395 396 pr_debug("Queue id %d was created successfully\n", args->queue_id); 397 398 pr_debug("Ring buffer address == 0x%016llX\n", 399 args->ring_base_address); 400 401 pr_debug("Read ptr address == 0x%016llX\n", 402 args->read_pointer_address); 403 404 pr_debug("Write ptr address == 0x%016llX\n", 405 args->write_pointer_address); 406 407 return 0; 408 409 err_create_queue: 410 if (wptr_bo) 411 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo); 412 err_wptr_map_gart: 413 err_alloc_doorbells: 414 err_bind_process: 415 err_pdd: 416 mutex_unlock(&p->mutex); 417 return err; 418 } 419 420 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 421 void *data) 422 { 423 int retval; 424 struct kfd_ioctl_destroy_queue_args *args = data; 425 426 pr_debug("Destroying queue id %d for pasid 0x%x\n", 427 args->queue_id, 428 p->pasid); 429 430 mutex_lock(&p->mutex); 431 432 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 433 434 mutex_unlock(&p->mutex); 435 return retval; 436 } 437 438 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 439 void *data) 440 { 441 int retval; 442 struct kfd_ioctl_update_queue_args *args = data; 443 struct queue_properties properties; 444 445 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 446 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 447 return -EINVAL; 448 } 449 450 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 451 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 452 return -EINVAL; 453 } 454 455 if ((args->ring_base_address) && 456 (!access_ok((const void __user *) args->ring_base_address, 457 sizeof(uint64_t)))) { 458 pr_err("Can't access ring base address\n"); 459 return -EFAULT; 460 } 461 462 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 463 pr_err("Ring size must be a power of 2 or 0\n"); 464 return -EINVAL; 465 } 466 467 properties.queue_address = args->ring_base_address; 468 properties.queue_size = args->ring_size; 469 properties.queue_percent = args->queue_percentage; 470 properties.priority = args->queue_priority; 471 472 pr_debug("Updating queue id %d for pasid 0x%x\n", 473 args->queue_id, p->pasid); 474 475 mutex_lock(&p->mutex); 476 477 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 478 479 mutex_unlock(&p->mutex); 480 481 return retval; 482 } 483 484 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 485 void *data) 486 { 487 int retval; 488 const int max_num_cus = 1024; 489 struct kfd_ioctl_set_cu_mask_args *args = data; 490 struct mqd_update_info minfo = {0}; 491 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 492 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 493 494 if ((args->num_cu_mask % 32) != 0) { 495 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 496 args->num_cu_mask); 497 return -EINVAL; 498 } 499 500 minfo.cu_mask.count = args->num_cu_mask; 501 if (minfo.cu_mask.count == 0) { 502 pr_debug("CU mask cannot be 0"); 503 return -EINVAL; 504 } 505 506 /* To prevent an unreasonably large CU mask size, set an arbitrary 507 * limit of max_num_cus bits. We can then just drop any CU mask bits 508 * past max_num_cus bits and just use the first max_num_cus bits. 509 */ 510 if (minfo.cu_mask.count > max_num_cus) { 511 pr_debug("CU mask cannot be greater than 1024 bits"); 512 minfo.cu_mask.count = max_num_cus; 513 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 514 } 515 516 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 517 if (!minfo.cu_mask.ptr) 518 return -ENOMEM; 519 520 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 521 if (retval) { 522 pr_debug("Could not copy CU mask from userspace"); 523 retval = -EFAULT; 524 goto out; 525 } 526 527 minfo.update_flag = UPDATE_FLAG_CU_MASK; 528 529 mutex_lock(&p->mutex); 530 531 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 532 533 mutex_unlock(&p->mutex); 534 535 out: 536 kfree(minfo.cu_mask.ptr); 537 return retval; 538 } 539 540 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 541 struct kfd_process *p, void *data) 542 { 543 struct kfd_ioctl_get_queue_wave_state_args *args = data; 544 int r; 545 546 mutex_lock(&p->mutex); 547 548 r = pqm_get_wave_state(&p->pqm, args->queue_id, 549 (void __user *)args->ctl_stack_address, 550 &args->ctl_stack_used_size, 551 &args->save_area_used_size); 552 553 mutex_unlock(&p->mutex); 554 555 return r; 556 } 557 558 static int kfd_ioctl_set_memory_policy(struct file *filep, 559 struct kfd_process *p, void *data) 560 { 561 struct kfd_ioctl_set_memory_policy_args *args = data; 562 int err = 0; 563 struct kfd_process_device *pdd; 564 enum cache_policy default_policy, alternate_policy; 565 566 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 567 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 568 return -EINVAL; 569 } 570 571 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 572 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 573 return -EINVAL; 574 } 575 576 mutex_lock(&p->mutex); 577 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 578 if (!pdd) { 579 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 580 err = -EINVAL; 581 goto err_pdd; 582 } 583 584 pdd = kfd_bind_process_to_device(pdd->dev, p); 585 if (IS_ERR(pdd)) { 586 err = -ESRCH; 587 goto out; 588 } 589 590 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 591 ? cache_policy_coherent : cache_policy_noncoherent; 592 593 alternate_policy = 594 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 595 ? cache_policy_coherent : cache_policy_noncoherent; 596 597 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 598 &pdd->qpd, 599 default_policy, 600 alternate_policy, 601 (void __user *)args->alternate_aperture_base, 602 args->alternate_aperture_size)) 603 err = -EINVAL; 604 605 out: 606 err_pdd: 607 mutex_unlock(&p->mutex); 608 609 return err; 610 } 611 612 static int kfd_ioctl_set_trap_handler(struct file *filep, 613 struct kfd_process *p, void *data) 614 { 615 struct kfd_ioctl_set_trap_handler_args *args = data; 616 int err = 0; 617 struct kfd_process_device *pdd; 618 619 mutex_lock(&p->mutex); 620 621 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 622 if (!pdd) { 623 err = -EINVAL; 624 goto err_pdd; 625 } 626 627 pdd = kfd_bind_process_to_device(pdd->dev, p); 628 if (IS_ERR(pdd)) { 629 err = -ESRCH; 630 goto out; 631 } 632 633 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 634 635 out: 636 err_pdd: 637 mutex_unlock(&p->mutex); 638 639 return err; 640 } 641 642 static int kfd_ioctl_dbg_register(struct file *filep, 643 struct kfd_process *p, void *data) 644 { 645 return -EPERM; 646 } 647 648 static int kfd_ioctl_dbg_unregister(struct file *filep, 649 struct kfd_process *p, void *data) 650 { 651 return -EPERM; 652 } 653 654 static int kfd_ioctl_dbg_address_watch(struct file *filep, 655 struct kfd_process *p, void *data) 656 { 657 return -EPERM; 658 } 659 660 /* Parse and generate fixed size data structure for wave control */ 661 static int kfd_ioctl_dbg_wave_control(struct file *filep, 662 struct kfd_process *p, void *data) 663 { 664 return -EPERM; 665 } 666 667 static int kfd_ioctl_get_clock_counters(struct file *filep, 668 struct kfd_process *p, void *data) 669 { 670 struct kfd_ioctl_get_clock_counters_args *args = data; 671 struct kfd_process_device *pdd; 672 673 mutex_lock(&p->mutex); 674 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 675 mutex_unlock(&p->mutex); 676 if (pdd) 677 /* Reading GPU clock counter from KGD */ 678 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 679 else 680 /* Node without GPU resource */ 681 args->gpu_clock_counter = 0; 682 683 /* No access to rdtsc. Using raw monotonic time */ 684 args->cpu_clock_counter = ktime_get_raw_ns(); 685 args->system_clock_counter = ktime_get_boottime_ns(); 686 687 /* Since the counter is in nano-seconds we use 1GHz frequency */ 688 args->system_clock_freq = 1000000000; 689 690 return 0; 691 } 692 693 694 static int kfd_ioctl_get_process_apertures(struct file *filp, 695 struct kfd_process *p, void *data) 696 { 697 struct kfd_ioctl_get_process_apertures_args *args = data; 698 struct kfd_process_device_apertures *pAperture; 699 int i; 700 701 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 702 703 args->num_of_nodes = 0; 704 705 mutex_lock(&p->mutex); 706 /* Run over all pdd of the process */ 707 for (i = 0; i < p->n_pdds; i++) { 708 struct kfd_process_device *pdd = p->pdds[i]; 709 710 pAperture = 711 &args->process_apertures[args->num_of_nodes]; 712 pAperture->gpu_id = pdd->dev->id; 713 pAperture->lds_base = pdd->lds_base; 714 pAperture->lds_limit = pdd->lds_limit; 715 pAperture->gpuvm_base = pdd->gpuvm_base; 716 pAperture->gpuvm_limit = pdd->gpuvm_limit; 717 pAperture->scratch_base = pdd->scratch_base; 718 pAperture->scratch_limit = pdd->scratch_limit; 719 720 dev_dbg(kfd_device, 721 "node id %u\n", args->num_of_nodes); 722 dev_dbg(kfd_device, 723 "gpu id %u\n", pdd->dev->id); 724 dev_dbg(kfd_device, 725 "lds_base %llX\n", pdd->lds_base); 726 dev_dbg(kfd_device, 727 "lds_limit %llX\n", pdd->lds_limit); 