1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "kfd_svm.h"
42 #include "amdgpu_amdkfd.h"
43 #include "kfd_smi_events.h"
44 
45 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
46 static int kfd_open(struct inode *, struct file *);
47 static int kfd_release(struct inode *, struct file *);
48 static int kfd_mmap(struct file *, struct vm_area_struct *);
49 
50 static const char kfd_dev_name[] = "kfd";
51 
52 static const struct file_operations kfd_fops = {
53 	.owner = THIS_MODULE,
54 	.unlocked_ioctl = kfd_ioctl,
55 	.compat_ioctl = compat_ptr_ioctl,
56 	.open = kfd_open,
57 	.release = kfd_release,
58 	.mmap = kfd_mmap,
59 };
60 
61 static int kfd_char_dev_major = -1;
62 static struct class *kfd_class;
63 struct device *kfd_device;
64 
65 int kfd_chardev_init(void)
66 {
67 	int err = 0;
68 
69 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
70 	err = kfd_char_dev_major;
71 	if (err < 0)
72 		goto err_register_chrdev;
73 
74 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
75 	err = PTR_ERR(kfd_class);
76 	if (IS_ERR(kfd_class))
77 		goto err_class_create;
78 
79 	kfd_device = device_create(kfd_class, NULL,
80 					MKDEV(kfd_char_dev_major, 0),
81 					NULL, kfd_dev_name);
82 	err = PTR_ERR(kfd_device);
83 	if (IS_ERR(kfd_device))
84 		goto err_device_create;
85 
86 	return 0;
87 
88 err_device_create:
89 	class_destroy(kfd_class);
90 err_class_create:
91 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
92 err_register_chrdev:
93 	return err;
94 }
95 
96 void kfd_chardev_exit(void)
97 {
98 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
99 	class_destroy(kfd_class);
100 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
101 	kfd_device = NULL;
102 }
103 
104 struct device *kfd_chardev(void)
105 {
106 	return kfd_device;
107 }
108 
109 
110 static int kfd_open(struct inode *inode, struct file *filep)
111 {
112 	struct kfd_process *process;
113 	bool is_32bit_user_mode;
114 
115 	if (iminor(inode) != 0)
116 		return -ENODEV;
117 
118 	is_32bit_user_mode = in_compat_syscall();
119 
120 	if (is_32bit_user_mode) {
121 		dev_warn(kfd_device,
122 			"Process %d (32-bit) failed to open /dev/kfd\n"
123 			"32-bit processes are not supported by amdkfd\n",
124 			current->pid);
125 		return -EPERM;
126 	}
127 
128 	process = kfd_create_process(filep);
129 	if (IS_ERR(process))
130 		return PTR_ERR(process);
131 
132 	if (kfd_is_locked()) {
133 		dev_dbg(kfd_device, "kfd is locked!\n"
134 				"process %d unreferenced", process->pasid);
135 		kfd_unref_process(process);
136 		return -EAGAIN;
137 	}
138 
139 	/* filep now owns the reference returned by kfd_create_process */
140 	filep->private_data = process;
141 
142 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
143 		process->pasid, process->is_32bit_user_mode);
144 
145 	return 0;
146 }
147 
148 static int kfd_release(struct inode *inode, struct file *filep)
149 {
150 	struct kfd_process *process = filep->private_data;
151 
152 	if (process)
153 		kfd_unref_process(process);
154 
155 	return 0;
156 }
157 
158 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
159 					void *data)
160 {
161 	struct kfd_ioctl_get_version_args *args = data;
162 
163 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
164 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
165 
166 	return 0;
167 }
168 
169 static int set_queue_properties_from_user(struct queue_properties *q_properties,
170 				struct kfd_ioctl_create_queue_args *args)
171 {
172 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
173 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
174 		return -EINVAL;
175 	}
176 
177 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
178 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
179 		return -EINVAL;
180 	}
181 
182 	if ((args->ring_base_address) &&
183 		(!access_ok((const void __user *) args->ring_base_address,
184 			sizeof(uint64_t)))) {
185 		pr_err("Can't access ring base address\n");
186 		return -EFAULT;
187 	}
188 
189 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
190 		pr_err("Ring size must be a power of 2 or 0\n");
191 		return -EINVAL;
192 	}
193 
194 	if (!access_ok((const void __user *) args->read_pointer_address,
195 			sizeof(uint32_t))) {
196 		pr_err("Can't access read pointer\n");
197 		return -EFAULT;
198 	}
199 
200 	if (!access_ok((const void __user *) args->write_pointer_address,
201 			sizeof(uint32_t))) {
202 		pr_err("Can't access write pointer\n");
203 		return -EFAULT;
204 	}
205 
206 	if (args->eop_buffer_address &&
207 		!access_ok((const void __user *) args->eop_buffer_address,
208 			sizeof(uint32_t))) {
209 		pr_debug("Can't access eop buffer");
210 		return -EFAULT;
211 	}
212 
213 	if (args->ctx_save_restore_address &&
214 		!access_ok((const void __user *) args->ctx_save_restore_address,
215 			sizeof(uint32_t))) {
216 		pr_debug("Can't access ctx save restore buffer");
217 		return -EFAULT;
218 	}
219 
220 	q_properties->is_interop = false;
221 	q_properties->is_gws = false;
222 	q_properties->queue_percent = args->queue_percentage;
223 	q_properties->priority = args->queue_priority;
224 	q_properties->queue_address = args->ring_base_address;
225 	q_properties->queue_size = args->ring_size;
226 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
227 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
228 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
229 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
230 	q_properties->ctx_save_restore_area_address =
231 			args->ctx_save_restore_address;
232 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
233 	q_properties->ctl_stack_size = args->ctl_stack_size;
234 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
235 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
236 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
237 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
238 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
239 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
240 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
241 	else
242 		return -ENOTSUPP;
243 
244 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
245 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
246 	else
247 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
248 
249 	pr_debug("Queue Percentage: %d, %d\n",
250 			q_properties->queue_percent, args->queue_percentage);
251 
252 	pr_debug("Queue Priority: %d, %d\n",
253 			q_properties->priority, args->queue_priority);
254 
255 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
256 			q_properties->queue_address, args->ring_base_address);
257 
258 	pr_debug("Queue Size: 0x%llX, %u\n",
259 			q_properties->queue_size, args->ring_size);
260 
261 	pr_debug("Queue r/w Pointers: %px, %px\n",
262 			q_properties->read_ptr,
263 			q_properties->write_ptr);
264 
265 	pr_debug("Queue Format: %d\n", q_properties->format);
266 
267 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
268 
269 	pr_debug("Queue CTX save area: 0x%llX\n",
270 			q_properties->ctx_save_restore_area_address);
271 
272 	return 0;
273 }
274 
275 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
276 					void *data)
277 {
278 	struct kfd_ioctl_create_queue_args *args = data;
279 	struct kfd_dev *dev;
280 	int err = 0;
281 	unsigned int queue_id;
282 	struct kfd_process_device *pdd;
283 	struct queue_properties q_properties;
284 	uint32_t doorbell_offset_in_process = 0;
285 
286 	memset(&q_properties, 0, sizeof(struct queue_properties));
287 
288 	pr_debug("Creating queue ioctl\n");
289 
290 	err = set_queue_properties_from_user(&q_properties, args);
291 	if (err)
292 		return err;
293 
294 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
295 	dev = kfd_device_by_id(args->gpu_id);
296 	if (!dev) {
297 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
298 		return -EINVAL;
299 	}
300 
301 	mutex_lock(&p->mutex);
302 
303 	pdd = kfd_bind_process_to_device(dev, p);
304 	if (IS_ERR(pdd)) {
305 		err = -ESRCH;
306 		goto err_bind_process;
307 	}
308 
309 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
310 			p->pasid,
311 			dev->id);
312 
313 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
314 			&doorbell_offset_in_process);
315 	if (err != 0)
316 		goto err_create_queue;
317 
318 	args->queue_id = queue_id;
319 
320 
321 	/* Return gpu_id as doorbell offset for mmap usage */
322 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
323 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
324 	if (KFD_IS_SOC15(dev->device_info->asic_family))
325 		/* On SOC15 ASICs, include the doorbell offset within the
326 		 * process doorbell frame, which is 2 pages.
