1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <asm/processor.h>
37 #include "kfd_priv.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_dbgmgr.h"
40 #include "amdgpu_amdkfd.h"
41 
42 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
43 static int kfd_open(struct inode *, struct file *);
44 static int kfd_mmap(struct file *, struct vm_area_struct *);
45 
46 static const char kfd_dev_name[] = "kfd";
47 
48 static const struct file_operations kfd_fops = {
49 	.owner = THIS_MODULE,
50 	.unlocked_ioctl = kfd_ioctl,
51 	.compat_ioctl = kfd_ioctl,
52 	.open = kfd_open,
53 	.mmap = kfd_mmap,
54 };
55 
56 static int kfd_char_dev_major = -1;
57 static struct class *kfd_class;
58 struct device *kfd_device;
59 
60 int kfd_chardev_init(void)
61 {
62 	int err = 0;
63 
64 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
65 	err = kfd_char_dev_major;
66 	if (err < 0)
67 		goto err_register_chrdev;
68 
69 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
70 	err = PTR_ERR(kfd_class);
71 	if (IS_ERR(kfd_class))
72 		goto err_class_create;
73 
74 	kfd_device = device_create(kfd_class, NULL,
75 					MKDEV(kfd_char_dev_major, 0),
76 					NULL, kfd_dev_name);
77 	err = PTR_ERR(kfd_device);
78 	if (IS_ERR(kfd_device))
79 		goto err_device_create;
80 
81 	return 0;
82 
83 err_device_create:
84 	class_destroy(kfd_class);
85 err_class_create:
86 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
87 err_register_chrdev:
88 	return err;
89 }
90 
91 void kfd_chardev_exit(void)
92 {
93 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
94 	class_destroy(kfd_class);
95 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
96 }
97 
98 struct device *kfd_chardev(void)
99 {
100 	return kfd_device;
101 }
102 
103 
104 static int kfd_open(struct inode *inode, struct file *filep)
105 {
106 	struct kfd_process *process;
107 	bool is_32bit_user_mode;
108 
109 	if (iminor(inode) != 0)
110 		return -ENODEV;
111 
112 	is_32bit_user_mode = in_compat_syscall();
113 
114 	if (is_32bit_user_mode) {
115 		dev_warn(kfd_device,
116 			"Process %d (32-bit) failed to open /dev/kfd\n"
117 			"32-bit processes are not supported by amdkfd\n",
118 			current->pid);
119 		return -EPERM;
120 	}
121 
122 	process = kfd_create_process(filep);
123 	if (IS_ERR(process))
124 		return PTR_ERR(process);
125 
126 	if (kfd_is_locked())
127 		return -EAGAIN;
128 
129 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
130 		process->pasid, process->is_32bit_user_mode);
131 
132 	return 0;
133 }
134 
135 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
136 					void *data)
137 {
138 	struct kfd_ioctl_get_version_args *args = data;
139 
140 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
141 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
142 
143 	return 0;
144 }
145 
146 static int set_queue_properties_from_user(struct queue_properties *q_properties,
147 				struct kfd_ioctl_create_queue_args *args)
148 {
149 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
150 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
151 		return -EINVAL;
152 	}
153 
154 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
155 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
156 		return -EINVAL;
157 	}
158 
159 	if ((args->ring_base_address) &&
160 		(!access_ok(VERIFY_WRITE,
161 			(const void __user *) args->ring_base_address,
162 			sizeof(uint64_t)))) {
163 		pr_err("Can't access ring base address\n");
164 		return -EFAULT;
165 	}
166 
167 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
168 		pr_err("Ring size must be a power of 2 or 0\n");
169 		return -EINVAL;
170 	}
171 
172 	if (!access_ok(VERIFY_WRITE,
173 			(const void __user *) args->read_pointer_address,
174 			sizeof(uint32_t))) {
175 		pr_err("Can't access read pointer\n");
176 		return -EFAULT;
177 	}
178 
179 	if (!access_ok(VERIFY_WRITE,
180 			(const void __user *) args->write_pointer_address,
181 			sizeof(uint32_t))) {
182 		pr_err("Can't access write pointer\n");
183 		return -EFAULT;
184 	}
185 
186 	if (args->eop_buffer_address &&
187 		!access_ok(VERIFY_WRITE,
188 			(const void __user *) args->eop_buffer_address,
189 			sizeof(uint32_t))) {
190 		pr_debug("Can't access eop buffer");
191 		return -EFAULT;
192 	}
193 
194 	if (args->ctx_save_restore_address &&
195 		!access_ok(VERIFY_WRITE,
196 			(const void __user *) args->ctx_save_restore_address,
197 			sizeof(uint32_t))) {
198 		pr_debug("Can't access ctx save restore buffer");
199 		return -EFAULT;
200 	}
201 
202 	q_properties->is_interop = false;
203 	q_properties->queue_percent = args->queue_percentage;
204 	q_properties->priority = args->queue_priority;
205 	q_properties->queue_address = args->ring_base_address;
206 	q_properties->queue_size = args->ring_size;
207 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
208 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
209 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
210 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
211 	q_properties->ctx_save_restore_area_address =
212 			args->ctx_save_restore_address;
213 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
214 	q_properties->ctl_stack_size = args->ctl_stack_size;
215 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
216 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
217 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
218 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
219 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
220 	else
221 		return -ENOTSUPP;
222 
223 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
224 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
225 	else
226 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
227 
228 	pr_debug("Queue Percentage: %d, %d\n",
229 			q_properties->queue_percent, args->queue_percentage);
230 
231 	pr_debug("Queue Priority: %d, %d\n",
232 			q_properties->priority, args->queue_priority);
233 
234 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
235 			q_properties->queue_address, args->ring_base_address);
236 
237 	pr_debug("Queue Size: 0x%llX, %u\n",
238 			q_properties->queue_size, args->ring_size);
239 
240 	pr_debug("Queue r/w Pointers: %px, %px\n",
241 			q_properties->read_ptr,
242 			q_properties->write_ptr);
243 
244 	pr_debug("Queue Format: %d\n", q_properties->format);
245 
246 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
247 
248 	pr_debug("Queue CTX save area: 0x%llX\n",
249 			q_properties->ctx_save_restore_area_address);
250 
251 	return 0;
252 }
253 
254 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
255 					void *data)
256 {
257 	struct kfd_ioctl_create_queue_args *args = data;
258 	struct kfd_dev *dev;
259 	int err = 0;
260 	unsigned int queue_id;
261 	struct kfd_process_device *pdd;
262 	struct queue_properties q_properties;
263 
264 	memset(&q_properties, 0, sizeof(struct queue_properties));
265 
266 	pr_debug("Creating queue ioctl\n");
267 
268 	err = set_queue_properties_from_user(&q_properties, args);
269 	if (err)
270 		return err;
271 
272 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
273 	dev = kfd_device_by_id(args->gpu_id);
274 	if (!dev) {
275 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
276 		return -EINVAL;
277 	}
278 
279 	mutex_lock(&p->mutex);
280 
281 	pdd = kfd_bind_process_to_device(dev, p);
282 	if (IS_ERR(pdd)) {
283 		err = -ESRCH;
284 		goto err_bind_process;
285 	}
286 
287 	pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
288 			p->pasid,
289 			dev->id);
290 
291 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
292 	if (err != 0)
293 		goto err_create_queue;
294 
295 	args->queue_id = queue_id;
296 
297 
298 	/* Return gpu_id as doorbell offset for mmap usage */
299 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
300 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
301 	args->doorbell_offset <<= PAGE_SHIFT;
302 	if (KFD_IS_SOC15(dev->device_info->asic_family))
303 		/* On SOC15 ASICs, doorbell allocation must be
304 		 * per-device, and independent from the per-process
305 		 * queue_id. Return the doorbell offset within the
306 		 * doorbell aperture to user mode.
