1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42 
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_release(struct inode *, struct file *);
46 static int kfd_mmap(struct file *, struct vm_area_struct *);
47 
48 static const char kfd_dev_name[] = "kfd";
49 
50 static const struct file_operations kfd_fops = {
51 	.owner = THIS_MODULE,
52 	.unlocked_ioctl = kfd_ioctl,
53 	.compat_ioctl = compat_ptr_ioctl,
54 	.open = kfd_open,
55 	.release = kfd_release,
56 	.mmap = kfd_mmap,
57 };
58 
59 static int kfd_char_dev_major = -1;
60 static struct class *kfd_class;
61 struct device *kfd_device;
62 
63 int kfd_chardev_init(void)
64 {
65 	int err = 0;
66 
67 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
68 	err = kfd_char_dev_major;
69 	if (err < 0)
70 		goto err_register_chrdev;
71 
72 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
73 	err = PTR_ERR(kfd_class);
74 	if (IS_ERR(kfd_class))
75 		goto err_class_create;
76 
77 	kfd_device = device_create(kfd_class, NULL,
78 					MKDEV(kfd_char_dev_major, 0),
79 					NULL, kfd_dev_name);
80 	err = PTR_ERR(kfd_device);
81 	if (IS_ERR(kfd_device))
82 		goto err_device_create;
83 
84 	return 0;
85 
86 err_device_create:
87 	class_destroy(kfd_class);
88 err_class_create:
89 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
90 err_register_chrdev:
91 	return err;
92 }
93 
94 void kfd_chardev_exit(void)
95 {
96 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
97 	class_destroy(kfd_class);
98 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
99 }
100 
101 struct device *kfd_chardev(void)
102 {
103 	return kfd_device;
104 }
105 
106 
107 static int kfd_open(struct inode *inode, struct file *filep)
108 {
109 	struct kfd_process *process;
110 	bool is_32bit_user_mode;
111 
112 	if (iminor(inode) != 0)
113 		return -ENODEV;
114 
115 	is_32bit_user_mode = in_compat_syscall();
116 
117 	if (is_32bit_user_mode) {
118 		dev_warn(kfd_device,
119 			"Process %d (32-bit) failed to open /dev/kfd\n"
120 			"32-bit processes are not supported by amdkfd\n",
121 			current->pid);
122 		return -EPERM;
123 	}
124 
125 	process = kfd_create_process(filep);
126 	if (IS_ERR(process))
127 		return PTR_ERR(process);
128 
129 	if (kfd_is_locked()) {
130 		kfd_unref_process(process);
131 		return -EAGAIN;
132 	}
133 
134 	/* filep now owns the reference returned by kfd_create_process */
135 	filep->private_data = process;
136 
137 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
138 		process->pasid, process->is_32bit_user_mode);
139 
140 	return 0;
141 }
142 
143 static int kfd_release(struct inode *inode, struct file *filep)
144 {
145 	struct kfd_process *process = filep->private_data;
146 
147 	if (process)
148 		kfd_unref_process(process);
149 
150 	return 0;
151 }
152 
153 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
154 					void *data)
155 {
156 	struct kfd_ioctl_get_version_args *args = data;
157 
158 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
159 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
160 
161 	return 0;
162 }
163 
164 static int set_queue_properties_from_user(struct queue_properties *q_properties,
165 				struct kfd_ioctl_create_queue_args *args)
166 {
167 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
168 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
169 		return -EINVAL;
170 	}
171 
172 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
173 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
174 		return -EINVAL;
175 	}
176 
177 	if ((args->ring_base_address) &&
178 		(!access_ok((const void __user *) args->ring_base_address,
179 			sizeof(uint64_t)))) {
180 		pr_err("Can't access ring base address\n");
181 		return -EFAULT;
182 	}
183 
184 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
185 		pr_err("Ring size must be a power of 2 or 0\n");
186 		return -EINVAL;
187 	}
188 
189 	if (!access_ok((const void __user *) args->read_pointer_address,
190 			sizeof(uint32_t))) {
191 		pr_err("Can't access read pointer\n");
192 		return -EFAULT;
193 	}
194 
195 	if (!access_ok((const void __user *) args->write_pointer_address,
196 			sizeof(uint32_t))) {
197 		pr_err("Can't access write pointer\n");
198 		return -EFAULT;
199 	}
200 
201 	if (args->eop_buffer_address &&
202 		!access_ok((const void __user *) args->eop_buffer_address,
203 			sizeof(uint32_t))) {
204 		pr_debug("Can't access eop buffer");
205 		return -EFAULT;
206 	}
207 
208 	if (args->ctx_save_restore_address &&
209 		!access_ok((const void __user *) args->ctx_save_restore_address,
210 			sizeof(uint32_t))) {
211 		pr_debug("Can't access ctx save restore buffer");
212 		return -EFAULT;
213 	}
214 
215 	q_properties->is_interop = false;
216 	q_properties->queue_percent = args->queue_percentage;
217 	q_properties->priority = args->queue_priority;
218 	q_properties->queue_address = args->ring_base_address;
219 	q_properties->queue_size = args->ring_size;
220 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
221 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
222 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
223 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
224 	q_properties->ctx_save_restore_area_address =
225 			args->ctx_save_restore_address;
226 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
227 	q_properties->ctl_stack_size = args->ctl_stack_size;
228 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
229 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
230 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
231 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
232 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
233 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
234 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
235 	else
236 		return -ENOTSUPP;