327 		 */
328 		args->doorbell_offset |= doorbell_offset_in_process;
329 
330 	mutex_unlock(&p->mutex);
331 
332 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
333 
334 	pr_debug("Ring buffer address == 0x%016llX\n",
335 			args->ring_base_address);
336 
337 	pr_debug("Read ptr address    == 0x%016llX\n",
338 			args->read_pointer_address);
339 
340 	pr_debug("Write ptr address   == 0x%016llX\n",
341 			args->write_pointer_address);
342 
343 	return 0;
344 
345 err_create_queue:
346 err_bind_process:
347 	mutex_unlock(&p->mutex);
348 	return err;
349 }
350 
351 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
352 					void *data)
353 {
354 	int retval;
355 	struct kfd_ioctl_destroy_queue_args *args = data;
356 
357 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
358 				args->queue_id,
359 				p->pasid);
360 
361 	mutex_lock(&p->mutex);
362 
363 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
364 
365 	mutex_unlock(&p->mutex);
366 	return retval;
367 }
368 
369 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
370 					void *data)
371 {
372 	int retval;
373 	struct kfd_ioctl_update_queue_args *args = data;
374 	struct queue_properties properties;
375 
376 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
377 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
378 		return -EINVAL;
379 	}
380 
381 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
382 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
383 		return -EINVAL;
384 	}
385 
386 	if ((args->ring_base_address) &&
387 		(!access_ok((const void __user *) args->ring_base_address,
388 			sizeof(uint64_t)))) {
389 		pr_err("Can't access ring base address\n");
390 		return -EFAULT;
391 	}
392 
393 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
394 		pr_err("Ring size must be a power of 2 or 0\n");
395 		return -EINVAL;
396 	}
397 
398 	properties.queue_address = args->ring_base_address;
399 	properties.queue_size = args->ring_size;
400 	properties.queue_percent = args->queue_percentage;
401 	properties.priority = args->queue_priority;
402 
403 	pr_debug("Updating queue id %d for pasid 0x%x\n",
404 			args->queue_id, p->pasid);
405 
406 	mutex_lock(&p->mutex);
407 
408 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
409 
410 	mutex_unlock(&p->mutex);
411 
412 	return retval;
413 }
414 
415 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
416 					void *data)
417 {
418 	int retval;
419 	const int max_num_cus = 1024;
420 	struct kfd_ioctl_set_cu_mask_args *args = data;
421 	struct queue_properties properties;
422 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
423 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
424 
425 	if ((args->num_cu_mask % 32) != 0) {
426 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
427 				args->num_cu_mask);
428 		return -EINVAL;
429 	}
430 
431 	properties.cu_mask_count = args->num_cu_mask;
432 	if (properties.cu_mask_count == 0) {
433 		pr_debug("CU mask cannot be 0");
434 		return -EINVAL;
435 	}
436 
437 	/* To prevent an unreasonably large CU mask size, set an arbitrary
438 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
439 	 * past max_num_cus bits and just use the first max_num_cus bits.
440 	 */
441 	if (properties.cu_mask_count > max_num_cus) {
442 		pr_debug("CU mask cannot be greater than 1024 bits");
443 		properties.cu_mask_count = max_num_cus;
444 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
445 	}
446 
447 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
448 	if (!properties.cu_mask)
449 		return -ENOMEM;
450 
451 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
452 	if (retval) {
453 		pr_debug("Could not copy CU mask from userspace");
454 		kfree(properties.cu_mask);
455 		return -EFAULT;
456 	}
457 
458 	mutex_lock(&p->mutex);
459 
460 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
461 
462 	mutex_unlock(&p->mutex);
463 
464 	if (retval)
465 		kfree(properties.cu_mask);
466 
467 	return retval;
468 }
469 
470 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
471 					  struct kfd_process *p, void *data)
472 {
473 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
474 	int r;
475 
476 	mutex_lock(&p->mutex);
477 
478 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
479 			       (void __user *)args->ctl_stack_address,
480 			       &args->ctl_stack_used_size,
481 			       &args->save_area_used_size);
482 
483 	mutex_unlock(&p->mutex);
484 
485 	return r;
486 }
487 
488 static int kfd_ioctl_set_memory_policy(struct file *filep,
489 					struct kfd_process *p, void *data)
490 {
491 	struct kfd_ioctl_set_memory_policy_args *args = data;
492 	struct kfd_dev *dev;
493 	int err = 0;
494 	struct kfd_process_device *pdd;
495 	enum cache_policy default_policy, alternate_policy;
496 
497 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
498 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
499 		return -EINVAL;
500 	}
501 
502 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
503 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
504 		return -EINVAL;
505 	}
506 
507 	dev = kfd_device_by_id(args->gpu_id);
508 	if (!dev)
509 		return -EINVAL;
510 
511 	mutex_lock(&p->mutex);
512 
513 	pdd = kfd_bind_process_to_device(dev, p);
514 	if (IS_ERR(pdd)) {
515 		err = -ESRCH;
516 		goto out;
517 	}
518 
519 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
520 			 ? cache_policy_coherent : cache_policy_noncoherent;
521 
522 	alternate_policy =
523 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
524 		   ? cache_policy_coherent : cache_policy_noncoherent;
525 
526 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
527 				&pdd->qpd,
528 				default_policy,
529 				alternate_policy,
530 				(void __user *)args->alternate_aperture_base,
531 				args->alternate_aperture_size))
532 		err = -EINVAL;
533 
534 out:
535 	mutex_unlock(&p->mutex);
536 
537 	return err;
538 }
539 
540 static int kfd_ioctl_set_trap_handler(struct file *filep,
541 					struct kfd_process *p, void *data)
542 {
543 	struct kfd_ioctl_set_trap_handler_args *args = data;
544 	struct kfd_dev *dev;
545 	int err = 0;
546 	struct kfd_process_device *pdd;
547 
548 	dev = kfd_device_by_id(args->gpu_id);
549 	if (!dev)
550 		return -EINVAL;
551 
552 	mutex_lock(&p->mutex);
553 
554 	pdd = kfd_bind_process_to_device(dev, p);
555 	if (IS_ERR(pdd)) {
556 		err = -ESRCH;
557 		goto out;
558 	}
559 
560 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
561 
562 out:
563 	mutex_unlock(&p->mutex);
564 
565 	return err;
566 }
567 
568 static int kfd_ioctl_dbg_register(struct file *filep,
569 				struct kfd_process *p, void *data)
570 {
571 	struct kfd_ioctl_dbg_register_args *args = data;
572 	struct kfd_dev *dev;
573 	struct kfd_dbgmgr *dbgmgr_ptr;
574 	struct kfd_process_device *pdd;
575 	bool create_ok;
576 	long status = 0;
577 
578 	dev = kfd_device_by_id(args->gpu_id);
579 	if (!dev)
580 		return -EINVAL;
581 
582 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
583 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
584 		return -EINVAL;
585 	}
586 
587 	mutex_lock(&p->mutex);
588 	mutex_lock(kfd_get_dbgmgr_mutex());
589 
590 	/*
591 	 * make sure that we have pdd, if this the first queue created for
592 	 * this process
593 	 */
594 	pdd = kfd_bind_process_to_device(dev, p);
595 	if (IS_ERR(pdd)) {
596 		status = PTR_ERR(pdd);
597 		goto out;
598 	}
599 
600 	if (!dev->dbgmgr) {
601 		/* In case of a legal call, we have no dbgmgr yet */
602 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
603 		if (create_ok) {
604 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
605 			if (status != 0)
606 				kfd_dbgmgr_destroy(dbgmgr_ptr);
607 			else
608 				dev->dbgmgr = dbgmgr_ptr;
609 		}
610 	} else {
611 		pr_debug("debugger already registered\n");
612 		status = -EINVAL;
613 	}
614 
615 out:
616 	mutex_unlock(kfd_get_dbgmgr_mutex());
617 	mutex_unlock(&p->mutex);
618 
619 	return status;
620 }
621 
622 static int kfd_ioctl_dbg_unregister(struct file *filep,
623 				struct kfd_process *p, void *data)
624 {
625 	struct kfd_ioctl_dbg_unregister_args *args = data;
626 	struct kfd_dev *dev;
627 	long status;
628 
629 	dev = kfd_device_by_id(args->gpu_id);
630 	if (!dev || !dev->dbgmgr)
631 		return -EINVAL;
632 
633 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
634 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
635 		return -EINVAL;
636 	}
637 
638 	mutex_lock(kfd_get_dbgmgr_mutex());
639 
640 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
641 	if (!status) {
642 		kfd_dbgmgr_destroy(dev->dbgmgr);
643 		dev->dbgmgr = NULL;
644 	}
645 
646 	mutex_unlock(kfd_get_dbgmgr_mutex());
647 
648 	return status;
649 }
650 
651 /*
652  * Parse and generate variable size data structure for address watch.
