1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_release(struct inode *, struct file *);
46 static int kfd_mmap(struct file *, struct vm_area_struct *);
47 
48 static const char kfd_dev_name[] = "kfd";
49 
50 static const struct file_operations kfd_fops = {
51 	.owner = THIS_MODULE,
52 	.unlocked_ioctl = kfd_ioctl,
53 	.compat_ioctl = compat_ptr_ioctl,
54 	.open = kfd_open,
55 	.release = kfd_release,
56 	.mmap = kfd_mmap,
57 };
58 
59 static int kfd_char_dev_major = -1;
60 static struct class *kfd_class;
61 struct device *kfd_device;
62 
63 int kfd_chardev_init(void)
64 {
65 	int err = 0;
66 
67 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
68 	err = kfd_char_dev_major;
69 	if (err < 0)
70 		goto err_register_chrdev;
71 
72 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
73 	err = PTR_ERR(kfd_class);
74 	if (IS_ERR(kfd_class))
75 		goto err_class_create;
76 
77 	kfd_device = device_create(kfd_class, NULL,
78 					MKDEV(kfd_char_dev_major, 0),
79 					NULL, kfd_dev_name);
80 	err = PTR_ERR(kfd_device);
81 	if (IS_ERR(kfd_device))
82 		goto err_device_create;
83 
84 	return 0;
85 
86 err_device_create:
87 	class_destroy(kfd_class);
88 err_class_create:
89 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
90 err_register_chrdev:
91 	return err;
92 }
93 
94 void kfd_chardev_exit(void)
95 {
96 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
97 	class_destroy(kfd_class);
98 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
99 }
100 
101 struct device *kfd_chardev(void)
102 {
103 	return kfd_device;
104 }
105 
106 
107 static int kfd_open(struct inode *inode, struct file *filep)
108 {
109 	struct kfd_process *process;
110 	bool is_32bit_user_mode;
111 
112 	if (iminor(inode) != 0)
113 		return -ENODEV;
114 
115 	is_32bit_user_mode = in_compat_syscall();
116 
117 	if (is_32bit_user_mode) {
118 		dev_warn(kfd_device,
119 			"Process %d (32-bit) failed to open /dev/kfd\n"
120 			"32-bit processes are not supported by amdkfd\n",
121 			current->pid);
122 		return -EPERM;
123 	}
124 
125 	process = kfd_create_process(filep);
126 	if (IS_ERR(process))
127 		return PTR_ERR(process);
128 
129 	if (kfd_is_locked()) {
130 		dev_dbg(kfd_device, "kfd is locked!\n"
131 				"process %d unreferenced", process->pasid);
132 		kfd_unref_process(process);
133 		return -EAGAIN;
134 	}
135 
136 	/* filep now owns the reference returned by kfd_create_process */
137 	filep->private_data = process;
138 
139 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
140 		process->pasid, process->is_32bit_user_mode);
141 
142 	return 0;
143 }
144 
145 static int kfd_release(struct inode *inode, struct file *filep)
146 {
147 	struct kfd_process *process = filep->private_data;
148 
149 	if (process)
150 		kfd_unref_process(process);
151 
152 	return 0;
153 }
154 
155 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
156 					void *data)
157 {
158 	struct kfd_ioctl_get_version_args *args = data;
159 
160 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
161 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
162 
163 	return 0;
164 }
165 
166 static int set_queue_properties_from_user(struct queue_properties *q_properties,
167 				struct kfd_ioctl_create_queue_args *args)
168 {
169 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
170 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
171 		return -EINVAL;
172 	}
173 
174 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
175 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
176 		return -EINVAL;
177 	}
178 
179 	if ((args->ring_base_address) &&
180 		(!access_ok((const void __user *) args->ring_base_address,
181 			sizeof(uint64_t)))) {
182 		pr_err("Can't access ring base address\n");
183 		return -EFAULT;
184 	}
185 
186 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
187 		pr_err("Ring size must be a power of 2 or 0\n");
188 		return -EINVAL;
189 	}
190 
191 	if (!access_ok((const void __user *) args->read_pointer_address,
192 			sizeof(uint32_t))) {
193 		pr_err("Can't access read pointer\n");
194 		return -EFAULT;
195 	}
196 
197 	if (!access_ok((const void __user *) args->write_pointer_address,
198 			sizeof(uint32_t))) {
199 		pr_err("Can't access write pointer\n");
200 		return -EFAULT;
201 	}
202 
203 	if (args->eop_buffer_address &&
204 		!access_ok((const void __user *) args->eop_buffer_address,
205 			sizeof(uint32_t))) {
206 		pr_debug("Can't access eop buffer");
207 		return -EFAULT;
208 	}
209 
210 	if (args->ctx_save_restore_address &&
211 		!access_ok((const void __user *) args->ctx_save_restore_address,
212 			sizeof(uint32_t))) {
213 		pr_debug("Can't access ctx save restore buffer");
214 		return -EFAULT;
215 	}
216 
217 	q_properties->is_interop = false;
218 	q_properties->queue_percent = args->queue_percentage;
219 	q_properties->priority = args->queue_priority;
220 	q_properties->queue_address = args->ring_base_address;
221 	q_properties->queue_size = args->ring_size;
222 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
223 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
224 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
225 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
226 	q_properties->ctx_save_restore_area_address =
227 			args->ctx_save_restore_address;
228 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
229 	q_properties->ctl_stack_size = args->ctl_stack_size;
230 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
231 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
232 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
233 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
234 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
235 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
236 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
237 	else
238 		return -ENOTSUPP;
239 
240 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
241 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
242 	else
243 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
244 
245 	pr_debug("Queue Percentage: %d, %d\n",
246 			q_properties->queue_percent, args->queue_percentage);
247 
248 	pr_debug("Queue Priority: %d, %d\n",
249 			q_properties->priority, args->queue_priority);
250 
251 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
252 			q_properties->queue_address, args->ring_base_address);
253 
254 	pr_debug("Queue Size: 0x%llX, %u\n",
255 			q_properties->queue_size, args->ring_size);
256 
257 	pr_debug("Queue r/w Pointers: %px, %px\n",
258 			q_properties->read_ptr,
259 			q_properties->write_ptr);
260 
261 	pr_debug("Queue Format: %d\n", q_properties->format);
262 
263 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
264 
265 	pr_debug("Queue CTX save area: 0x%llX\n",
266 			q_properties->ctx_save_restore_area_address);
267 
268 	return 0;
269 }
270 
271 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
272 					void *data)
273 {
274 	struct kfd_ioctl_create_queue_args *args = data;
275 	struct kfd_dev *dev;
276 	int err = 0;
277 	unsigned int queue_id;
278 	struct kfd_process_device *pdd;
279 	struct queue_properties q_properties;
280 	uint32_t doorbell_offset_in_process = 0;
281 
282 	memset(&q_properties, 0, sizeof(struct queue_properties));
283 
284 	pr_debug("Creating queue ioctl\n");
285 
286 	err = set_queue_properties_from_user(&q_properties, args);
287 	if (err)
288 		return err;
289 
290 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
291 	dev = kfd_device_by_id(args->gpu_id);
292 	if (!dev) {
293 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
294 		return -EINVAL;
295 	}
296 
297 	mutex_lock(&p->mutex);
298 
299 	pdd = kfd_bind_process_to_device(dev, p);
300 	if (IS_ERR(pdd)) {
301 		err = -ESRCH;
302 		goto err_bind_process;
303 	}
304 
305 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
306 			p->pasid,
307 			dev->id);
308 
309 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
310 			&doorbell_offset_in_process);
311 	if (err != 0)
312 		goto err_create_queue;
313 
314 	args->queue_id = queue_id;
315 
316 
317 	/* Return gpu_id as doorbell offset for mmap usage */
318 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
319 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
320 	if (KFD_IS_SOC15(dev->device_info->asic_family))
321 		/* On SOC15 ASICs, include the doorbell offset within the
322 		 * process doorbell frame, which is 2 pages.