237 
238 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
239 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
240 	else
241 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
242 
243 	pr_debug("Queue Percentage: %d, %d\n",
244 			q_properties->queue_percent, args->queue_percentage);
245 
246 	pr_debug("Queue Priority: %d, %d\n",
247 			q_properties->priority, args->queue_priority);
248 
249 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
250 			q_properties->queue_address, args->ring_base_address);
251 
252 	pr_debug("Queue Size: 0x%llX, %u\n",
253 			q_properties->queue_size, args->ring_size);
254 
255 	pr_debug("Queue r/w Pointers: %px, %px\n",
256 			q_properties->read_ptr,
257 			q_properties->write_ptr);
258 
259 	pr_debug("Queue Format: %d\n", q_properties->format);
260 
261 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
262 
263 	pr_debug("Queue CTX save area: 0x%llX\n",
264 			q_properties->ctx_save_restore_area_address);
265 
266 	return 0;
267 }
268 
269 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
270 					void *data)
271 {
272 	struct kfd_ioctl_create_queue_args *args = data;
273 	struct kfd_dev *dev;
274 	int err = 0;
275 	unsigned int queue_id;
276 	struct kfd_process_device *pdd;
277 	struct queue_properties q_properties;
278 	uint32_t doorbell_offset_in_process = 0;
279 
280 	memset(&q_properties, 0, sizeof(struct queue_properties));
281 
282 	pr_debug("Creating queue ioctl\n");
283 
284 	err = set_queue_properties_from_user(&q_properties, args);
285 	if (err)
286 		return err;
287 
288 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
289 	dev = kfd_device_by_id(args->gpu_id);
290 	if (!dev) {
291 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
292 		return -EINVAL;
293 	}
294 
295 	mutex_lock(&p->mutex);
296 
297 	pdd = kfd_bind_process_to_device(dev, p);
298 	if (IS_ERR(pdd)) {
299 		err = -ESRCH;
300 		goto err_bind_process;
301 	}
302 
303 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
304 			p->pasid,
305 			dev->id);
306 
307 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
308 			&doorbell_offset_in_process);
309 	if (err != 0)
310 		goto err_create_queue;
311 
312 	args->queue_id = queue_id;
313 
314 
315 	/* Return gpu_id as doorbell offset for mmap usage */
316 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
317 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
318 	if (KFD_IS_SOC15(dev->device_info->asic_family))
319 		/* On SOC15 ASICs, include the doorbell offset within the
320 		 * process doorbell frame, which is 2 pages.
321 		 */
322 		args->doorbell_offset |= doorbell_offset_in_process;
323 
324 	mutex_unlock(&p->mutex);
325 
326 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
327 
328 	pr_debug("Ring buffer address == 0x%016llX\n",
329 			args->ring_base_address);
330 
331 	pr_debug("Read ptr address    == 0x%016llX\n",
332 			args->read_pointer_address);
333 
334 	pr_debug("Write ptr address   == 0x%016llX\n",
335 			args->write_pointer_address);
336 
337 	return 0;
338 
339 err_create_queue:
340 err_bind_process:
341 	mutex_unlock(&p->mutex);
342 	return err;
343 }
344 
345 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
346 					void *data)
347 {
348 	int retval;
349 	struct kfd_ioctl_destroy_queue_args *args = data;
350 
351 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
352 				args->queue_id,
353 				p->pasid);
354 
355 	mutex_lock(&p->mutex);
356 
357 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
358 
359 	mutex_unlock(&p->mutex);
360 	return retval;
361 }
362 
363 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
364 					void *data)
365 {
366 	int retval;
367 	struct kfd_ioctl_update_queue_args *args = data;
368 	struct queue_properties properties;
369 
370 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
371 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
372 		return -EINVAL;
373 	}
374 
375 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
376 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
377 		return -EINVAL;
378 	}
379 
380 	if ((args->ring_base_address) &&
381 		(!access_ok((const void __user *) args->ring_base_address,
382 			sizeof(uint64_t)))) {
383 		pr_err("Can't access ring base address\n");
384 		return -EFAULT;
385 	}
386 
387 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
388 		pr_err("Ring size must be a power of 2 or 0\n");
389 		return -EINVAL;
390 	}
391 
392 	properties.queue_address = args->ring_base_address;
393 	properties.queue_size = args->ring_size;
394 	properties.queue_percent = args->queue_percentage;
395 	properties.priority = args->queue_priority;
396 
397 	pr_debug("Updating queue id %d for pasid 0x%x\n",
398 			args->queue_id, p->pasid);
399 
400 	mutex_lock(&p->mutex);
401 
402 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
403 
404 	mutex_unlock(&p->mutex);
405 
406 	return retval;
407 }
408 
409 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
410 					void *data)
411 {
412 	int retval;
413 	const int max_num_cus = 1024;
414 	struct kfd_ioctl_set_cu_mask_args *args = data;
415 	struct queue_properties properties;
416 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
417 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
418 
419 	if ((args->num_cu_mask % 32) != 0) {
420 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
421 				args->num_cu_mask);
422 		return -EINVAL;
423 	}
424 
425 	properties.cu_mask_count = args->num_cu_mask;
426 	if (properties.cu_mask_count == 0) {
427 		pr_debug("CU mask cannot be 0");
428 		return -EINVAL;
429 	}
430 
431 	/* To prevent an unreasonably large CU mask size, set an arbitrary
432 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
433 	 * past max_num_cus bits and just use the first max_num_cus bits.
