1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 48 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 49 static int kfd_open(struct inode *, struct file *); 50 static int kfd_release(struct inode *, struct file *); 51 static int kfd_mmap(struct file *, struct vm_area_struct *); 52 53 static const char kfd_dev_name[] = "kfd"; 54 55 static const struct file_operations kfd_fops = { 56 .owner = THIS_MODULE, 57 .unlocked_ioctl = kfd_ioctl, 58 .compat_ioctl = compat_ptr_ioctl, 59 .open = kfd_open, 60 .release = kfd_release, 61 .mmap = kfd_mmap, 62 }; 63 64 static int kfd_char_dev_major = -1; 65 static struct class *kfd_class; 66 struct device *kfd_device; 67 68 int kfd_chardev_init(void) 69 { 70 int err = 0; 71 72 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 73 err = kfd_char_dev_major; 74 if (err < 0) 75 goto err_register_chrdev; 76 77 kfd_class = class_create(THIS_MODULE, kfd_dev_name); 78 err = PTR_ERR(kfd_class); 79 if (IS_ERR(kfd_class)) 80 goto err_class_create; 81 82 kfd_device = device_create(kfd_class, NULL, 83 MKDEV(kfd_char_dev_major, 0), 84 NULL, kfd_dev_name); 85 err = PTR_ERR(kfd_device); 86 if (IS_ERR(kfd_device)) 87 goto err_device_create; 88 89 return 0; 90 91 err_device_create: 92 class_destroy(kfd_class); 93 err_class_create: 94 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 95 err_register_chrdev: 96 return err; 97 } 98 99 void kfd_chardev_exit(void) 100 { 101 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); 102 class_destroy(kfd_class); 103 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 104 kfd_device = NULL; 105 } 106 107 struct device *kfd_chardev(void) 108 { 109 return kfd_device; 110 } 111 112 113 static int kfd_open(struct inode *inode, struct file *filep) 114 { 115 struct kfd_process *process; 116 bool is_32bit_user_mode; 117 118 if (iminor(inode) != 0) 119 return -ENODEV; 120 121 is_32bit_user_mode = in_compat_syscall(); 122 123 if (is_32bit_user_mode) { 124 dev_warn(kfd_device, 125 "Process %d (32-bit) failed to open /dev/kfd\n" 126 "32-bit processes are not supported by amdkfd\n", 127 current->pid); 128 return -EPERM; 129 } 130 131 process = kfd_create_process(filep); 132 if (IS_ERR(process)) 133 return PTR_ERR(process); 134 135 if (kfd_is_locked()) { 136 dev_dbg(kfd_device, "kfd is locked!\n" 137 "process %d unreferenced", process->pasid); 138 kfd_unref_process(process); 139 return -EAGAIN; 140 } 141 142 /* filep now owns the reference returned by kfd_create_process */ 143 filep->private_data = process; 144 145 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 146 process->pasid, process->is_32bit_user_mode); 147 148 return 0; 149 } 150 151 static int kfd_release(struct inode *inode, struct file *filep) 152 { 153 struct kfd_process *process = filep->private_data; 154 155 if (process) 156 kfd_unref_process(process); 157 158 return 0; 159 } 160 161 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 162 void *data) 163 { 164 struct kfd_ioctl_get_version_args *args = data; 165 166 args->major_version = KFD_IOCTL_MAJOR_VERSION; 167 args->minor_version = KFD_IOCTL_MINOR_VERSION; 168 169 return 0; 170 } 171 172 static int set_queue_properties_from_user(struct queue_properties *q_properties, 173 struct kfd_ioctl_create_queue_args *args) 174 { 175 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 176 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 177 return -EINVAL; 178 } 179 180 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 181 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 182 return -EINVAL; 183 } 184 185 if ((args->ring_base_address) && 186 (!access_ok((const void __user *) args->ring_base_address, 187 sizeof(uint64_t)))) { 188 pr_err("Can't access ring base address\n"); 189 return -EFAULT; 190 } 191 192 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 193 pr_err("Ring size must be a power of 2 or 0\n"); 194 return -EINVAL; 195 } 196 197 if (!access_ok((const void __user *) args->read_pointer_address, 198 sizeof(uint32_t))) { 199 pr_err("Can't access read pointer\n"); 200 return -EFAULT; 201 } 202 203 if (!access_ok((const void __user *) args->write_pointer_address, 204 sizeof(uint32_t))) { 205 pr_err("Can't access write pointer\n"); 206 return -EFAULT; 207 } 208 209 if (args->eop_buffer_address && 210 !access_ok((const void __user *) args->eop_buffer_address, 211 sizeof(uint32_t))) { 212 pr_debug("Can't access eop buffer"); 213 return -EFAULT; 214 } 215 216 if (args->ctx_save_restore_address && 217 !access_ok((const void __user *) args->ctx_save_restore_address, 218 sizeof(uint32_t))) { 219 pr_debug("Can't access ctx save restore buffer"); 220 return -EFAULT; 221 } 222 223 q_properties->is_interop = false; 224 q_properties->is_gws = false; 225 q_properties->queue_percent = args->queue_percentage; 226 q_properties->priority = args->queue_priority; 227 q_properties->queue_address = args->ring_base_address; 228 q_properties->queue_size = args->ring_size; 229 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 230 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 231 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 232 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 233 q_properties->ctx_save_restore_area_address = 234 args->ctx_save_restore_address; 235 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 236 q_properties->ctl_stack_size = args->ctl_stack_size; 237 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 238 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 239 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 240 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 241 q_properties->type = KFD_QUEUE_TYPE_SDMA; 242 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 243 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 244 else 245 return -ENOTSUPP; 246 247 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 248 q_properties->format = KFD_QUEUE_FORMAT_AQL; 249 else 250 q_properties->format = KFD_QUEUE_FORMAT_PM4; 251 252 pr_debug("Queue Percentage: %d, %d\n", 253 q_properties->queue_percent, args->queue_percentage); 254 255 pr_debug("Queue Priority: %d, %d\n", 256 q_properties->priority, args->queue_priority); 257 258 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 259 q_properties->queue_address, args->ring_base_address); 260 261 pr_debug("Queue Size: 0x%llX, %u\n", 262 q_properties->queue_size, args->ring_size); 263 264 pr_debug("Queue r/w Pointers: %px, %px\n", 265 q_properties->read_ptr, 266 q_properties->write_ptr); 267 268 pr_debug("Queue Format: %d\n", q_properties->format); 269 270 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 271 272 pr_debug("Queue CTX save area: 0x%llX\n", 273 q_properties->ctx_save_restore_area_address); 274 275 return 0; 276 } 277 278 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 279 void *data) 280 { 281 struct kfd_ioctl_create_queue_args *args = data; 282 struct kfd_dev *dev; 283 int err = 0; 284 unsigned int queue_id; 285 struct kfd_process_device *pdd; 286 struct queue_properties q_properties; 287 uint32_t doorbell_offset_in_process = 0; 288 289 memset(&q_properties, 0, sizeof(struct queue_properties)); 290 291 pr_debug("Creating queue ioctl\n"); 292 293 err = set_queue_properties_from_user(&q_properties, args); 294 if (err) 295 return err; 296 297 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 298 299 mutex_lock(&p->mutex); 300 301 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 302 if (!pdd) { 303 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 304 err = -EINVAL; 305 goto err_pdd; 306 } 307 dev = pdd->dev; 308 309 pdd = kfd_bind_process_to_device(dev, p); 310 if (IS_ERR(pdd)) { 311 err = -ESRCH; 312 goto err_bind_process; 313 } 314 315 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 316 p->pasid, 317 dev->id); 318 319 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, NULL, NULL, NULL, 320 &doorbell_offset_in_process); 321 if (err != 0) 322 goto err_create_queue; 323 324 args->queue_id = queue_id; 325 326 327 /* Return gpu_id as doorbell offset for mmap usage */ 328 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 329 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 330 if (KFD_IS_SOC15(dev)) 331 /* On SOC15 ASICs, include the doorbell offset within the 332 * process doorbell frame, which is 2 pages. 333 */ 334 args->doorbell_offset |= doorbell_offset_in_process; 335 336 mutex_unlock(&p->mutex); 337 338 pr_debug("Queue id %d was created successfully\n", args->queue_id); 339 340 pr_debug("Ring buffer address == 0x%016llX\n", 341 args->ring_base_address); 342 343 pr_debug("Read ptr address == 0x%016llX\n", 344 args->read_pointer_address); 345 346 pr_debug("Write ptr address == 0x%016llX\n", 347 args->write_pointer_address); 348 349 return 0; 350 351 err_create_queue: 352 err_bind_process: 353 err_pdd: 354 mutex_unlock(&p->mutex); 355 return err; 356 } 357 358 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 359 void *data) 360 { 361 int retval; 362 struct kfd_ioctl_destroy_queue_args *args = data; 363 364 pr_debug("Destroying queue id %d for pasid 0x%x\n", 365 args->queue_id, 366 p->pasid); 367 368 mutex_lock(&p->mutex); 369 370 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 371 372 mutex_unlock(&p->mutex); 373 return retval; 374 } 375 376 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 377 void *data) 378 { 379 int retval; 380 struct kfd_ioctl_update_queue_args *args = data; 381 struct queue_properties properties; 382 383 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 384 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 385 return -EINVAL; 386 } 387 388 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 389 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 390 return -EINVAL; 391 } 392 393 if ((args->ring_base_address) && 394 (!access_ok((const