323 		 */
324 		args->doorbell_offset |= doorbell_offset_in_process;
325 
326 	mutex_unlock(&p->mutex);
327 
328 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
329 
330 	pr_debug("Ring buffer address == 0x%016llX\n",
331 			args->ring_base_address);
332 
333 	pr_debug("Read ptr address    == 0x%016llX\n",
334 			args->read_pointer_address);
335 
336 	pr_debug("Write ptr address   == 0x%016llX\n",
337 			args->write_pointer_address);
338 
339 	return 0;
340 
341 err_create_queue:
342 err_bind_process:
343 	mutex_unlock(&p->mutex);
344 	return err;
345 }
346 
347 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
348 					void *data)
349 {
350 	int retval;
351 	struct kfd_ioctl_destroy_queue_args *args = data;
352 
353 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
354 				args->queue_id,
355 				p->pasid);
356 
357 	mutex_lock(&p->mutex);
358 
359 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
360 
361 	mutex_unlock(&p->mutex);
362 	return retval;
363 }
364 
365 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
366 					void *data)
367 {
368 	int retval;
369 	struct kfd_ioctl_update_queue_args *args = data;
370 	struct queue_properties properties;
371 
372 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
373 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
374 		return -EINVAL;
375 	}
376 
377 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
378 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
379 		return -EINVAL;
380 	}
381 
382 	if ((args->ring_base_address) &&
383 		(!access_ok((const void __user *) args->ring_base_address,
384 			sizeof(uint64_t)))) {
385 		pr_err("Can't access ring base address\n");
386 		return -EFAULT;
387 	}
388 
389 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
390 		pr_err("Ring size must be a power of 2 or 0\n");
391 		return -EINVAL;
392 	}
393 
394 	properties.queue_address = args->ring_base_address;
395 	properties.queue_size = args->ring_size;
396 	properties.queue_percent = args->queue_percentage;
397 	properties.priority = args->queue_priority;
398 
399 	pr_debug("Updating queue id %d for pasid 0x%x\n",
400 			args->queue_id, p->pasid);
401 
402 	mutex_lock(&p->mutex);
403 
404 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
405 
406 	mutex_unlock(&p->mutex);
407 
408 	return retval;
409 }
410 
411 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
412 					void *data)
413 {
414 	int retval;
415 	const int max_num_cus = 1024;
416 	struct kfd_ioctl_set_cu_mask_args *args = data;
417 	struct queue_properties properties;
418 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
419 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
420 
421 	if ((args->num_cu_mask % 32) != 0) {
422 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
423 				args->num_cu_mask);
424 		return -EINVAL;
425 	}
426 
427 	properties.cu_mask_count = args->num_cu_mask;
428 	if (properties.cu_mask_count == 0) {
429 		pr_debug("CU mask cannot be 0");
430 		return -EINVAL;
431 	}
432 
433 	/* To prevent an unreasonably large CU mask size, set an arbitrary
434 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
435 	 * past max_num_cus bits and just use the first max_num_cus bits.
436 	 */
437 	if (properties.cu_mask_count > max_num_cus) {
438 		pr_debug("CU mask cannot be greater than 1024 bits");
439 		properties.cu_mask_count = max_num_cus;
440 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
441 	}
442 
443 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
444 	if (!properties.cu_mask)
445 		return -ENOMEM;
446 
447 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
448 	if (retval) {
449 		pr_debug("Could not copy CU mask from userspace");
450 		kfree(properties.cu_mask);
451 		return -EFAULT;
452 	}
453 
454 	mutex_lock(&p->mutex);
455 
456 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
457 
458 	mutex_unlock(&p->mutex);
459 
460 	if (retval)
461 		kfree(properties.cu_mask);
462 
463 	return retval;
464 }
465 
466 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
467 					  struct kfd_process *p, void *data)
468 {
469 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
470 	int r;
471 
472 	mutex_lock(&p->mutex);
473 
474 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
475 			       (void __user *)args->ctl_stack_address,
476 			       &args->ctl_stack_used_size,
477 			       &args->save_area_used_size);
478 
479 	mutex_unlock(&p->mutex);
480 
481 	return r;
482 }
483 
484 static int kfd_ioctl_set_memory_policy(struct file *filep,
485 					struct kfd_process *p, void *data)
486 {
487 	struct kfd_ioctl_set_memory_policy_args *args = data;
488 	struct kfd_dev *dev;
489 	int err = 0;
490 	struct kfd_process_device *pdd;
491 	enum cache_policy default_policy, alternate_policy;
492 
493 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
494 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
495 		return -EINVAL;
496 	}
497 
498 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
499 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
500 		return -EINVAL;
501 	}
502 
503 	dev = kfd_device_by_id(args->gpu_id);
504 	if (!dev)
505 		return -EINVAL;
506 
507 	mutex_lock(&p->mutex);
508 
509 	pdd = kfd_bind_process_to_device(dev, p);
510 	if (IS_ERR(pdd)) {
511 		err = -ESRCH;
512 		goto out;
513 	}
514 
515 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
516 			 ? cache_policy_coherent : cache_policy_noncoherent;
517 
518 	alternate_policy =
519 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
520 		   ? cache_policy_coherent : cache_policy_noncoherent;
521 
522 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
523 				&pdd->qpd,
524 				default_policy,
525 				alternate_policy,
526 				(void __user *)args->alternate_aperture_base,
527 				args->alternate_aperture_size))
528 		err = -EINVAL;
529 
530 out:
531 	mutex_unlock(&p->mutex);
532 
533 	return err;
534 }
535 
536 static int kfd_ioctl_set_trap_handler(struct file *filep,
537 					struct kfd_process *p, void *data)
538 {
539 	struct kfd_ioctl_set_trap_handler_args *args = data;
540 	struct kfd_dev *dev;
541 	int err = 0;
542 	struct kfd_process_device *pdd;
543 
544 	dev = kfd_device_by_id(args->gpu_id);
545 	if (!dev)
546 		return -EINVAL;
547 
548 	mutex_lock(&p->mutex);
549 
550 	pdd = kfd_bind_process_to_device(dev, p);
551 	if (IS_ERR(pdd)) {
552 		err = -ESRCH;
553 		goto out;
554 	}
555 
556 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
557 					&pdd->qpd,
558 					args->tba_addr,
559 					args->tma_addr))
560 		err = -EINVAL;
561 
562 out:
563 	mutex_unlock(&p->mutex);
564 
565 	return err;
566 }
567 
568 static int kfd_ioctl_dbg_register(struct file *filep,
569 				struct kfd_process *p, void *data)
570 {
571 	struct kfd_ioctl_dbg_register_args *args = data;
572 	struct kfd_dev *dev;
573 	struct kfd_dbgmgr *dbgmgr_ptr;