434 	 */
435 	if (properties.cu_mask_count > max_num_cus) {
436 		pr_debug("CU mask cannot be greater than 1024 bits");
437 		properties.cu_mask_count = max_num_cus;
438 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
439 	}
440 
441 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
442 	if (!properties.cu_mask)
443 		return -ENOMEM;
444 
445 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
446 	if (retval) {
447 		pr_debug("Could not copy CU mask from userspace");
448 		kfree(properties.cu_mask);
449 		return -EFAULT;
450 	}
451 
452 	mutex_lock(&p->mutex);
453 
454 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
455 
456 	mutex_unlock(&p->mutex);
457 
458 	if (retval)
459 		kfree(properties.cu_mask);
460 
461 	return retval;
462 }
463 
464 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
465 					  struct kfd_process *p, void *data)
466 {
467 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
468 	int r;
469 
470 	mutex_lock(&p->mutex);
471 
472 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
473 			       (void __user *)args->ctl_stack_address,
474 			       &args->ctl_stack_used_size,
475 			       &args->save_area_used_size);
476 
477 	mutex_unlock(&p->mutex);
478 
479 	return r;
480 }
481 
482 static int kfd_ioctl_set_memory_policy(struct file *filep,
483 					struct kfd_process *p, void *data)
484 {
485 	struct kfd_ioctl_set_memory_policy_args *args = data;
486 	struct kfd_dev *dev;
487 	int err = 0;
488 	struct kfd_process_device *pdd;
489 	enum cache_policy default_policy, alternate_policy;
490 
491 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
492 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
493 		return -EINVAL;
494 	}
495 
496 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
497 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
498 		return -EINVAL;
499 	}
500 
501 	dev = kfd_device_by_id(args->gpu_id);
502 	if (!dev)
503 		return -EINVAL;
504 
505 	mutex_lock(&p->mutex);
506 
507 	pdd = kfd_bind_process_to_device(dev, p);
508 	if (IS_ERR(pdd)) {
509 		err = -ESRCH;
510 		goto out;
511 	}
512 
513 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
514 			 ? cache_policy_coherent : cache_policy_noncoherent;
515 
516 	alternate_policy =
517 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
518 		   ? cache_policy_coherent : cache_policy_noncoherent;
519 
520 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
521 				&pdd->qpd,
522 				default_policy,
523 				alternate_policy,
524 				(void __user *)args->alternate_aperture_base,
525 				args->alternate_aperture_size))
526 		err = -EINVAL;
527 
528 out:
529 	mutex_unlock(&p->mutex);
530 
531 	return err;
532 }
533 
534 static int kfd_ioctl_set_trap_handler(struct file *filep,
535 					struct kfd_process *p, void *data)
536 {
537 	struct kfd_ioctl_set_trap_handler_args *args = data;
538 	struct kfd_dev *dev;
539 	int err = 0;
540 	struct kfd_process_device *pdd;
541 
542 	dev = kfd_device_by_id(args->gpu_id);
543 	if (!dev)
544 		return -EINVAL;
545 
546 	mutex_lock(&p->mutex);
547 
548 	pdd = kfd_bind_process_to_device(dev, p);
549 	if (IS_ERR(pdd)) {
550 		err = -ESRCH;
551 		goto out;
552 	}
553 
554 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
555 					&pdd->qpd,
556 					args->tba_addr,
557 					args->tma_addr))
558 		err = -EINVAL;
559 
560 out:
561 	mutex_unlock(&p->mutex);
562 
563 	return err;
564 }
565 
566 static int kfd_ioctl_dbg_register(struct file *filep,
567 				struct kfd_process *p, void *data)
568 {
569 	struct kfd_ioctl_dbg_register_args *args = data;
570 	struct kfd_dev *dev;
571 	struct kfd_dbgmgr *dbgmgr_ptr;
572 	struct kfd_process_device *pdd;
573 	bool create_ok;
574 	long status = 0;
575 
576 	dev = kfd_device_by_id(args->gpu_id);
577 	if (!dev)
578 		return -EINVAL;
579 
580 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
581 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
582 		return -EINVAL;
583 	}
584 
585 	mutex_lock(&p->mutex);
