1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/device.h> 25 #include <linux/export.h> 26 #include <linux/err.h> 27 #include <linux/fs.h> 28 #include <linux/file.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/uaccess.h> 32 #include <linux/compat.h> 33 #include <uapi/linux/kfd_ioctl.h> 34 #include <linux/time.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/ptrace.h> 38 #include <linux/dma-buf.h> 39 #include <linux/fdtable.h> 40 #include <linux/processor.h> 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_svm.h" 44 #include "amdgpu_amdkfd.h" 45 #include "kfd_smi_events.h" 46 #include "amdgpu_dma_buf.h" 47 48 static long kfd_ioctl(struct file *, unsigned int, unsigned long); 49 static int kfd_open(struct inode *, struct file *); 50 static int kfd_release(struct inode *, struct file *); 51 static int kfd_mmap(struct file *, struct vm_area_struct *); 52 53 static const char kfd_dev_name[] = "kfd"; 54 55 static const struct file_operations kfd_fops = { 56 .owner = THIS_MODULE, 57 .unlocked_ioctl = kfd_ioctl, 58 .compat_ioctl = compat_ptr_ioctl, 59 .open = kfd_open, 60 .release = kfd_release, 61 .mmap = kfd_mmap, 62 }; 63 64 static int kfd_char_dev_major = -1; 65 static struct class *kfd_class; 66 struct device *kfd_device; 67 68 int kfd_chardev_init(void) 69 { 70 int err = 0; 71 72 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); 73 err = kfd_char_dev_major; 74 if (err < 0) 75 goto err_register_chrdev; 76 77 kfd_class = class_create(THIS_MODULE, kfd_dev_name); 78 err = PTR_ERR(kfd_class); 79 if (IS_ERR(kfd_class)) 80 goto err_class_create; 81 82 kfd_device = device_create(kfd_class, NULL, 83 MKDEV(kfd_char_dev_major, 0), 84 NULL, kfd_dev_name); 85 err = PTR_ERR(kfd_device); 86 if (IS_ERR(kfd_device)) 87 goto err_device_create; 88 89 return 0; 90 91 err_device_create: 92 class_destroy(kfd_class); 93 err_class_create: 94 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 95 err_register_chrdev: 96 return err; 97 } 98 99 void kfd_chardev_exit(void) 100 { 101 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); 102 class_destroy(kfd_class); 103 unregister_chrdev(kfd_char_dev_major, kfd_dev_name); 104 kfd_device = NULL; 105 } 106 107 108 static int kfd_open(struct inode *inode, struct file *filep) 109 { 110 struct kfd_process *process; 111 bool is_32bit_user_mode; 112 113 if (iminor(inode) != 0) 114 return -ENODEV; 115 116 is_32bit_user_mode = in_compat_syscall(); 117 118 if (is_32bit_user_mode) { 119 dev_warn(kfd_device, 120 "Process %d (32-bit) failed to open /dev/kfd\n" 121 "32-bit processes are not supported by amdkfd\n", 122 current->pid); 123 return -EPERM; 124 } 125 126 process = kfd_create_process(filep); 127 if (IS_ERR(process)) 128 return PTR_ERR(process); 129 130 if (kfd_is_locked()) { 131 dev_dbg(kfd_device, "kfd is locked!\n" 132 "process %d unreferenced", process->pasid); 133 kfd_unref_process(process); 134 return -EAGAIN; 135 } 136 137 /* filep now owns the reference returned by kfd_create_process */ 138 filep->private_data = process; 139 140 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", 141 process->pasid, process->is_32bit_user_mode); 142 143 return 0; 144 } 145 146 static int kfd_release(struct inode *inode, struct file *filep) 147 { 148 struct kfd_process *process = filep->private_data; 149 150 if (process) 151 kfd_unref_process(process); 152 153 return 0; 154 } 155 156 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, 157 void *data) 158 { 159 struct kfd_ioctl_get_version_args *args = data; 160 161 args->major_version = KFD_IOCTL_MAJOR_VERSION; 162 args->minor_version = KFD_IOCTL_MINOR_VERSION; 163 164 return 0; 165 } 166 167 static int set_queue_properties_from_user(struct queue_properties *q_properties, 168 struct kfd_ioctl_create_queue_args *args) 169 { 170 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 171 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 172 return -EINVAL; 173 } 174 175 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 176 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 177 return -EINVAL; 178 } 179 180 if ((args->ring_base_address) && 181 (!access_ok((const void __user *) args->ring_base_address, 182 sizeof(uint64_t)))) { 183 pr_err("Can't access ring base address\n"); 184 return -EFAULT; 185 } 186 187 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 188 pr_err("Ring size must be a power of 2 or 0\n"); 189 return -EINVAL; 190 } 191 192 if (!access_ok((const void __user *) args->read_pointer_address, 193 sizeof(uint32_t))) { 194 pr_err("Can't access read pointer\n"); 195 return -EFAULT; 196 } 197 198 if (!access_ok((const void __user *) args->write_pointer_address, 199 sizeof(uint32_t))) { 200 pr_err("Can't access write pointer\n"); 201 return -EFAULT; 202 } 203 204 if (args->eop_buffer_address && 205 !access_ok((const void __user *) args->eop_buffer_address, 206 sizeof(uint32_t))) { 207 pr_debug("Can't access eop buffer"); 208 return -EFAULT; 209 } 210 211 if (args->ctx_save_restore_address && 212 !access_ok((const void __user *) args->ctx_save_restore_address, 213 sizeof(uint32_t))) { 214 pr_debug("Can't access ctx save restore buffer"); 215 return -EFAULT; 216 } 217 218 q_properties->is_interop = false; 219 q_properties->is_gws = false; 220 q_properties->queue_percent = args->queue_percentage; 221 q_properties->priority = args->queue_priority; 222 q_properties->queue_address = args->ring_base_address; 223 q_properties->queue_size = args->ring_size; 224 q_properties->read_ptr = (uint32_t *) args->read_pointer_address; 225 q_properties->write_ptr = (uint32_t *) args->write_pointer_address; 226 q_properties->eop_ring_buffer_address = args->eop_buffer_address; 227 q_properties->eop_ring_buffer_size = args->eop_buffer_size; 228 q_properties->ctx_save_restore_area_address = 229 args->ctx_save_restore_address; 230 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; 231 q_properties->ctl_stack_size = args->ctl_stack_size; 232 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || 233 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 234 q_properties->type = KFD_QUEUE_TYPE_COMPUTE; 235 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) 236 q_properties->type = KFD_QUEUE_TYPE_SDMA; 237 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) 238 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; 239 else 240 return -ENOTSUPP; 241 242 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) 243 q_properties->format = KFD_QUEUE_FORMAT_AQL; 244 else 245 q_properties->format = KFD_QUEUE_FORMAT_PM4; 246 247 pr_debug("Queue Percentage: %d, %d\n", 248 q_properties->queue_percent, args->queue_percentage); 249 250 pr_debug("Queue Priority: %d, %d\n", 251 q_properties->priority, args->queue_priority); 252 253 pr_debug("Queue Address: 0x%llX, 0x%llX\n", 254 q_properties->queue_address, args->ring_base_address); 255 256 pr_debug("Queue Size: 0x%llX, %u\n", 257 q_properties->queue_size, args->ring_size); 258 259 pr_debug("Queue r/w Pointers: %px, %px\n", 260 q_properties->read_ptr, 261 q_properties->write_ptr); 262 263 pr_debug("Queue Format: %d\n", q_properties->format); 264 265 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); 266 267 pr_debug("Queue CTX save area: 0x%llX\n", 268 q_properties->ctx_save_restore_area_address); 269 270 return 0; 271 } 272 273 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, 274 void *data) 275 { 276 struct kfd_ioctl_create_queue_args *args = data; 277 struct kfd_dev *dev; 278 int err = 0; 279 unsigned int queue_id; 280 struct kfd_process_device *pdd; 281 struct queue_properties q_properties; 282 uint32_t doorbell_offset_in_process = 0; 283 284 memset(&q_properties, 0, sizeof(struct queue_properties)); 285 286 pr_debug("Creating queue ioctl\n"); 287 288 err = set_queue_properties_from_user(&q_properties, args); 289 if (err) 290 return err; 291 292 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); 293 294 mutex_lock(&p->mutex); 295 296 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 297 if (!pdd) { 298 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 299 err = -EINVAL; 300 goto err_pdd; 301 } 302 dev = pdd->dev; 303 304 pdd = kfd_bind_process_to_device(dev, p); 305 if (IS_ERR(pdd)) { 306 err = -ESRCH; 307 goto err_bind_process; 308 } 309 310 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", 311 p->pasid, 312 dev->id); 313 314 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, NULL, NULL, NULL, 315 &doorbell_offset_in_process); 316 if (err != 0) 317 goto err_create_queue; 318 319 args->queue_id = queue_id; 320 321 322 /* Return gpu_id as doorbell offset for mmap usage */ 323 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; 324 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); 325 if (KFD_IS_SOC15(dev)) 326 /* On SOC15 ASICs, include the doorbell offset within the 327 * process doorbell frame, which is 2 pages. 