574 	struct kfd_process_device *pdd;
575 	bool create_ok;
576 	long status = 0;
577 
578 	dev = kfd_device_by_id(args->gpu_id);
579 	if (!dev)
580 		return -EINVAL;
581 
582 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
583 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
584 		return -EINVAL;
585 	}
586 
587 	mutex_lock(&p->mutex);
588 	mutex_lock(kfd_get_dbgmgr_mutex());
589 
590 	/*
591 	 * make sure that we have pdd, if this the first queue created for
592 	 * this process
593 	 */
594 	pdd = kfd_bind_process_to_device(dev, p);
595 	if (IS_ERR(pdd)) {
596 		status = PTR_ERR(pdd);
597 		goto out;
598 	}
599 
600 	if (!dev->dbgmgr) {
601 		/* In case of a legal call, we have no dbgmgr yet */
602 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
603 		if (create_ok) {
604 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
605 			if (status != 0)
606 				kfd_dbgmgr_destroy(dbgmgr_ptr);
607 			else
608 				dev->dbgmgr = dbgmgr_ptr;
609 		}
610 	} else {
611 		pr_debug("debugger already registered\n");
612 		status = -EINVAL;
613 	}
614 
615 out:
616 	mutex_unlock(kfd_get_dbgmgr_mutex());
617 	mutex_unlock(&p->mutex);
618 
619 	return status;
620 }
621 
622 static int kfd_ioctl_dbg_unregister(struct file *filep,
623 				struct kfd_process *p, void *data)
624 {
625 	struct kfd_ioctl_dbg_unregister_args *args = data;
626 	struct kfd_dev *dev;
627 	long status;
628 
629 	dev = kfd_device_by_id(args->gpu_id);
630 	if (!dev || !dev->dbgmgr)
631 		return -EINVAL;
632 
633 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
634 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
635 		return -EINVAL;
636 	}
637 
638 	mutex_lock(kfd_get_dbgmgr_mutex());
639 
640 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
641 	if (!status) {
642 		kfd_dbgmgr_destroy(dev->dbgmgr);
643 		dev->dbgmgr = NULL;
644 	}
645 
646 	mutex_unlock(kfd_get_dbgmgr_mutex());
647 
648 	return status;
649 }
650 
651 /*
652  * Parse and generate variable size data structure for address watch.
653  * Total size of the buffer and # watch points is limited in order
654  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
655  * which is enforced by dbgdev module)
656  * please also note that the watch address itself are not "copied from user",
657  * since it be set into the HW in user mode values.
658  *
659  */
660 static int kfd_ioctl_dbg_address_watch(struct file *filep,
661 					struct kfd_process *p, void *data)
662 {
663 	struct kfd_ioctl_dbg_address_watch_args *args = data;
664 	struct kfd_dev *dev;
665 	struct dbg_address_watch_info aw_info;
666 	unsigned char *args_buff;
667 	long status;
668 	void __user *cmd_from_user;
669 	uint64_t watch_mask_value = 0;
670 	unsigned int args_idx = 0;
671 
672 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
673 
674 	dev = kfd_device_by_id(args->gpu_id);
675 	if (!dev)
676 		return -EINVAL;
677 
678 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
679 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
680 		return -EINVAL;
681 	}
682 
683 	cmd_from_user = (void __user *) args->content_ptr;
684 
685 	/* Validate arguments */
686 
687 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
688 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
689 		(cmd_from_user == NULL))
690 		return -EINVAL;
691 
692 	/* this is the actual buffer to work with */
693 	args_buff = memdup_user(cmd_from_user,
694 				args->buf_size_in_bytes - sizeof(*args));
695 	if (IS_ERR(args_buff))
696 		return PTR_ERR(args_buff);
697 
698 	aw_info.process = p;
699 
700 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
701 	args_idx += sizeof(aw_info.num_watch_points);
702 
703 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
704 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
705 
706 	/*
707 	 * set watch address base pointer to point on the array base
708 	 * within args_buff
709 	 */
710 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
711 
712 	/* skip over the addresses buffer */
713 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
714 
715 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
716 		status = -EINVAL;
717 		goto out;
718 	}
719 
720 	watch_mask_value = (uint64_t) args_buff[args_idx];
721 
722 	if (watch_mask_value > 0) {
723 		/*
724 		 * There is an array of masks.
725 		 * set watch mask base pointer to point on the array base
726 		 * within args_buff
727 		 */
728 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
729 
730 		/* skip over the masks buffer */
731 		args_idx += sizeof(aw_info.watch_mask) *
732 				aw_info.num_watch_points;
733 	} else {
734 		/* just the NULL mask, set to NULL and skip over it */
735 		aw_info.watch_mask = NULL;
736 		args_idx += sizeof(aw_info.watch_mask);
737 	}
738 
739 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
740 		status = -EINVAL;
741 		goto out;
742 	}
743 
744 	/* Currently HSA Event is not supported for DBG */
745 	aw_info.watch_event = NULL;
746 
747 	mutex_lock(kfd_get_dbgmgr_mutex());
748 
749 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
750 
751 	mutex_unlock(kfd_get_dbgmgr_mutex());
752 
753 out:
754 	kfree(args_buff);
755 
756 	return status;
757 }
758 
759 /* Parse and generate fixed size data structure for wave control */
760 static int kfd_ioctl_dbg_wave_control(struct file *filep,
761 					struct kfd_process *p, void *data)
762 {
763 	struct kfd_ioctl_dbg_wave_control_args *args = data;
764 	struct kfd_dev *dev;
765 	struct dbg_wave_control_info wac_info;
766 	unsigned char *args_buff;
767 	uint32_t computed_buff_size;
768 	long status;
769 	void __user *cmd_from_user;
770 	unsigned int args_idx = 0;
771 
772 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
773 
774 	/* we use compact form, independent of the packing attribute value */
775 	computed_buff_size = sizeof(*args) +
776 				sizeof(wac_info.mode) +
777 				sizeof(wac_info.operand) +
778 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
779 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
780 				sizeof(wac_info.trapId);
781 
782 	dev = kfd_device_by_id(args->gpu_id);
783 	if (!dev)
784 		return -EINVAL;
785 
786 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
787 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
788 		return -EINVAL;
789 	}
790 
791 	/* input size must match the computed "compact" size */
792 	if (args->buf_size_in_bytes != computed_buff_size) {
793 		pr_debug("size mismatch, computed : actual %u : %u\n",
794 				args->buf_size_in_bytes, computed_buff_size);
795 		return -EINVAL;
796 	}
797 
798 	cmd_from_user = (void __user *) args->content_ptr;
799 
800 	if (cmd_from_user == NULL)
801 		return -EINVAL;
802 
803 	/* copy the entire buffer from user */
804 
805 	args_buff = memdup_user(cmd_from_user,
806 				args->buf_size_in_bytes - sizeof(*args));
807 	if (IS_ERR(args_buff))