586 	mutex_lock(kfd_get_dbgmgr_mutex());
587 
588 	/*
589 	 * make sure that we have pdd, if this the first queue created for
590 	 * this process
591 	 */
592 	pdd = kfd_bind_process_to_device(dev, p);
593 	if (IS_ERR(pdd)) {
594 		status = PTR_ERR(pdd);
595 		goto out;
596 	}
597 
598 	if (!dev->dbgmgr) {
599 		/* In case of a legal call, we have no dbgmgr yet */
600 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
601 		if (create_ok) {
602 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
603 			if (status != 0)
604 				kfd_dbgmgr_destroy(dbgmgr_ptr);
605 			else
606 				dev->dbgmgr = dbgmgr_ptr;
607 		}
608 	} else {
609 		pr_debug("debugger already registered\n");
610 		status = -EINVAL;
611 	}
612 
613 out:
614 	mutex_unlock(kfd_get_dbgmgr_mutex());
615 	mutex_unlock(&p->mutex);
616 
617 	return status;
618 }
619 
620 static int kfd_ioctl_dbg_unregister(struct file *filep,
621 				struct kfd_process *p, void *data)
622 {
623 	struct kfd_ioctl_dbg_unregister_args *args = data;
624 	struct kfd_dev *dev;
625 	long status;
626 
627 	dev = kfd_device_by_id(args->gpu_id);
628 	if (!dev || !dev->dbgmgr)
629 		return -EINVAL;
630 
631 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
632 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
633 		return -EINVAL;
634 	}
635 
636 	mutex_lock(kfd_get_dbgmgr_mutex());
637 
638 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
639 	if (!status) {
640 		kfd_dbgmgr_destroy(dev->dbgmgr);
641 		dev->dbgmgr = NULL;
642 	}
643 
644 	mutex_unlock(kfd_get_dbgmgr_mutex());
645 
646 	return status;
647 }
648 
649 /*
650  * Parse and generate variable size data structure for address watch.
651  * Total size of the buffer and # watch points is limited in order
652  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
653  * which is enforced by dbgdev module)
654  * please also note that the watch address itself are not "copied from user",
655  * since it be set into the HW in user mode values.
656  *
657  */
658 static int kfd_ioctl_dbg_address_watch(struct file *filep,
659 					struct kfd_process *p, void *data)
660 {
661 	struct kfd_ioctl_dbg_address_watch_args *args = data;
662 	struct kfd_dev *dev;
663 	struct dbg_address_watch_info aw_info;
664 	unsigned char *args_buff;
665 	long status;
666 	void __user *cmd_from_user;
667 	uint64_t watch_mask_value = 0;
668 	unsigned int args_idx = 0;
669 
670 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
671 
672 	dev = kfd_device_by_id(args->gpu_id);
673 	if (!dev)
674 		return -EINVAL;
675 
676 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
677 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
678 		return -EINVAL;
679 	}
680 
681 	cmd_from_user = (void __user *) args->content_ptr;
682 
683 	/* Validate arguments */
684 
685 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
686 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
687 		(cmd_from_user == NULL))
688 		return -EINVAL;
689 
690 	/* this is the actual buffer to work with */
691 	args_buff = memdup_user(cmd_from_user,
692 				args->buf_size_in_bytes - sizeof(*args));
693 	if (IS_ERR(args_buff))
694 		return PTR_ERR(args_buff);
695 
696 	aw_info.process = p;
697 
698 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
699 	args_idx += sizeof(aw_info.num_watch_points);
700 
701 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
702 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
703 
704 	/*
705 	 * set watch address base pointer to point on the array base
706 	 * within args_buff
707 	 */
708 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
709 
710 	/* skip over the addresses buffer */
711 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
712 
713 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
714 		status = -EINVAL;
715 		goto out;
716 	}
717 
718 	watch_mask_value = (uint64_t) args_buff[args_idx];
719 
720 	if (watch_mask_value > 0) {
721 		/*
722 		 * There is an array of masks.