307 		 */
308 		args->doorbell_offset |= q_properties.doorbell_off;
309 
310 	mutex_unlock(&p->mutex);
311 
312 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
313 
314 	pr_debug("Ring buffer address == 0x%016llX\n",
315 			args->ring_base_address);
316 
317 	pr_debug("Read ptr address    == 0x%016llX\n",
318 			args->read_pointer_address);
319 
320 	pr_debug("Write ptr address   == 0x%016llX\n",
321 			args->write_pointer_address);
322 
323 	return 0;
324 
325 err_create_queue:
326 err_bind_process:
327 	mutex_unlock(&p->mutex);
328 	return err;
329 }
330 
331 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
332 					void *data)
333 {
334 	int retval;
335 	struct kfd_ioctl_destroy_queue_args *args = data;
336 
337 	pr_debug("Destroying queue id %d for pasid %d\n",
338 				args->queue_id,
339 				p->pasid);
340 
341 	mutex_lock(&p->mutex);
342 
343 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
344 
345 	mutex_unlock(&p->mutex);
346 	return retval;
347 }
348 
349 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
350 					void *data)
351 {
352 	int retval;
353 	struct kfd_ioctl_update_queue_args *args = data;
354 	struct queue_properties properties;
355 
356 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
357 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
358 		return -EINVAL;
359 	}
360 
361 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
362 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
363 		return -EINVAL;
364 	}
365 
366 	if ((args->ring_base_address) &&
367 		(!access_ok(VERIFY_WRITE,
368 			(const void __user *) args->ring_base_address,
369 			sizeof(uint64_t)))) {
370 		pr_err("Can't access ring base address\n");
371 		return -EFAULT;
372 	}
373 
374 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
375 		pr_err("Ring size must be a power of 2 or 0\n");
376 		return -EINVAL;
377 	}
378 
379 	properties.queue_address = args->ring_base_address;
380 	properties.queue_size = args->ring_size;
381 	properties.queue_percent = args->queue_percentage;
382 	properties.priority = args->queue_priority;
383 
384 	pr_debug("Updating queue id %d for pasid %d\n",
385 			args->queue_id, p->pasid);
386 
387 	mutex_lock(&p->mutex);
388 
389 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
390 
391 	mutex_unlock(&p->mutex);
392 
393 	return retval;
394 }
395 
396 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
397 					void *data)
398 {
399 	int retval;
400 	const int max_num_cus = 1024;
401 	struct kfd_ioctl_set_cu_mask_args *args = data;
402 	struct queue_properties properties;
403 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
404 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
405 
406 	if ((args->num_cu_mask % 32) != 0) {
407 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
408 				args->num_cu_mask);
409 		return -EINVAL;
410 	}
411 
412 	properties.cu_mask_count = args->num_cu_mask;
413 	if (properties.cu_mask_count == 0) {
414 		pr_debug("CU mask cannot be 0");
415 		return -EINVAL;
416 	}
417 
418 	/* To prevent an unreasonably large CU mask size, set an arbitrary
419 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
420 	 * past max_num_cus bits and just use the first max_num_cus bits.
421 	 */
422 	if (properties.cu_mask_count > max_num_cus) {
423 		pr_debug("CU mask cannot be greater than 1024 bits");
424 		properties.cu_mask_count = max_num_cus;
425 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
426 	}
427 
428 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
429 	if (!properties.cu_mask)
430 		return -ENOMEM;
431 
432 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
433 	if (retval) {
434 		pr_debug("Could not copy CU mask from userspace");
435 		kfree(properties.cu_mask);
436 		return -EFAULT;
437 	}
438 
439 	mutex_lock(&p->mutex);
440 
441 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
442 
443 	mutex_unlock(&p->mutex);
444 
445 	if (retval)
446 		kfree(properties.cu_mask);
447 
448 	return retval;
449 }
450 
451 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
452 					  struct kfd_process *p, void *data)
453 {
454 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
455 	int r;
456 
457 	mutex_lock(&p->mutex);
458 
459 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
460 			       (void __user *)args->ctl_stack_address,
461 			       &args->ctl_stack_used_size,
462 			       &args->save_area_used_size);
463 
464 	mutex_unlock(&p->mutex);
465 
466 	return r;
467 }
468 
469 static int kfd_ioctl_set_memory_policy(struct file *filep,
470 					struct kfd_process *p, void *data)
471 {
472 	struct kfd_ioctl_set_memory_policy_args *args = data;
473 	struct kfd_dev *dev;
474 	int err = 0;
475 	struct kfd_process_device *pdd;
476 	enum cache_policy default_policy, alternate_policy;
477 
478 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
479 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
480 		return -EINVAL;
481 	}
482 
483 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
484 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
485 		return -EINVAL;
486 	}
487 
488 	dev = kfd_device_by_id(args->gpu_id);
489 	if (!dev)
490 		return -EINVAL;
491 
492 	mutex_lock(&p->mutex);
493 
494 	pdd = kfd_bind_process_to_device(dev, p);
495 	if (IS_ERR(pdd)) {
496 		err = -ESRCH;
497 		goto out;
498 	}
499 
500 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
501 			 ? cache_policy_coherent : cache_policy_noncoherent;
502 
503 	alternate_policy =
504 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
505 		   ? cache_policy_coherent : cache_policy_noncoherent;