void __user *) args->ring_base_address, 395 sizeof(uint64_t)))) { 396 pr_err("Can't access ring base address\n"); 397 return -EFAULT; 398 } 399 400 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 401 pr_err("Ring size must be a power of 2 or 0\n"); 402 return -EINVAL; 403 } 404 405 properties.queue_address = args->ring_base_address; 406 properties.queue_size = args->ring_size; 407 properties.queue_percent = args->queue_percentage; 408 properties.priority = args->queue_priority; 409 410 pr_debug("Updating queue id %d for pasid 0x%x\n", 411 args->queue_id, p->pasid); 412 413 mutex_lock(&p->mutex); 414 415 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 416 417 mutex_unlock(&p->mutex); 418 419 return retval; 420 } 421 422 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 423 void *data) 424 { 425 int retval; 426 const int max_num_cus = 1024; 427 struct kfd_ioctl_set_cu_mask_args *args = data; 428 struct mqd_update_info minfo = {0}; 429 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 430 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 431 432 if ((args->num_cu_mask % 32) != 0) { 433 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 434 args->num_cu_mask); 435 return -EINVAL; 436 } 437 438 minfo.cu_mask.count = args->num_cu_mask; 439 if (minfo.cu_mask.count == 0) { 440 pr_debug("CU mask cannot be 0"); 441 return -EINVAL; 442 } 443 444 /* To prevent an unreasonably large CU mask size, set an arbitrary 445 * limit of max_num_cus bits. We can then just drop any CU mask bits 446 * past max_num_cus bits and just use the first max_num_cus bits. 447 */ 448 if (minfo.cu_mask.count > max_num_cus) { 449 pr_debug("CU mask cannot be greater than 1024 bits"); 450 minfo.cu_mask.count = max_num_cus; 451 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 452 } 453 454 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 455 if (!minfo.cu_mask.ptr) 456 return -ENOMEM; 457 458 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 459 if (retval) { 460 pr_debug("Could not copy CU mask from userspace"); 461 retval = -EFAULT; 462 goto out; 463 } 464 465 minfo.update_flag = UPDATE_FLAG_CU_MASK; 466 467 mutex_lock(&p->mutex); 468 469 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 470 471 mutex_unlock(&p->mutex); 472 473 out: 474 kfree(minfo.cu_mask.ptr); 475 return retval; 476 } 477 478 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 479 struct kfd_process *p, void *data) 480 { 481 struct kfd_ioctl_get_queue_wave_state_args *args = data; 482 int r; 483 484 mutex_lock(&p->mutex); 485 486 r = pqm_get_wave_state(&p->pqm, args->queue_id, 487 (void __user *)args->ctl_stack_address, 488 &args->ctl_stack_used_size, 489 &args->save_area_used_size); 490 491 mutex_unlock(&p->mutex); 492 493 return r; 494 } 495 496 static int kfd_ioctl_set_memory_policy(struct file *filep, 497 struct kfd_process *p, void *data) 498 { 499 struct kfd_ioctl_set_memory_policy_args *args = data; 500 int err = 0; 501 struct kfd_process_device *pdd; 502 enum cache_policy default_policy, alternate_policy; 503 504 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 505 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 506 return -EINVAL; 507 } 508 509 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 510 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 511 return -EINVAL; 512 } 513 514 mutex_lock(&p->mutex); 515 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 516 if (!pdd) { 517 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 518 err = -EINVAL; 519 goto err_pdd; 520 } 521 522 pdd = kfd_bind_process_to_device(pdd->dev, p); 523 if (IS_ERR(pdd)) { 524 err = -ESRCH; 525 goto out; 526 } 527 528 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 529 ? cache_policy_coherent : cache_policy_noncoherent; 530 531 alternate_policy = 532 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 533 ? cache_policy_coherent : cache_policy_noncoherent; 534 535 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 536 &pdd->qpd, 537 default_policy, 538 alternate_policy, 539 (void __user *)args->alternate_aperture_base, 540 args->alternate_aperture_size)) 541 err = -EINVAL; 542 543 out: 544 err_pdd: 545 mutex_unlock(&p->mutex); 546 547 return err; 548 } 549 550 static int kfd_ioctl_set_trap_handler(struct file *filep, 551 struct kfd_process *p, void *data) 552 { 553 struct kfd_ioctl_set_trap_handler_args *args = data; 554 int err = 0; 555 struct kfd_process_device *pdd; 556 557 mutex_lock(&p->mutex); 558 559 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 560 if (!pdd) { 561 err = -EINVAL; 562 goto err_pdd; 563 } 564 565 pdd = kfd_bind_process_to_device(pdd->dev, p); 566 if (IS_ERR(pdd)) { 567 err = -ESRCH; 568 goto out; 569 } 570 571 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 572 573 out: 574 err_pdd: 575 mutex_unlock(&p->mutex); 576 577 return err; 578 } 579 580 static int kfd_ioctl_dbg_register(struct file *filep, 581 struct kfd_process *p, void *data) 582 { 583 return -EPERM; 584 } 585 586 static int kfd_ioctl_dbg_unregister(struct file *filep, 587 struct kfd_process *p, void *data) 588 { 589 return -EPERM; 590 } 591 592 static int kfd_ioctl_dbg_address_watch(struct file *filep, 593 struct kfd_process *p, void *data) 594 { 595 return -EPERM; 596 } 597 598 /* Parse and generate fixed size data structure for wave control */ 599 static int kfd_ioctl_dbg_wave_control(struct file *filep, 600 struct kfd_process *p, void *data) 601 { 602 return -EPERM; 603 } 604 605 static int kfd_ioctl_get_clock_counters(struct file *filep, 606 struct kfd_process *p, void *data) 607 { 608 struct kfd_ioctl_get_clock_counters_args *args = data; 609 struct kfd_process_device *pdd; 610 611 mutex_lock(&p->mutex); 612 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 613 mutex_unlock(&p->mutex); 614 if (pdd) 615 /* Reading GPU clock counter from KGD */ 616 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 617 else 618 /* Node without GPU resource */ 619 args->gpu_clock_counter = 0; 620 621 /* No access to rdtsc. Using raw monotonic time */ 622 args->cpu_clock_counter = ktime_get_raw_ns(); 623 args->system_clock_counter = ktime_get_boottime_ns(); 624 625 /* Since the counter is in nano-seconds we use 1GHz frequency */ 626 args->system_clock_freq = 1000000000; 627 628 return 0; 629 } 630 631 632 static int kfd_ioctl_get_process_apertures(struct file *filp, 633 struct kfd_process *p, void *data) 634 { 635 struct kfd_ioctl_get_process_apertures_args *args = data; 636 struct kfd_process_device_apertures *pAperture; 637 int i; 638 639 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 640 641 args->num_of_nodes = 0; 642 643 mutex_lock(&p->mutex); 644 /* Run over all pdd of the process */ 645 for (i = 0; i < p->n_pdds; i++) { 646 struct kfd_process_device *pdd = p->pdds[i]; 647 648 pAperture = 649 &args->process_apertures[args->num_of_nodes]; 650 pAperture->gpu_id = pdd->dev->id; 651 pAperture->lds_base = pdd->lds_base; 652 pAperture->lds_limit = pdd->lds_limit; 653 pAperture->gpuvm_base = pdd->gpuvm_base; 654 pAperture->gpuvm_limit = pdd->gpuvm_limit; 655 pAperture->scratch_base = pdd->scratch_base; 656 pAperture->scratch_limit = pdd->scratch_limit; 657 658 dev_dbg(kfd_device, 659 "node id %u\n", args->num_of_nodes); 660 dev_dbg(kfd_device, 661 "gpu id %u\n", pdd->dev->id); 662 dev_dbg(kfd_device, 663 "lds_base %llX\n", pdd->lds_base); 664 dev_dbg(kfd_device, 665 "lds_limit %llX\n", pdd->lds_limit); 666 dev_dbg(kfd_device, 667 "gpuvm_base %llX\n", pdd->gpuvm_base); 668 dev_dbg(kfd_device, 669 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 670 dev_dbg(kfd_device, 671 "scratch_base %llX\n", pdd->scratch_base); 672 dev_dbg(kfd_device, 673 "scratch_limit %llX\n", pdd->scratch_limit); 674 675 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 676 break; 677 } 678 mutex_unlock(&p->mutex); 679 680 return 0; 681 } 682 683 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 684 struct kfd_process *p, void *data) 685 { 686 struct kfd_ioctl_get_process_apertures_new_args *args = data; 687 struct kfd_process_device_apertures *pa; 688 int ret; 689 int i; 690 691 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 692 693 if (args->num_of_nodes == 0) { 694 /* Return number of nodes, so that user space can alloacate 695 * sufficient memory 696 */ 697 mutex_lock(&p->mutex); 698 args->num_of_nodes = p->n_pdds; 699 goto out_unlock; 700 } 701 702 /* Fill in process-aperture information for all available 703 * nodes, but not more than args->num_of_nodes as that is 704 * the amount of memory allocated by user 705 */ 706 pa = kzalloc((sizeof(struct kfd_process_device_apertures) * 707 args->num_of_nodes), GFP_KERNEL); 708 if (!pa) 709 return -ENOMEM; 710 711 mutex_lock(&p->mutex); 712 713 if (!p->n_pdds) { 714 args->num_of_nodes = 0; 715 kfree(pa); 716 goto out_unlock; 717 } 718 719 /* Run over all pdd of the process */ 720 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 721 struct kfd_process_device *pdd = p->pdds[i]; 722 723 pa[i].gpu_id = pdd->dev->id; 724 pa[i].lds_base = pdd->lds_base; 725 pa[i].lds_limit = pdd->lds_limit; 726 pa[i].gpuvm_base = pdd->gpuvm_base; 727 pa[i].gpuvm_limit = pdd->gpuvm_limit; 728 pa[i].scratch_base = pdd->scratch_base; 729 pa[i].scratch_limit = pdd->scratch_limit; 730 731 dev_dbg(kfd_device, 732 "gpu id %u\n", pdd->dev->id); 733 dev_dbg(kfd_device, 734 "lds_base %llX\n", pdd->lds_base); 735 dev_dbg(kfd_device, 736 "lds_limit %llX\n", pdd->lds_limit); 737 dev_dbg(kfd_device, 738 "gpuvm_base %llX\n", pdd->gpuvm_base); 739 dev_dbg(kfd_device, 740 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 741 dev_dbg(kfd_device, 742 "scratch_base %llX\n", pdd->scratch_base); 743 dev_dbg(kfd_device, 744 "scratch_limit %llX\n", pdd->scratch_limit); 745 } 746 mutex_unlock(&p->mutex); 747 748 args->num_of_nodes = i; 749 ret = copy_to_user( 750 (void __user *)args->kfd_process_device_apertures_ptr, 751 pa, 752 (i * sizeof(struct kfd_process_device_apertures))); 753 kfree(pa); 754 return ret ? -EFAULT : 0; 755 756 out_unlock: 757 mutex_unlock(&p->mutex); 758 return 0; 759 } 760 761 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 762 void *data) 763 { 764 struct kfd_ioctl_create_event_args *args = data; 765 int err; 766 767 /* For dGPUs the event page is allocated in user mode. The 768 * handle is passed to KFD with the first call to this IOCTL 769 * through the event_page_offset field. 