328 */ 329 args->doorbell_offset |= doorbell_offset_in_process; 330 331 mutex_unlock(&p->mutex); 332 333 pr_debug("Queue id %d was created successfully\n", args->queue_id); 334 335 pr_debug("Ring buffer address == 0x%016llX\n", 336 args->ring_base_address); 337 338 pr_debug("Read ptr address == 0x%016llX\n", 339 args->read_pointer_address); 340 341 pr_debug("Write ptr address == 0x%016llX\n", 342 args->write_pointer_address); 343 344 return 0; 345 346 err_create_queue: 347 err_bind_process: 348 err_pdd: 349 mutex_unlock(&p->mutex); 350 return err; 351 } 352 353 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, 354 void *data) 355 { 356 int retval; 357 struct kfd_ioctl_destroy_queue_args *args = data; 358 359 pr_debug("Destroying queue id %d for pasid 0x%x\n", 360 args->queue_id, 361 p->pasid); 362 363 mutex_lock(&p->mutex); 364 365 retval = pqm_destroy_queue(&p->pqm, args->queue_id); 366 367 mutex_unlock(&p->mutex); 368 return retval; 369 } 370 371 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, 372 void *data) 373 { 374 int retval; 375 struct kfd_ioctl_update_queue_args *args = data; 376 struct queue_properties properties; 377 378 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { 379 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); 380 return -EINVAL; 381 } 382 383 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { 384 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); 385 return -EINVAL; 386 } 387 388 if ((args->ring_base_address) && 389 (!access_ok((const void __user *) args->ring_base_address, 390 sizeof(uint64_t)))) { 391 pr_err("Can't access ring base address\n"); 392 return -EFAULT; 393 } 394 395 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { 396 pr_err("Ring size must be a power of 2 or 0\n"); 397 return -EINVAL; 398 } 399 400 properties.queue_address = args->ring_base_address; 401 properties.queue_size = args->ring_size; 402 properties.queue_percent = args->queue_percentage; 403 properties.priority = args->queue_priority; 404 405 pr_debug("Updating queue id %d for pasid 0x%x\n", 406 args->queue_id, p->pasid); 407 408 mutex_lock(&p->mutex); 409 410 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); 411 412 mutex_unlock(&p->mutex); 413 414 return retval; 415 } 416 417 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, 418 void *data) 419 { 420 int retval; 421 const int max_num_cus = 1024; 422 struct kfd_ioctl_set_cu_mask_args *args = data; 423 struct mqd_update_info minfo = {0}; 424 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; 425 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); 426 427 if ((args->num_cu_mask % 32) != 0) { 428 pr_debug("num_cu_mask 0x%x must be a multiple of 32", 429 args->num_cu_mask); 430 return -EINVAL; 431 } 432 433 minfo.cu_mask.count = args->num_cu_mask; 434 if (minfo.cu_mask.count == 0) { 435 pr_debug("CU mask cannot be 0"); 436 return -EINVAL; 437 } 438 439 /* To prevent an unreasonably large CU mask size, set an arbitrary 440 * limit of max_num_cus bits. We can then just drop any CU mask bits 441 * past max_num_cus bits and just use the first max_num_cus bits. 442 */ 443 if (minfo.cu_mask.count > max_num_cus) { 444 pr_debug("CU mask cannot be greater than 1024 bits"); 445 minfo.cu_mask.count = max_num_cus; 446 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); 447 } 448 449 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); 450 if (!minfo.cu_mask.ptr) 451 return -ENOMEM; 452 453 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); 454 if (retval) { 455 pr_debug("Could not copy CU mask from userspace"); 456 retval = -EFAULT; 457 goto out; 458 } 459 460 minfo.update_flag = UPDATE_FLAG_CU_MASK; 461 462 mutex_lock(&p->mutex); 463 464 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); 465 466 mutex_unlock(&p->mutex); 467 468 out: 469 kfree(minfo.cu_mask.ptr); 470 return retval; 471 } 472 473 static int kfd_ioctl_get_queue_wave_state(struct file *filep, 474 struct kfd_process *p, void *data) 475 { 476 struct kfd_ioctl_get_queue_wave_state_args *args = data; 477 int r; 478 479 mutex_lock(&p->mutex); 480 481 r = pqm_get_wave_state(&p->pqm, args->queue_id, 482 (void __user *)args->ctl_stack_address, 483 &args->ctl_stack_used_size, 484 &args->save_area_used_size); 485 486 mutex_unlock(&p->mutex); 487 488 return r; 489 } 490 491 static int kfd_ioctl_set_memory_policy(struct file *filep, 492 struct kfd_process *p, void *data) 493 { 494 struct kfd_ioctl_set_memory_policy_args *args = data; 495 int err = 0; 496 struct kfd_process_device *pdd; 497 enum cache_policy default_policy, alternate_policy; 498 499 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT 500 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 501 return -EINVAL; 502 } 503 504 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT 505 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { 506 return -EINVAL; 507 } 508 509 mutex_lock(&p->mutex); 510 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 511 if (!pdd) { 512 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); 513 err = -EINVAL; 514 goto err_pdd; 515 } 516 517 pdd = kfd_bind_process_to_device(pdd->dev, p); 518 if (IS_ERR(pdd)) { 519 err = -ESRCH; 520 goto out; 521 } 522 523 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) 524 ? cache_policy_coherent : cache_policy_noncoherent; 525 526 alternate_policy = 527 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) 528 ? cache_policy_coherent : cache_policy_noncoherent; 529 530 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, 531 &pdd->qpd, 532 default_policy, 533 alternate_policy, 534 (void __user *)args->alternate_aperture_base, 535 args->alternate_aperture_size)) 536 err = -EINVAL; 537 538 out: 539 err_pdd: 540 mutex_unlock(&p->mutex); 541 542 return err; 543 } 544 545 static int kfd_ioctl_set_trap_handler(struct file *filep, 546 struct kfd_process *p, void *data) 547 { 548 struct kfd_ioctl_set_trap_handler_args *args = data; 549 int err = 0; 550 struct kfd_process_device *pdd; 551 552 mutex_lock(&p->mutex); 553 554 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 555 if (!pdd) { 556 err = -EINVAL; 557 goto err_pdd; 558 } 559 560 pdd = kfd_bind_process_to_device(pdd->dev, p); 561 if (IS_ERR(pdd)) { 562 err = -ESRCH; 563 goto out; 564 } 565 566 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); 567 568 out: 569 err_pdd: 570 mutex_unlock(&p->mutex); 571 572 return err; 573 } 574 575 static int kfd_ioctl_dbg_register(struct file *filep, 576 struct kfd_process *p, void *data) 577 { 578 return -EPERM; 579 } 580 581 static int kfd_ioctl_dbg_unregister(struct file *filep, 582 struct kfd_process *p, void *data) 583 { 584 return -EPERM; 585 } 586 587 static int kfd_ioctl_dbg_address_watch(struct file *filep, 588 struct kfd_process *p, void *data) 589 { 590 return -EPERM; 591 } 592 593 /* Parse and generate fixed size data structure for wave control */ 594 static int kfd_ioctl_dbg_wave_control(struct file *filep, 595 struct kfd_process *p, void *data) 596 { 597 return -EPERM; 598 } 599 600 static int kfd_ioctl_get_clock_counters(struct file *filep, 601 struct kfd_process *p, void *data) 602 { 603 struct kfd_ioctl_get_clock_counters_args *args = data; 604 struct kfd_process_device *pdd; 605 606 mutex_lock(&p->mutex); 607 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 608 mutex_unlock(&p->mutex); 609 if (pdd) 610 /* Reading GPU clock counter from KGD */ 611 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); 612 else 613 /* Node without GPU resource */ 614 args->gpu_clock_counter = 0; 615 616 /* No access to rdtsc. Using raw monotonic time */ 617 args->cpu_clock_counter = ktime_get_raw_ns(); 618 args->system_clock_counter = ktime_get_boottime_ns(); 619 620 /* Since the counter is in nano-seconds we use 1GHz frequency */ 621 args->system_clock_freq = 1000000000; 622 623 return 0; 624 } 625 626 627 static int kfd_ioctl_get_process_apertures(struct file *filp, 628 struct kfd_process *p, void *data) 629 { 630 struct kfd_ioctl_get_process_apertures_args *args = data; 631 struct kfd_process_device_apertures *pAperture; 632 int i; 633 634 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 635 636 args->num_of_nodes = 0; 637 638 mutex_lock(&p->mutex); 639 /* Run over all pdd of the process */ 640 for (i = 0; i < p->n_pdds; i++) { 641 struct kfd_process_device *pdd = p->pdds[i]; 642 643 pAperture = 644 &args->process_apertures[args->num_of_nodes]; 645 pAperture->gpu_id = pdd->dev->id; 646 pAperture->lds_base = pdd->lds_base; 647 pAperture->lds_limit = pdd->lds_limit; 648 pAperture->gpuvm_base = pdd->gpuvm_base; 649 pAperture->gpuvm_limit = pdd->gpuvm_limit; 650 pAperture->scratch_base = pdd->scratch_base; 651 pAperture->scratch_limit = pdd->scratch_limit; 652 653 dev_dbg(kfd_device, 654 "node id %u\n", args->num_of_nodes); 655 dev_dbg(kfd_device, 656 "gpu id %u\n", pdd->dev->id); 657 dev_dbg(kfd_device, 658 "lds_base %llX\n", pdd->lds_base); 659 dev_dbg(kfd_device, 660 "lds_limit %llX\n", pdd->lds_limit); 661 dev_dbg(kfd_device, 662 "gpuvm_base %llX\n", pdd->gpuvm_base); 663 dev_dbg(kfd_device, 664 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 665 dev_dbg(kfd_device, 666 "scratch_base %llX\n", pdd->scratch_base); 667 dev_dbg(kfd_device, 668 "scratch_limit %llX\n", pdd->scratch_limit); 669 670 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) 671 break; 672 } 673 mutex_unlock(&p->mutex); 674 675 return 0; 676 } 677 678 static int kfd_ioctl_get_process_apertures_new(struct file *filp, 679 struct kfd_process *p, void *data) 680 { 681 struct kfd_ioctl_get_process_apertures_new_args *args = data; 682 struct kfd_process_device_apertures *pa; 683 int ret; 684 int i; 685 686 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); 687 688 if (args->num_of_nodes == 0) { 689 /* Return number of nodes, so that user space can alloacate 690 * sufficient memory 691 */ 692 mutex_lock(&p->mutex); 693 args->num_of_nodes = p->n_pdds; 694 goto out_unlock; 695 } 696 697 /* Fill in process-aperture information for all available 698 * nodes, but not more than args->num_of_nodes as that is 699 * the amount of memory allocated by user 700 */ 701 pa = kzalloc((sizeof(struct kfd_process_device_apertures) * 702 args->num_of_nodes), GFP_KERNEL); 703 if (!pa) 704 return -ENOMEM; 705 706 mutex_lock(&p->mutex); 707 708 if (!p->n_pdds) { 709 args->num_of_nodes = 0; 710 kfree(pa); 711 goto out_unlock; 712 } 713 714 /* Run over all pdd of the process */ 715 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { 716 struct kfd_process_device *pdd = p->pdds[i]; 717 718 pa[i].gpu_id = pdd->dev->id; 719 pa[i].lds_base = pdd->lds_base; 720 pa[i].lds_limit = pdd->lds_limit; 721 pa[i].gpuvm_base = pdd->gpuvm_base; 722 pa[i].gpuvm_limit = pdd->gpuvm_limit; 723 pa[i].scratch_base = pdd->scratch_base; 724 pa[i].scratch_limit = pdd->scratch_limit; 725 726 dev_dbg(kfd_device, 727 "gpu id %u\n", pdd->dev->id); 728 dev_dbg(kfd_device, 729 "lds_base %llX\n", pdd->lds_base); 730 dev_dbg(kfd_device, 731 "lds_limit %llX\n", pdd->lds_limit); 732 dev_dbg(kfd_device, 733 "gpuvm_base %llX\n", pdd->gpuvm_base); 734 dev_dbg(kfd_device, 735 "gpuvm_limit %llX\n", pdd->gpuvm_limit); 736 dev_dbg(kfd_device, 737 "scratch_base %llX\n", pdd->scratch_base); 738 dev_dbg(kfd_device, 739 "scratch_limit %llX\n", pdd->scratch_limit); 740 } 741 mutex_unlock(&p->mutex); 742 743 args->num_of_nodes = i; 744 ret = copy_to_user( 745 (void __user *)args->kfd_process_device_apertures_ptr, 746 pa, 747 (i * sizeof(struct kfd_process_device_apertures))); 748 kfree(pa); 749 return ret ? -EFAULT : 0; 750 751 out_unlock: 752 mutex_unlock(&p->mutex); 753 return 0; 754 } 755 756 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, 757 void *data) 758 { 759 struct kfd_ioctl_create_event_args *args = data; 760 int err; 761 762 /* For dGPUs the event page is allocated in user mode. The 763 * handle is passed to KFD with the first call to this IOCTL 764 * through the event_page_offset field. 