728 dev_dbg(kfd_device, 729 "gpuvm_base %llX\n", pdd->gpuvm_base); 730 dev_dbg(kfd_device, 731 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 732 dev_dbg(kfd_device, 733 "scratch_base %llX\n", pdd->scratch_base); 734 dev_dbg(kfd_device, 735 "scratch_limit %llX\n", pdd->scratch_limit); 736 737 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 738 break; 739 } 740 mutex_unlock(&p->mutex); 741 742 return 0; 743 } 744 745 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 746 struct kfd_process *p, void *data) 747 { 748 struct kfd_ioctl_get_process_apertures_new_args *args = data; 749 struct kfd_process_device_apertures *pa; 750 int ret; 751 int i; 752 753 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 754 755 if (args->num_of_nodes == 0) { 756 /* Return number of nodes, so that user space can alloacate 757 * sufficient memory 758 */ 759 mutex_lock(&p->mutex); 760 args->num_of_nodes = p->n_pdds; 761 goto out_unlock; 762 } 763 764 /* Fill in process-aperture information for all available 765 * nodes, but not more than args->num_of_nodes as that is 766 * the amount of memory allocated by user 767 */ 768 pa = kzalloc((sizeof(struct kfd_process_device_apertures) * 769 args->num_of_nodes), GFP_KERNEL); 770 if (!pa) 771 return -ENOMEM; 772 773 mutex_lock(&p->mutex); 774 775 if (!p->n_pdds) { 776 args->num_of_nodes = 0; 777 kfree(pa); 778 goto out_unlock; 779 } 780 781 /* Run over all pdd of the process */ 782 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 783 struct kfd_process_device *pdd = p->pdds[i]; 784 785 pa[i].gpu_id = pdd->dev->id; 786 pa[i].lds_base = pdd->lds_base; 787 pa[i].lds_limit = pdd->lds_limit; 788 pa[i].gpuvm_base = pdd->gpuvm_base; 789 pa[i].gpuvm_limit = pdd->gpuvm_limit; 790 pa[i].scratch_base = pdd->scratch_base; 791 pa[i].scratch_limit = pdd->scratch_limit; 792 793 dev_dbg(kfd_device, 794 "gpu id %u\n", pdd->dev->id); 795 dev_dbg(kfd_device, 796 "lds_base %llX\n", pdd->lds_base); 797 dev_dbg(kfd_device, 798 "lds_limit %llX\n", pdd->lds_limit); 799 dev_dbg(kfd_device, 800 "gpuvm_base %llX\n", pdd->gpuvm_base); 801 dev_dbg(kfd_device, 802 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 803 dev_dbg(kfd_device, 804 "scratch_base %llX\n", pdd->scratch_base); 805 dev_dbg(kfd_device, 806 "scratch_limit %llX\n", pdd->scratch_limit); 807 } 808 mutex_unlock(&p->mutex); 809 810 args->num_of_nodes = i; 811 ret = copy_to_user( 812 (void __user *)args->kfd_process_device_apertures_ptr, 813 pa, 814 (i * sizeof(struct kfd_process_device_apertures))); 815 kfree(pa); 816 return ret ? -EFAULT : 0; 817 818 out_unlock: 819 mutex_unlock(&p->mutex); 820 return 0; 821 } 822 823 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 824 void *data) 825 { 826 struct kfd_ioctl_create_event_args *args = data; 827 int err; 828 829 /* For dGPUs the event page is allocated in user mode. The 830 * handle is passed to KFD with the first call to this IOCTL 831 * through the event_page_offset field. 832 */ 833 if (args->event_page_offset) { 834 mutex_lock(&p->mutex); 835 err = kfd_kmap_event_page(p, args->event_page_offset); 836 mutex_unlock(&p->mutex); 837 if (err) 838 return err; 839 } 840 841 err = kfd_event_create(filp, p, args->event_type, 842 args->auto_reset != 0, args->node_id, 843 &args->event_id, &args->event_trigger_data, 844 &args->event_page_offset, 845 &args->event_slot_index); 846 847 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 848 return err; 849 } 850 851 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 852 void *data) 853 { 854 struct kfd_ioctl_destroy_event_args *args = data; 855 856 return kfd_event_destroy(p, args->event_id); 857 } 858 859 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 860 void *data) 861 { 862 struct kfd_ioctl_set_event_args *args = data; 863 864 return kfd_set_event(p, args->event_id); 865 } 866 867 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 868 void *data) 869 { 870 struct kfd_ioctl_reset_event_args *args = data; 871 872 return kfd_reset_event(p, args->event_id); 873 } 874 875 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 876 void *data) 877 { 878 struct kfd_ioctl_wait_events_args *args = data; 879 880 return kfd_wait_on_events(p, args->num_events, 881 (void __user *)args->events_ptr, 882 (args->wait_for_all != 0), 883 &args->timeout, &args->wait_result); 884 } 885 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 886 struct kfd_process *p, void *data) 887 { 888 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 889 struct kfd_process_device *pdd; 890 struct kfd_dev *dev; 891 long err; 892 893 mutex_lock(&p->mutex); 894 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 895 if (!pdd) { 896 err = -EINVAL; 897 goto err_pdd; 898 } 899 dev = pdd->dev; 900 901 pdd = kfd_bind_process_to_device(dev, p); 902 if (IS_ERR(pdd)) { 903 err = PTR_ERR(pdd); 904 goto bind_process_to_device_fail; 905 } 906 907 pdd->qpd.sh_hidden_private_base = args->va_addr; 908 909 mutex_unlock(&p->mutex); 910 911 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 912 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 913 dev->kfd2kgd->set_scratch_backing_va( 914 dev->adev, args->va_addr, pdd->qpd.vmid); 915 916 return 0; 917 918 bind_process_to_device_fail: 919 err_pdd: 920 mutex_unlock(&p->mutex); 921 return err; 922 } 923 924 static int kfd_ioctl_get_tile_config(struct file *filep, 925 struct kfd_process *p, void *data) 926 { 927 struct kfd_ioctl_get_tile_config_args *args = data; 928 struct kfd_process_device *pdd; 929 struct tile_config config; 930 int err = 0; 931 932 mutex_lock(&p->mutex); 933 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 934 mutex_unlock(&p->mutex); 935 if (!pdd) 936 return -EINVAL; 937 938 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 939 940 args->gb_addr_config = config.gb_addr_config; 941 args->num_banks = config.num_banks; 942 args->num_ranks = config.num_ranks; 943 944 if (args->num_tile_configs > config.num_tile_configs) 945 args->num_tile_configs = config.num_tile_configs; 946 err = copy_to_user((void __user *)args->tile_config_ptr, 947 config.tile_config_ptr, 948 args->num_tile_configs * sizeof(uint32_t)); 949 if (err) { 950 args->num_tile_configs = 0; 951 return -EFAULT; 952 } 953 954 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 955 args->num_macro_tile_configs = 956 config.num_macro_tile_configs; 957 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 958 config.macro_tile_config_ptr, 959 args->num_macro_tile_configs * sizeof(uint32_t)); 960 if (err) { 961 args->num_macro_tile_configs = 0; 962 return -EFAULT; 963 } 964 965 return 0; 966 } 967 968 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 969 void *data) 970 { 971 struct kfd_ioctl_acquire_vm_args *args = data; 972 struct kfd_process_device *pdd; 973 struct file *drm_file; 974 int ret; 975 976 drm_file = fget(args->drm_fd); 977 if (!drm_file) 978 return -EINVAL; 979 980 mutex_lock(&p->mutex); 981 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 982 if (!pdd) { 983 ret = -EINVAL; 984 goto err_pdd; 985 } 986 987 if (pdd->drm_file) { 988 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 989 goto err_drm_file; 990 } 991 992 ret = kfd_process_device_init_vm(pdd, drm_file); 993 if (ret) 994 goto err_unlock; 995 996 /* On success, the PDD keeps the drm_file reference */ 997 mutex_unlock(&p->mutex); 998 999 return 0; 1000 1001 err_unlock: 1002 err_pdd: 1003 err_drm_file: 1004 mutex_unlock(&p->mutex); 1005 fput(drm_file); 1006 return ret; 1007 } 1008 1009 bool kfd_dev_is_large_bar(struct kfd_dev *dev) 1010 { 1011 if (debug_largebar) { 1012 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 1013 return true; 1014 } 1015 1016 if (dev->use_iommu_v2) 1017 return false; 1018 1019 if (dev->local_mem_info.local_mem_size_private == 0 && 1020 dev->local_mem_info.local_mem_size_public > 0) 1021 return true; 1022 return false; 1023 } 1024 1025 static int kfd_ioctl_get_available_memory(struct file *filep, 1026 struct kfd_process *p, void *data) 1027 { 1028 struct kfd_ioctl_get_available_memory_args *args = data; 1029 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); 1030 1031 if (!pdd) 1032 return -EINVAL; 1033 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev); 1034 kfd_unlock_pdd(pdd); 1035 return 0; 1036 } 1037 1038 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 1039 struct kfd_process *p, void *data) 1040 { 1041 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 1042 struct kfd_process_device *pdd; 1043 void *mem; 1044 struct kfd_dev *dev; 1045 int idr_handle; 1046 long err; 1047 uint64_t offset = args->mmap_offset; 1048 uint32_t flags = args->flags; 1049 1050 if (args->size == 0) 1051 return -EINVAL; 1052 1053 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1054 /* Flush pending deferred work to avoid racing with deferred actions 1055 * from previous memory map changes (e.g. munmap). 