770 */ 771 if (args->event_page_offset) { 772 mutex_lock(&p->mutex); 773 err = kfd_kmap_event_page(p, args->event_page_offset); 774 mutex_unlock(&p->mutex); 775 if (err) 776 return err; 777 } 778 779 err = kfd_event_create(filp, p, args->event_type, 780 args->auto_reset != 0, args->node_id, 781 &args->event_id, &args->event_trigger_data, 782 &args->event_page_offset, 783 &args->event_slot_index); 784 785 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 786 return err; 787 } 788 789 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 790 void *data) 791 { 792 struct kfd_ioctl_destroy_event_args *args = data; 793 794 return kfd_event_destroy(p, args->event_id); 795 } 796 797 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 798 void *data) 799 { 800 struct kfd_ioctl_set_event_args *args = data; 801 802 return kfd_set_event(p, args->event_id); 803 } 804 805 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 806 void *data) 807 { 808 struct kfd_ioctl_reset_event_args *args = data; 809 810 return kfd_reset_event(p, args->event_id); 811 } 812 813 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 814 void *data) 815 { 816 struct kfd_ioctl_wait_events_args *args = data; 817 int err; 818 819 err = kfd_wait_on_events(p, args->num_events, 820 (void __user *)args->events_ptr, 821 (args->wait_for_all != 0), 822 args->timeout, &args->wait_result); 823 824 return err; 825 } 826 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 827 struct kfd_process *p, void *data) 828 { 829 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 830 struct kfd_process_device *pdd; 831 struct kfd_dev *dev; 832 long err; 833 834 mutex_lock(&p->mutex); 835 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 836 if (!pdd) { 837 err = -EINVAL; 838 goto err_pdd; 839 } 840 dev = pdd->dev; 841 842 pdd = kfd_bind_process_to_device(dev, p); 843 if (IS_ERR(pdd)) { 844 err = PTR_ERR(pdd); 845 goto bind_process_to_device_fail; 846 } 847 848 pdd->qpd.sh_hidden_private_base = args->va_addr; 849 850 mutex_unlock(&p->mutex); 851 852 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 853 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 854 dev->kfd2kgd->set_scratch_backing_va( 855 dev->adev, args->va_addr, pdd->qpd.vmid); 856 857 return 0; 858 859 bind_process_to_device_fail: 860 err_pdd: 861 mutex_unlock(&p->mutex); 862 return err; 863 } 864 865 static int kfd_ioctl_get_tile_config(struct file *filep, 866 struct kfd_process *p, void *data) 867 { 868 struct kfd_ioctl_get_tile_config_args *args = data; 869 struct kfd_process_device *pdd; 870 struct tile_config config; 871 int err = 0; 872 873 mutex_lock(&p->mutex); 874 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 875 mutex_unlock(&p->mutex); 876 if (!pdd) 877 return -EINVAL; 878 879 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 880 881 args->gb_addr_config = config.gb_addr_config; 882 args->num_banks = config.num_banks; 883 args->num_ranks = config.num_ranks; 884 885 if (args->num_tile_configs > config.num_tile_configs) 886 args->num_tile_configs = config.num_tile_configs; 887 err = copy_to_user((void __user *)args->tile_config_ptr, 888 config.tile_config_ptr, 889 args->num_tile_configs * sizeof(uint32_t)); 890 if (err) { 891 args->num_tile_configs = 0; 892 return -EFAULT; 893 } 894 895 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 896 args->num_macro_tile_configs = 897 config.num_macro_tile_configs; 898 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 899 config.macro_tile_config_ptr, 900 args->num_macro_tile_configs * sizeof(uint32_t)); 901 if (err) { 902 args->num_macro_tile_configs = 0; 903 return -EFAULT; 904 } 905 906 return 0; 907 } 908 909 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 910 void *data) 911 { 912 struct kfd_ioctl_acquire_vm_args *args = data; 913 struct kfd_process_device *pdd; 914 struct file *drm_file; 915 int ret; 916 917 drm_file = fget(args->drm_fd); 918 if (!drm_file) 919 return -EINVAL; 920 921 mutex_lock(&p->mutex); 922 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 923 if (!pdd) { 924 ret = -EINVAL; 925 goto err_pdd; 926 } 927 928 if (pdd->drm_file) { 929 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 930 goto err_drm_file; 931 } 932 933 ret = kfd_process_device_init_vm(pdd, drm_file); 934 if (ret) 935 goto err_unlock; 936 937 /* On success, the PDD keeps the drm_file reference */ 938 mutex_unlock(&p->mutex); 939 940 return 0; 941 942 err_unlock: 943 err_pdd: 944 err_drm_file: 945 mutex_unlock(&p->mutex); 946 fput(drm_file); 947 return ret; 948 } 949 950 bool kfd_dev_is_large_bar(struct kfd_dev *dev) 951 { 952 struct kfd_local_mem_info mem_info; 953 954 if (debug_largebar) { 955 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 956 return true; 957 } 958 959 if (dev->use_iommu_v2) 960 return false; 961 962 amdgpu_amdkfd_get_local_mem_info(dev->adev, &mem_info); 963 if (mem_info.local_mem_size_private == 0 && 964 mem_info.local_mem_size_public > 0) 965 return true; 966 return false; 967 } 968 969 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 970 struct kfd_process *p, void *data) 971 { 972 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 973 struct kfd_process_device *pdd; 974 void *mem; 975 struct kfd_dev *dev; 976 int idr_handle; 977 long err; 978 uint64_t offset = args->mmap_offset; 979 uint32_t flags = args->flags; 980 981 if (args->size == 0) 982 return -EINVAL; 983 984 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 985 /* Flush pending deferred work to avoid racing with deferred actions 986 * from previous memory map changes (e.g. munmap). 987 */ 988 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 989 mutex_lock(&p->svms.lock); 990 mmap_write_unlock(current->mm); 991 if (interval_tree_iter_first(&p->svms.objects, 992 args->va_addr >> PAGE_SHIFT, 993 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 994 pr_err("Address: 0x%llx already allocated by SVM\n", 995 args->va_addr); 996 mutex_unlock(&p->svms.lock); 997 return -EADDRINUSE; 998 } 999 mutex_unlock(&p->svms.lock); 1000 #endif 1001 mutex_lock(&p->mutex); 1002 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1003 if (!pdd) { 1004 err = -EINVAL; 1005 goto err_pdd; 1006 } 1007 1008 dev = pdd->dev; 1009 1010 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1011 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1012 !kfd_dev_is_large_bar(dev)) { 1013 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1014 err = -EINVAL; 1015 goto err_large_bar; 1016 } 1017 1018 pdd = kfd_bind_process_to_device(dev, p); 1019 if (IS_ERR(pdd)) { 1020 err = PTR_ERR(pdd); 1021 goto err_unlock; 1022 } 1023 1024 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1025 if (args->size != kfd_doorbell_process_slice(dev)) { 1026 err = -EINVAL; 1027 goto err_unlock; 1028 } 1029 offset = kfd_get_process_doorbells(pdd); 1030 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1031 if (args->size != PAGE_SIZE) { 1032 err = -EINVAL; 1033 goto err_unlock; 1034 } 1035 offset = dev->adev->rmmio_remap.bus_addr; 1036 if (!offset) { 1037 err = -ENOMEM; 1038 goto err_unlock; 1039 } 1040 } 1041 1042 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1043 dev->adev, args->va_addr, args->size, 1044 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1045 flags, false); 1046 1047 if (err) 1048 goto err_unlock; 1049 1050 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1051 if (idr_handle < 0) { 1052 err = -EFAULT; 1053 goto err_free; 1054 } 1055 1056 /* Update the VRAM usage count */ 1057 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1058 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size); 1059 1060 mutex_unlock(&p->mutex); 1061 1062 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1063 args->mmap_offset = offset; 1064 1065 /* MMIO is mapped through kfd device 1066 * Generate a kfd mmap offset 1067 */ 1068 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1069 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1070 | KFD_MMAP_GPU_ID(args->gpu_id); 1071 1072 return 0; 1073 1074 err_free: 1075 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1076 pdd->drm_priv, NULL); 1077 err_unlock: 1078 err_pdd: 1079 err_large_bar: 1080 mutex_unlock(&p->mutex); 1081 return err; 1082 } 1083 1084 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1085 struct kfd_process *p, void *data) 1086 { 1087 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1088 struct kfd_process_device *pdd; 1089 void *mem; 1090 int ret; 1091 uint64_t size = 0; 1092 1093 mutex_lock(&p->mutex); 1094 /* 1095 * Safeguard to prevent user space from freeing signal BO. 1096 * It will be freed at process termination. 