653  * Total size of the buffer and # watch points is limited in order
654  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
655  * which is enforced by dbgdev module)
656  * please also note that the watch address itself are not "copied from user",
657  * since it be set into the HW in user mode values.
658  *
659  */
660 static int kfd_ioctl_dbg_address_watch(struct file *filep,
661 					struct kfd_process *p, void *data)
662 {
663 	struct kfd_ioctl_dbg_address_watch_args *args = data;
664 	struct kfd_dev *dev;
665 	struct dbg_address_watch_info aw_info;
666 	unsigned char *args_buff;
667 	long status;
668 	void __user *cmd_from_user;
669 	uint64_t watch_mask_value = 0;
670 	unsigned int args_idx = 0;
671 
672 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
673 
674 	dev = kfd_device_by_id(args->gpu_id);
675 	if (!dev)
676 		return -EINVAL;
677 
678 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
679 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
680 		return -EINVAL;
681 	}
682 
683 	cmd_from_user = (void __user *) args->content_ptr;
684 
685 	/* Validate arguments */
686 
687 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
688 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
689 		(cmd_from_user == NULL))
690 		return -EINVAL;
691 
692 	/* this is the actual buffer to work with */
693 	args_buff = memdup_user(cmd_from_user,
694 				args->buf_size_in_bytes - sizeof(*args));
695 	if (IS_ERR(args_buff))
696 		return PTR_ERR(args_buff);
697 
698 	aw_info.process = p;
699 
700 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
701 	args_idx += sizeof(aw_info.num_watch_points);
702 
703 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
704 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
705 
706 	/*
707 	 * set watch address base pointer to point on the array base
708 	 * within args_buff
709 	 */
710 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
711 
712 	/* skip over the addresses buffer */
713 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
714 
715 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
716 		status = -EINVAL;
717 		goto out;
718 	}
719 
720 	watch_mask_value = (uint64_t) args_buff[args_idx];
721 
722 	if (watch_mask_value > 0) {
723 		/*
724 		 * There is an array of masks.
725 		 * set watch mask base pointer to point on the array base
726 		 * within args_buff
727 		 */
728 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
729 
730 		/* skip over the masks buffer */
731 		args_idx += sizeof(aw_info.watch_mask) *
732 				aw_info.num_watch_points;
733 	} else {
734 		/* just the NULL mask, set to NULL and skip over it */
735 		aw_info.watch_mask = NULL;
736 		args_idx += sizeof(aw_info.watch_mask);
737 	}
738 
739 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
740 		status = -EINVAL;
741 		goto out;
742 	}
743 
744 	/* Currently HSA Event is not supported for DBG */
745 	aw_info.watch_event = NULL;
746 
747 	mutex_lock(kfd_get_dbgmgr_mutex());
748 
749 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
750 
751 	mutex_unlock(kfd_get_dbgmgr_mutex());
752 
753 out:
754 	kfree(args_buff);
755 
756 	return status;
757 }
758 
759 /* Parse and generate fixed size data structure for wave control */
760 static int kfd_ioctl_dbg_wave_control(struct file *filep,
761 					struct kfd_process *p, void *data)
762 {
763 	struct kfd_ioctl_dbg_wave_control_args *args = data;
764 	struct kfd_dev *dev;
765 	struct dbg_wave_control_info wac_info;
766 	unsigned char *args_buff;
767 	uint32_t computed_buff_size;
768 	long status;
769 	void __user *cmd_from_user;
770 	unsigned int args_idx = 0;
771 
772 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
773 
774 	/* we use compact form, independent of the packing attribute value */
775 	computed_buff_size = sizeof(*args) +
776 				sizeof(wac_info.mode) +
777 				sizeof(wac_info.operand) +
778 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
779 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
780 				sizeof(wac_info.trapId);
781 
782 	dev = kfd_device_by_id(args->gpu_id);
783 	if (!dev)
784 		return -EINVAL;
785 
786 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
787 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
788 		return -EINVAL;
789 	}
790 
791 	/* input size must match the computed "compact" size */
792 	if (args->buf_size_in_bytes != computed_buff_size) {
793 		pr_debug("size mismatch, computed : actual %u : %u\n",
794 				args->buf_size_in_bytes, computed_buff_size);
795 		return -EINVAL;
796 	}
797 
798 	cmd_from_user = (void __user *) args->content_ptr;
799 
800 	if (cmd_from_user == NULL)
801 		return -EINVAL;
802 
803 	/* copy the entire buffer from user */
804 
805 	args_buff = memdup_user(cmd_from_user,
806 				args->buf_size_in_bytes - sizeof(*args));
807 	if (IS_ERR(args_buff))
808 		return PTR_ERR(args_buff);
809 
810 	/* move ptr to the start of the "pay-load" area */
811 	wac_info.process = p;
812 
813 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
814 	args_idx += sizeof(wac_info.operand);
815 
816 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
817 	args_idx += sizeof(wac_info.mode);
818 
819 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
820 	args_idx += sizeof(wac_info.trapId);
821 
822 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
823 					*((uint32_t *)(&args_buff[args_idx]));
824 	wac_info.dbgWave_msg.MemoryVA = NULL;
825 
826 	mutex_lock(kfd_get_dbgmgr_mutex());
827 
828 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