1056 */ 1057 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 1058 mutex_lock(&p->svms.lock); 1059 mmap_write_unlock(current->mm); 1060 if (interval_tree_iter_first(&p->svms.objects, 1061 args->va_addr >> PAGE_SHIFT, 1062 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 1063 pr_err("Address: 0x%llx already allocated by SVM\n", 1064 args->va_addr); 1065 mutex_unlock(&p->svms.lock); 1066 return -EADDRINUSE; 1067 } 1068 1069 /* When register user buffer check if it has been registered by svm by 1070 * buffer cpu virtual address. 1071 */ 1072 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && 1073 interval_tree_iter_first(&p->svms.objects, 1074 args->mmap_offset >> PAGE_SHIFT, 1075 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { 1076 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", 1077 args->mmap_offset); 1078 mutex_unlock(&p->svms.lock); 1079 return -EADDRINUSE; 1080 } 1081 1082 mutex_unlock(&p->svms.lock); 1083 #endif 1084 mutex_lock(&p->mutex); 1085 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1086 if (!pdd) { 1087 err = -EINVAL; 1088 goto err_pdd; 1089 } 1090 1091 dev = pdd->dev; 1092 1093 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1094 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1095 !kfd_dev_is_large_bar(dev)) { 1096 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1097 err = -EINVAL; 1098 goto err_large_bar; 1099 } 1100 1101 pdd = kfd_bind_process_to_device(dev, p); 1102 if (IS_ERR(pdd)) { 1103 err = PTR_ERR(pdd); 1104 goto err_unlock; 1105 } 1106 1107 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1108 if (args->size != kfd_doorbell_process_slice(dev)) { 1109 err = -EINVAL; 1110 goto err_unlock; 1111 } 1112 offset = kfd_get_process_doorbells(pdd); 1113 if (!offset) { 1114 err = -ENOMEM; 1115 goto err_unlock; 1116 } 1117 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1118 if (args->size != PAGE_SIZE) { 1119 err = -EINVAL; 1120 goto err_unlock; 1121 } 1122 offset = dev->adev->rmmio_remap.bus_addr; 1123 if (!offset) { 1124 err = -ENOMEM; 1125 goto err_unlock; 1126 } 1127 } 1128 1129 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1130 dev->adev, args->va_addr, args->size, 1131 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1132 flags, false); 1133 1134 if (err) 1135 goto err_unlock; 1136 1137 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1138 if (idr_handle < 0) { 1139 err = -EFAULT; 1140 goto err_free; 1141 } 1142 1143 /* Update the VRAM usage count */ 1144 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1145 uint64_t size = args->size; 1146 1147 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) 1148 size >>= 1; 1149 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size)); 1150 } 1151 1152 mutex_unlock(&p->mutex); 1153 1154 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1155 args->mmap_offset = offset; 1156 1157 /* MMIO is mapped through kfd device 1158 * Generate a kfd mmap offset 1159 */ 1160 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1161 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1162 | KFD_MMAP_GPU_ID(args->gpu_id); 1163 1164 return 0; 1165 1166 err_free: 1167 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1168 pdd->drm_priv, NULL); 1169 err_unlock: 1170 err_pdd: 1171 err_large_bar: 1172 mutex_unlock(&p->mutex); 1173 return err; 1174 } 1175 1176 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1177 struct kfd_process *p, void *data) 1178 { 1179 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1180 struct kfd_process_device *pdd; 1181 void *mem; 1182 int ret; 1183 uint64_t size = 0; 1184 1185 mutex_lock(&p->mutex); 1186 /* 1187 * Safeguard to prevent user space from freeing signal BO. 1188 * It will be freed at process termination. 1189 */ 1190 if (p->signal_handle && (p->signal_handle == args->handle)) { 1191 pr_err("Free signal BO is not allowed\n"); 1192 ret = -EPERM; 1193 goto err_unlock; 1194 } 1195 1196 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1197 if (!pdd) { 1198 pr_err("Process device data doesn't exist\n"); 1199 ret = -EINVAL; 1200 goto err_pdd; 1201 } 1202 1203 mem = kfd_process_device_translate_handle( 1204 pdd, GET_IDR_HANDLE(args->handle)); 1205 if (!mem) { 1206 ret = -EINVAL; 1207 goto err_unlock; 1208 } 1209 1210 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1211 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1212 1213 /* If freeing the buffer failed, leave the handle in place for 1214 * clean-up during process tear-down. 1215 */ 1216 if (!ret) 1217 kfd_process_device_remove_obj_handle( 1218 pdd, GET_IDR_HANDLE(args->handle)); 1219 1220 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1221 1222 err_unlock: 1223 err_pdd: 1224 mutex_unlock(&p->mutex); 1225 return ret; 1226 } 1227 1228 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1229 struct kfd_process *p, void *data) 1230 { 1231 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1232 struct kfd_process_device *pdd, *peer_pdd; 1233 void *mem; 1234 struct kfd_dev *dev; 1235 long err = 0; 1236 int i; 1237 uint32_t *devices_arr = NULL; 1238 1239 if (!args->n_devices) { 1240 pr_debug("Device IDs array empty\n"); 1241 return -EINVAL; 1242 } 1243 if (args->n_success > args->n_devices) { 1244 pr_debug("n_success exceeds n_devices\n"); 1245 return -EINVAL; 1246 } 1247 1248 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1249 GFP_KERNEL); 1250 if (!devices_arr) 1251 return -ENOMEM; 1252 1253 err = copy_from_user(devices_arr, 1254 (void __user *)args->device_ids_array_ptr, 1255 args->n_devices * sizeof(*devices_arr)); 1256 if (err != 0) { 1257 err = -EFAULT; 1258 goto copy_from_user_failed; 1259 } 1260 1261 mutex_lock(&p->mutex); 1262 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1263 if (!pdd) { 1264 err = -EINVAL; 1265 goto get_process_device_data_failed; 1266 } 1267 dev = pdd->dev; 1268 1269 pdd = kfd_bind_process_to_device(dev, p); 1270 if (IS_ERR(pdd)) { 1271 err = PTR_ERR(pdd); 1272 goto bind_process_to_device_failed; 1273 } 1274 1275 mem = kfd_process_device_translate_handle(pdd, 1276 GET_IDR_HANDLE(args->handle)); 1277 if (!mem) { 1278 err = -ENOMEM; 1279 goto get_mem_obj_from_handle_failed; 1280 } 1281 1282 for (i = args->n_success; i < args->n_devices; i++) { 1283 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1284 if (!peer_pdd) { 1285 pr_debug("Getting device by id failed for 0x%x\n", 1286 devices_arr[i]); 1287 err = -EINVAL; 1288 goto get_mem_obj_from_handle_failed; 1289 } 1290 1291 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1292 if (IS_ERR(peer_pdd)) { 1293 err = PTR_ERR(peer_pdd); 1294 goto get_mem_obj_from_handle_failed; 1295 } 1296 1297 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1298 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1299 peer_pdd->drm_priv); 1300 if (err) { 1301 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1302 1303 dev_err(dev->adev->dev, 1304 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1305 pci_domain_nr(pdev->bus), 1306 pdev->bus->number, 1307 PCI_SLOT(pdev->devfn), 1308 PCI_FUNC(pdev->devfn), 1309 ((struct kgd_mem *)mem)->domain); 1310 goto map_memory_to_gpu_failed; 1311 } 1312 args->n_success = i+1; 1313 } 1314 1315 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1316 if (err) { 1317 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1318 goto sync_memory_failed; 1319 } 1320 1321 mutex_unlock(&p->mutex); 1322 1323 /* Flush TLBs after waiting for the page table updates to complete */ 1324 for (i = 0; i < args->n_devices; i++) { 1325 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1326 if (WARN_ON_ONCE(!peer_pdd)) 1327 continue; 1328 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1329 } 1330 kfree(devices_arr); 1331 1332 return err; 1333 1334 get_process_device_data_failed: 1335 bind_process_to_device_failed: 1336 get_mem_obj_from_handle_failed: 1337 map_memory_to_gpu_failed: 1338 sync_memory_failed: 1339 mutex_unlock(&p->mutex); 1340 copy_from_user_failed: 1341 kfree(devices_arr); 1342 1343 return err; 1344 } 1345 1346 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1347 struct kfd_process *p, void *data) 1348 { 1349 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1350 struct kfd_process_device *pdd, *peer_pdd; 1351 void *mem; 1352 long err = 0; 1353 uint32_t *devices_arr = NULL, i; 1354 bool flush_tlb; 1355 1356 if (!args->n_devices) { 1357 pr_debug("Device IDs array empty\n"); 1358 return -EINVAL; 1359 } 1360 if (args->n_success > args->n_devices) { 1361 pr_debug("n_success exceeds n_devices\n"); 1362 return -EINVAL; 1363 } 1364 1365 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1366 GFP_KERNEL); 1367 if (!devices_arr) 1368 return -ENOMEM; 1369 1370 err = copy_from_user(devices_arr, 1371 (void __user *)args->device_ids_array_ptr, 1372 args->n_devices * sizeof(*devices_arr)); 1373 if (err != 0) { 1374 err = -EFAULT; 1375 goto copy_from_user_failed; 1376 } 1377 1378 mutex_lock(&p->mutex); 1379 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1380 if (!pdd) { 1381 err = -EINVAL; 1382 goto