506 
507 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
508 				&pdd->qpd,
509 				default_policy,
510 				alternate_policy,
511 				(void __user *)args->alternate_aperture_base,
512 				args->alternate_aperture_size))
513 		err = -EINVAL;
514 
515 out:
516 	mutex_unlock(&p->mutex);
517 
518 	return err;
519 }
520 
521 static int kfd_ioctl_set_trap_handler(struct file *filep,
522 					struct kfd_process *p, void *data)
523 {
524 	struct kfd_ioctl_set_trap_handler_args *args = data;
525 	struct kfd_dev *dev;
526 	int err = 0;
527 	struct kfd_process_device *pdd;
528 
529 	dev = kfd_device_by_id(args->gpu_id);
530 	if (dev == NULL)
531 		return -EINVAL;
532 
533 	mutex_lock(&p->mutex);
534 
535 	pdd = kfd_bind_process_to_device(dev, p);
536 	if (IS_ERR(pdd)) {
537 		err = -ESRCH;
538 		goto out;
539 	}
540 
541 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
542 					&pdd->qpd,
543 					args->tba_addr,
544 					args->tma_addr))
545 		err = -EINVAL;
546 
547 out:
548 	mutex_unlock(&p->mutex);
549 
550 	return err;
551 }
552 
553 static int kfd_ioctl_dbg_register(struct file *filep,
554 				struct kfd_process *p, void *data)
555 {
556 	struct kfd_ioctl_dbg_register_args *args = data;
557 	struct kfd_dev *dev;
558 	struct kfd_dbgmgr *dbgmgr_ptr;
559 	struct kfd_process_device *pdd;
560 	bool create_ok;
561 	long status = 0;
562 
563 	dev = kfd_device_by_id(args->gpu_id);
564 	if (!dev)
565 		return -EINVAL;
566 
567 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
568 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
569 		return -EINVAL;
570 	}
571 
572 	mutex_lock(&p->mutex);
573 	mutex_lock(kfd_get_dbgmgr_mutex());
574 
575 	/*
576 	 * make sure that we have pdd, if this the first queue created for
577 	 * this process
578 	 */
579 	pdd = kfd_bind_process_to_device(dev, p);
580 	if (IS_ERR(pdd)) {
581 		status = PTR_ERR(pdd);
582 		goto out;
583 	}
584 
585 	if (!dev->dbgmgr) {
586 		/* In case of a legal call, we have no dbgmgr yet */
587 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
588 		if (create_ok) {
589 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
590 			if (status != 0)
591 				kfd_dbgmgr_destroy(dbgmgr_ptr);
592 			else
593 				dev->dbgmgr = dbgmgr_ptr;
594 		}
595 	} else {
596 		pr_debug("debugger already registered\n");
597 		status = -EINVAL;
598 	}
599 
600 out:
601 	mutex_unlock(kfd_get_dbgmgr_mutex());
602 	mutex_unlock(&p->mutex);
603 
604 	return status;
605 }
606 
607 static int kfd_ioctl_dbg_unregister(struct file *filep,
608 				struct kfd_process *p, void *data)
609 {
610 	struct kfd_ioctl_dbg_unregister_args *args = data;
611 	struct kfd_dev *dev;
612 	long status;
613 
614 	dev = kfd_device_by_id(args->gpu_id);
615 	if (!dev || !dev->dbgmgr)
616 		return -EINVAL;
617 
618 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
619 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
620 		return -EINVAL;
621 	}
622 
623 	mutex_lock(kfd_get_dbgmgr_mutex());
624 
625 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
626 	if (!status) {
627 		kfd_dbgmgr_destroy(dev->dbgmgr);
628 		dev->dbgmgr = NULL;
629 	}
630 
631 	mutex_unlock(kfd_get_dbgmgr_mutex());
632 
633 	return status;
634 }
635 
636 /*
637  * Parse and generate variable size data structure for address watch.
638  * Total size of the buffer and # watch points is limited in order
639  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
640  * which is enforced by dbgdev module)
641  * please also note that the watch address itself are not "copied from user",
642  * since it be set into the HW in user mode values.
643  *
644  */
645 static int kfd_ioctl_dbg_address_watch(struct file *filep,
646 					struct kfd_process *p, void *data)
647 {
648 	struct kfd_ioctl_dbg_address_watch_args *args = data;
649 	struct kfd_dev *dev;
650 	struct dbg_address_watch_info aw_info;
651 	unsigned char *args_buff;
652 	long status;
653 	void __user *cmd_from_user;
654 	uint64_t watch_mask_value = 0;
655 	unsigned int args_idx = 0;
656 
657 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
658 
659 	dev = kfd_device_by_id(args->gpu_id);
660 	if (!dev)
661 		return -EINVAL;
662 
663 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
664 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
665 		return -EINVAL;
666 	}
667 
668 	cmd_from_user = (void __user *) args->content_ptr;
669 
670 	/* Validate arguments */
671 
672 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
673 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
674 		(cmd_from_user == NULL))
675 		return -EINVAL;
676 
677 	/* this is the actual buffer to work with */
678 	args_buff = memdup_user(cmd_from_user,
679 				args->buf_size_in_bytes - sizeof(*args));
680 	if (IS_ERR(args_buff))
681 		return PTR_ERR(args_buff);
682 
683 	aw_info.process = p;
684 
685 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
686 	args_idx += sizeof(aw_info.num_watch_points);
687 
688 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
689 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
690 
691 	/*
692 	 * set watch address base pointer to point on the array base
693 	 * within args_buff
694 	 */
695 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
696 
697 	/* skip over the addresses buffer */
698 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
699 
700 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
701 		status = -EINVAL;
702 		goto out;
703 	}
704 
705 	watch_mask_value = (uint64_t) args_buff[args_idx];
706 
707 	if (watch_mask_value > 0) {
708 		/*
709 		 * There is an array of masks.