829 			wac_info.process, wac_info.operand,
830 			wac_info.mode, wac_info.trapId,
831 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
832 
833 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
834 
835 	pr_debug("Returned status of dbg manager is %ld\n", status);
836 
837 	mutex_unlock(kfd_get_dbgmgr_mutex());
838 
839 	kfree(args_buff);
840 
841 	return status;
842 }
843 
844 static int kfd_ioctl_get_clock_counters(struct file *filep,
845 				struct kfd_process *p, void *data)
846 {
847 	struct kfd_ioctl_get_clock_counters_args *args = data;
848 	struct kfd_dev *dev;
849 
850 	dev = kfd_device_by_id(args->gpu_id);
851 	if (dev)
852 		/* Reading GPU clock counter from KGD */
853 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
854 	else
855 		/* Node without GPU resource */
856 		args->gpu_clock_counter = 0;
857 
858 	/* No access to rdtsc. Using raw monotonic time */
859 	args->cpu_clock_counter = ktime_get_raw_ns();
860 	args->system_clock_counter = ktime_get_boottime_ns();
861 
862 	/* Since the counter is in nano-seconds we use 1GHz frequency */
863 	args->system_clock_freq = 1000000000;
864 
865 	return 0;
866 }
867 
868 
869 static int kfd_ioctl_get_process_apertures(struct file *filp,
870 				struct kfd_process *p, void *data)
871 {
872 	struct kfd_ioctl_get_process_apertures_args *args = data;
873 	struct kfd_process_device_apertures *pAperture;
874 	int i;
875 
876 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
877 
878 	args->num_of_nodes = 0;
879 
880 	mutex_lock(&p->mutex);
881 	/* Run over all pdd of the process */
882 	for (i = 0; i < p->n_pdds; i++) {
883 		struct kfd_process_device *pdd = p->pdds[i];
884 
885 		pAperture =
886 			&args->process_apertures[args->num_of_nodes];
887 		pAperture->gpu_id = pdd->dev->id;
888 		pAperture->lds_base = pdd->lds_base;
889 		pAperture->lds_limit = pdd->lds_limit;
890 		pAperture->gpuvm_base = pdd->gpuvm_base;
891 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
892 		pAperture->scratch_base = pdd->scratch_base;
893 		pAperture->scratch_limit = pdd->scratch_limit;
894 
895 		dev_dbg(kfd_device,
896 			"node id %u\n", args->num_of_nodes);
897 		dev_dbg(kfd_device,
898 			"gpu id %u\n", pdd->dev->id);
899 		dev_dbg(kfd_device,
900 			"lds_base %llX\n", pdd->lds_base);
901 		dev_dbg(kfd_device,
902 			"lds_limit %llX\n", pdd->lds_limit);
903 		dev_dbg(kfd_device,
904 			"gpuvm_base %llX\n", pdd->gpuvm_base);
905 		dev_dbg(kfd_device,
906 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
907 		dev_dbg(kfd_device,
908 			"scratch_base %llX\n", pdd->scratch_base);
909 		dev_dbg(kfd_device,
910 			"scratch_limit %llX\n", pdd->scratch_limit);
911 
912 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
913 			break;
914 	}
915 	mutex_unlock(&p->mutex);
916 
917 	return 0;
918 }
919 
920 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
921 				struct kfd_process *p, void *data)
922 {
923 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
924 	struct kfd_process_device_apertures *pa;
925 	int ret;
926 	int i;
927 
928 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
929 
930 	if (args->num_of_nodes == 0) {
931 		/* Return number of nodes, so that user space can alloacate
932 		 * sufficient memory
933 		 */
934 		mutex_lock(&p->mutex);
935 		args->num_of_nodes = p->n_pdds;
936 		goto out_unlock;
937 	}
938 
939 	/* Fill in process-aperture information for all available
940 	 * nodes, but not more than args->num_of_nodes as that is
941 	 * the amount of memory allocated by user
942 	 */
943 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
944 				args->num_of_nodes), GFP_KERNEL);
945 	if (!pa)
946 		return -ENOMEM;
947 
948 	mutex_lock(&p->mutex);
949 
950 	if (!p->n_pdds) {
951 		args->num_of_nodes = 0;
952 		kfree(pa);
953 		goto out_unlock;
954 	}
955 
956 	/* Run over all pdd of the process */
957 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
958 		struct kfd_process_device *pdd = p->pdds[i];
959 
960 		pa[i].gpu_id = pdd->dev->id;
961 		pa[i].lds_base = pdd->lds_base;
962 		pa[i].lds_limit = pdd->lds_limit;
963 		pa[i].gpuvm_base = pdd->gpuvm_base;
964 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
965 		pa[i].scratch_base = pdd->scratch_base;
966 		pa[i].scratch_limit = pdd->scratch_limit;
967 
968 		dev_dbg(kfd_device,
969 			"gpu id %u\n", pdd->dev->id);
970 		dev_dbg(kfd_device,
971 			"lds_base %llX\n", pdd->lds_base);
972 		dev_dbg(kfd_device,
973 			"lds_limit %llX\n", pdd->lds_limit);
974 		dev_dbg(kfd_device,
975 			"gpuvm_base %llX\n", pdd->gpuvm_base);
976 		dev_dbg(kfd_device,
977 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
978 		dev_dbg(kfd_device,
979 			"scratch_base %llX\n", pdd->scratch_base);
980 		dev_dbg(kfd_device,
981 			"scratch_limit %llX\n", pdd->scratch_limit);
982 	}
983 	mutex_unlock(&p->mutex);
984 
985 	args->num_of_nodes = i;
986 	ret = copy_to_user(
987 			(void __user *)args->kfd_process_device_apertures_ptr,
988 			pa,
989 			(i * sizeof(struct kfd_process_device_apertures)));
990 	kfree(pa);
991 	return ret ? -EFAULT : 0;
992 
993 out_unlock:
994 	mutex_unlock(&p->mutex);
995 	return 0;
996 }
997 
998 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
999 					void *data)
1000 {
1001 	struct kfd_ioctl_create_event_args *args = data;
1002 	int err;
1003 
1004 	/* For dGPUs the event page is allocated in user mode. The
1005 	 * handle is passed to KFD with the first call to this IOCTL
1006 	 * through the event_page_offset field.