bind_process_to_device_failed; 1383 } 1384 1385 mem = kfd_process_device_translate_handle(pdd, 1386 GET_IDR_HANDLE(args->handle)); 1387 if (!mem) { 1388 err = -ENOMEM; 1389 goto get_mem_obj_from_handle_failed; 1390 } 1391 1392 for (i = args->n_success; i < args->n_devices; i++) { 1393 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1394 if (!peer_pdd) { 1395 err = -EINVAL; 1396 goto get_mem_obj_from_handle_failed; 1397 } 1398 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1399 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1400 if (err) { 1401 pr_err("Failed to unmap from gpu %d/%d\n", 1402 i, args->n_devices); 1403 goto unmap_memory_from_gpu_failed; 1404 } 1405 args->n_success = i+1; 1406 } 1407 1408 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev); 1409 if (flush_tlb) { 1410 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1411 (struct kgd_mem *) mem, true); 1412 if (err) { 1413 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1414 goto sync_memory_failed; 1415 } 1416 } 1417 mutex_unlock(&p->mutex); 1418 1419 if (flush_tlb) { 1420 /* Flush TLBs after waiting for the page table updates to complete */ 1421 for (i = 0; i < args->n_devices; i++) { 1422 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1423 if (WARN_ON_ONCE(!peer_pdd)) 1424 continue; 1425 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1426 } 1427 } 1428 kfree(devices_arr); 1429 1430 return 0; 1431 1432 bind_process_to_device_failed: 1433 get_mem_obj_from_handle_failed: 1434 unmap_memory_from_gpu_failed: 1435 sync_memory_failed: 1436 mutex_unlock(&p->mutex); 1437 copy_from_user_failed: 1438 kfree(devices_arr); 1439 return err; 1440 } 1441 1442 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1443 struct kfd_process *p, void *data) 1444 { 1445 int retval; 1446 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1447 struct queue *q; 1448 struct kfd_dev *dev; 1449 1450 mutex_lock(&p->mutex); 1451 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1452 1453 if (q) { 1454 dev = q->device; 1455 } else { 1456 retval = -EINVAL; 1457 goto out_unlock; 1458 } 1459 1460 if (!dev->gws) { 1461 retval = -ENODEV; 1462 goto out_unlock; 1463 } 1464 1465 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1466 retval = -ENODEV; 1467 goto out_unlock; 1468 } 1469 1470 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1471 mutex_unlock(&p->mutex); 1472 1473 args->first_gws = 0; 1474 return retval; 1475 1476 out_unlock: 1477 mutex_unlock(&p->mutex); 1478 return retval; 1479 } 1480 1481 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1482 struct kfd_process *p, void *data) 1483 { 1484 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1485 struct kfd_dev *dev = NULL; 1486 struct amdgpu_device *dmabuf_adev; 1487 void *metadata_buffer = NULL; 1488 uint32_t flags; 1489 unsigned int i; 1490 int r; 1491 1492 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1493 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1494 if (dev) 1495 break; 1496 if (!dev) 1497 return -EINVAL; 1498 1499 if (args->metadata_ptr) { 1500 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1501 if (!metadata_buffer) 1502 return -ENOMEM; 1503 } 1504 1505 /* Get dmabuf info from KGD */ 1506 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1507 &dmabuf_adev, &args->size, 1508 metadata_buffer, args->metadata_size, 1509 &args->metadata_size, &flags); 1510 if (r) 1511 goto exit; 1512 1513 /* Reverse-lookup gpu_id from kgd pointer */ 1514 dev = kfd_device_by_adev(dmabuf_adev); 1515 if (!dev) { 1516 r = -EINVAL; 1517 goto exit; 1518 } 1519 args->gpu_id = dev->id; 1520 args->flags = flags; 1521 1522 /* Copy metadata buffer to user mode */ 1523 if (metadata_buffer) { 1524 r = copy_to_user((void __user *)args->metadata_ptr, 1525 metadata_buffer, args->metadata_size); 1526 if (r != 0) 1527 r = -EFAULT; 1528 } 1529 1530 exit: 1531 kfree(metadata_buffer); 1532 1533 return r; 1534 } 1535 1536 static int kfd_ioctl_import_dmabuf(struct file *filep, 1537 struct kfd_process *p, void *data) 1538 { 1539 struct kfd_ioctl_import_dmabuf_args *args = data; 1540 struct kfd_process_device *pdd; 1541 struct dma_buf *dmabuf; 1542 int idr_handle; 1543 uint64_t size; 1544 void *mem; 1545 int r; 1546 1547 dmabuf = dma_buf_get(args->dmabuf_fd); 1548 if (IS_ERR(dmabuf)) 1549 return PTR_ERR(dmabuf); 1550 1551 mutex_lock(&p->mutex); 1552 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1553 if (!pdd) { 1554 r = -EINVAL; 1555 goto err_unlock; 1556 } 1557 1558 pdd = kfd_bind_process_to_device(pdd->dev, p); 1559 if (IS_ERR(pdd)) { 1560 r = PTR_ERR(pdd); 1561 goto err_unlock; 1562 } 1563 1564 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf, 1565 args->va_addr, pdd->drm_priv, 1566 (struct kgd_mem **)&mem, &size, 1567 NULL); 1568 if (r) 1569 goto err_unlock; 1570 1571 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1572 if (idr_handle < 0) { 1573 r = -EFAULT; 1574 goto err_free; 1575 } 1576 1577 mutex_unlock(&p->mutex); 1578 dma_buf_put(dmabuf); 1579 1580 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1581 1582 return 0; 1583 1584 err_free: 1585 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1586 pdd->drm_priv, NULL); 1587 err_unlock: 1588 mutex_unlock(&p->mutex); 1589 dma_buf_put(dmabuf); 1590 return r; 1591 } 1592 1593 static int kfd_ioctl_export_dmabuf(struct file *filep, 1594 struct kfd_process *p, void *data) 1595 { 1596 struct kfd_ioctl_export_dmabuf_args *args = data; 1597 struct kfd_process_device *pdd; 1598 struct dma_buf *dmabuf; 1599 struct kfd_dev *dev; 1600 void *mem; 1601 int ret = 0; 1602 1603 dev = kfd_device_by_id(GET_GPU_ID(args->handle)); 1604 if (!dev) 1605 return -EINVAL; 1606 1607 mutex_lock(&p->mutex); 1608 1609 pdd = kfd_get_process_device_data(dev, p); 1610 if (!pdd) { 1611 ret = -EINVAL; 1612 goto err_unlock; 1613 } 1614 1615 mem = kfd_process_device_translate_handle(pdd, 1616 GET_IDR_HANDLE(args->handle)); 1617 if (!mem) { 1618 ret = -EINVAL; 1619 goto err_unlock; 1620 } 1621 1622 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); 1623 mutex_unlock(&p->mutex); 1624 if (ret) 1625 goto err_out; 1626 1627 ret = dma_buf_fd(dmabuf, args->flags); 1628 if (ret < 0) { 1629 dma_buf_put(dmabuf); 1630 goto err_out; 1631 } 1632 /* dma_buf_fd assigns the reference count to the fd, no need to 1633 * put the reference here. 1634 */ 1635 args->dmabuf_fd = ret; 1636 1637 return 0; 1638 1639 err_unlock: 1640 mutex_unlock(&p->mutex); 1641 err_out: 1642 return ret; 1643 } 1644 1645 /* Handle requests for watching SMI events */ 1646 static int kfd_ioctl_smi_events(struct file *filep, 1647 struct kfd_process *p, void *data) 1648 { 1649 struct kfd_ioctl_smi_events_args *args = data; 1650 struct kfd_process_device *pdd; 1651 1652 mutex_lock(&p->mutex); 1653 1654 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1655 mutex_unlock(&p->mutex); 1656 if (!pdd) 1657 return -EINVAL; 1658 1659 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1660 } 1661 1662 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1663 1664 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1665 struct kfd_process *p, void *data) 1666 { 1667 struct kfd_ioctl_set_xnack_mode_args *args = data; 1668 int r = 0; 1669 1670 mutex_lock(&p->mutex); 1671 if (args->xnack_enabled >= 0) { 1672 if (!list_empty(&p->pqm.queues)) { 1673 pr_debug("Process has user queues running\n"); 1674 r = -EBUSY; 1675 goto out_unlock; 1676 } 1677 1678 if (p->xnack_enabled == args->xnack_enabled) 1679 goto out_unlock; 1680 1681 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { 1682 r = -EPERM; 1683 goto out_unlock; 1684 } 1685 1686 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); 1687 } else { 1688 args->xnack_enabled = p->xnack_enabled; 1689 } 1690 1691 out_unlock: 1692 mutex_unlock(&p->mutex); 1693 1694 return r; 1695 } 1696 1697 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1698 { 1699 struct kfd_ioctl_svm_args *args = data; 1700 int r = 0; 1701 1702 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1703 args->start_addr, args->size, args->op, args->nattr); 1704 1705 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1706 return -EINVAL; 1707 if (!args->start_addr || !args->size) 1708 return -EINVAL; 1709 1710 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1711 args->attrs); 1712 1713 return r; 1714 } 1715 #else 1716 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1717 struct kfd_process *p, void *data) 1718 { 1719 return -EPERM; 1720 } 1721 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1722 { 1723 return -EPERM; 1724 } 1725 #endif 1726 1727 static int criu_checkpoint_process(struct kfd_process *p, 1728 uint8_t __user *user_priv_data, 1729 uint64_t *priv_offset) 1730 { 1731 struct kfd_criu_process_priv_data process_priv; 1732 int ret; 1733 1734 memset(&process_priv, 0, sizeof(process_priv)); 1735 1736 process_priv.version = KFD_CRIU_PRIV_VERSION; 1737 /* For CR, we don't consider negative xnack mode which is used for 1738 * querying without