723 		 * set watch mask base pointer to point on the array base
724 		 * within args_buff
725 		 */
726 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
727 
728 		/* skip over the masks buffer */
729 		args_idx += sizeof(aw_info.watch_mask) *
730 				aw_info.num_watch_points;
731 	} else {
732 		/* just the NULL mask, set to NULL and skip over it */
733 		aw_info.watch_mask = NULL;
734 		args_idx += sizeof(aw_info.watch_mask);
735 	}
736 
737 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
738 		status = -EINVAL;
739 		goto out;
740 	}
741 
742 	/* Currently HSA Event is not supported for DBG */
743 	aw_info.watch_event = NULL;
744 
745 	mutex_lock(kfd_get_dbgmgr_mutex());
746 
747 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
748 
749 	mutex_unlock(kfd_get_dbgmgr_mutex());
750 
751 out:
752 	kfree(args_buff);
753 
754 	return status;
755 }
756 
757 /* Parse and generate fixed size data structure for wave control */
758 static int kfd_ioctl_dbg_wave_control(struct file *filep,
759 					struct kfd_process *p, void *data)
760 {
761 	struct kfd_ioctl_dbg_wave_control_args *args = data;
762 	struct kfd_dev *dev;
763 	struct dbg_wave_control_info wac_info;
764 	unsigned char *args_buff;
765 	uint32_t computed_buff_size;
766 	long status;
767 	void __user *cmd_from_user;
768 	unsigned int args_idx = 0;
769 
770 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
771 
772 	/* we use compact form, independent of the packing attribute value */
773 	computed_buff_size = sizeof(*args) +
774 				sizeof(wac_info.mode) +
775 				sizeof(wac_info.operand) +
776 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
777 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
778 				sizeof(wac_info.trapId);
779 
780 	dev = kfd_device_by_id(args->gpu_id);
781 	if (!dev)
782 		return -EINVAL;
783 
784 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
785 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
786 		return -EINVAL;
787 	}
788 
789 	/* input size must match the computed "compact" size */
790 	if (args->buf_size_in_bytes != computed_buff_size) {
791 		pr_debug("size mismatch, computed : actual %u : %u\n",
792 				args->buf_size_in_bytes, computed_buff_size);
793 		return -EINVAL;
794 	}
795 
796 	cmd_from_user = (void __user *) args->content_ptr;
797 
798 	if (cmd_from_user == NULL)
799 		return -EINVAL;
800 
801 	/* copy the entire buffer from user */
802 
803 	args_buff = memdup_user(cmd_from_user,
804 				args->buf_size_in_bytes - sizeof(*args));
805 	if (IS_ERR(args_buff))
806 		return PTR_ERR(args_buff);
807 
808 	/* move ptr to the start of the "pay-load" area */
809 	wac_info.process = p;
810 
811 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
812 	args_idx += sizeof(wac_info.operand);
813 
814 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
815 	args_idx += sizeof(wac_info.mode);
816 
817 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
818 	args_idx += sizeof(wac_info.trapId);
819 
820 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
821 					*((uint32_t *)(&args_buff[args_idx]));
822 	wac_info.dbgWave_msg.MemoryVA = NULL;
823 
824 	mutex_lock(kfd_get_dbgmgr_mutex());
825 
826 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
827 			wac_info.process, wac_info.operand,
828 			wac_info.mode, wac_info.trapId,
829 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
830 
831 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
832 
833 	pr_debug("Returned status of dbg manager is %ld\n", status);
834 
835 	mutex_unlock(kfd_get_dbgmgr_mutex());
836 
837 	kfree(args_buff);
838 
839 	return status;
840 }
841 
842 static int kfd_ioctl_get_clock_counters(struct file *filep,
843 				struct kfd_process *p, void *data)
844 {
845 	struct kfd_ioctl_get_clock_counters_args *args = data;
846 	struct kfd_dev *dev;
847 
848 	dev = kfd_device_by_id(args->gpu_id);
849 	if (dev)
850 		/* Reading GPU clock counter from KGD */
851 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
852 	else
853 		/* Node without GPU resource */
854 		args->gpu_clock_counter = 0;
855 
856 	/* No access to rdtsc. Using raw monotonic time */
857 	args->cpu_clock_counter = ktime_get_raw_ns();
858 	args->system_clock_counter = ktime_get_boottime_ns();
859 
860 	/* Since the counter is in nano-seconds we use 1GHz frequency */
861 	args->system_clock_freq = 1000000000;
862 
863 	return 0;
864 }
865 
866 
867 static int kfd_ioctl_get_process_apertures(struct file *filp,
868 				struct kfd_process *p, void *data)
869 {
870 	struct kfd_ioctl_get_process_apertures_args *args = data;
871 	struct kfd_process_device_apertures *pAperture;
872 	struct kfd_process_device *pdd;
873 