1007 	 */
1008 	if (args->event_page_offset) {
1009 		struct kfd_dev *kfd;
1010 		struct kfd_process_device *pdd;
1011 		void *mem, *kern_addr;
1012 		uint64_t size;
1013 
1014 		if (p->signal_page) {
1015 			pr_err("Event page is already set\n");
1016 			return -EINVAL;
1017 		}
1018 
1019 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020 		if (!kfd) {
1021 			pr_err("Getting device by id failed in %s\n", __func__);
1022 			return -EINVAL;
1023 		}
1024 
1025 		mutex_lock(&p->mutex);
1026 		pdd = kfd_bind_process_to_device(kfd, p);
1027 		if (IS_ERR(pdd)) {
1028 			err = PTR_ERR(pdd);
1029 			goto out_unlock;
1030 		}
1031 
1032 		mem = kfd_process_device_translate_handle(pdd,
1033 				GET_IDR_HANDLE(args->event_page_offset));
1034 		if (!mem) {
1035 			pr_err("Can't find BO, offset is 0x%llx\n",
1036 			       args->event_page_offset);
1037 			err = -EINVAL;
1038 			goto out_unlock;
1039 		}
1040 		mutex_unlock(&p->mutex);
1041 
1042 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043 						mem, &kern_addr, &size);
1044 		if (err) {
1045 			pr_err("Failed to map event page to kernel\n");
1046 			return err;
1047 		}
1048 
1049 		err = kfd_event_page_set(p, kern_addr, size);
1050 		if (err) {
1051 			pr_err("Failed to set event page\n");
1052 			return err;
1053 		}
1054 	}
1055 
1056 	err = kfd_event_create(filp, p, args->event_type,
1057 				args->auto_reset != 0, args->node_id,
1058 				&args->event_id, &args->event_trigger_data,
1059 				&args->event_page_offset,
1060 				&args->event_slot_index);
1061 
1062 	return err;
1063 
1064 out_unlock:
1065 	mutex_unlock(&p->mutex);
1066 	return err;
1067 }
1068 
1069 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070 					void *data)
1071 {
1072 	struct kfd_ioctl_destroy_event_args *args = data;
1073 
1074 	return kfd_event_destroy(p, args->event_id);
1075 }
1076 
1077 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078 				void *data)
1079 {
1080 	struct kfd_ioctl_set_event_args *args = data;
1081 
1082 	return kfd_set_event(p, args->event_id);
1083 }
1084 
1085 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086 				void *data)
1087 {
1088 	struct kfd_ioctl_reset_event_args *args = data;
1089 
1090 	return kfd_reset_event(p, args->event_id);
1091 }
1092 
1093 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094 				void *data)
1095 {
1096 	struct kfd_ioctl_wait_events_args *args = data;
1097 	int err;
1098 
1099 	err = kfd_wait_on_events(p, args->num_events,
1100 			(void __user *)args->events_ptr,
1101 			(args->wait_for_all != 0),
1102 			args->timeout, &args->wait_result);
1103 
1104 	return err;
1105 }
1106 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107 					struct kfd_process *p, void *data)
1108 {
1109 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110 	struct kfd_process_device *pdd;
1111 	struct kfd_dev *dev;
1112 	long err;
1113 
1114 	dev = kfd_device_by_id(args->gpu_id);
1115 	if (!dev)
1116 		return -EINVAL;
1117 
1118 	mutex_lock(&p->mutex);
1119 
1120 	pdd = kfd_bind_process_to_device(dev, p);
1121 	if (IS_ERR(pdd)) {
1122 		err = PTR_ERR(pdd);
1123 		goto bind_process_to_device_fail;
1124 	}
1125 
1126 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1127 
1128 	mutex_unlock(&p->mutex);
1129 
1130 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1132 		dev->kfd2kgd->set_scratch_backing_va(
1133 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1134 
1135 	return 0;
1136 
1137 bind_process_to_device_fail:
1138 	mutex_unlock(&p->mutex);
1139 	return err;
1140 }
1141 
1142 static int kfd_ioctl_get_tile_config(struct file *filep,
1143 		struct kfd_process *p, void *data)
1144 {
1145 	struct kfd_ioctl_get_tile_config_args *args = data;
1146 	struct kfd_dev *dev;
1147 	struct tile_config config;
1148 	int err = 0;
1149 
1150 	dev = kfd_device_by_id(args->gpu_id);
1151 	if (!dev)
1152 		return -EINVAL;
1153 
1154 	amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1155 
1156 	args->gb_addr_config = config.gb_addr_config;
1157 	args->num_banks = config.num_banks;
1158 	args->num_ranks = config.num_ranks;
1159 
1160 	if (args->num_tile_configs > config.num_tile_configs)
1161 		args->num_tile_configs = config.num_tile_configs;
1162 	err = copy_to_user((void __user *)args->tile_config_ptr,
1163 			config.tile_config_ptr,
1164 			args->num_tile_configs * sizeof(uint32_t));
1165 	if (err) {
1166 		args->num_tile_configs = 0;
1167 		return -EFAULT;
1168 	}
1169 
1170 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171 		args->num_macro_tile_configs =
1172 				config.num_macro_tile_configs;
1173 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174 			config.macro_tile_config_ptr,
1175 			args->num_macro_tile_configs * sizeof(uint32_t));
1176 	if (err) {
1177 		args->num_macro_tile_configs = 0;
1178 		return -EFAULT;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185 				void *data)
1186 {
1187 	struct kfd_ioctl_acquire_vm_args *args = data;
1188 	struct kfd_process_device *pdd;
1189 	struct kfd_dev *dev;
1190 	struct file *drm_file;
1191 	int ret;
1192 
1193 	dev = kfd_device_by_id(args->gpu_id);
1194 	if (!dev)
1195 		return -EINVAL;
1196 
1197 	drm_file = fget(args->drm_fd);
1198 	if (!drm_file)
1199 		return -EINVAL;
1200 
1201 	mutex_lock(&p->mutex);
1202 
1203 	pdd = kfd_get_process_device_data(dev, p);
1204 	if (!pdd) {
1205 		ret = -EINVAL;
1206 		goto err_unlock;
1207 	}
1208 
1209 	if (pdd->drm_file) {
1210 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211 		goto err_unlock;
1212 	}
1213 
1214 	ret = kfd_process_device_init_vm(pdd, drm_file);
1215 	if (ret)
1216 		goto err_unlock;
1217 	/* On success, the PDD keeps the drm_file reference */
1218 	mutex_unlock(&p->mutex);
1219 
1220 	return 0;
1221 
1222 err_unlock:
1223 	mutex_unlock(&p->mutex);
1224 	fput(drm_file);
1225 	return ret;
1226 }
1227 
1228 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229 {
1230 	struct kfd_local_mem_info mem_info;
1231 
1232 	if (debug_largebar) {
1233 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234 		return true;
1235 	}
1236 
1237 	if (dev->use_iommu_v2)
1238 		return false;
1239 
1240 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241 	if (mem_info.local_mem_size_private == 0 &&
1242 			mem_info.local_mem_size_public > 0)
1243 		return true;
1244 	return false;
1245 }
1246 
1247 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248 					struct kfd_process *p, void *data)
1249 {
1250 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251 	struct kfd_process_device *pdd;
1252 	void *mem;
1253 	struct kfd_dev *dev;
1254 	int idr_handle;
1255 	long err;
1256 	uint64_t offset = args->mmap_offset;
1257 	uint32_t flags = args->flags;
1258 
1259 	if (args->size == 0)
1260 		return -EINVAL;
1261 
1262 	dev = kfd_device_by_id(args->gpu_id);
1263 	if (!dev)
1264 		return -EINVAL;
1265 
1266 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268 		!kfd_dev_is_large_bar(dev)) {
1269 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1270 		return -EINVAL;
1271 	}
1272 
1273 	mutex_lock(&p->mutex);
1274 
1275 	pdd = kfd_bind_process_to_device(dev, p);
1276 	if (IS_ERR(pdd)) {
1277 		err = PTR_ERR(pdd);
1278 		goto err_unlock;
1279 	}
1280 
1281 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1282 		if (args->size != kfd_doorbell_process_slice(dev)) {
1283 			err = -EINVAL;
1284 			goto err_unlock;
1285 		}
1286 		offset = kfd_get_process_doorbells(pdd);
1287 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1288 		if (args->size != PAGE_SIZE) {
1289 			err = -EINVAL;
1290 			goto err_unlock;
1291 		}
1292 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1293 		if (!offset) {
1294 			err = -ENOMEM;
1295 			goto err_unlock;
1296 		}
1297 	}
1298 
1299 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1300 		dev->kgd, args->va_addr, args->size,
1301 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1302 		flags);
1303 
1304 	if (err)
1305 		goto err_unlock;
1306 
1307 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1308 	if (idr_handle < 0) {
1309 		err = -EFAULT;
1310 		goto err_free;
1311 	}
1312 
1313 	/* Update the VRAM usage count */
1314 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1315 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1316 
1317 	mutex_unlock(&p->mutex);
1318 
1319 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1320 	args->mmap_offset = offset;
1321 
1322 	/* MMIO is mapped through kfd device
1323 	 * Generate a kfd mmap offset
1324 	 */
1325 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1326 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1327 					| KFD_MMAP_GPU_ID(args->gpu_id);
1328 
1329 	return 0;
1330 
1331 err_free:
1332 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1333 					       pdd->drm_priv, NULL);
1334 err_unlock:
1335 	mutex_unlock(&p->mutex);
1336 	return err;
1337 }
1338 
1339 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1340 					struct kfd_process *p, void *data)
1341 {
1342 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1343 	struct kfd_process_device *pdd;
1344 	void *mem;
1345 	struct kfd_dev *dev;
1346 	int ret;
1347 	uint64_t size = 0;
1348 
1349 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1350 	if (!dev)
1351 		return -EINVAL;
1352 
1353 	mutex_lock(&p->mutex);
1354 
1355 	pdd = kfd_get_process_device_data(dev, p);
1356 	if (!pdd) {
1357 		pr_err("Process device data doesn't exist\n");
1358 		ret = -EINVAL;
1359 		goto err_unlock;
1360 	}
1361 
1362 	mem = kfd_process_device_translate_handle(
1363 		pdd, GET_IDR_HANDLE(args->handle));
1364 	if (!mem) {
1365 		ret = -EINVAL;
1366 		goto err_unlock;
1367 	}
1368 
1369 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1370 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1371 
1372 	/* If freeing the buffer failed, leave the handle in place for
1373 	 * clean-up during process tear-down.