808 		return PTR_ERR(args_buff);
809 
810 	/* move ptr to the start of the "pay-load" area */
811 	wac_info.process = p;
812 
813 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
814 	args_idx += sizeof(wac_info.operand);
815 
816 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
817 	args_idx += sizeof(wac_info.mode);
818 
819 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
820 	args_idx += sizeof(wac_info.trapId);
821 
822 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
823 					*((uint32_t *)(&args_buff[args_idx]));
824 	wac_info.dbgWave_msg.MemoryVA = NULL;
825 
826 	mutex_lock(kfd_get_dbgmgr_mutex());
827 
828 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
829 			wac_info.process, wac_info.operand,
830 			wac_info.mode, wac_info.trapId,
831 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
832 
833 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
834 
835 	pr_debug("Returned status of dbg manager is %ld\n", status);
836 
837 	mutex_unlock(kfd_get_dbgmgr_mutex());
838 
839 	kfree(args_buff);
840 
841 	return status;
842 }
843 
844 static int kfd_ioctl_get_clock_counters(struct file *filep,
845 				struct kfd_process *p, void *data)
846 {
847 	struct kfd_ioctl_get_clock_counters_args *args = data;
848 	struct kfd_dev *dev;
849 
850 	dev = kfd_device_by_id(args->gpu_id);
851 	if (dev)
852 		/* Reading GPU clock counter from KGD */
853 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
854 	else
855 		/* Node without GPU resource */
856 		args->gpu_clock_counter = 0;
857 
858 	/* No access to rdtsc. Using raw monotonic time */
859 	args->cpu_clock_counter = ktime_get_raw_ns();
860 	args->system_clock_counter = ktime_get_boottime_ns();
861 
862 	/* Since the counter is in nano-seconds we use 1GHz frequency */
863 	args->system_clock_freq = 1000000000;
864 
865 	return 0;
866 }
867 
868 
869 static int kfd_ioctl_get_process_apertures(struct file *filp,
870 				struct kfd_process *p, void *data)
871 {
872 	struct kfd_ioctl_get_process_apertures_args *args = data;
873 	struct kfd_process_device_apertures *pAperture;
874 	struct kfd_process_device *pdd;
875 
876 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
877 
878 	args->num_of_nodes = 0;
879 
880 	mutex_lock(&p->mutex);
881 
882 	/*if the process-device list isn't empty*/
883 	if (kfd_has_process_device_data(p)) {
884 		/* Run over all pdd of the process */
885 		pdd = kfd_get_first_process_device_data(p);
886 		do {
887 			pAperture =
888 				&args->process_apertures[args->num_of_nodes];
889 			pAperture->gpu_id = pdd->dev->id;
890 			pAperture->lds_base = pdd->lds_base;
891 			pAperture->lds_limit = pdd->lds_limit;
892 			pAperture->gpuvm_base = pdd->gpuvm_base;
893 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
894 			pAperture->scratch_base = pdd->scratch_base;
895 			pAperture->scratch_limit = pdd->scratch_limit;
896 
897 			dev_dbg(kfd_device,
898 				"node id %u\n", args->num_of_nodes);
899 			dev_dbg(kfd_device,
900 				"gpu id %u\n", pdd->dev->id);
901 			dev_dbg(kfd_device,
902 				"lds_base %llX\n", pdd->lds_base);
903 			dev_dbg(kfd_device,
904 				"lds_limit %llX\n", pdd->lds_limit);
905 			dev_dbg(kfd_device,
906 				"gpuvm_base %llX\n", pdd->gpuvm_base);
907 			dev_dbg(kfd_device,
908 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
909 			dev_dbg(kfd_device,
910 				"scratch_base %llX\n", pdd->scratch_base);
911 			dev_dbg(kfd_device,
912 				"scratch_limit %llX\n", pdd->scratch_limit);
913 
914 			args->num_of_nodes++;
915 
916 			pdd = kfd_get_next_process_device_data(p, pdd);
917 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
918 	}
919 
920 	mutex_unlock(&p->mutex);
921 
922 	return 0;
923 }
924 
925 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
926 				struct kfd_process *p, void *data)
927 {
928 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
929 	struct kfd_process_device_apertures *pa;
930 	struct kfd_process_device *pdd;
931 	uint32_t nodes = 0;
932 	int ret;
933 
934 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
935 
936 	if (args->num_of_nodes == 0) {
937 		/* Return number of nodes, so that user space can alloacate
938 		 * sufficient memory
939 		 */
940 		mutex_lock(&p->mutex);
941 
942 		if (!kfd_has_process_device_data(p))
943 			goto out_unlock;
944 
945 		/* Run over all pdd of the process */
946 		pdd = kfd_get_first_process_device_data(p);
947 		do {
948 			args->num_of_nodes++;
949 			pdd = kfd_get_next_process_device_data(p, pdd);
950 		} while (pdd);
951 
952 		goto out_unlock;
953 	}
954 
955 	/* Fill in process-aperture information for all available
956 	 * nodes, but not more than args->num_of_nodes as that is
957 	 * the amount of memory allocated by user
958 	 */
959 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
960 				args->num_of_nodes), GFP_KERNEL);
961 	if (!pa)
962 		return -ENOMEM;
963 
964 	mutex_lock(&p->mutex);
965 
966 	if (!kfd_has_process_device_data(p)) {
967 		args->num_of_nodes = 0;
968 		kfree(pa);
969 		goto out_unlock;
970 	}
971 
972 	/* Run over all pdd of the process */
973 	pdd = kfd_get_first_process_device_data(p);
974 	do {
975 		pa[nodes].gpu_id = pdd->dev->id;
976 		pa[nodes].lds_base = pdd->lds_base;
977 		pa[nodes].lds_limit = pdd->lds_limit;
978 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
979 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
980 		pa[nodes].scratch_base = pdd->scratch_base;
981 		pa[nodes].scratch_limit = pdd->scratch_limit;
982 
983 		dev_dbg(kfd_device,
984 			"gpu id %u\n", pdd->dev->id);
985 		dev_dbg(kfd_device,
986 			"lds_base %llX\n", pdd->lds_base);
987 		dev_dbg(kfd_device,
988 			"lds_limit %llX\n", pdd->lds_limit);
989 		dev_dbg(kfd_device,
990 			"gpuvm_base %llX\n", pdd->gpuvm_base);
991 		dev_dbg(kfd_device,
992 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
993 		dev_dbg(kfd_device,
994 			"scratch_base %llX\n", pdd->scratch_base);
995 		dev_dbg(kfd_device,
996 			"scratch_limit %llX\n", pdd->scratch_limit);
997 		nodes++;
998 
999 		pdd = kfd_get_next_process_device_data(p, pdd);
1000 	} while (pdd && (nodes < args->num_of_nodes));
1001 	mutex_unlock(&p->mutex);
1002 
1003 	args->num_of_nodes = nodes;
1004 	ret = copy_to_user(
1005 			(void __user *)args->kfd_process_device_apertures_ptr,
1006 			pa,
1007 			(nodes * sizeof(struct kfd_process_device_apertures)));
1008 	kfree(pa);
1009 	return ret ? -EFAULT : 0;
1010 
1011 out_unlock:
1012 	mutex_unlock(&p->mutex);
1013 	return 0;
1014 }
1015 
1016 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1017 					void *data)
1018 {
1019 	struct kfd_ioctl_create_event_args *args = data;
1020 	int err;
1021 
1022 	/* For dGPUs the event page is allocated in user mode. The
1023 	 * handle is passed to KFD with the first call to this IOCTL
1024 	 * through the event_page_offset field.