changing it, here 0 simply means disabled and 1 1739 * means enabled so retry for finding a valid PTE. 1740 */ 1741 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1742 1743 ret = copy_to_user(user_priv_data + *priv_offset, 1744 &process_priv, sizeof(process_priv)); 1745 1746 if (ret) { 1747 pr_err("Failed to copy process information to user\n"); 1748 ret = -EFAULT; 1749 } 1750 1751 *priv_offset += sizeof(process_priv); 1752 return ret; 1753 } 1754 1755 static int criu_checkpoint_devices(struct kfd_process *p, 1756 uint32_t num_devices, 1757 uint8_t __user *user_addr, 1758 uint8_t __user *user_priv_data, 1759 uint64_t *priv_offset) 1760 { 1761 struct kfd_criu_device_priv_data *device_priv = NULL; 1762 struct kfd_criu_device_bucket *device_buckets = NULL; 1763 int ret = 0, i; 1764 1765 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1766 if (!device_buckets) { 1767 ret = -ENOMEM; 1768 goto exit; 1769 } 1770 1771 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1772 if (!device_priv) { 1773 ret = -ENOMEM; 1774 goto exit; 1775 } 1776 1777 for (i = 0; i < num_devices; i++) { 1778 struct kfd_process_device *pdd = p->pdds[i]; 1779 1780 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1781 device_buckets[i].actual_gpu_id = pdd->dev->id; 1782 1783 /* 1784 * priv_data does not contain useful information for now and is reserved for 1785 * future use, so we do not set its contents. 1786 */ 1787 } 1788 1789 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1790 if (ret) { 1791 pr_err("Failed to copy device information to user\n"); 1792 ret = -EFAULT; 1793 goto exit; 1794 } 1795 1796 ret = copy_to_user(user_priv_data + *priv_offset, 1797 device_priv, 1798 num_devices * sizeof(*device_priv)); 1799 if (ret) { 1800 pr_err("Failed to copy device information to user\n"); 1801 ret = -EFAULT; 1802 } 1803 *priv_offset += num_devices * sizeof(*device_priv); 1804 1805 exit: 1806 kvfree(device_buckets); 1807 kvfree(device_priv); 1808 return ret; 1809 } 1810 1811 static uint32_t get_process_num_bos(struct kfd_process *p) 1812 { 1813 uint32_t num_of_bos = 0; 1814 int i; 1815 1816 /* Run over all PDDs of the process */ 1817 for (i = 0; i < p->n_pdds; i++) { 1818 struct kfd_process_device *pdd = p->pdds[i]; 1819 void *mem; 1820 int id; 1821 1822 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1823 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1824 1825 if ((uint64_t)kgd_mem->va > pdd->gpuvm_base) 1826 num_of_bos++; 1827 } 1828 } 1829 return num_of_bos; 1830 } 1831 1832 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags, 1833 u32 *shared_fd) 1834 { 1835 struct dma_buf *dmabuf; 1836 int ret; 1837 1838 dmabuf = amdgpu_gem_prime_export(gobj, flags); 1839 if (IS_ERR(dmabuf)) { 1840 ret = PTR_ERR(dmabuf); 1841 pr_err("dmabuf export failed for the BO\n"); 1842 return ret; 1843 } 1844 1845 ret = dma_buf_fd(dmabuf, flags); 1846 if (ret < 0) { 1847 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1848 goto out_free_dmabuf; 1849 } 1850 1851 *shared_fd = ret; 1852 return 0; 1853 1854 out_free_dmabuf: 1855 dma_buf_put(dmabuf); 1856 return ret; 1857 } 1858 1859 static int criu_checkpoint_bos(struct kfd_process *p, 1860 uint32_t num_bos, 1861 uint8_t __user *user_bos, 1862 uint8_t __user *user_priv_data, 1863 uint64_t *priv_offset) 1864 { 1865 struct kfd_criu_bo_bucket *bo_buckets; 1866 struct kfd_criu_bo_priv_data *bo_privs; 1867 int ret = 0, pdd_index, bo_index = 0, id; 1868 void *mem; 1869 1870 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1871 if (!bo_buckets) 1872 return -ENOMEM; 1873 1874 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1875 if (!bo_privs) { 1876 ret = -ENOMEM; 1877 goto exit; 1878 } 1879 1880 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1881 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1882 struct amdgpu_bo *dumper_bo; 1883 struct kgd_mem *kgd_mem; 1884 1885 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1886 struct kfd_criu_bo_bucket *bo_bucket; 1887 struct kfd_criu_bo_priv_data *bo_priv; 1888 int i, dev_idx = 0; 1889 1890 if (!mem) { 1891 ret = -ENOMEM; 1892 goto exit; 1893 } 1894 1895 kgd_mem = (struct kgd_mem *)mem; 1896 dumper_bo = kgd_mem->bo; 1897 1898 if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base) 1899 continue; 1900 1901 bo_bucket = &bo_buckets[bo_index]; 1902 bo_priv = &bo_privs[bo_index]; 1903 1904 bo_bucket->gpu_id = pdd->user_gpu_id; 1905 bo_bucket->addr = (uint64_t)kgd_mem->va; 1906 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1907 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1908 bo_priv->idr_handle = id; 1909 1910 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1911 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1912 &bo_priv->user_addr); 1913 if (ret) { 1914 pr_err("Failed to obtain user address for user-pointer bo\n"); 1915 goto exit; 1916 } 1917 } 1918 if (bo_bucket->alloc_flags 1919 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1920 ret = criu_get_prime_handle(&dumper_bo->tbo.base, 1921 bo_bucket->alloc_flags & 1922 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1923 &bo_bucket->dmabuf_fd); 1924 if (ret) 1925 goto exit; 1926 } else { 1927 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1928 } 1929 1930 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1931 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1932 KFD_MMAP_GPU_ID(pdd->dev->id); 1933 else if (bo_bucket->alloc_flags & 1934 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1935 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1936 KFD_MMAP_GPU_ID(pdd->dev->id); 1937 else 1938 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1939 1940 for (i = 0; i < p->n_pdds; i++) { 1941 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1942 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1943 } 1944 1945 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1946 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1947 bo_bucket->size, 1948 bo_bucket->addr, 1949 bo_bucket->offset, 1950 bo_bucket->gpu_id, 1951 bo_bucket->alloc_flags, 1952 bo_priv->idr_handle); 1953 bo_index++; 1954 } 1955 } 1956 1957 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1958 if (ret) { 1959 pr_err("Failed to copy BO information to user\n"); 1960 ret = -EFAULT; 1961 goto exit; 1962 } 1963 1964 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1965 if (ret) { 1966 pr_err("Failed to copy BO priv information to user\n"); 1967 ret = -EFAULT; 1968 goto exit; 1969 } 1970 1971 *priv_offset += num_bos * sizeof(*bo_privs); 1972 1973 exit: 1974 while (ret && bo_index--) { 1975 if (bo_buckets[bo_index].alloc_flags 1976 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 1977 close_fd(bo_buckets[bo_index].dmabuf_fd); 1978 } 1979 1980 kvfree(bo_buckets); 1981 kvfree(bo_privs); 1982 return ret; 1983 } 1984 1985 static int criu_get_process_object_info(struct kfd_process *p, 1986 uint32_t *num_devices, 1987 uint32_t *num_bos, 1988 uint32_t *num_objects, 1989 uint64_t *objs_priv_size) 1990 { 1991 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 1992 uint32_t num_queues, num_events, num_svm_ranges; 1993 int ret; 1994 1995 *num_devices = p->n_pdds; 1996 *num_bos = get_process_num_bos(p); 1997 1998 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 1999 if (ret) 2000 return ret; 2001 2002 num_events = kfd_get_num_events(p); 2003 2004 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 2005 if (ret) 2006 return ret; 2007 2008 *num_objects = num_queues + num_events + num_svm_ranges; 2009 2010 if (objs_priv_size) { 2011 priv_size = sizeof(struct kfd_criu_process_priv_data); 2012 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 2013 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 2014 priv_size += queues_priv_data_size; 2015 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 2016 priv_size += svm_priv_data_size; 2017 *objs_priv_size = priv_size; 2018 } 2019 return 0; 2020 } 2021 2022 static int criu_checkpoint(struct file *filep, 2023 struct kfd_process *p, 2024 struct kfd_ioctl_criu_args *args) 2025 { 2026 int ret; 2027 uint32_t num_devices, num_bos, num_objects; 2028 uint64_t priv_size, priv_offset = 0, bo_priv_offset; 2029 2030 if (!args->devices || !args->bos || !args->priv_data) 2031 return -EINVAL; 2032 2033 mutex_lock(&p->mutex); 2034 2035 if (!p->n_pdds) { 2036 pr_err("No pdd for given process\n"); 2037 ret = -ENODEV; 2038 goto exit_unlock; 2039 } 2040 2041 /* Confirm all process queues are evicted */ 2042 if (!p->queues_paused) { 2043 pr_err("Cannot dump process when queues are not in evicted state\n"); 2044 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 2045 ret = -EINVAL; 2046 goto exit_unlock; 2047 } 2048 2049 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 2050 if (ret) 2051 goto exit_unlock; 2052 2053 if (num_devices != args->num_devices || 2054 num_bos != args->num_bos || 2055 num_objects != args->num_objects || 2056 priv_size != args->priv_data_size) { 2057 2058 ret = -EINVAL; 2059 goto exit_unlock; 2060 } 2061 2062 /* each function will store private data inside priv_data and adjust priv_offset */ 2063 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 2064 if (ret) 2065 goto exit_unlock; 2066 2067 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 2068 (uint8_t __user *)args->priv_data, &priv_offset); 2069 if (ret) 2070 goto exit_unlock; 2071 2072 /* Leave room for BOs in the private data. They need to be restored 2073 * before events, but we checkpoint them last to simplify the error 2074 * handling. 