874 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
875 
876 	args->num_of_nodes = 0;
877 
878 	mutex_lock(&p->mutex);
879 
880 	/*if the process-device list isn't empty*/
881 	if (kfd_has_process_device_data(p)) {
882 		/* Run over all pdd of the process */
883 		pdd = kfd_get_first_process_device_data(p);
884 		do {
885 			pAperture =
886 				&args->process_apertures[args->num_of_nodes];
887 			pAperture->gpu_id = pdd->dev->id;
888 			pAperture->lds_base = pdd->lds_base;
889 			pAperture->lds_limit = pdd->lds_limit;
890 			pAperture->gpuvm_base = pdd->gpuvm_base;
891 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
892 			pAperture->scratch_base = pdd->scratch_base;
893 			pAperture->scratch_limit = pdd->scratch_limit;
894 
895 			dev_dbg(kfd_device,
896 				"node id %u\n", args->num_of_nodes);
897 			dev_dbg(kfd_device,
898 				"gpu id %u\n", pdd->dev->id);
899 			dev_dbg(kfd_device,
900 				"lds_base %llX\n", pdd->lds_base);
901 			dev_dbg(kfd_device,
902 				"lds_limit %llX\n", pdd->lds_limit);
903 			dev_dbg(kfd_device,
904 				"gpuvm_base %llX\n", pdd->gpuvm_base);
905 			dev_dbg(kfd_device,
906 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
907 			dev_dbg(kfd_device,
908 				"scratch_base %llX\n", pdd->scratch_base);
909 			dev_dbg(kfd_device,
910 				"scratch_limit %llX\n", pdd->scratch_limit);
911 
912 			args->num_of_nodes++;
913 
914 			pdd = kfd_get_next_process_device_data(p, pdd);
915 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
916 	}
917 
918 	mutex_unlock(&p->mutex);
919 
920 	return 0;
921 }
922 
923 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
924 				struct kfd_process *p, void *data)
925 {
926 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
927 	struct kfd_process_device_apertures *pa;
928 	struct kfd_process_device *pdd;
929 	uint32_t nodes = 0;
930 	int ret;
931 
932 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
933 
934 	if (args->num_of_nodes == 0) {
935 		/* Return number of nodes, so that user space can alloacate
936 		 * sufficient memory
937 		 */
938 		mutex_lock(&p->mutex);
939 
940 		if (!kfd_has_process_device_data(p))
941 			goto out_unlock;
942 
943 		/* Run over all pdd of the process */
944 		pdd = kfd_get_first_process_device_data(p);
945 		do {
946 			args->num_of_nodes++;
947 			pdd = kfd_get_next_process_device_data(p, pdd);
948 		} while (pdd);
949 
950 		goto out_unlock;
951 	}
952 
953 	/* Fill in process-aperture information for all available
954 	 * nodes, but not more than args->num_of_nodes as that is
955 	 * the amount of memory allocated by user
956 	 */
957 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
958 				args->num_of_nodes), GFP_KERNEL);
959 	if (!pa)
960 		return -ENOMEM;
961 
962 	mutex_lock(&p->mutex);
963 
964 	if (!kfd_has_process_device_data(p)) {
965 		args->num_of_nodes = 0;
966 		kfree(pa);
967 		goto out_unlock;
968 	}
969 
970 	/* Run over all pdd of the process */
971 	pdd = kfd_get_first_process_device_data(p);
972 	do {
973 		pa[nodes].gpu_id = pdd->dev->id;
974 		pa[nodes].lds_base = pdd->lds_base;
975 		pa[nodes].lds_limit = pdd->lds_limit;
976 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
977 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
978 		pa[nodes].scratch_base = pdd->scratch_base;
979 		pa[nodes].scratch_limit = pdd->scratch_limit;
980 
981 		dev_dbg(kfd_device,
982 			"gpu id %u\n", pdd->dev->id);
983 		dev_dbg(kfd_device,
984 			"lds_base %llX\n", pdd->lds_base);
985 		dev_dbg(kfd_device,
986 			"lds_limit %llX\n", pdd->lds_limit);
987 		dev_dbg(kfd_device,
988 			"gpuvm_base %llX\n", pdd->gpuvm_base);
989 		dev_dbg(kfd_device,
990 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
991 		dev_dbg(kfd_device,
992 			"scratch_base %llX\n", pdd->scratch_base);
993 		dev_dbg(kfd_device,
994 			"scratch_limit %llX\n", pdd->scratch_limit);
995 		nodes++;
996 
997 		pdd = kfd_get_next_process_device_data(p, pdd);
998 	} while (pdd && (nodes < args->num_of_nodes));
999 	mutex_unlock(&p->mutex);
1000 
1001 	args->num_of_nodes = nodes;
1002 	ret = copy_to_user(
1003 			(void __user *)args->kfd_process_device_apertures_ptr,
1004 			pa,
1005 			(nodes * sizeof(struct kfd_process_device_apertures)));
1006 	kfree(pa);
1007 	return ret ? -EFAULT : 0;
1008 
1009 out_unlock:
1010 	mutex_unlock(&p->mutex);
1011 	return 0;
1012 }
1013 
1014 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1015 					void *data)
1016 {
1017 	struct kfd_ioctl_create_event_args *args = data;
1018 	int err;
1019 
1020 	/* For dGPUs the event page is allocated in user mode. The
1021 	 * handle is passed to KFD with the first call to this IOCTL
1022 	 * through the event_page_offset field.