1374 	 */
1375 	if (!ret)
1376 		kfd_process_device_remove_obj_handle(
1377 			pdd, GET_IDR_HANDLE(args->handle));
1378 
1379 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1380 
1381 err_unlock:
1382 	mutex_unlock(&p->mutex);
1383 	return ret;
1384 }
1385 
1386 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1387 					struct kfd_process *p, void *data)
1388 {
1389 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1390 	struct kfd_process_device *pdd, *peer_pdd;
1391 	void *mem;
1392 	struct kfd_dev *dev, *peer;
1393 	long err = 0;
1394 	int i;
1395 	uint32_t *devices_arr = NULL;
1396 
1397 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1398 	if (!dev)
1399 		return -EINVAL;
1400 
1401 	if (!args->n_devices) {
1402 		pr_debug("Device IDs array empty\n");
1403 		return -EINVAL;
1404 	}
1405 	if (args->n_success > args->n_devices) {
1406 		pr_debug("n_success exceeds n_devices\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1411 				    GFP_KERNEL);
1412 	if (!devices_arr)
1413 		return -ENOMEM;
1414 
1415 	err = copy_from_user(devices_arr,
1416 			     (void __user *)args->device_ids_array_ptr,
1417 			     args->n_devices * sizeof(*devices_arr));
1418 	if (err != 0) {
1419 		err = -EFAULT;
1420 		goto copy_from_user_failed;
1421 	}
1422 
1423 	mutex_lock(&p->mutex);
1424 
1425 	pdd = kfd_bind_process_to_device(dev, p);
1426 	if (IS_ERR(pdd)) {
1427 		err = PTR_ERR(pdd);
1428 		goto bind_process_to_device_failed;
1429 	}
1430 
1431 	mem = kfd_process_device_translate_handle(pdd,
1432 						GET_IDR_HANDLE(args->handle));
1433 	if (!mem) {
1434 		err = -ENOMEM;
1435 		goto get_mem_obj_from_handle_failed;
1436 	}
1437 
1438 	for (i = args->n_success; i < args->n_devices; i++) {
1439 		peer = kfd_device_by_id(devices_arr[i]);
1440 		if (!peer) {
1441 			pr_debug("Getting device by id failed for 0x%x\n",
1442 				 devices_arr[i]);
1443 			err = -EINVAL;
1444 			goto get_mem_obj_from_handle_failed;
1445 		}
1446 
1447 		peer_pdd = kfd_bind_process_to_device(peer, p);
1448 		if (IS_ERR(peer_pdd)) {
1449 			err = PTR_ERR(peer_pdd);
1450 			goto get_mem_obj_from_handle_failed;
1451 		}
1452 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1453 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1454 		if (err) {
1455 			pr_err("Failed to map to gpu %d/%d\n",
1456 			       i, args->n_devices);
1457 			goto map_memory_to_gpu_failed;
1458 		}
1459 		args->n_success = i+1;
1460 	}
1461 
1462 	mutex_unlock(&p->mutex);
1463 
1464 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1465 	if (err) {
1466 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1467 		goto sync_memory_failed;
1468 	}
1469 
1470 	/* Flush TLBs after waiting for the page table updates to complete */
1471 	for (i = 0; i < args->n_devices; i++) {
1472 		peer = kfd_device_by_id(devices_arr[i]);
1473 		if (WARN_ON_ONCE(!peer))
1474 			continue;
1475 		peer_pdd = kfd_get_process_device_data(peer, p);
1476 		if (WARN_ON_ONCE(!peer_pdd))
1477 			continue;
1478 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1479 	}
1480 
1481 	kfree(devices_arr);
1482 
1483 	return err;
1484 
1485 bind_process_to_device_failed:
1486 get_mem_obj_from_handle_failed:
1487 map_memory_to_gpu_failed:
1488 	mutex_unlock(&p->mutex);
1489 copy_from_user_failed:
1490 sync_memory_failed:
1491 	kfree(devices_arr);
1492 
1493 	return err;
1494 }
1495 
1496 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1497 					struct kfd_process *p, void *data)
1498 {
1499 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1500 	struct kfd_process_device *pdd, *peer_pdd;
1501 	void *mem;
1502 	struct kfd_dev *dev, *peer;
1503 	long err = 0;
1504 	uint32_t *devices_arr = NULL, i;
1505 
1506 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1507 	if (!dev)
1508 		return -EINVAL;
1509 
1510 	if (!args->n_devices) {
1511 		pr_debug("Device IDs array empty\n");
1512 		return -EINVAL;
1513 	}
1514 	if (args->n_success > args->n_devices) {
1515 		pr_debug("n_success exceeds n_devices\n");
1516 		return -EINVAL;
1517 	}
1518 
1519 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1520 				    GFP_KERNEL);
1521 	if (!devices_arr)
1522 		return -ENOMEM;
1523 
1524 	err = copy_from_user(devices_arr,
1525 			     (void __user *)args->device_ids_array_ptr,
1526 			     args->n_devices * sizeof(*devices_arr));
1527 	if (err != 0) {
1528 		err = -EFAULT;
1529 		goto copy_from_user_failed;
1530 	}
1531 
1532 	mutex_lock(&p->mutex);
1533 
1534 	pdd = kfd_get_process_device_data(dev, p);
1535 	if (!pdd) {
1536 		err = -EINVAL;
1537 		goto bind_process_to_device_failed;
1538 	}
1539 
1540 	mem = kfd_process_device_translate_handle(pdd,
1541 						GET_IDR_HANDLE(args->handle));
1542 	if (!mem) {
1543 		err = -ENOMEM;
1544 		goto get_mem_obj_from_handle_failed;
1545 	}
1546 
1547 	for (i = args->n_success; i < args->n_devices; i++) {
1548 		peer = kfd_device_by_id(devices_arr[i]);
1549 		if (!peer) {
1550 			err = -EINVAL;
1551 			goto get_mem_obj_from_handle_failed;
1552 		}
1553 
1554 		peer_pdd = kfd_get_process_device_data(peer, p);
1555 		if (!peer_pdd) {
1556 			err = -ENODEV;
1557 			goto get_mem_obj_from_handle_failed;
1558 		}
1559 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1560 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1561 		if (err) {
1562 			pr_err("Failed to unmap from gpu %d/%d\n",
1563 			       i, args->n_devices);
1564 			goto unmap_memory_from_gpu_failed;
1565 		}
1566 		args->n_success = i+1;
1567 	}
1568 	kfree(devices_arr);
1569 
1570 	mutex_unlock(&p->mutex);
1571 
1572 	return 0;
1573 
1574 bind_process_to_device_failed:
1575 get_mem_obj_from_handle_failed:
1576 unmap_memory_from_gpu_failed:
1577 	mutex_unlock(&p->mutex);
1578 copy_from_user_failed:
1579 	kfree(devices_arr);
1580 	return err;
1581 }
1582 
1583 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1584 		struct kfd_process *p, void *data)
1585 {
1586 	int retval;
1587 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1588 	struct queue *q;
1589 	struct kfd_dev *dev;
1590 
1591 	mutex_lock(&p->mutex);
1592 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1593 
1594 	if (q) {
1595 		dev = q->device;
1596 	} else {
1597 		retval = -EINVAL;
1598 		goto out_unlock;
1599 	}
1600 
1601 	if (!dev->gws) {
1602 		retval = -ENODEV;
1603 		goto out_unlock;
1604 	}
1605 
1606 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1607 		retval = -ENODEV;
1608 		goto out_unlock;
1609 	}
1610 
1611 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1612 	mutex_unlock(&p->mutex);
1613 
1614 	args->first_gws = 0;
1615 	return retval;
1616 