2075 */ 2076 bo_priv_offset = priv_offset; 2077 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); 2078 2079 if (num_objects) { 2080 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 2081 &priv_offset); 2082 if (ret) 2083 goto exit_unlock; 2084 2085 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 2086 &priv_offset); 2087 if (ret) 2088 goto exit_unlock; 2089 2090 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 2091 if (ret) 2092 goto exit_unlock; 2093 } 2094 2095 /* This must be the last thing in this function that can fail. 2096 * Otherwise we leak dmabuf file descriptors. 2097 */ 2098 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 2099 (uint8_t __user *)args->priv_data, &bo_priv_offset); 2100 2101 exit_unlock: 2102 mutex_unlock(&p->mutex); 2103 if (ret) 2104 pr_err("Failed to dump CRIU ret:%d\n", ret); 2105 else 2106 pr_debug("CRIU dump ret:%d\n", ret); 2107 2108 return ret; 2109 } 2110 2111 static int criu_restore_process(struct kfd_process *p, 2112 struct kfd_ioctl_criu_args *args, 2113 uint64_t *priv_offset, 2114 uint64_t max_priv_data_size) 2115 { 2116 int ret = 0; 2117 struct kfd_criu_process_priv_data process_priv; 2118 2119 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 2120 return -EINVAL; 2121 2122 ret = copy_from_user(&process_priv, 2123 (void __user *)(args->priv_data + *priv_offset), 2124 sizeof(process_priv)); 2125 if (ret) { 2126 pr_err("Failed to copy process private information from user\n"); 2127 ret = -EFAULT; 2128 goto exit; 2129 } 2130 *priv_offset += sizeof(process_priv); 2131 2132 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 2133 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 2134 process_priv.version, KFD_CRIU_PRIV_VERSION); 2135 return -EINVAL; 2136 } 2137 2138 pr_debug("Setting XNACK mode\n"); 2139 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 2140 pr_err("xnack mode cannot be set\n"); 2141 ret = -EPERM; 2142 goto exit; 2143 } else { 2144 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 2145 p->xnack_enabled = process_priv.xnack_mode; 2146 } 2147 2148 exit: 2149 return ret; 2150 } 2151 2152 static int criu_restore_devices(struct kfd_process *p, 2153 struct kfd_ioctl_criu_args *args, 2154 uint64_t *priv_offset, 2155 uint64_t max_priv_data_size) 2156 { 2157 struct kfd_criu_device_bucket *device_buckets; 2158 struct kfd_criu_device_priv_data *device_privs; 2159 int ret = 0; 2160 uint32_t i; 2161 2162 if (args->num_devices != p->n_pdds) 2163 return -EINVAL; 2164 2165 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2166 return -EINVAL; 2167 2168 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2169 if (!device_buckets) 2170 return -ENOMEM; 2171 2172 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2173 args->num_devices * sizeof(*device_buckets)); 2174 if (ret) { 2175 pr_err("Failed to copy devices buckets from user\n"); 2176 ret = -EFAULT; 2177 goto exit; 2178 } 2179 2180 for (i = 0; i < args->num_devices; i++) { 2181 struct kfd_dev *dev; 2182 struct kfd_process_device *pdd; 2183 struct file *drm_file; 2184 2185 /* device private data is not currently used */ 2186 2187 if (!device_buckets[i].user_gpu_id) { 2188 pr_err("Invalid user gpu_id\n"); 2189 ret = -EINVAL; 2190 goto exit; 2191 } 2192 2193 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2194 if (!dev) { 2195 pr_err("Failed to find device with gpu_id = %x\n", 2196 device_buckets[i].actual_gpu_id); 2197 ret = -EINVAL; 2198 goto exit; 2199 } 2200 2201 pdd = kfd_get_process_device_data(dev, p); 2202 if (!pdd) { 2203 pr_err("Failed to get pdd for gpu_id = %x\n", 2204 device_buckets[i].actual_gpu_id); 2205 ret = -EINVAL; 2206 goto exit; 2207 } 2208 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2209 2210 drm_file = fget(device_buckets[i].drm_fd); 2211 if (!drm_file) { 2212 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2213 device_buckets[i].drm_fd); 2214 ret = -EINVAL; 2215 goto exit; 2216 } 2217 2218 if (pdd->drm_file) { 2219 ret = -EINVAL; 2220 goto exit; 2221 } 2222 2223 /* create the vm using render nodes for kfd pdd */ 2224 if (kfd_process_device_init_vm(pdd, drm_file)) { 2225 pr_err("could not init vm for given pdd\n"); 2226 /* On success, the PDD keeps the drm_file reference */ 2227 fput(drm_file); 2228 ret = -EINVAL; 2229 goto exit; 2230 } 2231 /* 2232 * pdd now already has the vm bound to render node so below api won't create a new 2233 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2234 * for iommu v2 binding and runtime pm. 2235 */ 2236 pdd = kfd_bind_process_to_device(dev, p); 2237 if (IS_ERR(pdd)) { 2238 ret = PTR_ERR(pdd); 2239 goto exit; 2240 } 2241 2242 if (!pdd->doorbell_index && 2243 kfd_alloc_process_doorbells(pdd->dev, &pdd->doorbell_index) < 0) { 2244 ret = -ENOMEM; 2245 goto exit; 2246 } 2247 } 2248 2249 /* 2250 * We are not copying device private data from user as we are not using the data for now, 2251 * but we still adjust for its private data. 2252 */ 2253 *priv_offset += args->num_devices * sizeof(*device_privs); 2254 2255 exit: 2256 kfree(device_buckets); 2257 return ret; 2258 } 2259 2260 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2261 struct kfd_criu_bo_bucket *bo_bucket, 2262 struct kfd_criu_bo_priv_data *bo_priv, 2263 struct kgd_mem **kgd_mem) 2264 { 2265 int idr_handle; 2266 int ret; 2267 const bool criu_resume = true; 2268 u64 offset; 2269 2270 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2271 if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev)) 2272 return -EINVAL; 2273 2274 offset = kfd_get_process_doorbells(pdd); 2275 if (!offset) 2276 return -ENOMEM; 2277 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2278 /* MMIO BOs need remapped bus address */ 2279 if (bo_bucket->size != PAGE_SIZE) { 2280 pr_err("Invalid page size\n"); 2281 return -EINVAL; 2282 } 2283 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2284 if (!offset) { 2285 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2286 return -ENOMEM; 2287 } 2288 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2289 offset = bo_priv->user_addr; 2290 } 2291 /* Create the BO */ 2292 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2293 bo_bucket->size, pdd->drm_priv, kgd_mem, 2294 &offset, bo_bucket->alloc_flags, criu_resume); 2295 if (ret) { 2296 pr_err("Could not create the BO\n"); 2297 return ret; 2298 } 2299 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2300 bo_bucket->size, bo_bucket->addr, offset); 2301 2302 /* Restore previous IDR handle */ 2303 pr_debug("Restoring old IDR handle for the BO"); 2304 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2305 bo_priv->idr_handle + 1, GFP_KERNEL); 2306 2307 if (idr_handle < 0) { 2308 pr_err("Could not allocate idr\n"); 2309 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2310 NULL); 2311 return -ENOMEM; 2312 } 2313 2314 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2315 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2316 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2317 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2318 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2319 bo_bucket->restored_offset = offset; 2320 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2321 bo_bucket->restored_offset = offset; 2322 /* Update the VRAM usage count */ 2323 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2324 } 2325 return 0; 2326 } 2327 2328 static int criu_restore_bo(struct kfd_process *p, 2329 struct kfd_criu_bo_bucket *bo_bucket, 2330 struct kfd_criu_bo_priv_data *bo_priv) 2331 { 2332 struct kfd_process_device *pdd; 2333 struct kgd_mem *kgd_mem; 2334 int ret; 2335 int j; 2336 2337 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2338 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2339 bo_priv->idr_handle); 2340 2341 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2342 if (!pdd) { 2343 pr_err("Failed to get pdd\n"); 2344 return -ENODEV; 2345 } 2346 2347 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2348 if (ret) 2349 return ret; 2350 2351 /* now map these BOs to GPU/s */ 2352 for (j = 0; j < p->n_pdds; j++) { 2353 struct kfd_dev *peer; 2354 struct kfd_process_device *peer_pdd; 2355 2356 if (!bo_priv->mapped_gpuids[j]) 2357 break; 2358 2359 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2360 if (!peer_pdd) 2361 return -EINVAL; 2362 2363 peer = peer_pdd->dev; 2364 2365 peer_pdd = kfd_bind_process_to_device(peer, p); 2366 if (IS_ERR(peer_pdd)) 