1025 	 */
1026 	if (args->event_page_offset) {
1027 		struct kfd_dev *kfd;
1028 		struct kfd_process_device *pdd;
1029 		void *mem, *kern_addr;
1030 		uint64_t size;
1031 
1032 		if (p->signal_page) {
1033 			pr_err("Event page is already set\n");
1034 			return -EINVAL;
1035 		}
1036 
1037 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1038 		if (!kfd) {
1039 			pr_err("Getting device by id failed in %s\n", __func__);
1040 			return -EINVAL;
1041 		}
1042 
1043 		mutex_lock(&p->mutex);
1044 		pdd = kfd_bind_process_to_device(kfd, p);
1045 		if (IS_ERR(pdd)) {
1046 			err = PTR_ERR(pdd);
1047 			goto out_unlock;
1048 		}
1049 
1050 		mem = kfd_process_device_translate_handle(pdd,
1051 				GET_IDR_HANDLE(args->event_page_offset));
1052 		if (!mem) {
1053 			pr_err("Can't find BO, offset is 0x%llx\n",
1054 			       args->event_page_offset);
1055 			err = -EINVAL;
1056 			goto out_unlock;
1057 		}
1058 		mutex_unlock(&p->mutex);
1059 
1060 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1061 						mem, &kern_addr, &size);
1062 		if (err) {
1063 			pr_err("Failed to map event page to kernel\n");
1064 			return err;
1065 		}
1066 
1067 		err = kfd_event_page_set(p, kern_addr, size);
1068 		if (err) {
1069 			pr_err("Failed to set event page\n");
1070 			return err;
1071 		}
1072 	}
1073 
1074 	err = kfd_event_create(filp, p, args->event_type,
1075 				args->auto_reset != 0, args->node_id,
1076 				&args->event_id, &args->event_trigger_data,
1077 				&args->event_page_offset,
1078 				&args->event_slot_index);
1079 
1080 	return err;
1081 
1082 out_unlock:
1083 	mutex_unlock(&p->mutex);
1084 	return err;
1085 }
1086 
1087 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1088 					void *data)
1089 {
1090 	struct kfd_ioctl_destroy_event_args *args = data;
1091 
1092 	return kfd_event_destroy(p, args->event_id);
1093 }
1094 
1095 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1096 				void *data)
1097 {
1098 	struct kfd_ioctl_set_event_args *args = data;
1099 
1100 	return kfd_set_event(p, args->event_id);
1101 }
1102 
1103 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1104 				void *data)
1105 {
1106 	struct kfd_ioctl_reset_event_args *args = data;
1107 
1108 	return kfd_reset_event(p, args->event_id);
1109 }
1110 
1111 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1112 				void *data)
1113 {
1114 	struct kfd_ioctl_wait_events_args *args = data;
1115 	int err;
1116 
1117 	err = kfd_wait_on_events(p, args->num_events,
1118 			(void __user *)args->events_ptr,
1119 			(args->wait_for_all != 0),
1120 			args->timeout, &args->wait_result);
1121 
1122 	return err;
1123 }
1124 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1125 					struct kfd_process *p, void *data)
1126 {
1127 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1128 	struct kfd_process_device *pdd;
1129 	struct kfd_dev *dev;
1130 	long err;
1131 
1132 	dev = kfd_device_by_id(args->gpu_id);
1133 	if (!dev)
1134 		return -EINVAL;
1135 
1136 	mutex_lock(&p->mutex);
1137 
1138 	pdd = kfd_bind_process_to_device(dev, p);
1139 	if (IS_ERR(pdd)) {
1140 		err = PTR_ERR(pdd);
1141 		goto bind_process_to_device_fail;
1142 	}
1143 
1144 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1145 
1146 	mutex_unlock(&p->mutex);
1147 
1148 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1149 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1150 		dev->kfd2kgd->set_scratch_backing_va(
1151 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1152 
1153 	return 0;
1154 
1155 bind_process_to_device_fail:
1156 	mutex_unlock(&p->mutex);
1157 	return err;
1158 }
1159 
1160 static int kfd_ioctl_get_tile_config(struct file *filep,
1161 		struct kfd_process *p, void *data)
1162 {
1163 	struct kfd_ioctl_get_tile_config_args *args = data;
1164 	struct kfd_dev *dev;
1165 	struct tile_config config;
1166 	int err = 0;
1167 
1168 	dev = kfd_device_by_id(args->gpu_id);
1169 	if (!dev)
1170 		return -EINVAL;
1171 
1172 	amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1173 
1174 	args->gb_addr_config = config.gb_addr_config;
1175 	args->num_banks = config.num_banks;
1176 	args->num_ranks = config.num_ranks;
1177 
1178 	if (args->num_tile_configs > config.num_tile_configs)
1179 		args->num_tile_configs = config.num_tile_configs;
1180 	err = copy_to_user((void __user *)args->tile_config_ptr,
1181 			config.tile_config_ptr,
1182 			args->num_tile_configs * sizeof(uint32_t));
1183 	if (err) {
1184 		args->num_tile_configs = 0;
1185 		return -EFAULT;
1186 	}
1187 
1188 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1189 		args->num_macro_tile_configs =
1190 				config.num_macro_tile_configs;
1191 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1192 			config.macro_tile_config_ptr,
1193 			args->num_macro_tile_configs * sizeof(uint32_t));
1194 	if (err) {
1195 		args->num_macro_tile_configs = 0;
1196 		return -EFAULT;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1203 				void *data)
1204 {
1205 	struct kfd_ioctl_acquire_vm_args *args = data;
1206 	struct kfd_process_device *pdd;
1207 	struct kfd_dev *dev;
1208 	struct file *drm_file;
1209 	int ret;
1210 
1211 	dev = kfd_device_by_id(args->gpu_id);
1212 	if (!dev)
1213 		return -EINVAL;
1214 
1215 	drm_file = fget(args->drm_fd);
1216 	if (!drm_file)
1217 		return -EINVAL;
1218 
1219 	mutex_lock(&p->mutex);
1220 
1221 	pdd = kfd_get_process_device_data(dev, p);
1222 	if (!pdd) {
1223 		ret = -EINVAL;
1224 		goto err_unlock;
1225 	}
1226 
1227 	if (pdd->drm_file) {
1228 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1229 		goto err_unlock;
1230 	}
1231 
1232 	ret = kfd_process_device_init_vm(pdd, drm_file);
1233 	if (ret)
1234 		goto err_unlock;
1235 	/* On success, the PDD keeps the drm_file reference */
1236 	mutex_unlock(&p->mutex);
1237 
1238 	return 0;
1239 
1240 err_unlock:
1241 	mutex_unlock(&p->mutex);
1242 	fput(drm_file);
1243 	return ret;
1244 }
1245 
1246 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1247 {
1248 	struct kfd_local_mem_info mem_info;
1249 
1250 	if (debug_largebar) {
1251 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1252 		return true;
1253 	}
1254 
1255 	if (dev->device_info->needs_iommu_device)
1256 		return false;
1257 
1258 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1259 	if (mem_info.local_mem_size_private == 0 &&
1260 			mem_info.local_mem_size_public > 0)
1261 		return true;
1262 	return false;
1263 }
1264 
1265 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1266 					struct kfd_process *p, void *data)
1267 {