1617 out_unlock:
1618 	mutex_unlock(&p->mutex);
1619 	return retval;
1620 }
1621 
1622 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1623 		struct kfd_process *p, void *data)
1624 {
1625 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1626 	struct kfd_dev *dev = NULL;
1627 	struct kgd_dev *dma_buf_kgd;
1628 	void *metadata_buffer = NULL;
1629 	uint32_t flags;
1630 	unsigned int i;
1631 	int r;
1632 
1633 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1634 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1635 		if (dev)
1636 			break;
1637 	if (!dev)
1638 		return -EINVAL;
1639 
1640 	if (args->metadata_ptr) {
1641 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1642 		if (!metadata_buffer)
1643 			return -ENOMEM;
1644 	}
1645 
1646 	/* Get dmabuf info from KGD */
1647 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1648 					  &dma_buf_kgd, &args->size,
1649 					  metadata_buffer, args->metadata_size,
1650 					  &args->metadata_size, &flags);
1651 	if (r)
1652 		goto exit;
1653 
1654 	/* Reverse-lookup gpu_id from kgd pointer */
1655 	dev = kfd_device_by_kgd(dma_buf_kgd);
1656 	if (!dev) {
1657 		r = -EINVAL;
1658 		goto exit;
1659 	}
1660 	args->gpu_id = dev->id;
1661 	args->flags = flags;
1662 
1663 	/* Copy metadata buffer to user mode */
1664 	if (metadata_buffer) {
1665 		r = copy_to_user((void __user *)args->metadata_ptr,
1666 				 metadata_buffer, args->metadata_size);
1667 		if (r != 0)
1668 			r = -EFAULT;
1669 	}
1670 
1671 exit:
1672 	kfree(metadata_buffer);
1673 
1674 	return r;
1675 }
1676 
1677 static int kfd_ioctl_import_dmabuf(struct file *filep,
1678 				   struct kfd_process *p, void *data)
1679 {
1680 	struct kfd_ioctl_import_dmabuf_args *args = data;
1681 	struct kfd_process_device *pdd;
1682 	struct dma_buf *dmabuf;
1683 	struct kfd_dev *dev;
1684 	int idr_handle;
1685 	uint64_t size;
1686 	void *mem;
1687 	int r;
1688 
1689 	dev = kfd_device_by_id(args->gpu_id);
1690 	if (!dev)
1691 		return -EINVAL;
1692 
1693 	dmabuf = dma_buf_get(args->dmabuf_fd);
1694 	if (IS_ERR(dmabuf))
1695 		return PTR_ERR(dmabuf);
1696 
1697 	mutex_lock(&p->mutex);
1698 
1699 	pdd = kfd_bind_process_to_device(dev, p);
1700 	if (IS_ERR(pdd)) {
1701 		r = PTR_ERR(pdd);
1702 		goto err_unlock;
1703 	}
1704 
1705 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1706 					      args->va_addr, pdd->drm_priv,
1707 					      (struct kgd_mem **)&mem, &size,
1708 					      NULL);
1709 	if (r)
1710 		goto err_unlock;
1711 
1712 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1713 	if (idr_handle < 0) {
1714 		r = -EFAULT;
1715 		goto err_free;
1716 	}
1717 
1718 	mutex_unlock(&p->mutex);
1719 	dma_buf_put(dmabuf);
1720 
1721 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1722 
1723 	return 0;
1724 
1725 err_free:
1726 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1727 					       pdd->drm_priv, NULL);
1728 err_unlock:
1729 	mutex_unlock(&p->mutex);
1730 	dma_buf_put(dmabuf);
1731 	return r;
1732 }
1733 
1734 /* Handle requests for watching SMI events */
1735 static int kfd_ioctl_smi_events(struct file *filep,
1736 				struct kfd_process *p, void *data)
1737 {
1738 	struct kfd_ioctl_smi_events_args *args = data;
1739 	struct kfd_dev *dev;
1740 
1741 	dev = kfd_device_by_id(args->gpuid);
1742 	if (!dev)
1743 		return -EINVAL;
1744 
1745 	return kfd_smi_event_open(dev, &args->anon_fd);
1746 }
1747 
1748 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1749 				    struct kfd_process *p, void *data)
1750 {
1751 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1752 	int r = 0;
1753 
1754 	mutex_lock(&p->mutex);
1755 	if (args->xnack_enabled >= 0) {
1756 		if (!list_empty(&p->pqm.queues)) {
1757 			pr_debug("Process has user queues running\n");
1758 			mutex_unlock(&p->mutex);
1759 			return -EBUSY;
1760 		}
1761 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
1762 			r = -EPERM;
1763 		else
1764 			p->xnack_enabled = args->xnack_enabled;
1765 	} else {
1766 		args->xnack_enabled = p->xnack_enabled;
1767 	}
1768 	mutex_unlock(&p->mutex);
1769 
1770 	return r;
1771 }
1772 
1773 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1774 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1775 {
1776 	struct kfd_ioctl_svm_args *args = data;
1777 	int r = 0;
1778 
1779 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1780 		 args->start_addr, args->size, args->op, args->nattr);
1781 
1782 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1783 		return -EINVAL;
1784 	if (!args->start_addr || !args->size)
1785 		return -EINVAL;
1786 
1787 	mutex_lock(&p->mutex);
1788 
1789 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1790 		      args->attrs);
1791 
1792 	mutex_unlock(&p->mutex);
1793 
1794 	return r;
1795 }
1796 #else
1797 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1798 {
1799 	return -EPERM;
1800 }
1801 #endif
1802 
1803 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1804 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1805 			    .cmd_drv = 0, .name = #ioctl}
1806 
1807 /** Ioctl table */
1808 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1809 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1810 			kfd_ioctl_get_version, 0),
1811 
1812 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1813 			kfd_ioctl_create_queue, 0),
1814 
1815 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1816 			kfd_ioctl_destroy_queue, 0),
1817 
1818 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1819 			kfd_ioctl_set_memory_policy, 0),
1820 
1821 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1822 			kfd_ioctl_get_clock_counters, 0),
1823 
1824 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1825 			kfd_ioctl_get_process_apertures, 0),
1826 
1827 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1828 			kfd_ioctl_update_queue, 0),
1829 
1830 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1831 			kfd_ioctl_create_event, 0),
1832 
1833 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1834 			kfd_ioctl_destroy_event, 0),
1835 
1836 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1837 			kfd_ioctl_set_event, 0),
1838 
1839 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1840 			kfd_ioctl_reset_event, 0),
1841 
1842 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1843 			kfd_ioctl_wait_events, 0),
1844 
1845 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1846 			kfd_ioctl_dbg_register, 0),
1847 
1848 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1849 			kfd_ioctl_dbg_unregister, 0),
1850 
1851 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1852 			kfd_ioctl_dbg_address_watch, 0),