1097 */ 1098 if (p->signal_handle && (p->signal_handle == args->handle)) { 1099 pr_err("Free signal BO is not allowed\n"); 1100 ret = -EPERM; 1101 goto err_unlock; 1102 } 1103 1104 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1105 if (!pdd) { 1106 pr_err("Process device data doesn't exist\n"); 1107 ret = -EINVAL; 1108 goto err_pdd; 1109 } 1110 1111 mem = kfd_process_device_translate_handle( 1112 pdd, GET_IDR_HANDLE(args->handle)); 1113 if (!mem) { 1114 ret = -EINVAL; 1115 goto err_unlock; 1116 } 1117 1118 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1119 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1120 1121 /* If freeing the buffer failed, leave the handle in place for 1122 * clean-up during process tear-down. 1123 */ 1124 if (!ret) 1125 kfd_process_device_remove_obj_handle( 1126 pdd, GET_IDR_HANDLE(args->handle)); 1127 1128 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1129 1130 err_unlock: 1131 err_pdd: 1132 mutex_unlock(&p->mutex); 1133 return ret; 1134 } 1135 1136 static bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1137 { 1138 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1139 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1140 dev->adev->sdma.instance[0].fw_version >= 18) || 1141 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1142 } 1143 1144 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1145 struct kfd_process *p, void *data) 1146 { 1147 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1148 struct kfd_process_device *pdd, *peer_pdd; 1149 void *mem; 1150 struct kfd_dev *dev; 1151 long err = 0; 1152 int i; 1153 uint32_t *devices_arr = NULL; 1154 bool table_freed = false; 1155 1156 if (!args->n_devices) { 1157 pr_debug("Device IDs array empty\n"); 1158 return -EINVAL; 1159 } 1160 if (args->n_success > args->n_devices) { 1161 pr_debug("n_success exceeds n_devices\n"); 1162 return -EINVAL; 1163 } 1164 1165 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1166 GFP_KERNEL); 1167 if (!devices_arr) 1168 return -ENOMEM; 1169 1170 err = copy_from_user(devices_arr, 1171 (void __user *)args->device_ids_array_ptr, 1172 args->n_devices * sizeof(*devices_arr)); 1173 if (err != 0) { 1174 err = -EFAULT; 1175 goto copy_from_user_failed; 1176 } 1177 1178 mutex_lock(&p->mutex); 1179 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1180 if (!pdd) { 1181 err = -EINVAL; 1182 goto get_process_device_data_failed; 1183 } 1184 dev = pdd->dev; 1185 1186 pdd = kfd_bind_process_to_device(dev, p); 1187 if (IS_ERR(pdd)) { 1188 err = PTR_ERR(pdd); 1189 goto bind_process_to_device_failed; 1190 } 1191 1192 mem = kfd_process_device_translate_handle(pdd, 1193 GET_IDR_HANDLE(args->handle)); 1194 if (!mem) { 1195 err = -ENOMEM; 1196 goto get_mem_obj_from_handle_failed; 1197 } 1198 1199 for (i = args->n_success; i < args->n_devices; i++) { 1200 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1201 if (!peer_pdd) { 1202 pr_debug("Getting device by id failed for 0x%x\n", 1203 devices_arr[i]); 1204 err = -EINVAL; 1205 goto get_mem_obj_from_handle_failed; 1206 } 1207 1208 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1209 if (IS_ERR(peer_pdd)) { 1210 err = PTR_ERR(peer_pdd); 1211 goto get_mem_obj_from_handle_failed; 1212 } 1213 1214 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1215 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1216 peer_pdd->drm_priv, &table_freed); 1217 if (err) { 1218 pr_err("Failed to map to gpu %d/%d\n", 1219 i, args->n_devices); 1220 goto map_memory_to_gpu_failed; 1221 } 1222 args->n_success = i+1; 1223 } 1224 1225 mutex_unlock(&p->mutex); 1226 1227 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1228 if (err) { 1229 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1230 goto sync_memory_failed; 1231 } 1232 1233 /* Flush TLBs after waiting for the page table updates to complete */ 1234 if (table_freed || !kfd_flush_tlb_after_unmap(dev)) { 1235 for (i = 0; i < args->n_devices; i++) { 1236 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1237 if (WARN_ON_ONCE(!peer_pdd)) 1238 continue; 1239 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1240 } 1241 } 1242 kfree(devices_arr); 1243 1244 return err; 1245 1246 get_process_device_data_failed: 1247 bind_process_to_device_failed: 1248 get_mem_obj_from_handle_failed: 1249 map_memory_to_gpu_failed: 1250 mutex_unlock(&p->mutex); 1251 copy_from_user_failed: 1252 sync_memory_failed: 1253 kfree(devices_arr); 1254 1255 return err; 1256 } 1257 1258 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1259 struct kfd_process *p, void *data) 1260 { 1261 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1262 struct kfd_process_device *pdd, *peer_pdd; 1263 void *mem; 1264 long err = 0; 1265 uint32_t *devices_arr = NULL, i; 1266 1267 if (!args->n_devices) { 1268 pr_debug("Device IDs array empty\n"); 1269 return -EINVAL; 1270 } 1271 if (args->n_success > args->n_devices) { 1272 pr_debug("n_success exceeds n_devices\n"); 1273 return -EINVAL; 1274 } 1275 1276 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1277 GFP_KERNEL); 1278 if (!devices_arr) 1279 return -ENOMEM; 1280 1281 err = copy_from_user(devices_arr, 1282 (void __user *)args->device_ids_array_ptr, 1283 args->n_devices * sizeof(*devices_arr)); 1284 if (err != 0) { 1285 err = -EFAULT; 1286 goto copy_from_user_failed; 1287 } 1288 1289 mutex_lock(&p->mutex); 1290 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1291 if (!pdd) { 1292 err = -EINVAL; 1293 goto bind_process_to_device_failed; 1294 } 1295 1296 mem = kfd_process_device_translate_handle(pdd, 1297 GET_IDR_HANDLE(args->handle)); 1298 if (!mem) { 1299 err = -ENOMEM; 1300 goto get_mem_obj_from_handle_failed; 1301 } 1302 1303 for (i = args->n_success; i < args->n_devices; i++) { 1304 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1305 if (!peer_pdd) { 1306 err = -EINVAL; 1307 goto get_mem_obj_from_handle_failed; 1308 } 1309 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1310 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1311 if (err) { 1312 pr_err("Failed to unmap from gpu %d/%d\n", 1313 i, args->n_devices); 1314 goto unmap_memory_from_gpu_failed; 1315 } 1316 args->n_success = i+1; 1317 } 1318 mutex_unlock(&p->mutex); 1319 1320 if (kfd_flush_tlb_after_unmap(pdd->dev)) { 1321 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1322 (struct kgd_mem *) mem, true); 1323 if (err) { 1324 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1325 goto sync_memory_failed; 1326 } 1327 1328 /* Flush TLBs after waiting for the page table updates to complete */ 1329 for (i = 0; i < args->n_devices; i++) { 1330 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1331 if (WARN_ON_ONCE(!peer_pdd)) 1332 continue; 1333 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1334 } 1335 } 1336 kfree(devices_arr); 1337 1338 return 0; 1339 1340 bind_process_to_device_failed: 1341 get_mem_obj_from_handle_failed: 1342 unmap_memory_from_gpu_failed: 1343 mutex_unlock(&p->mutex); 1344 copy_from_user_failed: 1345 sync_memory_failed: 1346 kfree(devices_arr); 1347 return err; 1348 } 1349 1350 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1351 struct kfd_process *p, void *data) 1352 { 1353 int retval; 1354 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1355 struct queue *q; 1356 struct kfd_dev *dev; 1357 1358 mutex_lock(&p->mutex); 1359 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1360 1361 if (q) { 1362 dev = q->device; 1363 } else { 1364 retval = -EINVAL; 1365 goto out_unlock; 1366 } 1367 1368 if (!dev->gws) { 1369 retval = -ENODEV; 1370 goto out_unlock; 1371 } 1372 1373 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1374 retval = -ENODEV; 1375 goto out_unlock; 1376 } 1377 1378 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1379 mutex_unlock(&p->mutex); 1380 1381 args->first_gws = 0; 1382 return retval; 1383 1384 out_unlock: 1385 mutex_unlock(&p->mutex); 1386 return retval; 1387 } 1388 1389 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1390 struct kfd_process *p, void *data) 1391 { 1392 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1393 struct kfd_dev *dev = NULL; 1394 struct amdgpu_device *dmabuf_adev; 1395 void *metadata_buffer = NULL; 1396 uint32_t flags; 1397 unsigned int i; 1398 int r; 1399 1400 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1401 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1402 if (dev) 1403 break; 1404 if (!dev) 1405 return -EINVAL; 1406 1407 if (args->metadata_ptr) { 1408 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1409 if (!metadata_buffer) 1410 return -ENOMEM; 1411 } 1412 1413 /* Get dmabuf info from KGD */ 1414 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1415 &dmabuf_adev, &args->size, 1416 metadata_buffer, args->metadata_size, 1417 &args->metadata_size, &flags); 1418 if (r) 1419 goto exit; 1420 1421 /* Reverse-lookup gpu_id from kgd pointer */ 1422 dev = kfd_device_by_adev(dmabuf_adev); 1423 if (!dev) { 1424 r = -EINVAL; 1425 goto exit; 1426 } 1427 args->gpu_id = dev->id; 1428 args->flags = flags; 1429 1430 /* Copy metadata buffer to user mode */ 1431 if (metadata_buffer) { 1432 r = copy_to_user((void __user *)args->metadata_ptr, 1433 metadata_buffer, args->metadata_size); 1434 if (r != 0) 1435 r = -EFAULT; 1436 } 1437 1438 exit: 1439 kfree(metadata_buffer); 1440 1441 return r; 1442 } 1443 1444 static int kfd_ioctl_import_dmabuf(struct file *filep, 1445 struct kfd_process *p, void *data) 1446 { 1447 struct kfd_ioctl_import_dmabuf_args *args = data; 1448 struct kfd_process_device *pdd; 1449 struct dma_buf *dmabuf; 1450 int idr_handle; 1451 uint64_t size; 1452 void *mem; 1453 int r; 1454 1455 dmabuf = dma_buf_get(args->dmabuf_fd); 1456 if (IS_ERR(dmabuf)) 1457 return PTR_ERR(dmabuf); 1458 1459 mutex_lock(&p->mutex); 1460 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1461 if (!pdd) { 1462 r = -EINVAL; 1463 goto err_unlock; 1464 } 1465 1466 pdd = kfd_bind_process_to_device(pdd->dev, p); 1467 if (IS_ERR(pdd)) { 1468 r = PTR_ERR(pdd); 1469 goto err_unlock; 1470 } 1471 1472 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf, 1473 args->va_addr, pdd->drm_priv, 1474 (struct kgd_mem **)&mem, &size, 1475 NULL); 1476 if (r) 1477 goto err_unlock; 1478 1479 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1480 if (idr_handle < 0) { 1481 r = -EFAULT; 1482 goto err_free; 1483 } 1484 1485 mutex_unlock(&p->mutex); 