765 */ 766 if (args->event_page_offset) { 767 mutex_lock(&p->mutex); 768 err = kfd_kmap_event_page(p, args->event_page_offset); 769 mutex_unlock(&p->mutex); 770 if (err) 771 return err; 772 } 773 774 err = kfd_event_create(filp, p, args->event_type, 775 args->auto_reset != 0, args->node_id, 776 &args->event_id, &args->event_trigger_data, 777 &args->event_page_offset, 778 &args->event_slot_index); 779 780 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); 781 return err; 782 } 783 784 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, 785 void *data) 786 { 787 struct kfd_ioctl_destroy_event_args *args = data; 788 789 return kfd_event_destroy(p, args->event_id); 790 } 791 792 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, 793 void *data) 794 { 795 struct kfd_ioctl_set_event_args *args = data; 796 797 return kfd_set_event(p, args->event_id); 798 } 799 800 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, 801 void *data) 802 { 803 struct kfd_ioctl_reset_event_args *args = data; 804 805 return kfd_reset_event(p, args->event_id); 806 } 807 808 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, 809 void *data) 810 { 811 struct kfd_ioctl_wait_events_args *args = data; 812 int err; 813 814 err = kfd_wait_on_events(p, args->num_events, 815 (void __user *)args->events_ptr, 816 (args->wait_for_all != 0), 817 args->timeout, &args->wait_result); 818 819 return err; 820 } 821 static int kfd_ioctl_set_scratch_backing_va(struct file *filep, 822 struct kfd_process *p, void *data) 823 { 824 struct kfd_ioctl_set_scratch_backing_va_args *args = data; 825 struct kfd_process_device *pdd; 826 struct kfd_dev *dev; 827 long err; 828 829 mutex_lock(&p->mutex); 830 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 831 if (!pdd) { 832 err = -EINVAL; 833 goto err_pdd; 834 } 835 dev = pdd->dev; 836 837 pdd = kfd_bind_process_to_device(dev, p); 838 if (IS_ERR(pdd)) { 839 err = PTR_ERR(pdd); 840 goto bind_process_to_device_fail; 841 } 842 843 pdd->qpd.sh_hidden_private_base = args->va_addr; 844 845 mutex_unlock(&p->mutex); 846 847 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && 848 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) 849 dev->kfd2kgd->set_scratch_backing_va( 850 dev->adev, args->va_addr, pdd->qpd.vmid); 851 852 return 0; 853 854 bind_process_to_device_fail: 855 err_pdd: 856 mutex_unlock(&p->mutex); 857 return err; 858 } 859 860 static int kfd_ioctl_get_tile_config(struct file *filep, 861 struct kfd_process *p, void *data) 862 { 863 struct kfd_ioctl_get_tile_config_args *args = data; 864 struct kfd_process_device *pdd; 865 struct tile_config config; 866 int err = 0; 867 868 mutex_lock(&p->mutex); 869 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 870 mutex_unlock(&p->mutex); 871 if (!pdd) 872 return -EINVAL; 873 874 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); 875 876 args->gb_addr_config = config.gb_addr_config; 877 args->num_banks = config.num_banks; 878 args->num_ranks = config.num_ranks; 879 880 if (args->num_tile_configs > config.num_tile_configs) 881 args->num_tile_configs = config.num_tile_configs; 882 err = copy_to_user((void __user *)args->tile_config_ptr, 883 config.tile_config_ptr, 884 args->num_tile_configs * sizeof(uint32_t)); 885 if (err) { 886 args->num_tile_configs = 0; 887 return -EFAULT; 888 } 889 890 if (args->num_macro_tile_configs > config.num_macro_tile_configs) 891 args->num_macro_tile_configs = 892 config.num_macro_tile_configs; 893 err = copy_to_user((void __user *)args->macro_tile_config_ptr, 894 config.macro_tile_config_ptr, 895 args->num_macro_tile_configs * sizeof(uint32_t)); 896 if (err) { 897 args->num_macro_tile_configs = 0; 898 return -EFAULT; 899 } 900 901 return 0; 902 } 903 904 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, 905 void *data) 906 { 907 struct kfd_ioctl_acquire_vm_args *args = data; 908 struct kfd_process_device *pdd; 909 struct file *drm_file; 910 int ret; 911 912 drm_file = fget(args->drm_fd); 913 if (!drm_file) 914 return -EINVAL; 915 916 mutex_lock(&p->mutex); 917 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 918 if (!pdd) { 919 ret = -EINVAL; 920 goto err_pdd; 921 } 922 923 if (pdd->drm_file) { 924 ret = pdd->drm_file == drm_file ? 0 : -EBUSY; 925 goto err_drm_file; 926 } 927 928 ret = kfd_process_device_init_vm(pdd, drm_file); 929 if (ret) 930 goto err_unlock; 931 932 /* On success, the PDD keeps the drm_file reference */ 933 mutex_unlock(&p->mutex); 934 935 return 0; 936 937 err_unlock: 938 err_pdd: 939 err_drm_file: 940 mutex_unlock(&p->mutex); 941 fput(drm_file); 942 return ret; 943 } 944 945 bool kfd_dev_is_large_bar(struct kfd_dev *dev) 946 { 947 if (debug_largebar) { 948 pr_debug("Simulate large-bar allocation on non large-bar machine\n"); 949 return true; 950 } 951 952 if (dev->use_iommu_v2) 953 return false; 954 955 if (dev->local_mem_info.local_mem_size_private == 0 && 956 dev->local_mem_info.local_mem_size_public > 0) 957 return true; 958 return false; 959 } 960 961 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, 962 struct kfd_process *p, void *data) 963 { 964 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; 965 struct kfd_process_device *pdd; 966 void *mem; 967 struct kfd_dev *dev; 968 int idr_handle; 969 long err; 970 uint64_t offset = args->mmap_offset; 971 uint32_t flags = args->flags; 972 973 if (args->size == 0) 974 return -EINVAL; 975 976 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 977 /* Flush pending deferred work to avoid racing with deferred actions 978 * from previous memory map changes (e.g. munmap). 979 */ 980 svm_range_list_lock_and_flush_work(&p->svms, current->mm); 981 mutex_lock(&p->svms.lock); 982 mmap_write_unlock(current->mm); 983 if (interval_tree_iter_first(&p->svms.objects, 984 args->va_addr >> PAGE_SHIFT, 985 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { 986 pr_err("Address: 0x%llx already allocated by SVM\n", 987 args->va_addr); 988 mutex_unlock(&p->svms.lock); 989 return -EADDRINUSE; 990 } 991 mutex_unlock(&p->svms.lock); 992 #endif 993 mutex_lock(&p->mutex); 994 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 995 if (!pdd) { 996 err = -EINVAL; 997 goto err_pdd; 998 } 999 1000 dev = pdd->dev; 1001 1002 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && 1003 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && 1004 !kfd_dev_is_large_bar(dev)) { 1005 pr_err("Alloc host visible vram on small bar is not allowed\n"); 1006 err = -EINVAL; 1007 goto err_large_bar; 1008 } 1009 1010 pdd = kfd_bind_process_to_device(dev, p); 1011 if (IS_ERR(pdd)) { 1012 err = PTR_ERR(pdd); 1013 goto err_unlock; 1014 } 1015 1016 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 1017 if (args->size != kfd_doorbell_process_slice(dev)) { 1018 err = -EINVAL; 1019 goto err_unlock; 1020 } 1021 offset = kfd_get_process_doorbells(pdd); 1022 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 1023 if (args->size != PAGE_SIZE) { 1024 err = -EINVAL; 1025 goto err_unlock; 1026 } 1027 offset = dev->adev->rmmio_remap.bus_addr; 1028 if (!offset) { 1029 err = -ENOMEM; 1030 goto err_unlock; 1031 } 1032 } 1033 1034 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1035 dev->adev, args->va_addr, args->size, 1036 pdd->drm_priv, (struct kgd_mem **) &mem, &offset, 1037 flags, false); 1038 1039 if (err) 1040 goto err_unlock; 1041 1042 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1043 if (idr_handle < 0) { 1044 err = -EFAULT; 1045 goto err_free; 1046 } 1047 1048 /* Update the VRAM usage count */ 1049 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1050 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size); 1051 1052 mutex_unlock(&p->mutex); 1053 1054 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1055 args->mmap_offset = offset; 1056 1057 /* MMIO is mapped through kfd device 1058 * Generate a kfd mmap offset 1059 */ 1060 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1061 args->mmap_offset = KFD_MMAP_TYPE_MMIO 1062 | KFD_MMAP_GPU_ID(args->gpu_id); 1063 1064 return 0; 1065 1066 err_free: 1067 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, 1068 pdd->drm_priv, NULL); 1069 err_unlock: 1070 err_pdd: 1071 err_large_bar: 1072 mutex_unlock(&p->mutex); 1073 return err; 1074 } 1075 1076 static int kfd_ioctl_free_memory_of_gpu(struct file *filep, 1077 struct kfd_process *p, void *data) 1078 { 1079 struct kfd_ioctl_free_memory_of_gpu_args *args = data; 1080 struct kfd_process_device *pdd; 1081 void *mem; 1082 int ret; 1083 uint64_t size = 0; 1084 1085 mutex_lock(&p->mutex); 1086 /* 1087 * Safeguard to prevent user space from freeing signal BO. 1088 * It will be freed at process termination. 