1268 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1269 	struct kfd_process_device *pdd;
1270 	void *mem;
1271 	struct kfd_dev *dev;
1272 	int idr_handle;
1273 	long err;
1274 	uint64_t offset = args->mmap_offset;
1275 	uint32_t flags = args->flags;
1276 
1277 	if (args->size == 0)
1278 		return -EINVAL;
1279 
1280 	dev = kfd_device_by_id(args->gpu_id);
1281 	if (!dev)
1282 		return -EINVAL;
1283 
1284 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1285 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1286 		!kfd_dev_is_large_bar(dev)) {
1287 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1288 		return -EINVAL;
1289 	}
1290 
1291 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1292 		if (args->size != kfd_doorbell_process_slice(dev))
1293 			return -EINVAL;
1294 		offset = kfd_get_process_doorbells(dev, p);
1295 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1296 		if (args->size != PAGE_SIZE)
1297 			return -EINVAL;
1298 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1299 		if (!offset)
1300 			return -ENOMEM;
1301 	}
1302 
1303 	mutex_lock(&p->mutex);
1304 
1305 	pdd = kfd_bind_process_to_device(dev, p);
1306 	if (IS_ERR(pdd)) {
1307 		err = PTR_ERR(pdd);
1308 		goto err_unlock;
1309 	}
1310 
1311 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1312 		dev->kgd, args->va_addr, args->size,
1313 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1314 		flags);
1315 
1316 	if (err)
1317 		goto err_unlock;
1318 
1319 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1320 	if (idr_handle < 0) {
1321 		err = -EFAULT;
1322 		goto err_free;
1323 	}
1324 
1325 	mutex_unlock(&p->mutex);
1326 
1327 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1328 	args->mmap_offset = offset;
1329 
1330 	/* MMIO is mapped through kfd device
1331 	 * Generate a kfd mmap offset
1332 	 */
1333 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1334 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1335 					| KFD_MMAP_GPU_ID(args->gpu_id);
1336 
1337 	return 0;
1338 
1339 err_free:
1340 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1341 err_unlock:
1342 	mutex_unlock(&p->mutex);
1343 	return err;
1344 }
1345 
1346 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1347 					struct kfd_process *p, void *data)
1348 {
1349 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1350 	struct kfd_process_device *pdd;
1351 	void *mem;
1352 	struct kfd_dev *dev;
1353 	int ret;
1354 
1355 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1356 	if (!dev)
1357 		return -EINVAL;
1358 
1359 	mutex_lock(&p->mutex);
1360 
1361 	pdd = kfd_get_process_device_data(dev, p);
1362 	if (!pdd) {
1363 		pr_err("Process device data doesn't exist\n");
1364 		ret = -EINVAL;
1365 		goto err_unlock;
1366 	}
1367 
1368 	mem = kfd_process_device_translate_handle(
1369 		pdd, GET_IDR_HANDLE(args->handle));
1370 	if (!mem) {
1371 		ret = -EINVAL;
1372 		goto err_unlock;
1373 	}
1374 
1375 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1376 						(struct kgd_mem *)mem);
1377 
1378 	/* If freeing the buffer failed, leave the handle in place for
1379 	 * clean-up during process tear-down.
1380 	 */
1381 	if (!ret)
1382 		kfd_process_device_remove_obj_handle(
1383 			pdd, GET_IDR_HANDLE(args->handle));
1384 
1385 err_unlock:
1386 	mutex_unlock(&p->mutex);
1387 	return ret;
1388 }
1389 
1390 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1391 					struct kfd_process *p, void *data)
1392 {
1393 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1394 	struct kfd_process_device *pdd, *peer_pdd;
1395 	void *mem;
1396 	struct kfd_dev *dev, *peer;
1397 	long err = 0;
1398 	int i;
1399 	uint32_t *devices_arr = NULL;
1400 
1401 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1402 	if (!dev)
1403 		return -EINVAL;
1404 
1405 	if (!args->n_devices) {
1406 		pr_debug("Device IDs array empty\n");
1407 		return -EINVAL;
1408 	}
1409 	if (args->n_success > args->n_devices) {
1410 		pr_debug("n_success exceeds n_devices\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1415 				    GFP_KERNEL);
1416 	if (!devices_arr)
1417 		return -ENOMEM;
1418 
1419 	err = copy_from_user(devices_arr,
1420 			     (void __user *)args->device_ids_array_ptr,
1421 			     args->n_devices * sizeof(*devices_arr));
1422 	if (err != 0) {
1423 		err = -EFAULT;
1424 		goto copy_from_user_failed;
1425 	}
1426 
1427 	mutex_lock(&p->mutex);
1428 
1429 	pdd = kfd_bind_process_to_device(dev, p);
1430 	if (IS_ERR(pdd)) {
1431 		err = PTR_ERR(pdd);
1432 		goto bind_process_to_device_failed;
1433 	}
1434 
1435 	mem = kfd_process_device_translate_handle(pdd,
1436 						GET_IDR_HANDLE(args->handle));
1437 	if (!mem) {
1438 		err = -ENOMEM;
1439 		goto get_mem_obj_from_handle_failed;
1440 	}
1441 
1442 	for (i = args->n_success; i < args->n_devices; i++) {
1443 		peer = kfd_device_by_id(devices_arr[i]);
1444 		if (!peer) {
1445 			pr_debug("Getting device by id failed for 0x%x\n",
1446 				 devices_arr[i]);
1447 			err = -EINVAL;
1448 			goto get_mem_obj_from_handle_failed;
1449 		}
1450 
1451 		peer_pdd = kfd_bind_process_to_device(peer, p);
1452 		if (IS_ERR(peer_pdd)) {
1453 			err = PTR_ERR(peer_pdd);
1454 			goto get_mem_obj_from_handle_failed;
1455 		}
1456 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1457 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1458 		if (err) {
1459 			pr_err("Failed to map to gpu %d/%d\n",
1460 			       i, args->n_devices);
1461 			goto map_memory_to_gpu_failed;
1462 		}
1463 		args->n_success = i+1;
1464 	}
1465 
1466 	mutex_unlock(&p->mutex);
1467 
1468 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1469 	if (err) {
1470 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1471 		goto sync_memory_failed;
1472 	}
1473 
1474 	/* Flush TLBs after waiting for the page table updates to complete */
1475 	for (i = 0; i < args->n_devices; i++) {
1476 		peer = kfd_device_by_id(devices_arr[i]);
1477 		if (WARN_ON_ONCE(!peer))
1478 			continue;
1479 		peer_pdd = kfd_get_process_device_data(peer, p);
1480 		if (WARN_ON_ONCE(!peer_pdd))
1481 			continue;
1482 		kfd_flush_tlb(peer_pdd);
1483 	}
1484 
1485 	kfree(devices_arr);
1486 
1487 	return err;
1488 
1489 bind_process_to_device_failed:
1490 get_mem_obj_from_handle_failed:
1491 map_memory_to_gpu_failed:
1492 	mutex_unlock(&p->mutex);
1493 copy_from_user_failed:
1494 sync_memory_failed:
1495 	kfree(devices_arr);
1496 
1497 	return err;
1498 }
1499 
1500 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1501 					struct kfd_process *p, void *data)
1502 {