1486 dma_buf_put(dmabuf); 1487 1488 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1489 1490 return 0; 1491 1492 err_free: 1493 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1494 pdd->drm_priv, NULL); 1495 err_unlock: 1496 mutex_unlock(&p->mutex); 1497 dma_buf_put(dmabuf); 1498 return r; 1499 } 1500 1501 /* Handle requests for watching SMI events */ 1502 static int kfd_ioctl_smi_events(struct file *filep, 1503 struct kfd_process *p, void *data) 1504 { 1505 struct kfd_ioctl_smi_events_args *args = data; 1506 struct kfd_process_device *pdd; 1507 1508 mutex_lock(&p->mutex); 1509 1510 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1511 mutex_unlock(&p->mutex); 1512 if (!pdd) 1513 return -EINVAL; 1514 1515 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1516 } 1517 1518 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1519 struct kfd_process *p, void *data) 1520 { 1521 struct kfd_ioctl_set_xnack_mode_args *args = data; 1522 int r = 0; 1523 1524 mutex_lock(&p->mutex); 1525 if (args->xnack_enabled >= 0) { 1526 if (!list_empty(&p->pqm.queues)) { 1527 pr_debug("Process has user queues running\n"); 1528 mutex_unlock(&p->mutex); 1529 return -EBUSY; 1530 } 1531 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) 1532 r = -EPERM; 1533 else 1534 p->xnack_enabled = args->xnack_enabled; 1535 } else { 1536 args->xnack_enabled = p->xnack_enabled; 1537 } 1538 mutex_unlock(&p->mutex); 1539 1540 return r; 1541 } 1542 1543 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1544 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1545 { 1546 struct kfd_ioctl_svm_args *args = data; 1547 int r = 0; 1548 1549 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1550 args->start_addr, args->size, args->op, args->nattr); 1551 1552 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1553 return -EINVAL; 1554 if (!args->start_addr || !args->size) 1555 return -EINVAL; 1556 1557 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1558 args->attrs); 1559 1560 return r; 1561 } 1562 #else 1563 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1564 { 1565 return -EPERM; 1566 } 1567 #endif 1568 1569 static int criu_checkpoint_process(struct kfd_process *p, 1570 uint8_t __user *user_priv_data, 1571 uint64_t *priv_offset) 1572 { 1573 struct kfd_criu_process_priv_data process_priv; 1574 int ret; 1575 1576 memset(&process_priv, 0, sizeof(process_priv)); 1577 1578 process_priv.version = KFD_CRIU_PRIV_VERSION; 1579 /* For CR, we don't consider negative xnack mode which is used for 1580 * querying without changing it, here 0 simply means disabled and 1 1581 * means enabled so retry for finding a valid PTE. 1582 */ 1583 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1584 1585 ret = copy_to_user(user_priv_data + *priv_offset, 1586 &process_priv, sizeof(process_priv)); 1587 1588 if (ret) { 1589 pr_err("Failed to copy process information to user\n"); 1590 ret = -EFAULT; 1591 } 1592 1593 *priv_offset += sizeof(process_priv); 1594 return ret; 1595 } 1596 1597 static int criu_checkpoint_devices(struct kfd_process *p, 1598 uint32_t num_devices, 1599 uint8_t __user *user_addr, 1600 uint8_t __user *user_priv_data, 1601 uint64_t *priv_offset) 1602 { 1603 struct kfd_criu_device_priv_data *device_priv = NULL; 1604 struct kfd_criu_device_bucket *device_buckets = NULL; 1605 int ret = 0, i; 1606 1607 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1608 if (!device_buckets) { 1609 ret = -ENOMEM; 1610 goto exit; 1611 } 1612 1613 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1614 if (!device_priv) { 1615 ret = -ENOMEM; 1616 goto exit; 1617 } 1618 1619 for (i = 0; i < num_devices; i++) { 1620 struct kfd_process_device *pdd = p->pdds[i]; 1621 1622 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1623 device_buckets[i].actual_gpu_id = pdd->dev->id; 1624 1625 /* 1626 * priv_data does not contain useful information for now and is reserved for 1627 * future use, so we do not set its contents. 1628 */ 1629 } 1630 1631 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1632 if (ret) { 1633 pr_err("Failed to copy device information to user\n"); 1634 ret = -EFAULT; 1635 goto exit; 1636 } 1637 1638 ret = copy_to_user(user_priv_data + *priv_offset, 1639 device_priv, 1640 num_devices * sizeof(*device_priv)); 1641 if (ret) { 1642 pr_err("Failed to copy device information to user\n"); 1643 ret = -EFAULT; 1644 } 1645 *priv_offset += num_devices * sizeof(*device_priv); 1646 1647 exit: 1648 kvfree(device_buckets); 1649 kvfree(device_priv); 1650 return ret; 1651 } 1652 1653 static uint32_t get_process_num_bos(struct kfd_process *p) 1654 { 1655 uint32_t num_of_bos = 0; 1656 int i; 1657 1658 /* Run over all PDDs of the process */ 1659 for (i = 0; i < p->n_pdds; i++) { 1660 struct kfd_process_device *pdd = p->pdds[i]; 1661 void *mem; 1662 int id; 1663 1664 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1665 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1666 1667 if ((uint64_t)kgd_mem->va > pdd->gpuvm_base) 1668 num_of_bos++; 1669 } 1670 } 1671 return num_of_bos; 1672 } 1673 1674 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags, 1675 u32 *shared_fd) 1676 { 1677 struct dma_buf *dmabuf; 1678 int ret; 1679 1680 dmabuf = amdgpu_gem_prime_export(gobj, flags); 1681 if (IS_ERR(dmabuf)) { 1682 ret = PTR_ERR(dmabuf); 1683 pr_err("dmabuf export failed for the BO\n"); 1684 return ret; 1685 } 1686 1687 ret = dma_buf_fd(dmabuf, flags); 1688 if (ret < 0) { 1689 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1690 goto out_free_dmabuf; 1691 } 1692 1693 *shared_fd = ret; 1694 return 0; 1695 1696 out_free_dmabuf: 1697 dma_buf_put(dmabuf); 1698 return ret; 1699 } 1700 1701 static int criu_checkpoint_bos(struct kfd_process *p, 1702 uint32_t num_bos, 1703 uint8_t __user *user_bos, 1704 uint8_t __user *user_priv_data, 1705 uint64_t *priv_offset) 1706 { 1707 struct kfd_criu_bo_bucket *bo_buckets; 1708 struct kfd_criu_bo_priv_data *bo_privs; 1709 int ret = 0, pdd_index, bo_index = 0, id; 1710 void *mem; 1711 1712 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1713 if (!bo_buckets) 1714 return -ENOMEM; 1715 1716 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1717 if (!bo_privs) { 1718 ret = -ENOMEM; 1719 goto exit; 1720 } 1721 1722 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1723 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1724 struct amdgpu_bo *dumper_bo; 1725 struct kgd_mem *kgd_mem; 1726 1727 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1728 struct kfd_criu_bo_bucket *bo_bucket; 1729 struct kfd_criu_bo_priv_data *bo_priv; 1730 int i, dev_idx = 0; 1731 1732 if (!mem) { 1733 ret = -ENOMEM; 1734 goto exit; 1735 } 1736 1737 kgd_mem = (struct kgd_mem *)mem; 1738 dumper_bo = kgd_mem->bo; 1739 1740 if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base) 1741 continue; 1742 1743 bo_bucket = &bo_buckets[bo_index]; 1744 bo_priv = &bo_privs[bo_index]; 1745 1746 bo_bucket->gpu_id = pdd->user_gpu_id; 1747 bo_bucket->addr = (uint64_t)kgd_mem->va; 1748 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1749 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1750 bo_priv->idr_handle = id; 1751 1752 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1753 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1754 &bo_priv->user_addr); 1755 if (ret) { 1756 pr_err("Failed to obtain user address for user-pointer bo\n"); 1757 goto exit; 1758 } 1759 } 1760 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1761 ret = criu_get_prime_handle(&dumper_bo->tbo.base, 1762 bo_bucket->alloc_flags & 1763 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1764 &bo_bucket->dmabuf_fd); 1765 if (ret) 1766 goto exit; 1767 } 1768 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1769 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1770 KFD_MMAP_GPU_ID(pdd->dev->id); 1771 else if (bo_bucket->alloc_flags & 1772 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1773 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1774 KFD_MMAP_GPU_ID(pdd->dev->id); 1775 else 1776 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1777 1778 for (i = 0; i < p->n_pdds; i++) { 1779 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1780 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1781 } 1782 1783 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1784 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1785 bo_bucket->size, 1786 bo_bucket->addr, 1787 bo_bucket->offset, 1788 bo_bucket->gpu_id, 1789 bo_bucket->alloc_flags, 1790 bo_priv->idr_handle); 1791 bo_index++; 1792 } 1793 } 1794 1795 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1796 if (ret) { 1797 pr_err("Failed to copy BO information to user\n"); 1798 ret = -EFAULT; 1799 goto exit; 1800 } 1801 1802 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1803 if (ret) { 1804 pr_err("Failed to copy BO priv information to user\n"); 1805 ret = -EFAULT; 1806 goto exit; 1807 } 1808 1809 *priv_offset += num_bos * sizeof(*bo_privs); 1810 1811 exit: 1812 while (ret && bo_index--) { 1813 if (bo_buckets[bo_index].