1089 */ 1090 if (p->signal_handle && (p->signal_handle == args->handle)) { 1091 pr_err("Free signal BO is not allowed\n"); 1092 ret = -EPERM; 1093 goto err_unlock; 1094 } 1095 1096 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1097 if (!pdd) { 1098 pr_err("Process device data doesn't exist\n"); 1099 ret = -EINVAL; 1100 goto err_pdd; 1101 } 1102 1103 mem = kfd_process_device_translate_handle( 1104 pdd, GET_IDR_HANDLE(args->handle)); 1105 if (!mem) { 1106 ret = -EINVAL; 1107 goto err_unlock; 1108 } 1109 1110 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, 1111 (struct kgd_mem *)mem, pdd->drm_priv, &size); 1112 1113 /* If freeing the buffer failed, leave the handle in place for 1114 * clean-up during process tear-down. 1115 */ 1116 if (!ret) 1117 kfd_process_device_remove_obj_handle( 1118 pdd, GET_IDR_HANDLE(args->handle)); 1119 1120 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); 1121 1122 err_unlock: 1123 err_pdd: 1124 mutex_unlock(&p->mutex); 1125 return ret; 1126 } 1127 1128 static int kfd_ioctl_map_memory_to_gpu(struct file *filep, 1129 struct kfd_process *p, void *data) 1130 { 1131 struct kfd_ioctl_map_memory_to_gpu_args *args = data; 1132 struct kfd_process_device *pdd, *peer_pdd; 1133 void *mem; 1134 struct kfd_dev *dev; 1135 long err = 0; 1136 int i; 1137 uint32_t *devices_arr = NULL; 1138 1139 if (!args->n_devices) { 1140 pr_debug("Device IDs array empty\n"); 1141 return -EINVAL; 1142 } 1143 if (args->n_success > args->n_devices) { 1144 pr_debug("n_success exceeds n_devices\n"); 1145 return -EINVAL; 1146 } 1147 1148 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1149 GFP_KERNEL); 1150 if (!devices_arr) 1151 return -ENOMEM; 1152 1153 err = copy_from_user(devices_arr, 1154 (void __user *)args->device_ids_array_ptr, 1155 args->n_devices * sizeof(*devices_arr)); 1156 if (err != 0) { 1157 err = -EFAULT; 1158 goto copy_from_user_failed; 1159 } 1160 1161 mutex_lock(&p->mutex); 1162 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1163 if (!pdd) { 1164 err = -EINVAL; 1165 goto get_process_device_data_failed; 1166 } 1167 dev = pdd->dev; 1168 1169 pdd = kfd_bind_process_to_device(dev, p); 1170 if (IS_ERR(pdd)) { 1171 err = PTR_ERR(pdd); 1172 goto bind_process_to_device_failed; 1173 } 1174 1175 mem = kfd_process_device_translate_handle(pdd, 1176 GET_IDR_HANDLE(args->handle)); 1177 if (!mem) { 1178 err = -ENOMEM; 1179 goto get_mem_obj_from_handle_failed; 1180 } 1181 1182 for (i = args->n_success; i < args->n_devices; i++) { 1183 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1184 if (!peer_pdd) { 1185 pr_debug("Getting device by id failed for 0x%x\n", 1186 devices_arr[i]); 1187 err = -EINVAL; 1188 goto get_mem_obj_from_handle_failed; 1189 } 1190 1191 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); 1192 if (IS_ERR(peer_pdd)) { 1193 err = PTR_ERR(peer_pdd); 1194 goto get_mem_obj_from_handle_failed; 1195 } 1196 1197 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1198 peer_pdd->dev->adev, (struct kgd_mem *)mem, 1199 peer_pdd->drm_priv); 1200 if (err) { 1201 struct pci_dev *pdev = peer_pdd->dev->adev->pdev; 1202 1203 dev_err(dev->adev->dev, 1204 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", 1205 pci_domain_nr(pdev->bus), 1206 pdev->bus->number, 1207 PCI_SLOT(pdev->devfn), 1208 PCI_FUNC(pdev->devfn), 1209 ((struct kgd_mem *)mem)->domain); 1210 goto map_memory_to_gpu_failed; 1211 } 1212 args->n_success = i+1; 1213 } 1214 1215 mutex_unlock(&p->mutex); 1216 1217 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); 1218 if (err) { 1219 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1220 goto sync_memory_failed; 1221 } 1222 1223 /* Flush TLBs after waiting for the page table updates to complete */ 1224 for (i = 0; i < args->n_devices; i++) { 1225 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1226 if (WARN_ON_ONCE(!peer_pdd)) 1227 continue; 1228 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); 1229 } 1230 kfree(devices_arr); 1231 1232 return err; 1233 1234 get_process_device_data_failed: 1235 bind_process_to_device_failed: 1236 get_mem_obj_from_handle_failed: 1237 map_memory_to_gpu_failed: 1238 mutex_unlock(&p->mutex); 1239 copy_from_user_failed: 1240 sync_memory_failed: 1241 kfree(devices_arr); 1242 1243 return err; 1244 } 1245 1246 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, 1247 struct kfd_process *p, void *data) 1248 { 1249 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; 1250 struct kfd_process_device *pdd, *peer_pdd; 1251 void *mem; 1252 long err = 0; 1253 uint32_t *devices_arr = NULL, i; 1254 1255 if (!args->n_devices) { 1256 pr_debug("Device IDs array empty\n"); 1257 return -EINVAL; 1258 } 1259 if (args->n_success > args->n_devices) { 1260 pr_debug("n_success exceeds n_devices\n"); 1261 return -EINVAL; 1262 } 1263 1264 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), 1265 GFP_KERNEL); 1266 if (!devices_arr) 1267 return -ENOMEM; 1268 1269 err = copy_from_user(devices_arr, 1270 (void __user *)args->device_ids_array_ptr, 1271 args->n_devices * sizeof(*devices_arr)); 1272 if (err != 0) { 1273 err = -EFAULT; 1274 goto copy_from_user_failed; 1275 } 1276 1277 mutex_lock(&p->mutex); 1278 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); 1279 if (!pdd) { 1280 err = -EINVAL; 1281 goto bind_process_to_device_failed; 1282 } 1283 1284 mem = kfd_process_device_translate_handle(pdd, 1285 GET_IDR_HANDLE(args->handle)); 1286 if (!mem) { 1287 err = -ENOMEM; 1288 goto get_mem_obj_from_handle_failed; 1289 } 1290 1291 for (i = args->n_success; i < args->n_devices; i++) { 1292 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1293 if (!peer_pdd) { 1294 err = -EINVAL; 1295 goto get_mem_obj_from_handle_failed; 1296 } 1297 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1298 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); 1299 if (err) { 1300 pr_err("Failed to unmap from gpu %d/%d\n", 1301 i, args->n_devices); 1302 goto unmap_memory_from_gpu_failed; 1303 } 1304 args->n_success = i+1; 1305 } 1306 mutex_unlock(&p->mutex); 1307 1308 if (kfd_flush_tlb_after_unmap(pdd->dev)) { 1309 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, 1310 (struct kgd_mem *) mem, true); 1311 if (err) { 1312 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 1313 goto sync_memory_failed; 1314 } 1315 1316 /* Flush TLBs after waiting for the page table updates to complete */ 1317 for (i = 0; i < args->n_devices; i++) { 1318 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); 1319 if (WARN_ON_ONCE(!peer_pdd)) 1320 continue; 1321 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); 1322 } 1323 } 1324 kfree(devices_arr); 1325 1326 return 0; 1327 1328 bind_process_to_device_failed: 1329 get_mem_obj_from_handle_failed: 1330 unmap_memory_from_gpu_failed: 1331 mutex_unlock(&p->mutex); 1332 copy_from_user_failed: 1333 sync_memory_failed: 1334 kfree(devices_arr); 1335 return err; 1336 } 1337 1338 static int kfd_ioctl_alloc_queue_gws(struct file *filep, 1339 struct kfd_process *p, void *data) 1340 { 1341 int retval; 1342 struct kfd_ioctl_alloc_queue_gws_args *args = data; 1343 struct queue *q; 1344 struct kfd_dev *dev; 1345 1346 mutex_lock(&p->mutex); 1347 q = pqm_get_user_queue(&p->pqm, args->queue_id); 1348 1349 if (q) { 1350 dev = q->device; 1351 } else { 1352 retval = -EINVAL; 1353 goto out_unlock; 1354 } 1355 1356 if (!dev->gws) { 1357 retval = -ENODEV; 1358 goto out_unlock; 1359 } 1360 1361 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1362 retval = -ENODEV; 1363 goto out_unlock; 1364 } 1365 1366 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); 1367 mutex_unlock(&p->mutex); 1368 1369 args->first_gws = 0; 1370 return retval; 1371 1372 out_unlock: 1373 mutex_unlock(&p->mutex); 1374 return retval; 1375 } 1376 1377 static int kfd_ioctl_get_dmabuf_info(struct file *filep, 1378 struct kfd_process *p, void *data) 1379 { 1380 struct kfd_ioctl_get_dmabuf_info_args *args = data; 1381 struct kfd_dev *dev = NULL; 1382 struct amdgpu_device *dmabuf_adev; 1383 void *metadata_buffer = NULL; 1384 uint32_t flags; 1385 unsigned int i; 1386 int r; 1387 1388 /* Find a KFD GPU device that supports the get_dmabuf_info query */ 1389 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) 1390 if (dev) 1391 break; 1392 if (!dev) 1393 return -EINVAL; 1394 1395 if (args->metadata_ptr) { 1396 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); 1397 if (!metadata_buffer) 1398 return -ENOMEM; 1399 } 1400 1401 /* Get dmabuf info from KGD */ 1402 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, 1403 &dmabuf_adev, &args->size, 1404 metadata_buffer, args->metadata_size, 1405 &args->metadata_size, &flags); 1406 if (r) 1407 goto exit; 1408 1409 /* Reverse-lookup gpu_id from kgd pointer */ 1410 dev = kfd_device_by_adev(dmabuf_adev); 1411 if (!dev) { 1412 r = -EINVAL; 1413 goto exit; 1414 } 1415 args->gpu_id = dev->id; 1416 args->flags = flags; 1417 1418 /* Copy metadata buffer to user mode */ 1419 if (metadata_buffer) { 1420 r = copy_to_user((void __user *)args->metadata_ptr, 1421 metadata_buffer, args->metadata_size); 1422 if (r != 0) 1423 r = -EFAULT; 1424 } 1425 1426 exit: 1427 kfree(metadata_buffer); 1428 1429 return r; 1430 } 1431 1432 static int kfd_ioctl_import_dmabuf(struct file *filep, 1433 struct kfd_process *p, void *data) 1434 { 1435 struct kfd_ioctl_import_dmabuf_args *args = data; 1436 struct kfd_process_device *pdd; 1437 struct dma_buf *dmabuf; 1438 int idr_handle; 1439 uint64_t size; 1440 void *mem; 1441 int r; 1442 1443 dmabuf = dma_buf_get(args->dmabuf_fd); 1444 if (IS_ERR(dmabuf)) 1445 return PTR_ERR(dmabuf); 