710 		 * set watch mask base pointer to point on the array base
711 		 * within args_buff
712 		 */
713 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
714 
715 		/* skip over the masks buffer */
716 		args_idx += sizeof(aw_info.watch_mask) *
717 				aw_info.num_watch_points;
718 	} else {
719 		/* just the NULL mask, set to NULL and skip over it */
720 		aw_info.watch_mask = NULL;
721 		args_idx += sizeof(aw_info.watch_mask);
722 	}
723 
724 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
725 		status = -EINVAL;
726 		goto out;
727 	}
728 
729 	/* Currently HSA Event is not supported for DBG */
730 	aw_info.watch_event = NULL;
731 
732 	mutex_lock(kfd_get_dbgmgr_mutex());
733 
734 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
735 
736 	mutex_unlock(kfd_get_dbgmgr_mutex());
737 
738 out:
739 	kfree(args_buff);
740 
741 	return status;
742 }
743 
744 /* Parse and generate fixed size data structure for wave control */
745 static int kfd_ioctl_dbg_wave_control(struct file *filep,
746 					struct kfd_process *p, void *data)
747 {
748 	struct kfd_ioctl_dbg_wave_control_args *args = data;
749 	struct kfd_dev *dev;
750 	struct dbg_wave_control_info wac_info;
751 	unsigned char *args_buff;
752 	uint32_t computed_buff_size;
753 	long status;
754 	void __user *cmd_from_user;
755 	unsigned int args_idx = 0;
756 
757 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
758 
759 	/* we use compact form, independent of the packing attribute value */
760 	computed_buff_size = sizeof(*args) +
761 				sizeof(wac_info.mode) +
762 				sizeof(wac_info.operand) +
763 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
764 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
765 				sizeof(wac_info.trapId);
766 
767 	dev = kfd_device_by_id(args->gpu_id);
768 	if (!dev)
769 		return -EINVAL;
770 
771 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
772 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
773 		return -EINVAL;
774 	}
775 
776 	/* input size must match the computed "compact" size */
777 	if (args->buf_size_in_bytes != computed_buff_size) {
778 		pr_debug("size mismatch, computed : actual %u : %u\n",
779 				args->buf_size_in_bytes, computed_buff_size);
780 		return -EINVAL;
781 	}
782 
783 	cmd_from_user = (void __user *) args->content_ptr;
784 
785 	if (cmd_from_user == NULL)
786 		return -EINVAL;
787 
788 	/* copy the entire buffer from user */
789 
790 	args_buff = memdup_user(cmd_from_user,
791 				args->buf_size_in_bytes - sizeof(*args));
792 	if (IS_ERR(args_buff))
793 		return PTR_ERR(args_buff);
794 
795 	/* move ptr to the start of the "pay-load" area */
796 	wac_info.process = p;
797 
798 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
799 	args_idx += sizeof(wac_info.operand);
800 
801 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
802 	args_idx += sizeof(wac_info.mode);
803 
804 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
805 	args_idx += sizeof(wac_info.trapId);
806 
807 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
808 					*((uint32_t *)(&args_buff[args_idx]));
809 	wac_info.dbgWave_msg.MemoryVA = NULL;
810 
811 	mutex_lock(kfd_get_dbgmgr_mutex());
812 
813 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
814 			wac_info.process, wac_info.operand,
815 			wac_info.mode, wac_info.trapId,
816 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
817 
818 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
819 
820 	pr_debug("Returned status of dbg manager is %ld\n", status);
821 
822 	mutex_unlock(kfd_get_dbgmgr_mutex());
823 
824 	kfree(args_buff);
825 
826 	return status;
827 }
828 
829 static int kfd_ioctl_get_clock_counters(struct file *filep,
830 				struct kfd_process *p, void *data)
831 {
832 	struct kfd_ioctl_get_clock_counters_args *args = data;
833 	struct kfd_dev *dev;
834 
835 	dev = kfd_device_by_id(args->gpu_id);
836 	if (dev)
837 		/* Reading GPU clock counter from KGD */
838 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
839 	else
840 		/* Node without GPU resource */
841 		args->gpu_clock_counter = 0;
842 
843 	/* No access to rdtsc. Using raw monotonic time */
844 	args->cpu_clock_counter = ktime_get_raw_ns();
845 	args->system_clock_counter = ktime_get_boot_ns();
846 
847 	/* Since the counter is in nano-seconds we use 1GHz frequency */
848 	args->system_clock_freq = 1000000000;
849 
850 	return 0;
851 }
852 
853 
854 static int kfd_ioctl_get_process_apertures(struct file *filp,
855 				struct kfd_process *p, void *data)
856 {
857 	struct kfd_ioctl_get_process_apertures_args *args = data;
858 	struct kfd_process_device_apertures *pAperture;
859 	struct kfd_process_device *pdd;
860 
861 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
862 
863 	args->num_of_nodes = 0;
864 
865 	mutex_lock(&p->mutex);
866 
867 	/*if the process-device list isn't empty*/
868 	if (kfd_has_process_device_data(p)) {
869 		/* Run over all pdd of the process */
870 		pdd = kfd_get_first_process_device_data(p);
871 		do {
872 			pAperture =
873 				&args->process_apertures[args->num_of_nodes];
874 			pAperture->gpu_id = pdd->dev->id;
875 			pAperture->lds_base = pdd->lds_base;
876 			pAperture->lds_limit = pdd->lds_limit;
877 			pAperture->gpuvm_base = pdd->gpuvm_base;
878 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
879 			pAperture->scratch_base = pdd->scratch_base;
880 			pAperture->scratch_limit = pdd->scratch_limit;
881 
882 			dev_dbg(kfd_device,
883 				"node id %u\n", args->num_of_nodes);
884 			dev_dbg(kfd_device,
885 				"gpu id %u\n", pdd->dev->id);
886 			dev_dbg(kfd_device,
887 				"lds_base %llX\n", pdd->lds_base);
888 			dev_dbg(kfd_device,
889 				"lds_limit %llX\n", pdd->lds_limit);
890 			dev_dbg(kfd_device,
891 				"gpuvm_base %llX\n", pdd->gpuvm_base);
892 			dev_dbg(kfd_device,
893 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
894 			dev_dbg(kfd_device,
895 				"scratch_base %llX\n", pdd->scratch_base);
896 			dev_dbg(kfd_device,
897 				"scratch_limit %llX\n", pdd->scratch_limit);
898 
899 			args->num_of_nodes++;
900 
901 			pdd = kfd_get_next_process_device_data(p, pdd);