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1814 close_fd(bo_buckets[bo_index].dmabuf_fd); 1815 } 1816 1817 kvfree(bo_buckets); 1818 kvfree(bo_privs); 1819 return ret; 1820 } 1821 1822 static int criu_get_process_object_info(struct kfd_process *p, 1823 uint32_t *num_devices, 1824 uint32_t *num_bos, 1825 uint32_t *num_objects, 1826 uint64_t *objs_priv_size) 1827 { 1828 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 1829 uint32_t num_queues, num_events, num_svm_ranges; 1830 int ret; 1831 1832 *num_devices = p->n_pdds; 1833 *num_bos = get_process_num_bos(p); 1834 1835 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 1836 if (ret) 1837 return ret; 1838 1839 num_events = kfd_get_num_events(p); 1840 1841 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 1842 if (ret) 1843 return ret; 1844 1845 *num_objects = num_queues + num_events + num_svm_ranges; 1846 1847 if (objs_priv_size) { 1848 priv_size = sizeof(struct kfd_criu_process_priv_data); 1849 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 1850 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 1851 priv_size += queues_priv_data_size; 1852 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 1853 priv_size += svm_priv_data_size; 1854 *objs_priv_size = priv_size; 1855 } 1856 return 0; 1857 } 1858 1859 static int criu_checkpoint(struct file *filep, 1860 struct kfd_process *p, 1861 struct kfd_ioctl_criu_args *args) 1862 { 1863 int ret; 1864 uint32_t num_devices, num_bos, num_objects; 1865 uint64_t priv_size, priv_offset = 0; 1866 1867 if (!args->devices || !args->bos || !args->priv_data) 1868 return -EINVAL; 1869 1870 mutex_lock(&p->mutex); 1871 1872 if (!p->n_pdds) { 1873 pr_err("No pdd for given process\n"); 1874 ret = -ENODEV; 1875 goto exit_unlock; 1876 } 1877 1878 /* Confirm all process queues are evicted */ 1879 if (!p->queues_paused) { 1880 pr_err("Cannot dump process when queues are not in evicted state\n"); 1881 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 1882 ret = -EINVAL; 1883 goto exit_unlock; 1884 } 1885 1886 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 1887 if (ret) 1888 goto exit_unlock; 1889 1890 if (num_devices != args->num_devices || 1891 num_bos != args->num_bos || 1892 num_objects != args->num_objects || 1893 priv_size != args->priv_data_size) { 1894 1895 ret = -EINVAL; 1896 goto exit_unlock; 1897 } 1898 1899 /* each function will store private data inside priv_data and adjust priv_offset */ 1900 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 1901 if (ret) 1902 goto exit_unlock; 1903 1904 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 1905 (uint8_t __user *)args->priv_data, &priv_offset); 1906 if (ret) 1907 goto exit_unlock; 1908 1909 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 1910 (uint8_t __user *)args->priv_data, &priv_offset); 1911 if (ret) 1912 goto exit_unlock; 1913 1914 if (num_objects) { 1915 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 1916 &priv_offset); 1917 if (ret) 1918 goto close_bo_fds; 1919 1920 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 1921 &priv_offset); 1922 if (ret) 1923 goto close_bo_fds; 1924 1925 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 1926 if (ret) 1927 goto close_bo_fds; 1928 } 1929 1930 close_bo_fds: 1931 if (ret) { 1932 /* If IOCTL returns err, user assumes all FDs opened in criu_dump_bos are closed */ 1933 uint32_t i; 1934 struct kfd_criu_bo_bucket *bo_buckets = (struct kfd_criu_bo_bucket *) args->bos; 1935 1936 for (i = 0; i < num_bos; i++) { 1937 if (bo_buckets[i].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1938 close_fd(bo_buckets[i].dmabuf_fd); 1939 } 1940 } 1941 1942 exit_unlock: 1943 mutex_unlock(&p->mutex); 1944 if (ret) 1945 pr_err("Failed to dump CRIU ret:%d\n", ret); 1946 else 1947 pr_debug("CRIU dump ret:%d\n", ret); 1948 1949 return ret; 1950 } 1951 1952 static int criu_restore_process(struct kfd_process *p, 1953 struct kfd_ioctl_criu_args *args, 1954 uint64_t *priv_offset, 1955 uint64_t max_priv_data_size) 1956 { 1957 int ret = 0; 1958 struct kfd_criu_process_priv_data process_priv; 1959 1960 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 1961 return -EINVAL; 1962 1963 ret = copy_from_user(&process_priv, 1964 (void __user *)(args->priv_data + *priv_offset), 1965 sizeof(process_priv)); 1966 if (ret) { 1967 pr_err("Failed to copy process private information from user\n"); 1968 ret = -EFAULT; 1969 goto exit; 1970 } 1971 *priv_offset += sizeof(process_priv); 1972 1973 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 1974 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 1975 process_priv.version, KFD_CRIU_PRIV_VERSION); 1976 return -EINVAL; 1977 } 1978 1979 pr_debug("Setting XNACK mode\n"); 1980 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 1981 pr_err("xnack mode cannot be set\n"); 1982 ret = -EPERM; 1983 goto exit; 1984 } else { 1985 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 1986 p->xnack_enabled = process_priv.xnack_mode; 1987 } 1988 1989 exit: 1990 return ret; 1991 } 1992 1993 static int criu_restore_devices(struct kfd_process *p, 1994 struct kfd_ioctl_criu_args *args, 1995 uint64_t *priv_offset, 1996 uint64_t max_priv_data_size) 1997 { 1998 struct kfd_criu_device_bucket *device_buckets; 1999 struct kfd_criu_device_priv_data *device_privs; 2000 int ret = 0; 2001 uint32_t i; 2002 2003 if (args->num_devices != p->n_pdds) 2004 return -EINVAL; 2005 2006 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2007 return -EINVAL; 2008 2009 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2010 if (!device_buckets) 2011 return -ENOMEM; 2012 2013 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2014 args->num_devices * sizeof(*device_buckets)); 2015 if (ret) { 2016 pr_err("Failed to copy devices buckets from user\n"); 2017 ret = -EFAULT; 2018 goto exit; 2019 } 2020 2021 for (i = 0; i < args->num_devices; i++) { 2022 struct kfd_dev *dev; 2023 struct kfd_process_device *pdd; 2024 struct file *drm_file; 2025 2026 /* device private data is not currently used */ 2027 2028 if (!device_buckets[i].user_gpu_id) { 2029 pr_err("Invalid user gpu_id\n"); 2030 ret = -EINVAL; 2031 goto exit; 2032 } 2033 2034 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2035 if (!dev) { 2036 pr_err("Failed to find device with gpu_id = %x\n", 2037 device_buckets[i].actual_gpu_id); 2038 ret = -EINVAL; 2039 goto exit; 2040 } 2041 2042 pdd = kfd_get_process_device_data(dev, p); 2043 if (!pdd) { 2044 pr_err("Failed to get pdd for gpu_id = %x\n", 2045 device_buckets[i].actual_gpu_id); 2046 ret = -EINVAL; 2047 goto exit; 2048 } 2049 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2050 2051 drm_file = fget(device_buckets[i].drm_fd); 2052 if (!drm_file) { 2053 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2054 device_buckets[i].drm_fd); 2055 ret = -EINVAL; 2056 goto exit; 2057 } 2058 2059 if (pdd->drm_file) { 2060 ret = -EINVAL; 2061 goto exit; 2062 } 2063 2064 /* create the vm using render nodes for kfd pdd */ 2065 if (kfd_process_device_init_vm(pdd, drm_file)) { 2066 pr_err("could not init vm for given pdd\n"); 2067 /* On success, the PDD keeps the drm_file reference */ 2068 fput(drm_file); 2069 ret = -EINVAL; 2070 goto exit; 2071 } 2072 /* 2073 * pdd now already has the vm bound to render node so below api won't create a new 2074 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2075 * for iommu v2 binding and runtime pm. 2076 */ 2077 pdd = kfd_bind_process_to_device(dev, p); 2078 if (IS_ERR(pdd)) { 2079 ret = PTR_ERR(pdd); 2080 goto exit; 2081 } 2082 } 2083 2084 /* 2085 * We are not copying device private data from user as we are not using the data for now, 2086 * but we still adjust for its private data. 2087 */ 2088 *priv_offset += args->num_devices * sizeof(*device_privs); 2089 2090 exit: 2091 kfree(device_buckets); 2092 return ret; 2093 } 2094 2095 static int criu_restore_bos(struct kfd_process *p, 2096 struct kfd_ioctl_criu_args *args, 2097 uint64_t *priv_offset, 2098 uint64_t max_priv_data_size) 2099 { 2100 struct kfd_criu_bo_bucket *bo_buckets; 2101 struct kfd_criu_bo_priv_data *bo_privs; 2102 const bool criu_resume = true; 2103 bool flush_tlbs = false; 2104 int ret = 0, j = 0; 2105 uint32_t i = 0; 2106 2107 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2108 return -EINVAL; 2109 2110 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2111 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2112 2113 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2114 if (!bo_buckets) 2115 return -ENOMEM; 2116 2117 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2118 args->num_bos * sizeof(*bo_buckets)); 2119 if (ret) { 2120 pr_err("Failed to copy BOs information from user\n"); 2121 ret = -EFAULT; 2122 goto exit; 2123 } 2124 2125 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2126 if (!bo_privs) { 2127 ret = -ENOMEM; 2128 goto exit; 2129 } 2130 2131 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2132 args->num_bos * sizeof(*bo_privs)); 2133 if (ret) { 2134 pr_err("Failed to copy BOs information from user\n"); 2135 ret = -EFAULT; 2136 goto exit; 2137 } 2138 *priv_offset += args->num_bos * sizeof(*bo_privs); 2139 2140 /* Create and map new BOs */ 2141 for (; i < args->num_bos; i++) { 2142 struct kfd_criu_bo_bucket *bo_bucket; 2143 struct kfd_criu_bo_priv_data *bo_priv; 2144 struct kfd_dev *dev; 2145 struct kfd_process_device *pdd; 2146 struct kgd_mem *kgd_mem; 2147 void *mem; 2148 u64 offset; 2149 int idr_handle; 2150 2151 bo_bucket = &bo_buckets[i]; 2152 bo_priv = &bo_privs[i]; 2153 2154 pr_debug("kfd restore ioctl - bo_bucket[%d]:\n", i); 2155 pr_debug("size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 2156 "gpu_id = 0x%x alloc_flags = 0x%x\n" 2157 "idr_handle = 0x%x\n", 2158 bo_bucket->size, 2159 bo_bucket->addr, 2160 bo_bucket->offset, 2161 bo_bucket->gpu_id, 2162 bo_bucket->alloc_flags, 2163 bo_priv->idr_handle); 2164 2165 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2166 if (!pdd) { 2167 pr_err("Failed to get pdd\n"); 2168 ret = -ENODEV; 2169 goto exit; 2170 } 2171 dev = pdd->dev; 2172 2173 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2174 pr_debug("restore ioctl: KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL\n"); 2175 if (bo_bucket->size != kfd_doorbell_process_slice(dev)) { 2176 ret = -EINVAL; 2177 goto exit; 2178 } 2179 offset = kfd_get_process_doorbells(pdd); 2180 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2181 /* MMIO BOs need remapped bus address */ 2182 pr_debug("restore ioctl :KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP\n"); 2183 