2367 return PTR_ERR(peer_pdd); 2368 2369 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2370 peer_pdd->drm_priv); 2371 if (ret) { 2372 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2373 return ret; 2374 } 2375 } 2376 2377 pr_debug("map memory was successful for the BO\n"); 2378 /* create the dmabuf object and export the bo */ 2379 if (bo_bucket->alloc_flags 2380 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2381 ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR, 2382 &bo_bucket->dmabuf_fd); 2383 if (ret) 2384 return ret; 2385 } else { 2386 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int criu_restore_bos(struct kfd_process *p, 2393 struct kfd_ioctl_criu_args *args, 2394 uint64_t *priv_offset, 2395 uint64_t max_priv_data_size) 2396 { 2397 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2398 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2399 int ret = 0; 2400 uint32_t i = 0; 2401 2402 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2403 return -EINVAL; 2404 2405 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2406 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2407 2408 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2409 if (!bo_buckets) 2410 return -ENOMEM; 2411 2412 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2413 args->num_bos * sizeof(*bo_buckets)); 2414 if (ret) { 2415 pr_err("Failed to copy BOs information from user\n"); 2416 ret = -EFAULT; 2417 goto exit; 2418 } 2419 2420 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2421 if (!bo_privs) { 2422 ret = -ENOMEM; 2423 goto exit; 2424 } 2425 2426 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2427 args->num_bos * sizeof(*bo_privs)); 2428 if (ret) { 2429 pr_err("Failed to copy BOs information from user\n"); 2430 ret = -EFAULT; 2431 goto exit; 2432 } 2433 *priv_offset += args->num_bos * sizeof(*bo_privs); 2434 2435 /* Create and map new BOs */ 2436 for (; i < args->num_bos; i++) { 2437 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); 2438 if (ret) { 2439 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2440 goto exit; 2441 } 2442 } /* done */ 2443 2444 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2445 ret = copy_to_user((void __user *)args->bos, 2446 bo_buckets, 2447 (args->num_bos * sizeof(*bo_buckets))); 2448 if (ret) 2449 ret = -EFAULT; 2450 2451 exit: 2452 while (ret && i--) { 2453 if (bo_buckets[i].alloc_flags 2454 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2455 close_fd(bo_buckets[i].dmabuf_fd); 2456 } 2457 kvfree(bo_buckets); 2458 kvfree(bo_privs); 2459 return ret; 2460 } 2461 2462 static int criu_restore_objects(struct file *filep, 2463 struct kfd_process *p, 2464 struct kfd_ioctl_criu_args *args, 2465 uint64_t *priv_offset, 2466 uint64_t max_priv_data_size) 2467 { 2468 int ret = 0; 2469 uint32_t i; 2470 2471 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2472 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2473 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2474 2475 for (i = 0; i < args->num_objects; i++) { 2476 uint32_t object_type; 2477 2478 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2479 pr_err("Invalid private data size\n"); 2480 return -EINVAL; 2481 } 2482 2483 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2484 if (ret) { 2485 pr_err("Failed to copy private information from user\n"); 2486 goto exit; 2487 } 2488 2489 switch (object_type) { 2490 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2491 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2492 priv_offset, max_priv_data_size); 2493 if (ret) 2494 goto exit; 2495 break; 2496 case KFD_CRIU_OBJECT_TYPE_EVENT: 2497 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2498 priv_offset, max_priv_data_size); 2499 if (ret) 2500 goto exit; 2501 break; 2502 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2503 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2504 priv_offset, max_priv_data_size); 2505 if (ret) 2506 goto exit; 2507 break; 2508 default: 2509 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2510 ret = -EINVAL; 2511 goto exit; 2512 } 2513 } 2514 exit: 2515 return ret; 2516 } 2517 2518 static int criu_restore(struct file *filep, 2519 struct kfd_process *p, 2520 struct kfd_ioctl_criu_args *args) 2521 { 2522 uint64_t priv_offset = 0; 2523 int ret = 0; 2524 2525 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2526 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2527 2528 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2529 !args->num_devices || !args->num_bos) 2530 return -EINVAL; 2531 2532 mutex_lock(&p->mutex); 2533 2534 /* 2535 * Set the process to evicted state to avoid running any new queues before all the memory 2536 * mappings are ready. 2537 */ 2538 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); 2539 if (ret) 2540 goto exit_unlock; 2541 2542 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2543 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2544 if (ret) 2545 goto exit_unlock; 2546 2547 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2548 if (ret) 2549 goto exit_unlock; 2550 2551 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2552 if (ret) 2553 goto exit_unlock; 2554 2555 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2556 if (ret) 2557 goto exit_unlock; 2558 2559 if (priv_offset != args->priv_data_size) { 2560 pr_err("Invalid private data size\n"); 2561 ret = -EINVAL; 2562 } 2563 2564 exit_unlock: 2565 mutex_unlock(&p->mutex); 2566 if (ret) 2567 pr_err("Failed to restore CRIU ret:%d\n", ret); 2568 else 2569 pr_debug("CRIU restore successful\n"); 2570 2571 return ret; 2572 } 2573 2574 static int criu_unpause(struct file *filep, 2575 struct kfd_process *p, 2576 struct kfd_ioctl_criu_args *args) 2577 { 2578 int ret; 2579 2580 mutex_lock(&p->mutex); 2581 2582 if (!p->queues_paused) { 2583 mutex_unlock(&p->mutex); 2584 return -EINVAL; 2585 } 2586 2587 ret = kfd_process_restore_queues(p); 2588 if (ret) 2589 pr_err("Failed to unpause queues ret:%d\n", ret); 2590 else 2591 p->queues_paused = false; 2592 2593 mutex_unlock(&p->mutex); 2594 2595 return ret; 2596 } 2597 2598 static int criu_resume(struct file *filep, 2599 struct kfd_process *p, 2600 struct kfd_ioctl_criu_args *args) 2601 { 2602 struct kfd_process *target = NULL; 2603 struct pid *pid = NULL; 2604 int ret = 0; 2605 2606 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2607 args->pid); 2608 2609 pid = find_get_pid(args->pid); 2610 if (!pid) { 2611 pr_err("Cannot find pid info for %i\n", args->pid); 2612 return -ESRCH; 2613 } 2614 2615 pr_debug("calling kfd_lookup_process_by_pid\n"); 2616 target = kfd_lookup_process_by_pid(pid); 2617 2618 put_pid(pid); 2619 2620 if (!target) { 2621 pr_debug("Cannot find process info for %i\n", args->pid); 2622 return -ESRCH; 2623 } 2624 2625 mutex_lock(&target->mutex); 2626 ret = kfd_criu_resume_svm(target); 2627 if (ret) { 2628 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2629 goto exit; 2630 } 2631 2632 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2633 if (ret) 2634 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2635 2636 exit: 2637 mutex_unlock(&target->mutex); 2638 2639 kfd_unref_process(target); 2640 return ret; 2641 } 2642 2643 static int criu_process_info(struct file *filep, 2644 struct kfd_process *p, 2645 struct kfd_ioctl_criu_args *args) 2646 { 2647 int ret = 0; 2648 2649 mutex_lock(&p->mutex); 2650 2651 if (!p->n_pdds) { 2652 pr_err("No pdd for given process\n"); 2653 ret = -ENODEV; 2654 goto err_unlock; 2655 } 2656 2657 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); 2658 if (ret) 2659 goto err_unlock; 2660 2661 p->queues_paused = true; 2662 2663 args->pid = task_pid_nr_ns(p->lead_thread, 2664 task_active_pid_ns(p->lead_thread)); 2665 2666 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2667 &args->num_objects, &args->priv_data_size); 2668 if (ret) 2669 goto err_unlock; 2670 2671 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2672 args->num_devices, args->num_bos, args->num_objects, 2673 args->priv_data_size); 2674 2675 err_unlock: 2676 if (ret) { 2677 kfd_process_restore_queues(p); 2678 p->queues_paused = false; 2679 } 2680 mutex_unlock(&p->mutex); 2681 return ret; 2682 } 2683 2684 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2685 { 2686 struct kfd_ioctl_criu_args *args = data; 2687 int ret; 2688 2689 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2690 switch (args->op) { 2691 case KFD_CRIU_OP_PROCESS_INFO: 2692 ret = criu_process_info(filep, p, args); 2693 break; 2694 case KFD_CRIU_OP_CHECKPOINT: 2695 ret = criu_checkpoint(filep, p, args); 2696 break; 2697 case KFD_CRIU_OP_UNPAUSE: 2698 ret = criu_unpause(filep, p, args); 2699 break; 2700 case KFD_CRIU_OP_RESTORE: 2701 ret = criu_restore(filep, p, args); 2702 break; 2703 case KFD_CRIU_OP_RESUME: 2704 ret = criu_resume(filep, p, args); 2705 break; 2706 default: 2707 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2708 ret = -EINVAL; 2709 