1023 	 */
1024 	if (args->event_page_offset) {
1025 		struct kfd_dev *kfd;
1026 		struct kfd_process_device *pdd;
1027 		void *mem, *kern_addr;
1028 		uint64_t size;
1029 
1030 		if (p->signal_page) {
1031 			pr_err("Event page is already set\n");
1032 			return -EINVAL;
1033 		}
1034 
1035 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1036 		if (!kfd) {
1037 			pr_err("Getting device by id failed in %s\n", __func__);
1038 			return -EINVAL;
1039 		}
1040 
1041 		mutex_lock(&p->mutex);
1042 		pdd = kfd_bind_process_to_device(kfd, p);
1043 		if (IS_ERR(pdd)) {
1044 			err = PTR_ERR(pdd);
1045 			goto out_unlock;
1046 		}
1047 
1048 		mem = kfd_process_device_translate_handle(pdd,
1049 				GET_IDR_HANDLE(args->event_page_offset));
1050 		if (!mem) {
1051 			pr_err("Can't find BO, offset is 0x%llx\n",
1052 			       args->event_page_offset);
1053 			err = -EINVAL;
1054 			goto out_unlock;
1055 		}
1056 		mutex_unlock(&p->mutex);
1057 
1058 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1059 						mem, &kern_addr, &size);
1060 		if (err) {
1061 			pr_err("Failed to map event page to kernel\n");
1062 			return err;
1063 		}
1064 
1065 		err = kfd_event_page_set(p, kern_addr, size);
1066 		if (err) {
1067 			pr_err("Failed to set event page\n");
1068 			return err;
1069 		}
1070 	}
1071 
1072 	err = kfd_event_create(filp, p, args->event_type,
1073 				args->auto_reset != 0, args->node_id,
1074 				&args->event_id, &args->event_trigger_data,
1075 				&args->event_page_offset,
1076 				&args->event_slot_index);
1077 
1078 	return err;
1079 
1080 out_unlock:
1081 	mutex_unlock(&p->mutex);
1082 	return err;
1083 }
1084 
1085 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1086 					void *data)
1087 {
1088 	struct kfd_ioctl_destroy_event_args *args = data;
1089 
1090 	return kfd_event_destroy(p, args->event_id);
1091 }
1092 
1093 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1094 				void *data)
1095 {
1096 	struct kfd_ioctl_set_event_args *args = data;
1097 
1098 	return kfd_set_event(p, args->event_id);
1099 }
1100 
1101 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1102 				void *data)
1103 {
1104 	struct kfd_ioctl_reset_event_args *args = data;
1105 
1106 	return kfd_reset_event(p, args->event_id);
1107 }
1108 
1109 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1110 				void *data)
1111 {
1112 	struct kfd_ioctl_wait_events_args *args = data;
1113 	int err;
1114 
1115 	err = kfd_wait_on_events(p, args->num_events,
1116 			(void __user *)args->events_ptr,
1117 			(args->wait_for_all != 0),
1118 			args->timeout, &args->wait_result);
1119 
1120 	return err;
1121 }
1122 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1123 					struct kfd_process *p, void *data)
1124 {
1125 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1126 	struct kfd_process_device *pdd;
1127 	struct kfd_dev *dev;
1128 	long err;
1129 
1130 	dev = kfd_device_by_id(args->gpu_id);
1131 	if (!dev)
1132 		return -EINVAL;
1133 
1134 	mutex_lock(&p->mutex);
1135 
1136 	pdd = kfd_bind_process_to_device(dev, p);
1137 	if (IS_ERR(pdd)) {
1138 		err = PTR_ERR(pdd);
1139 		goto bind_process_to_device_fail;
1140 	}
1141 
1142 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1143 
1144 	mutex_unlock(&p->mutex);
1145 
1146 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1147 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1148 		dev->kfd2kgd->set_scratch_backing_va(
1149 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1150 
1151 	return 0;
1152 
1153 bind_process_to_device_fail:
1154 	mutex_unlock(&p->mutex);
1155 	return err;
1156 }
1157 
1158 static int kfd_ioctl_get_tile_config(struct file *filep,
1159 		struct kfd_process *p, void *data)
1160 {
1161 	struct kfd_ioctl_get_tile_config_args *args = data;
1162 	struct kfd_dev *dev;
1163 	struct tile_config config;
1164 	int err = 0;
1165 
1166 	dev = kfd_device_by_id(args->gpu_id);
1167 	if (!dev)
1168 		return -EINVAL;
1169 
1170 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1171 
1172 	args->gb_addr_config = config.gb_addr_config;
1173 	args->num_banks = config.num_banks;
1174 	args->num_ranks = config.num_ranks;
1175 
1176 	if (args->num_tile_configs > config.num_tile_configs)
1177 		args->num_tile_configs = config.num_tile_configs;
1178 	err = copy_to_user((void __user *)args->tile_config_ptr,
1179 			config.tile_config_ptr,
1180 			args->num_tile_configs * sizeof(uint32_t));
1181 	if (err) {
1182 		args->num_tile_configs = 0;
1183 		return -EFAULT;
1184 	}
1185 
1186 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1187 		args->num_macro_tile_configs =
1188 				config.num_macro_tile_configs;
1189 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1190 			config.macro_tile_config_ptr,