902 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
903 	}
904 
905 	mutex_unlock(&p->mutex);
906 
907 	return 0;
908 }
909 
910 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
911 				struct kfd_process *p, void *data)
912 {
913 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
914 	struct kfd_process_device_apertures *pa;
915 	struct kfd_process_device *pdd;
916 	uint32_t nodes = 0;
917 	int ret;
918 
919 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
920 
921 	if (args->num_of_nodes == 0) {
922 		/* Return number of nodes, so that user space can alloacate
923 		 * sufficient memory
924 		 */
925 		mutex_lock(&p->mutex);
926 
927 		if (!kfd_has_process_device_data(p))
928 			goto out_unlock;
929 
930 		/* Run over all pdd of the process */
931 		pdd = kfd_get_first_process_device_data(p);
932 		do {
933 			args->num_of_nodes++;
934 			pdd = kfd_get_next_process_device_data(p, pdd);
935 		} while (pdd);
936 
937 		goto out_unlock;
938 	}
939 
940 	/* Fill in process-aperture information for all available
941 	 * nodes, but not more than args->num_of_nodes as that is
942 	 * the amount of memory allocated by user
943 	 */
944 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
945 				args->num_of_nodes), GFP_KERNEL);
946 	if (!pa)
947 		return -ENOMEM;
948 
949 	mutex_lock(&p->mutex);
950 
951 	if (!kfd_has_process_device_data(p)) {
952 		args->num_of_nodes = 0;
953 		kfree(pa);
954 		goto out_unlock;
955 	}
956 
957 	/* Run over all pdd of the process */
958 	pdd = kfd_get_first_process_device_data(p);
959 	do {
960 		pa[nodes].gpu_id = pdd->dev->id;
961 		pa[nodes].lds_base = pdd->lds_base;
962 		pa[nodes].lds_limit = pdd->lds_limit;
963 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
964 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
965 		pa[nodes].scratch_base = pdd->scratch_base;
966 		pa[nodes].scratch_limit = pdd->scratch_limit;
967 
968 		dev_dbg(kfd_device,
969 			"gpu id %u\n", pdd->dev->id);
970 		dev_dbg(kfd_device,
971 			"lds_base %llX\n", pdd->lds_base);
972 		dev_dbg(kfd_device,
973 			"lds_limit %llX\n", pdd->lds_limit);
974 		dev_dbg(kfd_device,
975 			"gpuvm_base %llX\n", pdd->gpuvm_base);
976 		dev_dbg(kfd_device,
977 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
978 		dev_dbg(kfd_device,
979 			"scratch_base %llX\n", pdd->scratch_base);
980 		dev_dbg(kfd_device,
981 			"scratch_limit %llX\n", pdd->scratch_limit);
982 		nodes++;
983 
984 		pdd = kfd_get_next_process_device_data(p, pdd);
985 	} while (pdd && (nodes < args->num_of_nodes));
986 	mutex_unlock(&p->mutex);
987 
988 	args->num_of_nodes = nodes;
989 	ret = copy_to_user(
990 			(void __user *)args->kfd_process_device_apertures_ptr,
991 			pa,
992 			(nodes * sizeof(struct kfd_process_device_apertures)));
993 	kfree(pa);
994 	return ret ? -EFAULT : 0;
995 
996 out_unlock:
997 	mutex_unlock(&p->mutex);
998 	return 0;
999 }
1000 
1001 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1002 					void *data)
1003 {
1004 	struct kfd_ioctl_create_event_args *args = data;
1005 	int err;
1006 
1007 	/* For dGPUs the event page is allocated in user mode. The
1008 	 * handle is passed to KFD with the first call to this IOCTL
1009 	 * through the event_page_offset field.
1010 	 */
1011 	if (args->event_page_offset) {
1012 		struct kfd_dev *kfd;
1013 		struct kfd_process_device *pdd;
1014 		void *mem, *kern_addr;
1015 		uint64_t size;
1016 
1017 		if (p->signal_page) {
1018 			pr_err("Event page is already set\n");
1019 			return -EINVAL;
1020 		}
1021 
1022 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1023 		if (!kfd) {
1024 			pr_err("Getting device by id failed in %s\n", __func__);
1025 			return -EINVAL;
1026 		}
1027 
1028 		mutex_lock(&p->mutex);
1029 		pdd = kfd_bind_process_to_device(kfd, p);
1030 		if (IS_ERR(pdd)) {
1031 			err = PTR_ERR(pdd);
1032 			goto out_unlock;
1033 		}
1034 
1035 		mem = kfd_process_device_translate_handle(pdd,
1036 				GET_IDR_HANDLE(args->event_page_offset));
1037 		if (!mem) {
1038 			pr_err("Can't find BO, offset is 0x%llx\n",
1039 			       args->event_page_offset);
1040 			err = -EINVAL;
1041 			goto out_unlock;
1042 		}
1043 		mutex_unlock(&p->mutex);
1044 
1045 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1046 						mem, &kern_addr, &size);
1047 		if (err) {
1048 			pr_err("Failed to map event page to kernel\n");
1049 			return err;
1050 		}
1051 
1052 		err = kfd_event_page_set(p, kern_addr, size);
1053 		if (err) {
1054 			pr_err("Failed to set event page\n");
1055 			return err;
1056 		}
1057 	}
1058 
1059 	err = kfd_event_create(filp, p, args->event_type,
1060 				args->auto_reset != 0, args->node_id,
1061 				&args->event_id, &args->event_trigger_data,
1062 				&args->event_page_offset,
1063 				&args->event_slot_index);
1064 
1065 	return err;
1066 
1067 out_unlock:
1068 	mutex_unlock(&p->mutex);
1069 	return err;
1070 }
1071 
1072 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1073 					void *data)
1074 {
1075 	struct kfd_ioctl_destroy_event_args *args = data;
1076 
1077 	return kfd_event_destroy(p, args->event_id);
1078 }
1079 
1080 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1081 				void *data)
1082 {
1083 	struct kfd_ioctl_set_event_args *args = data;
1084 
1085 	return kfd_set_event(p, args->event_id);
1086 }
1087 
1088 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1089 				void *data)
1090 {
1091 	struct kfd_ioctl_reset_event_args *args = data;
1092 
1093 	return kfd_reset_event(p, args->event_id);
1094 }
1095 
1096 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1097 				void *data)
1098 {
1099 	struct kfd_ioctl_wait_events_args *args = data;
1100 	int err;
1101 
1102 	err = kfd_wait_on_events(p, args->num_events,
1103 			(void __user *)args->events_ptr,
1104 			(args->wait_for_all != 0),
1105 			args->timeout, &args->wait_result);
1106 
1107 	return err;
1108 }
1109 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1110 					struct kfd_process *p, void *data)
1111 {
1112 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1113 	struct kfd_process_device *pdd;