1446 1447 mutex_lock(&p->mutex); 1448 pdd = kfd_process_device_data_by_id(p, args->gpu_id); 1449 if (!pdd) { 1450 r = -EINVAL; 1451 goto err_unlock; 1452 } 1453 1454 pdd = kfd_bind_process_to_device(pdd->dev, p); 1455 if (IS_ERR(pdd)) { 1456 r = PTR_ERR(pdd); 1457 goto err_unlock; 1458 } 1459 1460 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf, 1461 args->va_addr, pdd->drm_priv, 1462 (struct kgd_mem **)&mem, &size, 1463 NULL); 1464 if (r) 1465 goto err_unlock; 1466 1467 idr_handle = kfd_process_device_create_obj_handle(pdd, mem); 1468 if (idr_handle < 0) { 1469 r = -EFAULT; 1470 goto err_free; 1471 } 1472 1473 mutex_unlock(&p->mutex); 1474 dma_buf_put(dmabuf); 1475 1476 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); 1477 1478 return 0; 1479 1480 err_free: 1481 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, 1482 pdd->drm_priv, NULL); 1483 err_unlock: 1484 mutex_unlock(&p->mutex); 1485 dma_buf_put(dmabuf); 1486 return r; 1487 } 1488 1489 /* Handle requests for watching SMI events */ 1490 static int kfd_ioctl_smi_events(struct file *filep, 1491 struct kfd_process *p, void *data) 1492 { 1493 struct kfd_ioctl_smi_events_args *args = data; 1494 struct kfd_process_device *pdd; 1495 1496 mutex_lock(&p->mutex); 1497 1498 pdd = kfd_process_device_data_by_id(p, args->gpuid); 1499 mutex_unlock(&p->mutex); 1500 if (!pdd) 1501 return -EINVAL; 1502 1503 return kfd_smi_event_open(pdd->dev, &args->anon_fd); 1504 } 1505 1506 static int kfd_ioctl_set_xnack_mode(struct file *filep, 1507 struct kfd_process *p, void *data) 1508 { 1509 struct kfd_ioctl_set_xnack_mode_args *args = data; 1510 int r = 0; 1511 1512 mutex_lock(&p->mutex); 1513 if (args->xnack_enabled >= 0) { 1514 if (!list_empty(&p->pqm.queues)) { 1515 pr_debug("Process has user queues running\n"); 1516 mutex_unlock(&p->mutex); 1517 return -EBUSY; 1518 } 1519 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) 1520 r = -EPERM; 1521 else 1522 p->xnack_enabled = args->xnack_enabled; 1523 } else { 1524 args->xnack_enabled = p->xnack_enabled; 1525 } 1526 mutex_unlock(&p->mutex); 1527 1528 return r; 1529 } 1530 1531 #if IS_ENABLED(CONFIG_HSA_AMD_SVM) 1532 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1533 { 1534 struct kfd_ioctl_svm_args *args = data; 1535 int r = 0; 1536 1537 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", 1538 args->start_addr, args->size, args->op, args->nattr); 1539 1540 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) 1541 return -EINVAL; 1542 if (!args->start_addr || !args->size) 1543 return -EINVAL; 1544 1545 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, 1546 args->attrs); 1547 1548 return r; 1549 } 1550 #else 1551 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) 1552 { 1553 return -EPERM; 1554 } 1555 #endif 1556 1557 static int criu_checkpoint_process(struct kfd_process *p, 1558 uint8_t __user *user_priv_data, 1559 uint64_t *priv_offset) 1560 { 1561 struct kfd_criu_process_priv_data process_priv; 1562 int ret; 1563 1564 memset(&process_priv, 0, sizeof(process_priv)); 1565 1566 process_priv.version = KFD_CRIU_PRIV_VERSION; 1567 /* For CR, we don't consider negative xnack mode which is used for 1568 * querying without changing it, here 0 simply means disabled and 1 1569 * means enabled so retry for finding a valid PTE. 1570 */ 1571 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; 1572 1573 ret = copy_to_user(user_priv_data + *priv_offset, 1574 &process_priv, sizeof(process_priv)); 1575 1576 if (ret) { 1577 pr_err("Failed to copy process information to user\n"); 1578 ret = -EFAULT; 1579 } 1580 1581 *priv_offset += sizeof(process_priv); 1582 return ret; 1583 } 1584 1585 static int criu_checkpoint_devices(struct kfd_process *p, 1586 uint32_t num_devices, 1587 uint8_t __user *user_addr, 1588 uint8_t __user *user_priv_data, 1589 uint64_t *priv_offset) 1590 { 1591 struct kfd_criu_device_priv_data *device_priv = NULL; 1592 struct kfd_criu_device_bucket *device_buckets = NULL; 1593 int ret = 0, i; 1594 1595 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); 1596 if (!device_buckets) { 1597 ret = -ENOMEM; 1598 goto exit; 1599 } 1600 1601 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); 1602 if (!device_priv) { 1603 ret = -ENOMEM; 1604 goto exit; 1605 } 1606 1607 for (i = 0; i < num_devices; i++) { 1608 struct kfd_process_device *pdd = p->pdds[i]; 1609 1610 device_buckets[i].user_gpu_id = pdd->user_gpu_id; 1611 device_buckets[i].actual_gpu_id = pdd->dev->id; 1612 1613 /* 1614 * priv_data does not contain useful information for now and is reserved for 1615 * future use, so we do not set its contents. 1616 */ 1617 } 1618 1619 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); 1620 if (ret) { 1621 pr_err("Failed to copy device information to user\n"); 1622 ret = -EFAULT; 1623 goto exit; 1624 } 1625 1626 ret = copy_to_user(user_priv_data + *priv_offset, 1627 device_priv, 1628 num_devices * sizeof(*device_priv)); 1629 if (ret) { 1630 pr_err("Failed to copy device information to user\n"); 1631 ret = -EFAULT; 1632 } 1633 *priv_offset += num_devices * sizeof(*device_priv); 1634 1635 exit: 1636 kvfree(device_buckets); 1637 kvfree(device_priv); 1638 return ret; 1639 } 1640 1641 static uint32_t get_process_num_bos(struct kfd_process *p) 1642 { 1643 uint32_t num_of_bos = 0; 1644 int i; 1645 1646 /* Run over all PDDs of the process */ 1647 for (i = 0; i < p->n_pdds; i++) { 1648 struct kfd_process_device *pdd = p->pdds[i]; 1649 void *mem; 1650 int id; 1651 1652 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1653 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 1654 1655 if ((uint64_t)kgd_mem->va > pdd->gpuvm_base) 1656 num_of_bos++; 1657 } 1658 } 1659 return num_of_bos; 1660 } 1661 1662 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags, 1663 u32 *shared_fd) 1664 { 1665 struct dma_buf *dmabuf; 1666 int ret; 1667 1668 dmabuf = amdgpu_gem_prime_export(gobj, flags); 1669 if (IS_ERR(dmabuf)) { 1670 ret = PTR_ERR(dmabuf); 1671 pr_err("dmabuf export failed for the BO\n"); 1672 return ret; 1673 } 1674 1675 ret = dma_buf_fd(dmabuf, flags); 1676 if (ret < 0) { 1677 pr_err("dmabuf create fd failed, ret:%d\n", ret); 1678 goto out_free_dmabuf; 1679 } 1680 1681 *shared_fd = ret; 1682 return 0; 1683 1684 out_free_dmabuf: 1685 dma_buf_put(dmabuf); 1686 return ret; 1687 } 1688 1689 static int criu_checkpoint_bos(struct kfd_process *p, 1690 uint32_t num_bos, 1691 uint8_t __user *user_bos, 1692 uint8_t __user *user_priv_data, 1693 uint64_t *priv_offset) 1694 { 1695 struct kfd_criu_bo_bucket *bo_buckets; 1696 struct kfd_criu_bo_priv_data *bo_privs; 1697 int ret = 0, pdd_index, bo_index = 0, id; 1698 void *mem; 1699 1700 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); 1701 if (!bo_buckets) 1702 return -ENOMEM; 1703 1704 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); 1705 if (!bo_privs) { 1706 ret = -ENOMEM; 1707 goto exit; 1708 } 1709 1710 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { 1711 struct kfd_process_device *pdd = p->pdds[pdd_index]; 1712 struct amdgpu_bo *dumper_bo; 1713 struct kgd_mem *kgd_mem; 1714 1715 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 1716 struct kfd_criu_bo_bucket *bo_bucket; 1717 struct kfd_criu_bo_priv_data *bo_priv; 1718 int i, dev_idx = 0; 1719 1720 if (!mem) { 1721 ret = -ENOMEM; 1722 goto exit; 1723 } 1724 1725 kgd_mem = (struct kgd_mem *)mem; 1726 dumper_bo = kgd_mem->bo; 1727 1728 if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base) 1729 continue; 1730 1731 bo_bucket = &bo_buckets[bo_index]; 1732 bo_priv = &bo_privs[bo_index]; 1733 1734 bo_bucket->gpu_id = pdd->user_gpu_id; 1735 bo_bucket->addr = (uint64_t)kgd_mem->va; 1736 bo_bucket->size = amdgpu_bo_size(dumper_bo); 1737 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; 1738 bo_priv->idr_handle = id; 1739 1740 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1741 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, 1742 &bo_priv->user_addr); 1743 if (ret) { 1744 pr_err("Failed to obtain user address for user-pointer bo\n"); 1745 goto exit; 1746 } 1747 } 1748 if (bo_bucket->alloc_flags 1749 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 1750 ret = criu_get_prime_handle(&dumper_bo->tbo.base, 1751 bo_bucket->alloc_flags & 1752 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, 1753 &bo_bucket->dmabuf_fd); 1754 if (ret) 1755 goto exit; 1756 } else { 1757 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 1758 } 1759 1760 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 1761 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | 1762 KFD_MMAP_GPU_ID(pdd->dev->id); 1763 else if (bo_bucket->alloc_flags & 1764 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) 1765 bo_bucket->offset = KFD_MMAP_TYPE_MMIO | 1766 KFD_MMAP_GPU_ID(pdd->dev->id); 1767 else 1768 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); 1769 1770 for (i = 0; i < p->n_pdds; i++) { 1771 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) 1772 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; 1773 } 1774 1775 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" 1776 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", 1777 bo_bucket->size, 1778 bo_bucket->addr, 1779 bo_bucket->offset, 1780 bo_bucket->gpu_id, 1781 bo_bucket->alloc_flags, 1782 bo_priv->idr_handle); 1783 bo_index++; 1784 } 1785 } 1786 1787 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); 1788 if (ret) { 1789 pr_err("Failed to copy BO information to user\n"); 1790 ret = -EFAULT; 1791 goto exit; 1792 } 1793 1794 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); 1795 if (ret) { 1796 pr_err("Failed to copy BO priv information to user\n"); 1797 ret = -EFAULT; 1798 goto exit; 1799 } 1800 1801 *priv_offset += num_bos * sizeof(*bo_privs); 1802 