break; 2710 } 2711 2712 if (ret) 2713 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2714 2715 return ret; 2716 } 2717 2718 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 2719 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 2720 .cmd_drv = 0, .name = #ioctl} 2721 2722 /** Ioctl table */ 2723 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 2724 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 2725 kfd_ioctl_get_version, 0), 2726 2727 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 2728 kfd_ioctl_create_queue, 0), 2729 2730 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 2731 kfd_ioctl_destroy_queue, 0), 2732 2733 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 2734 kfd_ioctl_set_memory_policy, 0), 2735 2736 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 2737 kfd_ioctl_get_clock_counters, 0), 2738 2739 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 2740 kfd_ioctl_get_process_apertures, 0), 2741 2742 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 2743 kfd_ioctl_update_queue, 0), 2744 2745 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 2746 kfd_ioctl_create_event, 0), 2747 2748 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 2749 kfd_ioctl_destroy_event, 0), 2750 2751 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 2752 kfd_ioctl_set_event, 0), 2753 2754 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 2755 kfd_ioctl_reset_event, 0), 2756 2757 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 2758 kfd_ioctl_wait_events, 0), 2759 2760 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 2761 kfd_ioctl_dbg_register, 0), 2762 2763 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 2764 kfd_ioctl_dbg_unregister, 0), 2765 2766 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 2767 kfd_ioctl_dbg_address_watch, 0), 2768 2769 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 2770 kfd_ioctl_dbg_wave_control, 0), 2771 2772 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 2773 kfd_ioctl_set_scratch_backing_va, 0), 2774 2775 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 2776 kfd_ioctl_get_tile_config, 0), 2777 2778 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 2779 kfd_ioctl_set_trap_handler, 0), 2780 2781 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 2782 kfd_ioctl_get_process_apertures_new, 0), 2783 2784 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 2785 kfd_ioctl_acquire_vm, 0), 2786 2787 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 2788 kfd_ioctl_alloc_memory_of_gpu, 0), 2789 2790 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 2791 kfd_ioctl_free_memory_of_gpu, 0), 2792 2793 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 2794 kfd_ioctl_map_memory_to_gpu, 0), 2795 2796 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 2797 kfd_ioctl_unmap_memory_from_gpu, 0), 2798 2799 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 2800 kfd_ioctl_set_cu_mask, 0), 2801 2802 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 2803 kfd_ioctl_get_queue_wave_state, 0), 2804 2805 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 2806 kfd_ioctl_get_dmabuf_info, 0), 2807 2808 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 2809 kfd_ioctl_import_dmabuf, 0), 2810 2811 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 2812 kfd_ioctl_alloc_queue_gws, 0), 2813 2814 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 2815 kfd_ioctl_smi_events, 0), 2816 2817 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 2818 2819 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 2820 kfd_ioctl_set_xnack_mode, 0), 2821 2822 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 2823 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 2824 2825 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, 2826 kfd_ioctl_get_available_memory, 0), 2827 2828 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, 2829 kfd_ioctl_export_dmabuf, 0), 2830 }; 2831 2832 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 2833 2834 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 2835 { 2836 struct kfd_process *process; 2837 amdkfd_ioctl_t *func; 2838 const struct amdkfd_ioctl_desc *ioctl = NULL; 2839 unsigned int nr = _IOC_NR(cmd); 2840 char stack_kdata[128]; 2841 char *kdata = NULL; 2842 unsigned int usize, asize; 2843 int retcode = -EINVAL; 2844 bool ptrace_attached = false; 2845 2846 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 2847 goto err_i1; 2848 2849 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 2850 u32 amdkfd_size; 2851 2852 ioctl = &amdkfd_ioctls[nr]; 2853 2854 amdkfd_size = _IOC_SIZE(ioctl->cmd); 2855 usize = asize = _IOC_SIZE(cmd); 2856 if (amdkfd_size > asize) 2857 asize = amdkfd_size; 2858 2859 cmd = ioctl->cmd; 2860 } else 2861 goto err_i1; 2862 2863 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 2864 2865 /* Get the process struct from the filep. Only the process 2866 * that opened /dev/kfd can use the file descriptor. Child 2867 * processes need to create their own KFD device context. 2868 */ 2869 process = filep->private_data; 2870 2871 rcu_read_lock(); 2872 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 2873 ptrace_parent(process->lead_thread) == current) 2874 ptrace_attached = true; 2875 rcu_read_unlock(); 2876 2877 if (process->lead_thread != current->group_leader 2878 && !ptrace_attached) { 2879 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 2880 retcode = -EBADF; 2881 goto err_i1; 2882 } 2883 2884 /* Do not trust userspace, use our own definition */ 2885 func = ioctl->func; 2886 2887 if (unlikely(!func)) { 2888 dev_dbg(kfd_device, "no function\n"); 2889 retcode = -EINVAL; 2890 goto err_i1; 2891 } 2892 2893 /* 2894 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 2895 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 2896 * more priviledged access. 2897 */ 2898 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 2899 if (!capable(CAP_CHECKPOINT_RESTORE) && 2900 !capable(CAP_SYS_ADMIN)) { 2901 retcode = -EACCES; 2902 goto err_i1; 2903 } 2904 } 2905 2906 if (cmd & (IOC_IN | IOC_OUT)) { 2907 if (asize <= sizeof(stack_kdata)) { 2908 kdata = stack_kdata; 2909 } else { 2910 kdata = kmalloc(asize, GFP_KERNEL); 2911 if (!kdata) { 2912 retcode = -ENOMEM; 2913 goto err_i1; 2914 } 2915 } 2916 if (asize > usize) 2917 memset(kdata + usize, 0, asize - usize); 2918 } 2919 2920 if (cmd & IOC_IN) { 2921 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 2922 retcode = -EFAULT; 2923 goto err_i1; 2924 } 2925 } else if (cmd & IOC_OUT) { 2926 memset(kdata, 0, usize); 2927 } 2928 2929 retcode = func(filep, process, kdata); 2930 2931 if (cmd & IOC_OUT) 2932 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 2933 retcode = -EFAULT; 2934 2935 err_i1: 2936 if (!ioctl) 2937 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 2938 task_pid_nr(current), cmd, nr); 2939 2940 if (kdata != stack_kdata) 2941 kfree(kdata); 2942 2943 if (retcode) 2944 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 2945 nr, arg, retcode); 2946 2947 return retcode; 2948 } 2949 2950 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process, 2951 struct vm_area_struct *vma) 2952 { 2953 phys_addr_t address; 2954 2955 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 2956 return -EINVAL; 2957 2958 address = dev->adev->rmmio_remap.bus_addr; 2959 2960 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 2961 VM_DONTDUMP | VM_PFNMAP; 2962 2963 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 2964 2965 pr_debug("pasid 0x%x mapping mmio page\n" 2966 " target user address == 0x%08llX\n" 2967 " physical address == 0x%08llX\n" 2968 " vm_flags == 0x%04lX\n" 2969 " size == 0x%04lX\n", 2970 process->pasid, (unsigned long long) vma->vm_start, 2971 address, vma->vm_flags, PAGE_SIZE); 2972 2973 return io_remap_pfn_range(vma, 2974 vma->vm_start, 2975 address >> PAGE_SHIFT, 2976 PAGE_SIZE, 2977 vma->vm_page_prot); 2978 } 2979 2980 2981 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 2982 { 2983 struct kfd_process *process; 2984 struct kfd_dev *dev = NULL; 2985 unsigned long mmap_offset; 2986 unsigned int gpu_id; 2987 2988 process = kfd_get_process(current); 2989 if (IS_ERR(process)) 2990 return PTR_ERR(process); 2991 2992 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 2993 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 2994 if (gpu_id) 2995 dev = kfd_device_by_id(gpu_id); 2996 2997 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 2998 case KFD_MMAP_TYPE_DOORBELL: 2999 if (!dev) 3000 return -ENODEV; 3001 return kfd_doorbell_mmap(dev, process, vma); 3002 3003 case KFD_MMAP_TYPE_EVENTS: 3004 return kfd_event_mmap(process, vma); 3005 3006 case KFD_MMAP_TYPE_RESERVED_MEM: 3007 if (!dev) 3008 return -ENODEV; 3009 return kfd_reserved_mem_mmap(dev, process, vma); 3010 case KFD_MMAP_TYPE_MMIO: 3011 if (!dev) 3012 return -ENODEV; 3013 return kfd_mmio_mmap(dev, process, vma); 3014 } 3015 3016 return -EFAULT; 3017 } 3018