1114 	struct kfd_dev *dev;
1115 	long err;
1116 
1117 	dev = kfd_device_by_id(args->gpu_id);
1118 	if (!dev)
1119 		return -EINVAL;
1120 
1121 	mutex_lock(&p->mutex);
1122 
1123 	pdd = kfd_bind_process_to_device(dev, p);
1124 	if (IS_ERR(pdd)) {
1125 		err = PTR_ERR(pdd);
1126 		goto bind_process_to_device_fail;
1127 	}
1128 
1129 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1130 
1131 	mutex_unlock(&p->mutex);
1132 
1133 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1134 	    pdd->qpd.vmid != 0)
1135 		dev->kfd2kgd->set_scratch_backing_va(
1136 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1137 
1138 	return 0;
1139 
1140 bind_process_to_device_fail:
1141 	mutex_unlock(&p->mutex);
1142 	return err;
1143 }
1144 
1145 static int kfd_ioctl_get_tile_config(struct file *filep,
1146 		struct kfd_process *p, void *data)
1147 {
1148 	struct kfd_ioctl_get_tile_config_args *args = data;
1149 	struct kfd_dev *dev;
1150 	struct tile_config config;
1151 	int err = 0;
1152 
1153 	dev = kfd_device_by_id(args->gpu_id);
1154 	if (!dev)
1155 		return -EINVAL;
1156 
1157 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1158 
1159 	args->gb_addr_config = config.gb_addr_config;
1160 	args->num_banks = config.num_banks;
1161 	args->num_ranks = config.num_ranks;
1162 
1163 	if (args->num_tile_configs > config.num_tile_configs)
1164 		args->num_tile_configs = config.num_tile_configs;
1165 	err = copy_to_user((void __user *)args->tile_config_ptr,
1166 			config.tile_config_ptr,
1167 			args->num_tile_configs * sizeof(uint32_t));
1168 	if (err) {
1169 		args->num_tile_configs = 0;
1170 		return -EFAULT;
1171 	}
1172 
1173 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1174 		args->num_macro_tile_configs =
1175 				config.num_macro_tile_configs;
1176 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1177 			config.macro_tile_config_ptr,
1178 			args->num_macro_tile_configs * sizeof(uint32_t));
1179 	if (err) {
1180 		args->num_macro_tile_configs = 0;
1181 		return -EFAULT;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1188 				void *data)
1189 {
1190 	struct kfd_ioctl_acquire_vm_args *args = data;
1191 	struct kfd_process_device *pdd;
1192 	struct kfd_dev *dev;
1193 	struct file *drm_file;
1194 	int ret;
1195 
1196 	dev = kfd_device_by_id(args->gpu_id);
1197 	if (!dev)
1198 		return -EINVAL;
1199 
1200 	drm_file = fget(args->drm_fd);
1201 	if (!drm_file)
1202 		return -EINVAL;
1203 
1204 	mutex_lock(&p->mutex);
1205 
1206 	pdd = kfd_get_process_device_data(dev, p);
1207 	if (!pdd) {
1208 		ret = -EINVAL;
1209 		goto err_unlock;
1210 	}
1211 
1212 	if (pdd->drm_file) {
1213 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1214 		goto err_unlock;
1215 	}
1216 
1217 	ret = kfd_process_device_init_vm(pdd, drm_file);
1218 	if (ret)
1219 		goto err_unlock;
1220 	/* On success, the PDD keeps the drm_file reference */
1221 	mutex_unlock(&p->mutex);
1222 
1223 	return 0;
1224 
1225 err_unlock:
1226 	mutex_unlock(&p->mutex);
1227 	fput(drm_file);
1228 	return ret;
1229 }
1230 
1231 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1232 {
1233 	struct kfd_local_mem_info mem_info;
1234 
1235 	if (debug_largebar) {
1236 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1237 		return true;
1238 	}
1239 
1240 	if (dev->device_info->needs_iommu_device)
1241 		return false;
1242 
1243 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1244 	if (mem_info.local_mem_size_private == 0 &&
1245 			mem_info.local_mem_size_public > 0)
1246 		return true;
1247 	return false;
1248 }
1249 
1250 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1251 					struct kfd_process *p, void *data)
1252 {
1253 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1254 	struct kfd_process_device *pdd;
1255 	void *mem;
1256 	struct kfd_dev *dev;
1257 	int idr_handle;
1258 	long err;
1259 	uint64_t offset = args->mmap_offset;
1260 	uint32_t flags = args->flags;
1261 
1262 	if (args->size == 0)
1263 		return -EINVAL;
1264 
1265 	dev = kfd_device_by_id(args->gpu_id);
1266 	if (!dev)
1267 		return -EINVAL;
1268 
1269 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1270 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1271 		!kfd_dev_is_large_bar(dev)) {
1272 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	mutex_lock(&p->mutex);
1277 
1278 	pdd = kfd_bind_process_to_device(dev, p);
1279 	if (IS_ERR(pdd)) {
1280 		err = PTR_ERR(pdd);
1281 		goto err_unlock;
1282 	}
1283 
1284 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1285 		dev->kgd, args->va_addr, args->size,
1286 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1287 		flags);
1288 
1289 	if (err)
1290 		goto err_unlock;
1291 
1292 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1293 	if (idr_handle < 0) {
1294 		err = -EFAULT;
1295 		goto err_free;
1296 	}
1297 
1298 	mutex_unlock(&p->mutex);
1299 
1300 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1301 	args->mmap_offset = offset;
1302 
1303 	return 0;
1304 
1305 err_free:
1306 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1307 err_unlock:
1308 	mutex_unlock(&p->mutex);
1309 	return err;
1310 }
1311 
1312 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1313 					struct kfd_process *p, void *data)
1314 {
1315 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1316 	struct kfd_process_device *pdd;
1317 	void *mem;
1318 	struct kfd_dev *dev;
1319 	int ret;
1320 
1321 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1322 	if (!dev)
1323 		return -EINVAL;
1324 
1325 	mutex_lock(&p->mutex);
1326 
1327 	pdd = kfd_get_process_device_data(dev, p);
1328 	if (!pdd) {
1329 		pr_err("Process device data doesn't exist\n");
1330 		ret = -EINVAL;
1331 		goto err_unlock;
1332 	}
1333 
1334 	mem = kfd_process_device_translate_handle(
1335 		pdd, GET_IDR_HANDLE(args->handle));
1336 	if (!mem) {
1337 		ret = -EINVAL;
1338 		goto err_unlock;
1339 	}
1340 
1341 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1342 						(struct kgd_mem *)mem);
1343 
1344 	/* If freeing the buffer failed, leave the handle in place for
1345 	 * clean-up during process tear-down.