if (bo_bucket->size != PAGE_SIZE) { 2184 pr_err("Invalid page size\n"); 2185 ret = -EINVAL; 2186 goto exit; 2187 } 2188 offset = dev->adev->rmmio_remap.bus_addr; 2189 if (!offset) { 2190 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2191 ret = -ENOMEM; 2192 goto exit; 2193 } 2194 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2195 offset = bo_priv->user_addr; 2196 } 2197 /* Create the BO */ 2198 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(dev->adev, 2199 bo_bucket->addr, 2200 bo_bucket->size, 2201 pdd->drm_priv, 2202 (struct kgd_mem **) &mem, 2203 &offset, 2204 bo_bucket->alloc_flags, 2205 criu_resume); 2206 if (ret) { 2207 pr_err("Could not create the BO\n"); 2208 ret = -ENOMEM; 2209 goto exit; 2210 } 2211 pr_debug("New BO created: size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n", 2212 bo_bucket->size, bo_bucket->addr, offset); 2213 2214 /* Restore previuos IDR handle */ 2215 pr_debug("Restoring old IDR handle for the BO"); 2216 idr_handle = idr_alloc(&pdd->alloc_idr, mem, 2217 bo_priv->idr_handle, 2218 bo_priv->idr_handle + 1, GFP_KERNEL); 2219 2220 if (idr_handle < 0) { 2221 pr_err("Could not allocate idr\n"); 2222 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, 2223 (struct kgd_mem *)mem, 2224 pdd->drm_priv, NULL); 2225 ret = -ENOMEM; 2226 goto exit; 2227 } 2228 2229 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2230 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | 2231 KFD_MMAP_GPU_ID(pdd->dev->id); 2232 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2233 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | 2234 KFD_MMAP_GPU_ID(pdd->dev->id); 2235 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2236 bo_bucket->restored_offset = offset; 2237 pr_debug("updating offset for GTT\n"); 2238 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2239 bo_bucket->restored_offset = offset; 2240 /* Update the VRAM usage count */ 2241 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2242 pr_debug("updating offset for VRAM\n"); 2243 } 2244 2245 /* now map these BOs to GPU/s */ 2246 for (j = 0; j < p->n_pdds; j++) { 2247 struct kfd_dev *peer; 2248 struct kfd_process_device *peer_pdd; 2249 bool table_freed = false; 2250 2251 if (!bo_priv->mapped_gpuids[j]) 2252 break; 2253 2254 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2255 if (!peer_pdd) { 2256 ret = -EINVAL; 2257 goto exit; 2258 } 2259 peer = peer_pdd->dev; 2260 2261 peer_pdd = kfd_bind_process_to_device(peer, p); 2262 if (IS_ERR(peer_pdd)) { 2263 ret = PTR_ERR(peer_pdd); 2264 goto exit; 2265 } 2266 pr_debug("map mem in restore ioctl -> 0x%llx\n", 2267 ((struct kgd_mem *)mem)->va); 2268 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, 2269 (struct kgd_mem *)mem, peer_pdd->drm_priv, &table_freed); 2270 if (ret) { 2271 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2272 goto exit; 2273 } 2274 if (table_freed) 2275 flush_tlbs = true; 2276 } 2277 2278 ret = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, 2279 (struct kgd_mem *) mem, true); 2280 if (ret) { 2281 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 2282 goto exit; 2283 } 2284 2285 pr_debug("map memory was successful for the BO\n"); 2286 /* create the dmabuf object and export the bo */ 2287 kgd_mem = (struct kgd_mem *)mem; 2288 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2289 ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, 2290 DRM_RDWR, 2291 &bo_bucket->dmabuf_fd); 2292 if (ret) 2293 goto exit; 2294 } 2295 } /* done */ 2296 2297 if (flush_tlbs) { 2298 /* Flush TLBs after waiting for the page table updates to complete */ 2299 for (j = 0; j < p->n_pdds; j++) { 2300 struct kfd_dev *peer; 2301 struct kfd_process_device *pdd = p->pdds[j]; 2302 struct kfd_process_device *peer_pdd; 2303 2304 peer = kfd_device_by_id(pdd->dev->id); 2305 if (WARN_ON_ONCE(!peer)) 2306 continue; 2307 peer_pdd = kfd_get_process_device_data(peer, p); 2308 if (WARN_ON_ONCE(!peer_pdd)) 2309 continue; 2310 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 2311 } 2312 } 2313 2314 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2315 ret = copy_to_user((void __user *)args->bos, 2316 bo_buckets, 2317 (args->num_bos * sizeof(*bo_buckets))); 2318 if (ret) 2319 ret = -EFAULT; 2320 2321 exit: 2322 while (ret && i--) { 2323 if (bo_buckets[i].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 2324 close_fd(bo_buckets[i].dmabuf_fd); 2325 } 2326 kvfree(bo_buckets); 2327 kvfree(bo_privs); 2328 return ret; 2329 } 2330 2331 static int criu_restore_objects(struct file *filep, 2332 struct kfd_process *p, 2333 struct kfd_ioctl_criu_args *args, 2334 uint64_t *priv_offset, 2335 uint64_t max_priv_data_size) 2336 { 2337 int ret = 0; 2338 uint32_t i; 2339 2340 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2341 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2342 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2343 2344 for (i = 0; i < args->num_objects; i++) { 2345 uint32_t object_type; 2346 2347 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2348 pr_err("Invalid private data size\n"); 2349 return -EINVAL; 2350 } 2351 2352 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2353 if (ret) { 2354 pr_err("Failed to copy private information from user\n"); 2355 goto exit; 2356 } 2357 2358 switch (object_type) { 2359 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2360 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2361 priv_offset, max_priv_data_size); 2362 if (ret) 2363 goto exit; 2364 break; 2365 case KFD_CRIU_OBJECT_TYPE_EVENT: 2366 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2367 priv_offset, max_priv_data_size); 2368 if (ret) 2369 goto exit; 2370 break; 2371 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2372 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2373 priv_offset, max_priv_data_size); 2374 if (ret) 2375 goto exit; 2376 break; 2377 default: 2378 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2379 ret = -EINVAL; 2380 goto exit; 2381 } 2382 } 2383 exit: 2384 return ret; 2385 } 2386 2387 static int criu_restore(struct file *filep, 2388 struct kfd_process *p, 2389 struct kfd_ioctl_criu_args *args) 2390 { 2391 uint64_t priv_offset = 0; 2392 int ret = 0; 2393 2394 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2395 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2396 2397 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2398 !args->num_devices || !args->num_bos) 2399 return -EINVAL; 2400 2401 mutex_lock(&p->mutex); 2402 2403 /* 2404 * Set the process to evicted state to avoid running any new queues before all the memory 2405 * mappings are ready. 2406 */ 2407 ret = kfd_process_evict_queues(p); 2408 if (ret) 2409 goto exit_unlock; 2410 2411 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2412 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2413 if (ret) 2414 goto exit_unlock; 2415 2416 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2417 if (ret) 2418 goto exit_unlock; 2419 2420 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2421 if (ret) 2422 goto exit_unlock; 2423 2424 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2425 if (ret) 2426 goto exit_unlock; 2427 2428 if (priv_offset != args->priv_data_size) { 2429 pr_err("Invalid private data size\n"); 2430 ret = -EINVAL; 2431 } 2432 2433 exit_unlock: 2434 mutex_unlock(&p->mutex); 2435 if (ret) 2436 pr_err("Failed to restore CRIU ret:%d\n", ret); 2437 else 2438 pr_debug("CRIU restore successful\n"); 2439 2440 return ret; 2441 } 2442 2443 static int criu_unpause(struct file *filep, 2444 struct kfd_process *p, 2445 struct kfd_ioctl_criu_args *args) 2446 { 2447 int ret; 2448 2449 mutex_lock(&p->mutex); 2450 2451 if (!p->queues_paused) { 2452 mutex_unlock(&p->mutex); 2453 return -EINVAL; 2454 } 2455 2456 ret = kfd_process_restore_queues(p); 2457 if (ret) 2458 pr_err("Failed to unpause queues ret:%d\n", ret); 2459 else 2460 p->queues_paused = false; 2461 2462 mutex_unlock(&p->mutex); 2463 2464 return ret; 2465 } 2466 2467 static int criu_resume(struct file *filep, 2468 struct kfd_process *p, 2469 struct kfd_ioctl_criu_args *args) 2470 { 2471 struct kfd_process *target = NULL; 2472 struct pid *pid = NULL; 2473 int ret = 0; 2474 2475 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2476 args->pid); 2477 2478 pid = find_get_pid(args->pid); 2479 if (!pid) { 2480 pr_err("Cannot find pid info for %i\n", args->pid); 2481 return -ESRCH; 2482 } 2483 2484 pr_debug("calling kfd_lookup_process_by_pid\n"); 2485 target = kfd_lookup_process_by_pid(pid); 2486 2487 put_pid(pid); 2488 2489 if (!target) { 2490 pr_debug("Cannot find process info for %i\n", args->pid); 2491 return -ESRCH; 2492 } 2493 2494 mutex_lock(&target->mutex); 2495 ret = kfd_criu_resume_svm(target); 2496 if (ret) { 2497 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2498 goto exit; 2499 } 2500 2501 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2502 if (ret) 2503 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2504 2505 exit: 2506 mutex_unlock(&target->mutex); 2507 2508 kfd_unref_process(target); 2509 return ret; 2510 } 2511 2512 static int criu_process_info(struct file *filep, 2513 struct kfd_process *p, 2514 struct kfd_ioctl_criu_args *args) 2515 { 2516 int ret = 0; 2517 2518 mutex_lock(&p->mutex); 2519 2520 if (!p->n_pdds) { 2521 pr_err("No pdd for given process\n"); 2522 ret = -ENODEV; 2523 goto err_unlock; 2524 } 2525 2526 ret = kfd_process_evict_queues(p); 2527 if (ret) 2528 goto err_unlock; 2529 2530 p->queues_paused = true; 2531 2532 args->pid = task_pid_nr_ns(p->lead_thread, 2533 task_active_pid_ns(p->lead_thread)); 2534 2535 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2536 &args->num_objects, &args->priv_data_size); 2537 if (ret) 2538 goto err_unlock; 2539 2540 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2541 