1503 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1504 	struct kfd_process_device *pdd, *peer_pdd;
1505 	void *mem;
1506 	struct kfd_dev *dev, *peer;
1507 	long err = 0;
1508 	uint32_t *devices_arr = NULL, i;
1509 
1510 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1511 	if (!dev)
1512 		return -EINVAL;
1513 
1514 	if (!args->n_devices) {
1515 		pr_debug("Device IDs array empty\n");
1516 		return -EINVAL;
1517 	}
1518 	if (args->n_success > args->n_devices) {
1519 		pr_debug("n_success exceeds n_devices\n");
1520 		return -EINVAL;
1521 	}
1522 
1523 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1524 				    GFP_KERNEL);
1525 	if (!devices_arr)
1526 		return -ENOMEM;
1527 
1528 	err = copy_from_user(devices_arr,
1529 			     (void __user *)args->device_ids_array_ptr,
1530 			     args->n_devices * sizeof(*devices_arr));
1531 	if (err != 0) {
1532 		err = -EFAULT;
1533 		goto copy_from_user_failed;
1534 	}
1535 
1536 	mutex_lock(&p->mutex);
1537 
1538 	pdd = kfd_get_process_device_data(dev, p);
1539 	if (!pdd) {
1540 		err = -EINVAL;
1541 		goto bind_process_to_device_failed;
1542 	}
1543 
1544 	mem = kfd_process_device_translate_handle(pdd,
1545 						GET_IDR_HANDLE(args->handle));
1546 	if (!mem) {
1547 		err = -ENOMEM;
1548 		goto get_mem_obj_from_handle_failed;
1549 	}
1550 
1551 	for (i = args->n_success; i < args->n_devices; i++) {
1552 		peer = kfd_device_by_id(devices_arr[i]);
1553 		if (!peer) {
1554 			err = -EINVAL;
1555 			goto get_mem_obj_from_handle_failed;
1556 		}
1557 
1558 		peer_pdd = kfd_get_process_device_data(peer, p);
1559 		if (!peer_pdd) {
1560 			err = -ENODEV;
1561 			goto get_mem_obj_from_handle_failed;
1562 		}
1563 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1564 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1565 		if (err) {
1566 			pr_err("Failed to unmap from gpu %d/%d\n",
1567 			       i, args->n_devices);
1568 			goto unmap_memory_from_gpu_failed;
1569 		}
1570 		args->n_success = i+1;
1571 	}
1572 	kfree(devices_arr);
1573 
1574 	mutex_unlock(&p->mutex);
1575 
1576 	return 0;
1577 
1578 bind_process_to_device_failed:
1579 get_mem_obj_from_handle_failed:
1580 unmap_memory_from_gpu_failed:
1581 	mutex_unlock(&p->mutex);
1582 copy_from_user_failed:
1583 	kfree(devices_arr);
1584 	return err;
1585 }
1586 
1587 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1588 		struct kfd_process *p, void *data)
1589 {
1590 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1591 	struct kfd_dev *dev = NULL;
1592 	struct kgd_dev *dma_buf_kgd;
1593 	void *metadata_buffer = NULL;
1594 	uint32_t flags;
1595 	unsigned int i;
1596 	int r;
1597 
1598 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1599 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1600 		if (dev)
1601 			break;
1602 	if (!dev)
1603 		return -EINVAL;
1604 
1605 	if (args->metadata_ptr) {
1606 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1607 		if (!metadata_buffer)
1608 			return -ENOMEM;
1609 	}
1610 
1611 	/* Get dmabuf info from KGD */
1612 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1613 					  &dma_buf_kgd, &args->size,
1614 					  metadata_buffer, args->metadata_size,
1615 					  &args->metadata_size, &flags);
1616 	if (r)
1617 		goto exit;
1618 
1619 	/* Reverse-lookup gpu_id from kgd pointer */
1620 	dev = kfd_device_by_kgd(dma_buf_kgd);
1621 	if (!dev) {
1622 		r = -EINVAL;
1623 		goto exit;
1624 	}
1625 	args->gpu_id = dev->id;
1626 	args->flags = flags;
1627 
1628 	/* Copy metadata buffer to user mode */
1629 	if (metadata_buffer) {
1630 		r = copy_to_user((void __user *)args->metadata_ptr,
1631 				 metadata_buffer, args->metadata_size);
1632 		if (r != 0)
1633 			r = -EFAULT;
1634 	}
1635 
1636 exit:
1637 	kfree(metadata_buffer);
1638 
1639 	return r;
1640 }
1641 
1642 static int kfd_ioctl_import_dmabuf(struct file *filep,
1643 				   struct kfd_process *p, void *data)
1644 {
1645 	struct kfd_ioctl_import_dmabuf_args *args = data;
1646 	struct kfd_process_device *pdd;
1647 	struct dma_buf *dmabuf;
1648 	struct kfd_dev *dev;
1649 	int idr_handle;
1650 	uint64_t size;
1651 	void *mem;
1652 	int r;
1653 
1654 	dev = kfd_device_by_id(args->gpu_id);
1655 	if (!dev)
1656 		return -EINVAL;
1657 
1658 	dmabuf = dma_buf_get(args->dmabuf_fd);
1659 	if (IS_ERR(dmabuf))
1660 		return PTR_ERR(dmabuf);
1661 
1662 	mutex_lock(&p->mutex);
1663 
1664 	pdd = kfd_bind_process_to_device(dev, p);
1665 	if (IS_ERR(pdd)) {
1666 		r = PTR_ERR(pdd);
1667 		goto err_unlock;
1668 	}
1669 
1670 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1671 					      args->va_addr, pdd->vm,
1672 					      (struct kgd_mem **)&mem, &size,
1673 					      NULL);
1674 	if (r)
1675 		goto err_unlock;
1676 
1677 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1678 	if (idr_handle < 0) {
1679 		r = -EFAULT;
1680 		goto err_free;
1681 	}
1682 
1683 	mutex_unlock(&p->mutex);
1684 
1685 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1686 
1687 	return 0;
1688 
1689 err_free:
1690 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1691 err_unlock:
1692 	mutex_unlock(&p->mutex);
1693 	return r;
1694 }
1695 
1696 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1697 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1698 			    .cmd_drv = 0, .name = #ioctl}
1699 
1700 /** Ioctl table */
1701 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1702 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1703 			kfd_ioctl_get_version, 0),
1704 
1705 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1706 			kfd_ioctl_create_queue, 0),
1707 
1708 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1709 			kfd_ioctl_destroy_queue, 0),
1710 
1711 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1712 			kfd_ioctl_set_memory_policy, 0),
1713 
1714 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1715 			kfd_ioctl_get_clock_counters, 0),
1716 
1717 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1718 			kfd_ioctl_get_process_apertures, 0),
1719 
1720 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1721 			kfd_ioctl_update_queue, 0),
1722 
1723 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1724 			kfd_ioctl_create_event, 0),
1725 
1726 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1727 			kfd_ioctl_destroy_event, 0),
1728 
1729 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1730 			kfd_ioctl_set_event, 0),
1731 
1732 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1733 			kfd_ioctl_reset_event, 0),
1734 
1735 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1736 			kfd_ioctl_wait_events, 0),