1803 exit: 1804 while (ret && bo_index--) { 1805 if (bo_buckets[bo_index].alloc_flags 1806 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 1807 close_fd(bo_buckets[bo_index].dmabuf_fd); 1808 } 1809 1810 kvfree(bo_buckets); 1811 kvfree(bo_privs); 1812 return ret; 1813 } 1814 1815 static int criu_get_process_object_info(struct kfd_process *p, 1816 uint32_t *num_devices, 1817 uint32_t *num_bos, 1818 uint32_t *num_objects, 1819 uint64_t *objs_priv_size) 1820 { 1821 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; 1822 uint32_t num_queues, num_events, num_svm_ranges; 1823 int ret; 1824 1825 *num_devices = p->n_pdds; 1826 *num_bos = get_process_num_bos(p); 1827 1828 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); 1829 if (ret) 1830 return ret; 1831 1832 num_events = kfd_get_num_events(p); 1833 1834 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); 1835 if (ret) 1836 return ret; 1837 1838 *num_objects = num_queues + num_events + num_svm_ranges; 1839 1840 if (objs_priv_size) { 1841 priv_size = sizeof(struct kfd_criu_process_priv_data); 1842 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); 1843 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); 1844 priv_size += queues_priv_data_size; 1845 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); 1846 priv_size += svm_priv_data_size; 1847 *objs_priv_size = priv_size; 1848 } 1849 return 0; 1850 } 1851 1852 static int criu_checkpoint(struct file *filep, 1853 struct kfd_process *p, 1854 struct kfd_ioctl_criu_args *args) 1855 { 1856 int ret; 1857 uint32_t num_devices, num_bos, num_objects; 1858 uint64_t priv_size, priv_offset = 0; 1859 1860 if (!args->devices || !args->bos || !args->priv_data) 1861 return -EINVAL; 1862 1863 mutex_lock(&p->mutex); 1864 1865 if (!p->n_pdds) { 1866 pr_err("No pdd for given process\n"); 1867 ret = -ENODEV; 1868 goto exit_unlock; 1869 } 1870 1871 /* Confirm all process queues are evicted */ 1872 if (!p->queues_paused) { 1873 pr_err("Cannot dump process when queues are not in evicted state\n"); 1874 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ 1875 ret = -EINVAL; 1876 goto exit_unlock; 1877 } 1878 1879 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); 1880 if (ret) 1881 goto exit_unlock; 1882 1883 if (num_devices != args->num_devices || 1884 num_bos != args->num_bos || 1885 num_objects != args->num_objects || 1886 priv_size != args->priv_data_size) { 1887 1888 ret = -EINVAL; 1889 goto exit_unlock; 1890 } 1891 1892 /* each function will store private data inside priv_data and adjust priv_offset */ 1893 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); 1894 if (ret) 1895 goto exit_unlock; 1896 1897 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, 1898 (uint8_t __user *)args->priv_data, &priv_offset); 1899 if (ret) 1900 goto exit_unlock; 1901 1902 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, 1903 (uint8_t __user *)args->priv_data, &priv_offset); 1904 if (ret) 1905 goto exit_unlock; 1906 1907 if (num_objects) { 1908 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, 1909 &priv_offset); 1910 if (ret) 1911 goto close_bo_fds; 1912 1913 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, 1914 &priv_offset); 1915 if (ret) 1916 goto close_bo_fds; 1917 1918 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); 1919 if (ret) 1920 goto close_bo_fds; 1921 } 1922 1923 close_bo_fds: 1924 if (ret) { 1925 /* If IOCTL returns err, user assumes all FDs opened in criu_dump_bos are closed */ 1926 uint32_t i; 1927 struct kfd_criu_bo_bucket *bo_buckets = (struct kfd_criu_bo_bucket *) args->bos; 1928 1929 for (i = 0; i < num_bos; i++) { 1930 if (bo_buckets[i].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) 1931 close_fd(bo_buckets[i].dmabuf_fd); 1932 } 1933 } 1934 1935 exit_unlock: 1936 mutex_unlock(&p->mutex); 1937 if (ret) 1938 pr_err("Failed to dump CRIU ret:%d\n", ret); 1939 else 1940 pr_debug("CRIU dump ret:%d\n", ret); 1941 1942 return ret; 1943 } 1944 1945 static int criu_restore_process(struct kfd_process *p, 1946 struct kfd_ioctl_criu_args *args, 1947 uint64_t *priv_offset, 1948 uint64_t max_priv_data_size) 1949 { 1950 int ret = 0; 1951 struct kfd_criu_process_priv_data process_priv; 1952 1953 if (*priv_offset + sizeof(process_priv) > max_priv_data_size) 1954 return -EINVAL; 1955 1956 ret = copy_from_user(&process_priv, 1957 (void __user *)(args->priv_data + *priv_offset), 1958 sizeof(process_priv)); 1959 if (ret) { 1960 pr_err("Failed to copy process private information from user\n"); 1961 ret = -EFAULT; 1962 goto exit; 1963 } 1964 *priv_offset += sizeof(process_priv); 1965 1966 if (process_priv.version != KFD_CRIU_PRIV_VERSION) { 1967 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", 1968 process_priv.version, KFD_CRIU_PRIV_VERSION); 1969 return -EINVAL; 1970 } 1971 1972 pr_debug("Setting XNACK mode\n"); 1973 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { 1974 pr_err("xnack mode cannot be set\n"); 1975 ret = -EPERM; 1976 goto exit; 1977 } else { 1978 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); 1979 p->xnack_enabled = process_priv.xnack_mode; 1980 } 1981 1982 exit: 1983 return ret; 1984 } 1985 1986 static int criu_restore_devices(struct kfd_process *p, 1987 struct kfd_ioctl_criu_args *args, 1988 uint64_t *priv_offset, 1989 uint64_t max_priv_data_size) 1990 { 1991 struct kfd_criu_device_bucket *device_buckets; 1992 struct kfd_criu_device_priv_data *device_privs; 1993 int ret = 0; 1994 uint32_t i; 1995 1996 if (args->num_devices != p->n_pdds) 1997 return -EINVAL; 1998 1999 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) 2000 return -EINVAL; 2001 2002 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); 2003 if (!device_buckets) 2004 return -ENOMEM; 2005 2006 ret = copy_from_user(device_buckets, (void __user *)args->devices, 2007 args->num_devices * sizeof(*device_buckets)); 2008 if (ret) { 2009 pr_err("Failed to copy devices buckets from user\n"); 2010 ret = -EFAULT; 2011 goto exit; 2012 } 2013 2014 for (i = 0; i < args->num_devices; i++) { 2015 struct kfd_dev *dev; 2016 struct kfd_process_device *pdd; 2017 struct file *drm_file; 2018 2019 /* device private data is not currently used */ 2020 2021 if (!device_buckets[i].user_gpu_id) { 2022 pr_err("Invalid user gpu_id\n"); 2023 ret = -EINVAL; 2024 goto exit; 2025 } 2026 2027 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); 2028 if (!dev) { 2029 pr_err("Failed to find device with gpu_id = %x\n", 2030 device_buckets[i].actual_gpu_id); 2031 ret = -EINVAL; 2032 goto exit; 2033 } 2034 2035 pdd = kfd_get_process_device_data(dev, p); 2036 if (!pdd) { 2037 pr_err("Failed to get pdd for gpu_id = %x\n", 2038 device_buckets[i].actual_gpu_id); 2039 ret = -EINVAL; 2040 goto exit; 2041 } 2042 pdd->user_gpu_id = device_buckets[i].user_gpu_id; 2043 2044 drm_file = fget(device_buckets[i].drm_fd); 2045 if (!drm_file) { 2046 pr_err("Invalid render node file descriptor sent from plugin (%d)\n", 2047 device_buckets[i].drm_fd); 2048 ret = -EINVAL; 2049 goto exit; 2050 } 2051 2052 if (pdd->drm_file) { 2053 ret = -EINVAL; 2054 goto exit; 2055 } 2056 2057 /* create the vm using render nodes for kfd pdd */ 2058 if (kfd_process_device_init_vm(pdd, drm_file)) { 2059 pr_err("could not init vm for given pdd\n"); 2060 /* On success, the PDD keeps the drm_file reference */ 2061 fput(drm_file); 2062 ret = -EINVAL; 2063 goto exit; 2064 } 2065 /* 2066 * pdd now already has the vm bound to render node so below api won't create a new 2067 * exclusive kfd mapping but use existing one with renderDXXX but is still needed 2068 * for iommu v2 binding and runtime pm. 2069 */ 2070 pdd = kfd_bind_process_to_device(dev, p); 2071 if (IS_ERR(pdd)) { 2072 ret = PTR_ERR(pdd); 2073 goto exit; 2074 } 2075 } 2076 2077 /* 2078 * We are not copying device private data from user as we are not using the data for now, 2079 * but we still adjust for its private data. 2080 */ 2081 *priv_offset += args->num_devices * sizeof(*device_privs); 2082 2083 exit: 2084 kfree(device_buckets); 2085 return ret; 2086 } 2087 2088 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, 2089 struct kfd_criu_bo_bucket *bo_bucket, 2090 struct kfd_criu_bo_priv_data *bo_priv, 2091 struct kgd_mem **kgd_mem) 2092 { 2093 int idr_handle; 2094 int ret; 2095 const bool criu_resume = true; 2096 u64 offset; 2097 2098 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { 2099 if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev)) 2100 return -EINVAL; 2101 2102 offset = kfd_get_process_doorbells(pdd); 2103 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2104 /* MMIO BOs need remapped bus address */ 2105 if (bo_bucket->size != PAGE_SIZE) { 2106 pr_err("Invalid page size\n"); 2107 return -EINVAL; 2108 } 2109 offset = pdd->dev->adev->rmmio_remap.bus_addr; 2110 if (!offset) { 2111 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); 2112 return -ENOMEM; 2113 } 2114 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 2115 offset = bo_priv->user_addr; 2116 } 2117 /* Create the BO */ 2118 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, 2119 bo_bucket->size, pdd->drm_priv, kgd_mem, 2120 &offset, bo_bucket->alloc_flags, criu_resume); 2121 if (ret) { 2122 pr_err("Could not create the BO\n"); 2123 return ret; 2124 } 2125 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", 2126 bo_bucket->size, bo_bucket->addr, offset); 2127 2128 /* Restore previous IDR handle */ 2129 pr_debug("Restoring old IDR handle for the BO"); 2130 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, 2131 bo_priv->idr_handle + 1, GFP_KERNEL); 2132 2133 if (idr_handle < 0) { 2134 pr_err("Could not allocate idr\n"); 2135 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, 2136 NULL); 2137 return -ENOMEM; 2138 } 2139 2140 