args->num_devices, args->num_bos, args->num_objects, 2542 args->priv_data_size); 2543 2544 err_unlock: 2545 if (ret) { 2546 kfd_process_restore_queues(p); 2547 p->queues_paused = false; 2548 } 2549 mutex_unlock(&p->mutex); 2550 return ret; 2551 } 2552 2553 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2554 { 2555 struct kfd_ioctl_criu_args *args = data; 2556 int ret; 2557 2558 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2559 switch (args->op) { 2560 case KFD_CRIU_OP_PROCESS_INFO: 2561 ret = criu_process_info(filep, p, args); 2562 break; 2563 case KFD_CRIU_OP_CHECKPOINT: 2564 ret = criu_checkpoint(filep, p, args); 2565 break; 2566 case KFD_CRIU_OP_UNPAUSE: 2567 ret = criu_unpause(filep, p, args); 2568 break; 2569 case KFD_CRIU_OP_RESTORE: 2570 ret = criu_restore(filep, p, args); 2571 break; 2572 case KFD_CRIU_OP_RESUME: 2573 ret = criu_resume(filep, p, args); 2574 break; 2575 default: 2576 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2577 ret = -EINVAL; 2578 break; 2579 } 2580 2581 if (ret) 2582 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2583 2584 return ret; 2585 } 2586 2587 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 2588 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 2589 .cmd_drv = 0, .name = #ioctl} 2590 2591 /** Ioctl table */ 2592 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 2593 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 2594 kfd_ioctl_get_version, 0), 2595 2596 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 2597 kfd_ioctl_create_queue, 0), 2598 2599 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 2600 kfd_ioctl_destroy_queue, 0), 2601 2602 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 2603 kfd_ioctl_set_memory_policy, 0), 2604 2605 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 2606 kfd_ioctl_get_clock_counters, 0), 2607 2608 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 2609 kfd_ioctl_get_process_apertures, 0), 2610 2611 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 2612 kfd_ioctl_update_queue, 0), 2613 2614 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 2615 kfd_ioctl_create_event, 0), 2616 2617 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 2618 kfd_ioctl_destroy_event, 0), 2619 2620 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 2621 kfd_ioctl_set_event, 0), 2622 2623 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 2624 kfd_ioctl_reset_event, 0), 2625 2626 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 2627 kfd_ioctl_wait_events, 0), 2628 2629 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 2630 kfd_ioctl_dbg_register, 0), 2631 2632 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 2633 kfd_ioctl_dbg_unregister, 0), 2634 2635 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 2636 kfd_ioctl_dbg_address_watch, 0), 2637 2638 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 2639 kfd_ioctl_dbg_wave_control, 0), 2640 2641 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 2642 kfd_ioctl_set_scratch_backing_va, 0), 2643 2644 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 2645 kfd_ioctl_get_tile_config, 0), 2646 2647 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 2648 kfd_ioctl_set_trap_handler, 0), 2649 2650 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 2651 kfd_ioctl_get_process_apertures_new, 0), 2652 2653 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 2654 kfd_ioctl_acquire_vm, 0), 2655 2656 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 2657 kfd_ioctl_alloc_memory_of_gpu, 0), 2658 2659 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 2660 kfd_ioctl_free_memory_of_gpu, 0), 2661 2662 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 2663 kfd_ioctl_map_memory_to_gpu, 0), 2664 2665 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 2666 kfd_ioctl_unmap_memory_from_gpu, 0), 2667 2668 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 2669 kfd_ioctl_set_cu_mask, 0), 2670 2671 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 2672 kfd_ioctl_get_queue_wave_state, 0), 2673 2674 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 2675 kfd_ioctl_get_dmabuf_info, 0), 2676 2677 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 2678 kfd_ioctl_import_dmabuf, 0), 2679 2680 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 2681 kfd_ioctl_alloc_queue_gws, 0), 2682 2683 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 2684 kfd_ioctl_smi_events, 0), 2685 2686 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 2687 2688 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 2689 kfd_ioctl_set_xnack_mode, 0), 2690 2691 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 2692 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 2693 2694 }; 2695 2696 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 2697 2698 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 2699 { 2700 struct kfd_process *process; 2701 amdkfd_ioctl_t *func; 2702 const struct amdkfd_ioctl_desc *ioctl = NULL; 2703 unsigned int nr = _IOC_NR(cmd); 2704 char stack_kdata[128]; 2705 char *kdata = NULL; 2706 unsigned int usize, asize; 2707 int retcode = -EINVAL; 2708 bool ptrace_attached = false; 2709 2710 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 2711 goto err_i1; 2712 2713 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 2714 u32 amdkfd_size; 2715 2716 ioctl = &amdkfd_ioctls[nr]; 2717 2718 amdkfd_size = _IOC_SIZE(ioctl->cmd); 2719 usize = asize = _IOC_SIZE(cmd); 2720 if (amdkfd_size > asize) 2721 asize = amdkfd_size; 2722 2723 cmd = ioctl->cmd; 2724 } else 2725 goto err_i1; 2726 2727 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 2728 2729 /* Get the process struct from the filep. Only the process 2730 * that opened /dev/kfd can use the file descriptor. Child 2731 * processes need to create their own KFD device context. 2732 */ 2733 process = filep->private_data; 2734 2735 rcu_read_lock(); 2736 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 2737 ptrace_parent(process->lead_thread) == current) 2738 ptrace_attached = true; 2739 rcu_read_unlock(); 2740 2741 if (process->lead_thread != current->group_leader 2742 && !ptrace_attached) { 2743 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 2744 retcode = -EBADF; 2745 goto err_i1; 2746 } 2747 2748 /* Do not trust userspace, use our own definition */ 2749 func = ioctl->func; 2750 2751 if (unlikely(!func)) { 2752 dev_dbg(kfd_device, "no function\n"); 2753 retcode = -EINVAL; 2754 goto err_i1; 2755 } 2756 2757 /* 2758 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 2759 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 2760 * more priviledged access. 2761 */ 2762 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 2763 if (!capable(CAP_CHECKPOINT_RESTORE) && 2764 !capable(CAP_SYS_ADMIN)) { 2765 retcode = -EACCES; 2766 goto err_i1; 2767 } 2768 } 2769 2770 if (cmd & (IOC_IN | IOC_OUT)) { 2771 if (asize <= sizeof(stack_kdata)) { 2772 kdata = stack_kdata; 2773 } else { 2774 kdata = kmalloc(asize, GFP_KERNEL); 2775 if (!kdata) { 2776 retcode = -ENOMEM; 2777 goto err_i1; 2778 } 2779 } 2780 if (asize > usize) 2781 memset(kdata + usize, 0, asize - usize); 2782 } 2783 2784 if (cmd & IOC_IN) { 2785 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 2786 retcode = -EFAULT; 2787 goto err_i1; 2788 } 2789 } else if (cmd & IOC_OUT) { 2790 memset(kdata, 0, usize); 2791 } 2792 2793 retcode = func(filep, process, kdata); 2794 2795 if (cmd & IOC_OUT) 2796 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 2797 retcode = -EFAULT; 2798 2799 err_i1: 2800 if (!ioctl) 2801 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 2802 task_pid_nr(current), cmd, nr); 2803 2804 if (kdata != stack_kdata) 2805 kfree(kdata); 2806 2807 if (retcode) 2808 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 2809 nr, arg, retcode); 2810 2811 return retcode; 2812 } 2813 2814 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process, 2815 struct vm_area_struct *vma) 2816 { 2817 phys_addr_t address; 2818 int ret; 2819 2820 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 2821 return -EINVAL; 2822 2823 address = dev->adev->rmmio_remap.bus_addr; 2824 2825 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 2826 VM_DONTDUMP | VM_PFNMAP; 2827 2828 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 2829 2830 pr_debug("pasid 0x%x mapping mmio page\n" 2831 " target user address == 0x%08llX\n" 2832 " physical address == 0x%08llX\n" 2833 " vm_flags == 0x%04lX\n" 2834 " size == 0x%04lX\n", 2835 process->pasid, (unsigned long long) vma->vm_start, 2836 address, vma->vm_flags, PAGE_SIZE); 2837 2838 ret = io_remap_pfn_range(vma, 2839 vma->vm_start, 2840 address >> PAGE_SHIFT, 2841 PAGE_SIZE, 2842 vma->vm_page_prot); 2843 return ret; 2844 } 2845 2846 2847 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 2848 { 2849 struct kfd_process *process; 2850 struct kfd_dev *dev = NULL; 2851 unsigned long mmap_offset; 2852 unsigned int gpu_id; 2853 2854 process = kfd_get_process(current); 2855 if (IS_ERR(process)) 2856 return PTR_ERR(process); 2857 2858 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 2859 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 2860 if (gpu_id) 2861 dev = kfd_device_by_id(gpu_id); 2862 2863 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 2864 case KFD_MMAP_TYPE_DOORBELL: 2865 if (!dev) 2866 return -ENODEV; 2867 return kfd_doorbell_mmap(dev, process, vma); 2868 2869 case KFD_MMAP_TYPE_EVENTS: 2870 return kfd_event_mmap(process, vma); 2871 2872 case KFD_MMAP_TYPE_RESERVED_MEM: 2873 if (!dev) 2874 return -ENODEV; 2875 return kfd_reserved_mem_mmap(dev, process, vma); 2876 case KFD_MMAP_TYPE_MMIO: 2877 if (!dev) 2878 return -ENODEV; 2879 return kfd_mmio_mmap(dev, process, vma); 2880 } 2881 2882 return -EFAULT; 2883 } 2884