1346 	 */
1347 	if (!ret)
1348 		kfd_process_device_remove_obj_handle(
1349 			pdd, GET_IDR_HANDLE(args->handle));
1350 
1351 err_unlock:
1352 	mutex_unlock(&p->mutex);
1353 	return ret;
1354 }
1355 
1356 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1357 					struct kfd_process *p, void *data)
1358 {
1359 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1360 	struct kfd_process_device *pdd, *peer_pdd;
1361 	void *mem;
1362 	struct kfd_dev *dev, *peer;
1363 	long err = 0;
1364 	int i;
1365 	uint32_t *devices_arr = NULL;
1366 
1367 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1368 	if (!dev)
1369 		return -EINVAL;
1370 
1371 	if (!args->n_devices) {
1372 		pr_debug("Device IDs array empty\n");
1373 		return -EINVAL;
1374 	}
1375 	if (args->n_success > args->n_devices) {
1376 		pr_debug("n_success exceeds n_devices\n");
1377 		return -EINVAL;
1378 	}
1379 
1380 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1381 				    GFP_KERNEL);
1382 	if (!devices_arr)
1383 		return -ENOMEM;
1384 
1385 	err = copy_from_user(devices_arr,
1386 			     (void __user *)args->device_ids_array_ptr,
1387 			     args->n_devices * sizeof(*devices_arr));
1388 	if (err != 0) {
1389 		err = -EFAULT;
1390 		goto copy_from_user_failed;
1391 	}
1392 
1393 	mutex_lock(&p->mutex);
1394 
1395 	pdd = kfd_bind_process_to_device(dev, p);
1396 	if (IS_ERR(pdd)) {
1397 		err = PTR_ERR(pdd);
1398 		goto bind_process_to_device_failed;
1399 	}
1400 
1401 	mem = kfd_process_device_translate_handle(pdd,
1402 						GET_IDR_HANDLE(args->handle));
1403 	if (!mem) {
1404 		err = -ENOMEM;
1405 		goto get_mem_obj_from_handle_failed;
1406 	}
1407 
1408 	for (i = args->n_success; i < args->n_devices; i++) {
1409 		peer = kfd_device_by_id(devices_arr[i]);
1410 		if (!peer) {
1411 			pr_debug("Getting device by id failed for 0x%x\n",
1412 				 devices_arr[i]);
1413 			err = -EINVAL;
1414 			goto get_mem_obj_from_handle_failed;
1415 		}
1416 
1417 		peer_pdd = kfd_bind_process_to_device(peer, p);
1418 		if (IS_ERR(peer_pdd)) {
1419 			err = PTR_ERR(peer_pdd);
1420 			goto get_mem_obj_from_handle_failed;
1421 		}
1422 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1423 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1424 		if (err) {
1425 			pr_err("Failed to map to gpu %d/%d\n",
1426 			       i, args->n_devices);
1427 			goto map_memory_to_gpu_failed;
1428 		}
1429 		args->n_success = i+1;
1430 	}
1431 
1432 	mutex_unlock(&p->mutex);
1433 
1434 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1435 	if (err) {
1436 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1437 		goto sync_memory_failed;
1438 	}
1439 
1440 	/* Flush TLBs after waiting for the page table updates to complete */
1441 	for (i = 0; i < args->n_devices; i++) {
1442 		peer = kfd_device_by_id(devices_arr[i]);
1443 		if (WARN_ON_ONCE(!peer))
1444 			continue;
1445 		peer_pdd = kfd_get_process_device_data(peer, p);
1446 		if (WARN_ON_ONCE(!peer_pdd))
1447 			continue;
1448 		kfd_flush_tlb(peer_pdd);
1449 	}
1450 
1451 	kfree(devices_arr);
1452 
1453 	return err;
1454 
1455 bind_process_to_device_failed:
1456 get_mem_obj_from_handle_failed:
1457 map_memory_to_gpu_failed:
1458 	mutex_unlock(&p->mutex);
1459 copy_from_user_failed:
1460 sync_memory_failed:
1461 	kfree(devices_arr);
1462 
1463 	return err;
1464 }
1465 
1466 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1467 					struct kfd_process *p, void *data)
1468 {
1469 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1470 	struct kfd_process_device *pdd, *peer_pdd;
1471 	void *mem;
1472 	struct kfd_dev *dev, *peer;
1473 	long err = 0;
1474 	uint32_t *devices_arr = NULL, i;
1475 
1476 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1477 	if (!dev)
1478 		return -EINVAL;
1479 
1480 	if (!args->n_devices) {
1481 		pr_debug("Device IDs array empty\n");
1482 		return -EINVAL;
1483 	}
1484 	if (args->n_success > args->n_devices) {
1485 		pr_debug("n_success exceeds n_devices\n");
1486 		return -EINVAL;
1487 	}
1488 
1489 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1490 				    GFP_KERNEL);
1491 	if (!devices_arr)
1492 		return -ENOMEM;
1493 
1494 	err = copy_from_user(devices_arr,
1495 			     (void __user *)args->device_ids_array_ptr,
1496 			     args->n_devices * sizeof(*devices_arr));
1497 	if (err != 0) {
1498 		err = -EFAULT;
1499 		goto copy_from_user_failed;
1500 	}
1501 
1502 	mutex_lock(&p->mutex);
1503 
1504 	pdd = kfd_get_process_device_data(dev, p);
1505 	if (!pdd) {
1506 		err = -EINVAL;
1507 		goto bind_process_to_device_failed;
1508 	}
1509 
1510 	mem = kfd_process_device_translate_handle(pdd,
1511 						GET_IDR_HANDLE(args->handle));
1512 	if (!mem) {
1513 		err = -ENOMEM;
1514 		goto get_mem_obj_from_handle_failed;
1515 	}
1516 
1517 	for (i = args->n_success; i < args->n_devices; i++) {
1518 		peer = kfd_device_by_id(devices_arr[i]);
1519 		if (!peer) {
1520 			err = -EINVAL;
1521 			goto get_mem_obj_from_handle_failed;
1522 		}
1523 
1524 		peer_pdd = kfd_get_process_device_data(peer, p);
1525 		if (!peer_pdd) {
1526 			err = -ENODEV;
1527 			goto get_mem_obj_from_handle_failed;
1528 		}
1529 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1530 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1531 		if (err) {
1532 			pr_err("Failed to unmap from gpu %d/%d\n",
1533 			       i, args->n_devices);
1534 			goto unmap_memory_from_gpu_failed;
1535 		}
1536 		args->n_success = i+1;
1537 	}
1538 	kfree(devices_arr);
1539 
1540 	mutex_unlock(&p->mutex);
1541 
1542 	return 0;
1543 
1544 bind_process_to_device_failed:
1545 get_mem_obj_from_handle_failed:
1546 unmap_memory_from_gpu_failed:
1547 	mutex_unlock(&p->mutex);
1548 copy_from_user_failed:
1549 	kfree(devices_arr);
1550 	return err;
1551 }
1552 
1553 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1554 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1555 			    .cmd_drv = 0, .name = #ioctl}
1556 
1557 /** Ioctl table */
1558 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1559 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1560 			kfd_ioctl_get_version, 0),