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) 2141 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); 2142 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { 2143 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); 2144 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 2145 bo_bucket->restored_offset = offset; 2146 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 2147 bo_bucket->restored_offset = offset; 2148 /* Update the VRAM usage count */ 2149 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); 2150 } 2151 return 0; 2152 } 2153 2154 static int criu_restore_bo(struct kfd_process *p, 2155 struct kfd_criu_bo_bucket *bo_bucket, 2156 struct kfd_criu_bo_priv_data *bo_priv) 2157 { 2158 struct kfd_process_device *pdd; 2159 struct kgd_mem *kgd_mem; 2160 int ret; 2161 int j; 2162 2163 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", 2164 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, 2165 bo_priv->idr_handle); 2166 2167 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); 2168 if (!pdd) { 2169 pr_err("Failed to get pdd\n"); 2170 return -ENODEV; 2171 } 2172 2173 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); 2174 if (ret) 2175 return ret; 2176 2177 /* now map these BOs to GPU/s */ 2178 for (j = 0; j < p->n_pdds; j++) { 2179 struct kfd_dev *peer; 2180 struct kfd_process_device *peer_pdd; 2181 2182 if (!bo_priv->mapped_gpuids[j]) 2183 break; 2184 2185 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); 2186 if (!peer_pdd) 2187 return -EINVAL; 2188 2189 peer = peer_pdd->dev; 2190 2191 peer_pdd = kfd_bind_process_to_device(peer, p); 2192 if (IS_ERR(peer_pdd)) 2193 return PTR_ERR(peer_pdd); 2194 2195 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, 2196 peer_pdd->drm_priv); 2197 if (ret) { 2198 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); 2199 return ret; 2200 } 2201 } 2202 2203 pr_debug("map memory was successful for the BO\n"); 2204 /* create the dmabuf object and export the bo */ 2205 if (bo_bucket->alloc_flags 2206 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { 2207 ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR, 2208 &bo_bucket->dmabuf_fd); 2209 if (ret) 2210 return ret; 2211 } else { 2212 bo_bucket->dmabuf_fd = KFD_INVALID_FD; 2213 } 2214 2215 return 0; 2216 } 2217 2218 static int criu_restore_bos(struct kfd_process *p, 2219 struct kfd_ioctl_criu_args *args, 2220 uint64_t *priv_offset, 2221 uint64_t max_priv_data_size) 2222 { 2223 struct kfd_criu_bo_bucket *bo_buckets = NULL; 2224 struct kfd_criu_bo_priv_data *bo_privs = NULL; 2225 int ret = 0; 2226 uint32_t i = 0; 2227 2228 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) 2229 return -EINVAL; 2230 2231 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ 2232 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); 2233 2234 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); 2235 if (!bo_buckets) 2236 return -ENOMEM; 2237 2238 ret = copy_from_user(bo_buckets, (void __user *)args->bos, 2239 args->num_bos * sizeof(*bo_buckets)); 2240 if (ret) { 2241 pr_err("Failed to copy BOs information from user\n"); 2242 ret = -EFAULT; 2243 goto exit; 2244 } 2245 2246 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); 2247 if (!bo_privs) { 2248 ret = -ENOMEM; 2249 goto exit; 2250 } 2251 2252 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, 2253 args->num_bos * sizeof(*bo_privs)); 2254 if (ret) { 2255 pr_err("Failed to copy BOs information from user\n"); 2256 ret = -EFAULT; 2257 goto exit; 2258 } 2259 *priv_offset += args->num_bos * sizeof(*bo_privs); 2260 2261 /* Create and map new BOs */ 2262 for (; i < args->num_bos; i++) { 2263 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); 2264 if (ret) { 2265 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); 2266 goto exit; 2267 } 2268 } /* done */ 2269 2270 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ 2271 ret = copy_to_user((void __user *)args->bos, 2272 bo_buckets, 2273 (args->num_bos * sizeof(*bo_buckets))); 2274 if (ret) 2275 ret = -EFAULT; 2276 2277 exit: 2278 while (ret && i--) { 2279 if (bo_buckets[i].alloc_flags 2280 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) 2281 close_fd(bo_buckets[i].dmabuf_fd); 2282 } 2283 kvfree(bo_buckets); 2284 kvfree(bo_privs); 2285 return ret; 2286 } 2287 2288 static int criu_restore_objects(struct file *filep, 2289 struct kfd_process *p, 2290 struct kfd_ioctl_criu_args *args, 2291 uint64_t *priv_offset, 2292 uint64_t max_priv_data_size) 2293 { 2294 int ret = 0; 2295 uint32_t i; 2296 2297 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); 2298 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); 2299 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); 2300 2301 for (i = 0; i < args->num_objects; i++) { 2302 uint32_t object_type; 2303 2304 if (*priv_offset + sizeof(object_type) > max_priv_data_size) { 2305 pr_err("Invalid private data size\n"); 2306 return -EINVAL; 2307 } 2308 2309 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); 2310 if (ret) { 2311 pr_err("Failed to copy private information from user\n"); 2312 goto exit; 2313 } 2314 2315 switch (object_type) { 2316 case KFD_CRIU_OBJECT_TYPE_QUEUE: 2317 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, 2318 priv_offset, max_priv_data_size); 2319 if (ret) 2320 goto exit; 2321 break; 2322 case KFD_CRIU_OBJECT_TYPE_EVENT: 2323 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, 2324 priv_offset, max_priv_data_size); 2325 if (ret) 2326 goto exit; 2327 break; 2328 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: 2329 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, 2330 priv_offset, max_priv_data_size); 2331 if (ret) 2332 goto exit; 2333 break; 2334 default: 2335 pr_err("Invalid object type:%u at index:%d\n", object_type, i); 2336 ret = -EINVAL; 2337 goto exit; 2338 } 2339 } 2340 exit: 2341 return ret; 2342 } 2343 2344 static int criu_restore(struct file *filep, 2345 struct kfd_process *p, 2346 struct kfd_ioctl_criu_args *args) 2347 { 2348 uint64_t priv_offset = 0; 2349 int ret = 0; 2350 2351 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", 2352 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); 2353 2354 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || 2355 !args->num_devices || !args->num_bos) 2356 return -EINVAL; 2357 2358 mutex_lock(&p->mutex); 2359 2360 /* 2361 * Set the process to evicted state to avoid running any new queues before all the memory 2362 * mappings are ready. 2363 */ 2364 ret = kfd_process_evict_queues(p); 2365 if (ret) 2366 goto exit_unlock; 2367 2368 /* Each function will adjust priv_offset based on how many bytes they consumed */ 2369 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); 2370 if (ret) 2371 goto exit_unlock; 2372 2373 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); 2374 if (ret) 2375 goto exit_unlock; 2376 2377 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); 2378 if (ret) 2379 goto exit_unlock; 2380 2381 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); 2382 if (ret) 2383 goto exit_unlock; 2384 2385 if (priv_offset != args->priv_data_size) { 2386 pr_err("Invalid private data size\n"); 2387 ret = -EINVAL; 2388 } 2389 2390 exit_unlock: 2391 mutex_unlock(&p->mutex); 2392 if (ret) 2393 pr_err("Failed to restore CRIU ret:%d\n", ret); 2394 else 2395 pr_debug("CRIU restore successful\n"); 2396 2397 return ret; 2398 } 2399 2400 static int criu_unpause(struct file *filep, 2401 struct kfd_process *p, 2402 struct kfd_ioctl_criu_args *args) 2403 { 2404 int ret; 2405 2406 mutex_lock(&p->mutex); 2407 2408 if (!p->queues_paused) { 2409 mutex_unlock(&p->mutex); 2410 return -EINVAL; 2411 } 2412 2413 ret = kfd_process_restore_queues(p); 2414 if (ret) 2415 pr_err("Failed to unpause queues ret:%d\n", ret); 2416 else 2417 p->queues_paused = false; 2418 2419 mutex_unlock(&p->mutex); 2420 2421 return ret; 2422 } 2423 2424 static int criu_resume(struct file *filep, 2425 struct kfd_process *p, 2426 struct kfd_ioctl_criu_args *args) 2427 { 2428 struct kfd_process *target = NULL; 2429 struct pid *pid = NULL; 2430 int ret = 0; 2431 2432 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, 2433 args->pid); 2434 2435 pid = find_get_pid(args->pid); 2436 if (!pid) { 2437 pr_err("Cannot find pid info for %i\n", args->pid); 2438 return -ESRCH; 2439 } 2440 2441 pr_debug("calling kfd_lookup_process_by_pid\n"); 2442 target = kfd_lookup_process_by_pid(pid); 2443 2444 put_pid(pid); 2445 2446 if (!target) { 2447 pr_debug("Cannot find process info for %i\n", args->pid); 2448 return -ESRCH; 2449 } 2450 2451 mutex_lock(&target->mutex); 2452 ret = kfd_criu_resume_svm(target); 2453 if (ret) { 2454 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); 2455 goto exit; 2456 } 2457 2458 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); 2459 if (ret) 2460 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); 2461 2462 exit: 2463 mutex_unlock(&target->mutex); 2464 2465 kfd_unref_process(target); 2466 return ret; 2467 } 2468 2469 static int criu_process_info(struct file *filep, 2470 struct kfd_process *p, 2471 struct kfd_ioctl_criu_args *args) 2472 { 2473 int ret = 0; 2474 2475 mutex_lock(&p->mutex); 2476 2477 if (!p->n_pdds) { 2478 pr_err("No pdd for given process\n"); 2479 ret = -ENODEV; 2480 goto err_unlock; 2481 } 2482 2483 ret = kfd_process_evict_queues(p); 2484 if (ret) 2485 goto err_unlock; 2486 2487 p->queues_paused = true; 2488 2489 args->pid = task_pid_nr_ns(p->lead_thread, 2490 task_active_pid_ns(p->lead_thread)); 2491 2492 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, 2493 &args->num_objects, &args->priv_data_size); 2494 if (ret) 2495 goto err_unlock; 2496 2497 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", 2498 args->num_devices, args->num_bos, args->num_objects, 2499 