1737 
1738 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1739 			kfd_ioctl_dbg_register, 0),
1740 
1741 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1742 			kfd_ioctl_dbg_unregister, 0),
1743 
1744 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1745 			kfd_ioctl_dbg_address_watch, 0),
1746 
1747 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1748 			kfd_ioctl_dbg_wave_control, 0),
1749 
1750 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1751 			kfd_ioctl_set_scratch_backing_va, 0),
1752 
1753 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1754 			kfd_ioctl_get_tile_config, 0),
1755 
1756 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1757 			kfd_ioctl_set_trap_handler, 0),
1758 
1759 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1760 			kfd_ioctl_get_process_apertures_new, 0),
1761 
1762 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1763 			kfd_ioctl_acquire_vm, 0),
1764 
1765 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1766 			kfd_ioctl_alloc_memory_of_gpu, 0),
1767 
1768 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1769 			kfd_ioctl_free_memory_of_gpu, 0),
1770 
1771 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1772 			kfd_ioctl_map_memory_to_gpu, 0),
1773 
1774 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1775 			kfd_ioctl_unmap_memory_from_gpu, 0),
1776 
1777 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1778 			kfd_ioctl_set_cu_mask, 0),
1779 
1780 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1781 			kfd_ioctl_get_queue_wave_state, 0),
1782 
1783 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1784 				kfd_ioctl_get_dmabuf_info, 0),
1785 
1786 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1787 				kfd_ioctl_import_dmabuf, 0),
1788 
1789 };
1790 
1791 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1792 
1793 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1794 {
1795 	struct kfd_process *process;
1796 	amdkfd_ioctl_t *func;
1797 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1798 	unsigned int nr = _IOC_NR(cmd);
1799 	char stack_kdata[128];
1800 	char *kdata = NULL;
1801 	unsigned int usize, asize;
1802 	int retcode = -EINVAL;
1803 
1804 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1805 		goto err_i1;
1806 
1807 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1808 		u32 amdkfd_size;
1809 
1810 		ioctl = &amdkfd_ioctls[nr];
1811 
1812 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1813 		usize = asize = _IOC_SIZE(cmd);
1814 		if (amdkfd_size > asize)
1815 			asize = amdkfd_size;
1816 
1817 		cmd = ioctl->cmd;
1818 	} else
1819 		goto err_i1;
1820 
1821 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1822 
1823 	/* Get the process struct from the filep. Only the process
1824 	 * that opened /dev/kfd can use the file descriptor. Child
1825 	 * processes need to create their own KFD device context.
1826 	 */
1827 	process = filep->private_data;
1828 	if (process->lead_thread != current->group_leader) {
1829 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1830 		retcode = -EBADF;
1831 		goto err_i1;
1832 	}
1833 
1834 	/* Do not trust userspace, use our own definition */
1835 	func = ioctl->func;
1836 
1837 	if (unlikely(!func)) {
1838 		dev_dbg(kfd_device, "no function\n");
1839 		retcode = -EINVAL;
1840 		goto err_i1;
1841 	}
1842 
1843 	if (cmd & (IOC_IN | IOC_OUT)) {
1844 		if (asize <= sizeof(stack_kdata)) {
1845 			kdata = stack_kdata;
1846 		} else {
1847 			kdata = kmalloc(asize, GFP_KERNEL);
1848 			if (!kdata) {
1849 				retcode = -ENOMEM;
1850 				goto err_i1;
1851 			}
1852 		}
1853 		if (asize > usize)
1854 			memset(kdata + usize, 0, asize - usize);
1855 	}
1856 
1857 	if (cmd & IOC_IN) {
1858 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1859 			retcode = -EFAULT;
1860 			goto err_i1;
1861 		}
1862 	} else if (cmd & IOC_OUT) {
1863 		memset(kdata, 0, usize);
1864 	}
1865 
1866 	retcode = func(filep, process, kdata);
1867 
1868 	if (cmd & IOC_OUT)
1869 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1870 			retcode = -EFAULT;
1871 
1872 err_i1:
1873 	if (!ioctl)
1874 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1875 			  task_pid_nr(current), cmd, nr);
1876 
1877 	if (kdata != stack_kdata)
1878 		kfree(kdata);
1879 
1880 	if (retcode)
1881 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1882 				nr, arg, retcode);
1883 
1884 	return retcode;
1885 }
1886 
1887 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1888 		      struct vm_area_struct *vma)
1889 {
1890 	phys_addr_t address;
1891 	int ret;
1892 
1893 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1894 		return -EINVAL;
1895 
1896 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1897 
1898 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1899 				VM_DONTDUMP | VM_PFNMAP;
1900 
1901 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1902 
1903 	pr_debug("pasid 0x%x mapping mmio page\n"
1904 		 "     target user address == 0x%08llX\n"
1905 		 "     physical address    == 0x%08llX\n"
1906 		 "     vm_flags            == 0x%04lX\n"
1907 		 "     size                == 0x%04lX\n",
1908 		 process->pasid, (unsigned long long) vma->vm_start,
1909 		 address, vma->vm_flags, PAGE_SIZE);
1910 
1911 	ret = io_remap_pfn_range(vma,
1912 				vma->vm_start,
1913 				address >> PAGE_SHIFT,
1914 				PAGE_SIZE,
1915 				vma->vm_page_prot);
1916 	return ret;
1917 }
1918 
1919 
1920 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1921 {
1922 	struct kfd_process *process;
1923 	struct kfd_dev *dev = NULL;
1924 	unsigned long mmap_offset;
1925 	unsigned int gpu_id;
1926 
1927 	process = kfd_get_process(current);
1928 	if (IS_ERR(process))
1929 		return PTR_ERR(process);
1930 
1931 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
1932 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
1933 	if (gpu_id)
1934 		dev = kfd_device_by_id(gpu_id);
1935 
1936 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
1937 	case KFD_MMAP_TYPE_DOORBELL:
1938 		if (!dev)
1939 			return -ENODEV;
1940 		return kfd_doorbell_mmap(dev, process, vma);
1941 
1942 	case KFD_MMAP_TYPE_EVENTS:
1943 		return kfd_event_mmap(process, vma);
1944 
1945 	case KFD_MMAP_TYPE_RESERVED_MEM:
1946 		if (!dev)
1947 			return -ENODEV;
1948 		return kfd_reserved_mem_mmap(dev, process, vma);
1949 	case KFD_MMAP_TYPE_MMIO:
1950 		if (!dev)
1951 			return -ENODEV;
1952 		return kfd_mmio_mmap(dev, process, vma);
1953 	}
1954 
1955 	return -EFAULT;
1956 }
1957