1853 
1854 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1855 			kfd_ioctl_dbg_wave_control, 0),
1856 
1857 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1858 			kfd_ioctl_set_scratch_backing_va, 0),
1859 
1860 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1861 			kfd_ioctl_get_tile_config, 0),
1862 
1863 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1864 			kfd_ioctl_set_trap_handler, 0),
1865 
1866 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1867 			kfd_ioctl_get_process_apertures_new, 0),
1868 
1869 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1870 			kfd_ioctl_acquire_vm, 0),
1871 
1872 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1873 			kfd_ioctl_alloc_memory_of_gpu, 0),
1874 
1875 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1876 			kfd_ioctl_free_memory_of_gpu, 0),
1877 
1878 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1879 			kfd_ioctl_map_memory_to_gpu, 0),
1880 
1881 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1882 			kfd_ioctl_unmap_memory_from_gpu, 0),
1883 
1884 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1885 			kfd_ioctl_set_cu_mask, 0),
1886 
1887 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1888 			kfd_ioctl_get_queue_wave_state, 0),
1889 
1890 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1891 				kfd_ioctl_get_dmabuf_info, 0),
1892 
1893 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1894 				kfd_ioctl_import_dmabuf, 0),
1895 
1896 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1897 			kfd_ioctl_alloc_queue_gws, 0),
1898 
1899 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
1900 			kfd_ioctl_smi_events, 0),
1901 
1902 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
1903 
1904 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
1905 			kfd_ioctl_set_xnack_mode, 0),
1906 };
1907 
1908 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1909 
1910 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1911 {
1912 	struct kfd_process *process;
1913 	amdkfd_ioctl_t *func;
1914 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1915 	unsigned int nr = _IOC_NR(cmd);
1916 	char stack_kdata[128];
1917 	char *kdata = NULL;
1918 	unsigned int usize, asize;
1919 	int retcode = -EINVAL;
1920 
1921 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1922 		goto err_i1;
1923 
1924 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1925 		u32 amdkfd_size;
1926 
1927 		ioctl = &amdkfd_ioctls[nr];
1928 
1929 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1930 		usize = asize = _IOC_SIZE(cmd);
1931 		if (amdkfd_size > asize)
1932 			asize = amdkfd_size;
1933 
1934 		cmd = ioctl->cmd;
1935 	} else
1936 		goto err_i1;
1937 
1938 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1939 
1940 	/* Get the process struct from the filep. Only the process
1941 	 * that opened /dev/kfd can use the file descriptor. Child
1942 	 * processes need to create their own KFD device context.
1943 	 */
1944 	process = filep->private_data;
1945 	if (process->lead_thread != current->group_leader) {
1946 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1947 		retcode = -EBADF;
1948 		goto err_i1;
1949 	}
1950 
1951 	/* Do not trust userspace, use our own definition */
1952 	func = ioctl->func;
1953 
1954 	if (unlikely(!func)) {
1955 		dev_dbg(kfd_device, "no function\n");
1956 		retcode = -EINVAL;
1957 		goto err_i1;
1958 	}
1959 
1960 	if (cmd & (IOC_IN | IOC_OUT)) {
1961 		if (asize <= sizeof(stack_kdata)) {
1962 			kdata = stack_kdata;
1963 		} else {
1964 			kdata = kmalloc(asize, GFP_KERNEL);
1965 			if (!kdata) {
1966 				retcode = -ENOMEM;
1967 				goto err_i1;
1968 			}
1969 		}
1970 		if (asize > usize)
1971 			memset(kdata + usize, 0, asize - usize);
1972 	}
1973 
1974 	if (cmd & IOC_IN) {
1975 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1976 			retcode = -EFAULT;
1977 			goto err_i1;
1978 		}
1979 	} else if (cmd & IOC_OUT) {
1980 		memset(kdata, 0, usize);
1981 	}
1982 
1983 	retcode = func(filep, process, kdata);
1984 
1985 	if (cmd & IOC_OUT)
1986 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1987 			retcode = -EFAULT;
1988 
1989 err_i1:
1990 	if (!ioctl)
1991 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1992 			  task_pid_nr(current), cmd, nr);
1993 
1994 	if (kdata != stack_kdata)
1995 		kfree(kdata);
1996 
1997 	if (retcode)
1998 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1999 				nr, arg, retcode);
2000 
2001 	return retcode;
2002 }
2003 
2004 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2005 		      struct vm_area_struct *vma)
2006 {
2007 	phys_addr_t address;
2008 	int ret;
2009 
2010 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2011 		return -EINVAL;
2012 
2013 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
2014 
2015 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2016 				VM_DONTDUMP | VM_PFNMAP;
2017 
2018 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2019 
2020 	pr_debug("pasid 0x%x mapping mmio page\n"
2021 		 "     target user address == 0x%08llX\n"
2022 		 "     physical address    == 0x%08llX\n"
2023 		 "     vm_flags            == 0x%04lX\n"
2024 		 "     size                == 0x%04lX\n",
2025 		 process->pasid, (unsigned long long) vma->vm_start,
2026 		 address, vma->vm_flags, PAGE_SIZE);
2027 
2028 	ret = io_remap_pfn_range(vma,
2029 				vma->vm_start,
2030 				address >> PAGE_SHIFT,
2031 				PAGE_SIZE,
2032 				vma->vm_page_prot);
2033 	return ret;
2034 }
2035 
2036 
2037 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2038 {
2039 	struct kfd_process *process;
2040 	struct kfd_dev *dev = NULL;
2041 	unsigned long mmap_offset;
2042 	unsigned int gpu_id;
2043 
2044 	process = kfd_get_process(current);
2045 	if (IS_ERR(process))
2046 		return PTR_ERR(process);
2047 
2048 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2049 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2050 	if (gpu_id)
2051 		dev = kfd_device_by_id(gpu_id);
2052 
2053 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2054 	case KFD_MMAP_TYPE_DOORBELL:
2055 		if (!dev)
2056 			return -ENODEV;
2057 		return kfd_doorbell_mmap(dev, process, vma);
2058 
2059 	case KFD_MMAP_TYPE_EVENTS:
2060 		return kfd_event_mmap(process, vma);
2061 
2062 	case KFD_MMAP_TYPE_RESERVED_MEM:
2063 		if (!dev)
2064 			return -ENODEV;
2065 		return kfd_reserved_mem_mmap(dev, process, vma);
2066 	case KFD_MMAP_TYPE_MMIO:
2067 		if (!dev)
2068 			return -ENODEV;
2069 		return kfd_mmio_mmap(dev, process, vma);
2070 	}
2071 
2072 	return -EFAULT;
2073 }
2074