args->priv_data_size); 2500 2501 err_unlock: 2502 if (ret) { 2503 kfd_process_restore_queues(p); 2504 p->queues_paused = false; 2505 } 2506 mutex_unlock(&p->mutex); 2507 return ret; 2508 } 2509 2510 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) 2511 { 2512 struct kfd_ioctl_criu_args *args = data; 2513 int ret; 2514 2515 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); 2516 switch (args->op) { 2517 case KFD_CRIU_OP_PROCESS_INFO: 2518 ret = criu_process_info(filep, p, args); 2519 break; 2520 case KFD_CRIU_OP_CHECKPOINT: 2521 ret = criu_checkpoint(filep, p, args); 2522 break; 2523 case KFD_CRIU_OP_UNPAUSE: 2524 ret = criu_unpause(filep, p, args); 2525 break; 2526 case KFD_CRIU_OP_RESTORE: 2527 ret = criu_restore(filep, p, args); 2528 break; 2529 case KFD_CRIU_OP_RESUME: 2530 ret = criu_resume(filep, p, args); 2531 break; 2532 default: 2533 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); 2534 ret = -EINVAL; 2535 break; 2536 } 2537 2538 if (ret) 2539 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); 2540 2541 return ret; 2542 } 2543 2544 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ 2545 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ 2546 .cmd_drv = 0, .name = #ioctl} 2547 2548 /** Ioctl table */ 2549 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { 2550 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, 2551 kfd_ioctl_get_version, 0), 2552 2553 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, 2554 kfd_ioctl_create_queue, 0), 2555 2556 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, 2557 kfd_ioctl_destroy_queue, 0), 2558 2559 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, 2560 kfd_ioctl_set_memory_policy, 0), 2561 2562 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, 2563 kfd_ioctl_get_clock_counters, 0), 2564 2565 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, 2566 kfd_ioctl_get_process_apertures, 0), 2567 2568 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, 2569 kfd_ioctl_update_queue, 0), 2570 2571 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, 2572 kfd_ioctl_create_event, 0), 2573 2574 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, 2575 kfd_ioctl_destroy_event, 0), 2576 2577 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, 2578 kfd_ioctl_set_event, 0), 2579 2580 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, 2581 kfd_ioctl_reset_event, 0), 2582 2583 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, 2584 kfd_ioctl_wait_events, 0), 2585 2586 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, 2587 kfd_ioctl_dbg_register, 0), 2588 2589 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, 2590 kfd_ioctl_dbg_unregister, 0), 2591 2592 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, 2593 kfd_ioctl_dbg_address_watch, 0), 2594 2595 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, 2596 kfd_ioctl_dbg_wave_control, 0), 2597 2598 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, 2599 kfd_ioctl_set_scratch_backing_va, 0), 2600 2601 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, 2602 kfd_ioctl_get_tile_config, 0), 2603 2604 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, 2605 kfd_ioctl_set_trap_handler, 0), 2606 2607 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, 2608 kfd_ioctl_get_process_apertures_new, 0), 2609 2610 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, 2611 kfd_ioctl_acquire_vm, 0), 2612 2613 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, 2614 kfd_ioctl_alloc_memory_of_gpu, 0), 2615 2616 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, 2617 kfd_ioctl_free_memory_of_gpu, 0), 2618 2619 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, 2620 kfd_ioctl_map_memory_to_gpu, 0), 2621 2622 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, 2623 kfd_ioctl_unmap_memory_from_gpu, 0), 2624 2625 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, 2626 kfd_ioctl_set_cu_mask, 0), 2627 2628 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, 2629 kfd_ioctl_get_queue_wave_state, 0), 2630 2631 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, 2632 kfd_ioctl_get_dmabuf_info, 0), 2633 2634 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, 2635 kfd_ioctl_import_dmabuf, 0), 2636 2637 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, 2638 kfd_ioctl_alloc_queue_gws, 0), 2639 2640 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, 2641 kfd_ioctl_smi_events, 0), 2642 2643 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), 2644 2645 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, 2646 kfd_ioctl_set_xnack_mode, 0), 2647 2648 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, 2649 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), 2650 2651 }; 2652 2653 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) 2654 2655 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 2656 { 2657 struct kfd_process *process; 2658 amdkfd_ioctl_t *func; 2659 const struct amdkfd_ioctl_desc *ioctl = NULL; 2660 unsigned int nr = _IOC_NR(cmd); 2661 char stack_kdata[128]; 2662 char *kdata = NULL; 2663 unsigned int usize, asize; 2664 int retcode = -EINVAL; 2665 bool ptrace_attached = false; 2666 2667 if (nr >= AMDKFD_CORE_IOCTL_COUNT) 2668 goto err_i1; 2669 2670 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { 2671 u32 amdkfd_size; 2672 2673 ioctl = &amdkfd_ioctls[nr]; 2674 2675 amdkfd_size = _IOC_SIZE(ioctl->cmd); 2676 usize = asize = _IOC_SIZE(cmd); 2677 if (amdkfd_size > asize) 2678 asize = amdkfd_size; 2679 2680 cmd = ioctl->cmd; 2681 } else 2682 goto err_i1; 2683 2684 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); 2685 2686 /* Get the process struct from the filep. Only the process 2687 * that opened /dev/kfd can use the file descriptor. Child 2688 * processes need to create their own KFD device context. 2689 */ 2690 process = filep->private_data; 2691 2692 rcu_read_lock(); 2693 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && 2694 ptrace_parent(process->lead_thread) == current) 2695 ptrace_attached = true; 2696 rcu_read_unlock(); 2697 2698 if (process->lead_thread != current->group_leader 2699 && !ptrace_attached) { 2700 dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); 2701 retcode = -EBADF; 2702 goto err_i1; 2703 } 2704 2705 /* Do not trust userspace, use our own definition */ 2706 func = ioctl->func; 2707 2708 if (unlikely(!func)) { 2709 dev_dbg(kfd_device, "no function\n"); 2710 retcode = -EINVAL; 2711 goto err_i1; 2712 } 2713 2714 /* 2715 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support 2716 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a 2717 * more priviledged access. 2718 */ 2719 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { 2720 if (!capable(CAP_CHECKPOINT_RESTORE) && 2721 !capable(CAP_SYS_ADMIN)) { 2722 retcode = -EACCES; 2723 goto err_i1; 2724 } 2725 } 2726 2727 if (cmd & (IOC_IN | IOC_OUT)) { 2728 if (asize <= sizeof(stack_kdata)) { 2729 kdata = stack_kdata; 2730 } else { 2731 kdata = kmalloc(asize, GFP_KERNEL); 2732 if (!kdata) { 2733 retcode = -ENOMEM; 2734 goto err_i1; 2735 } 2736 } 2737 if (asize > usize) 2738 memset(kdata + usize, 0, asize - usize); 2739 } 2740 2741 if (cmd & IOC_IN) { 2742 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { 2743 retcode = -EFAULT; 2744 goto err_i1; 2745 } 2746 } else if (cmd & IOC_OUT) { 2747 memset(kdata, 0, usize); 2748 } 2749 2750 retcode = func(filep, process, kdata); 2751 2752 if (cmd & IOC_OUT) 2753 if (copy_to_user((void __user *)arg, kdata, usize) != 0) 2754 retcode = -EFAULT; 2755 2756 err_i1: 2757 if (!ioctl) 2758 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", 2759 task_pid_nr(current), cmd, nr); 2760 2761 if (kdata != stack_kdata) 2762 kfree(kdata); 2763 2764 if (retcode) 2765 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", 2766 nr, arg, retcode); 2767 2768 return retcode; 2769 } 2770 2771 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process, 2772 struct vm_area_struct *vma) 2773 { 2774 phys_addr_t address; 2775 int ret; 2776 2777 if (vma->vm_end - vma->vm_start != PAGE_SIZE) 2778 return -EINVAL; 2779 2780 address = dev->adev->rmmio_remap.bus_addr; 2781 2782 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | 2783 VM_DONTDUMP | VM_PFNMAP; 2784 2785 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 2786 2787 pr_debug("pasid 0x%x mapping mmio page\n" 2788 " target user address == 0x%08llX\n" 2789 " physical address == 0x%08llX\n" 2790 " vm_flags == 0x%04lX\n" 2791 " size == 0x%04lX\n", 2792 process->pasid, (unsigned long long) vma->vm_start, 2793 address, vma->vm_flags, PAGE_SIZE); 2794 2795 ret = io_remap_pfn_range(vma, 2796 vma->vm_start, 2797 address >> PAGE_SHIFT, 2798 PAGE_SIZE, 2799 vma->vm_page_prot); 2800 return ret; 2801 } 2802 2803 2804 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) 2805 { 2806 struct kfd_process *process; 2807 struct kfd_dev *dev = NULL; 2808 unsigned long mmap_offset; 2809 unsigned int gpu_id; 2810 2811 process = kfd_get_process(current); 2812 if (IS_ERR(process)) 2813 return PTR_ERR(process); 2814 2815 mmap_offset = vma->vm_pgoff << PAGE_SHIFT; 2816 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); 2817 if (gpu_id) 2818 dev = kfd_device_by_id(gpu_id); 2819 2820 switch (mmap_offset & KFD_MMAP_TYPE_MASK) { 2821 case KFD_MMAP_TYPE_DOORBELL: 2822 if (!dev) 2823 return -ENODEV; 2824 return kfd_doorbell_mmap(dev, process, vma); 2825 2826 case KFD_MMAP_TYPE_EVENTS: 2827 return kfd_event_mmap(process, vma); 2828 2829 case KFD_MMAP_TYPE_RESERVED_MEM: 2830 if (!dev) 2831 return -ENODEV; 2832 return kfd_reserved_mem_mmap(dev, process, vma); 2833 case KFD_MMAP_TYPE_MMIO: 2834 if (!dev) 2835 return -ENODEV; 2836 return kfd_mmio_mmap(dev, process, vma); 2837 } 2838 2839 return -EFAULT; 2840 } 2841