1561 
1562 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1563 			kfd_ioctl_create_queue, 0),
1564 
1565 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1566 			kfd_ioctl_destroy_queue, 0),
1567 
1568 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1569 			kfd_ioctl_set_memory_policy, 0),
1570 
1571 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1572 			kfd_ioctl_get_clock_counters, 0),
1573 
1574 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1575 			kfd_ioctl_get_process_apertures, 0),
1576 
1577 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1578 			kfd_ioctl_update_queue, 0),
1579 
1580 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1581 			kfd_ioctl_create_event, 0),
1582 
1583 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1584 			kfd_ioctl_destroy_event, 0),
1585 
1586 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1587 			kfd_ioctl_set_event, 0),
1588 
1589 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1590 			kfd_ioctl_reset_event, 0),
1591 
1592 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1593 			kfd_ioctl_wait_events, 0),
1594 
1595 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1596 			kfd_ioctl_dbg_register, 0),
1597 
1598 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1599 			kfd_ioctl_dbg_unregister, 0),
1600 
1601 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1602 			kfd_ioctl_dbg_address_watch, 0),
1603 
1604 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1605 			kfd_ioctl_dbg_wave_control, 0),
1606 
1607 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1608 			kfd_ioctl_set_scratch_backing_va, 0),
1609 
1610 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1611 			kfd_ioctl_get_tile_config, 0),
1612 
1613 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1614 			kfd_ioctl_set_trap_handler, 0),
1615 
1616 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1617 			kfd_ioctl_get_process_apertures_new, 0),
1618 
1619 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1620 			kfd_ioctl_acquire_vm, 0),
1621 
1622 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1623 			kfd_ioctl_alloc_memory_of_gpu, 0),
1624 
1625 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1626 			kfd_ioctl_free_memory_of_gpu, 0),
1627 
1628 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1629 			kfd_ioctl_map_memory_to_gpu, 0),
1630 
1631 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1632 			kfd_ioctl_unmap_memory_from_gpu, 0),
1633 
1634 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1635 			kfd_ioctl_set_cu_mask, 0),
1636 
1637 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1638 			kfd_ioctl_get_queue_wave_state, 0)
1639 
1640 };
1641 
1642 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1643 
1644 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1645 {
1646 	struct kfd_process *process;
1647 	amdkfd_ioctl_t *func;
1648 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1649 	unsigned int nr = _IOC_NR(cmd);
1650 	char stack_kdata[128];
1651 	char *kdata = NULL;
1652 	unsigned int usize, asize;
1653 	int retcode = -EINVAL;
1654 
1655 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1656 		goto err_i1;
1657 
1658 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1659 		u32 amdkfd_size;
1660 
1661 		ioctl = &amdkfd_ioctls[nr];
1662 
1663 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1664 		usize = asize = _IOC_SIZE(cmd);
1665 		if (amdkfd_size > asize)
1666 			asize = amdkfd_size;
1667 
1668 		cmd = ioctl->cmd;
1669 	} else
1670 		goto err_i1;
1671 
1672 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1673 
1674 	process = kfd_get_process(current);
1675 	if (IS_ERR(process)) {
1676 		dev_dbg(kfd_device, "no process\n");
1677 		goto err_i1;
1678 	}
1679 
1680 	/* Do not trust userspace, use our own definition */
1681 	func = ioctl->func;
1682 
1683 	if (unlikely(!func)) {
1684 		dev_dbg(kfd_device, "no function\n");
1685 		retcode = -EINVAL;
1686 		goto err_i1;
1687 	}
1688 
1689 	if (cmd & (IOC_IN | IOC_OUT)) {
1690 		if (asize <= sizeof(stack_kdata)) {
1691 			kdata = stack_kdata;
1692 		} else {
1693 			kdata = kmalloc(asize, GFP_KERNEL);
1694 			if (!kdata) {
1695 				retcode = -ENOMEM;
1696 				goto err_i1;
1697 			}
1698 		}
1699 		if (asize > usize)
1700 			memset(kdata + usize, 0, asize - usize);
1701 	}
1702 
1703 	if (cmd & IOC_IN) {
1704 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1705 			retcode = -EFAULT;
1706 			goto err_i1;
1707 		}
1708 	} else if (cmd & IOC_OUT) {
1709 		memset(kdata, 0, usize);
1710 	}
1711 
1712 	retcode = func(filep, process, kdata);
1713 
1714 	if (cmd & IOC_OUT)
1715 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1716 			retcode = -EFAULT;
1717 
1718 err_i1:
1719 	if (!ioctl)
1720 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1721 			  task_pid_nr(current), cmd, nr);
1722 
1723 	if (kdata != stack_kdata)
1724 		kfree(kdata);
1725 
1726 	if (retcode)
1727 		dev_dbg(kfd_device, "ret = %d\n", retcode);
1728 
1729 	return retcode;
1730 }
1731 
1732 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1733 {
1734 	struct kfd_process *process;
1735 	struct kfd_dev *dev = NULL;
1736 	unsigned long vm_pgoff;
1737 	unsigned int gpu_id;
1738 
1739 	process = kfd_get_process(current);
1740 	if (IS_ERR(process))
1741 		return PTR_ERR(process);
1742 
1743 	vm_pgoff = vma->vm_pgoff;
1744 	vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1745 	gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1746 	if (gpu_id)
1747 		dev = kfd_device_by_id(gpu_id);
1748 
1749 	switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1750 	case KFD_MMAP_TYPE_DOORBELL:
1751 		if (!dev)
1752 			return -ENODEV;
1753 		return kfd_doorbell_mmap(dev, process, vma);
1754 
1755 	case KFD_MMAP_TYPE_EVENTS:
1756 		return kfd_event_mmap(process, vma);
1757 
1758 	case KFD_MMAP_TYPE_RESERVED_MEM:
1759 		if (!dev)
1760 			return -ENODEV;
1761 		return kfd_reserved_mem_mmap(dev, process, vma);
1762 	}
1763 
1764 	return -EFAULT;
1765 }
1766