1191 			args->num_macro_tile_configs * sizeof(uint32_t));
1192 	if (err) {
1193 		args->num_macro_tile_configs = 0;
1194 		return -EFAULT;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1201 				void *data)
1202 {
1203 	struct kfd_ioctl_acquire_vm_args *args = data;
1204 	struct kfd_process_device *pdd;
1205 	struct kfd_dev *dev;
1206 	struct file *drm_file;
1207 	int ret;
1208 
1209 	dev = kfd_device_by_id(args->gpu_id);
1210 	if (!dev)
1211 		return -EINVAL;
1212 
1213 	drm_file = fget(args->drm_fd);
1214 	if (!drm_file)
1215 		return -EINVAL;
1216 
1217 	mutex_lock(&p->mutex);
1218 
1219 	pdd = kfd_get_process_device_data(dev, p);
1220 	if (!pdd) {
1221 		ret = -EINVAL;
1222 		goto err_unlock;
1223 	}
1224 
1225 	if (pdd->drm_file) {
1226 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1227 		goto err_unlock;
1228 	}
1229 
1230 	ret = kfd_process_device_init_vm(pdd, drm_file);
1231 	if (ret)
1232 		goto err_unlock;
1233 	/* On success, the PDD keeps the drm_file reference */
1234 	mutex_unlock(&p->mutex);
1235 
1236 	return 0;
1237 
1238 err_unlock:
1239 	mutex_unlock(&p->mutex);
1240 	fput(drm_file);
1241 	return ret;
1242 }
1243 
1244 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1245 {
1246 	struct kfd_local_mem_info mem_info;
1247 
1248 	if (debug_largebar) {
1249 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1250 		return true;
1251 	}
1252 
1253 	if (dev->device_info->needs_iommu_device)
1254 		return false;
1255 
1256 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1257 	if (mem_info.local_mem_size_private == 0 &&
1258 			mem_info.local_mem_size_public > 0)
1259 		return true;
1260 	return false;
1261 }
1262 
1263 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1264 					struct kfd_process *p, void *data)
1265 {
1266 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1267 	struct kfd_process_device *pdd;
1268 	void *mem;
1269 	struct kfd_dev *dev;
1270 	int idr_handle;
1271 	long err;
1272 	uint64_t offset = args->mmap_offset;
1273 	uint32_t flags = args->flags;
1274 
1275 	if (args->size == 0)
1276 		return -EINVAL;
1277 
1278 	dev = kfd_device_by_id(args->gpu_id);
1279 	if (!dev)
1280 		return -EINVAL;
1281 
1282 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1283 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1284 		!kfd_dev_is_large_bar(dev)) {
1285 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1286 		return -EINVAL;
1287 	}
1288 
1289 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1290 		if (args->size != kfd_doorbell_process_slice(dev))
1291 			return -EINVAL;
1292 		offset = kfd_get_process_doorbells(dev, p);
1293 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1294 		if (args->size != PAGE_SIZE)
1295 			return -EINVAL;
1296 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1297 		if (!offset)
1298 			return -ENOMEM;
1299 	}
1300 
1301 	mutex_lock(&p->mutex);
1302 
1303 	pdd = kfd_bind_process_to_device(dev, p);
1304 	if (IS_ERR(pdd)) {
1305 		err = PTR_ERR(pdd);
1306 		goto err_unlock;
1307 	}
1308 
1309 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1310 		dev->kgd, args->va_addr, args->size,
1311 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1312 		flags);
1313 
1314 	if (err)
1315 		goto err_unlock;
1316 
1317 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1318 	if (idr_handle < 0) {
1319 		err = -EFAULT;
1320 		goto err_free;
1321 	}
1322 
1323 	mutex_unlock(&p->mutex);
1324 
1325 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1326 	args->mmap_offset = offset;
1327 
1328 	/* MMIO is mapped through kfd device
1329 	 * Generate a kfd mmap offset
1330 	 */
1331 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1332 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1333 					| KFD_MMAP_GPU_ID(args->gpu_id);
1334 
1335 	return 0;
1336 
1337 err_free:
1338 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1339 err_unlock:
1340 	mutex_unlock(&p->mutex);
1341 	return err;
1342 }
1343 
1344 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1345 					struct kfd_process *p, void *data)
1346 {
1347 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1348 	struct kfd_process_device *pdd;
1349 	void *mem;
1350 	struct kfd_dev *dev;
1351 	int ret;
1352 
1353 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1354 	if (!dev)
1355 		return -EINVAL;
1356 
1357 	mutex_lock(&p->mutex);
1358 
1359 	pdd = kfd_get_process_device_data(dev, p);
1360 	if (!pdd) {
1361 		pr_err("Process device data doesn't exist\n");
1362 		ret = -EINVAL;
1363 		goto err_unlock;
1364 	}
1365 
1366 	mem = kfd_process_device_translate_handle(
1367 		pdd, GET_IDR_HANDLE(args->handle));
1368 	if (!mem) {
1369 		ret = -EINVAL;
1370 		goto err_unlock;
1371 	}
1372 
1373 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1374 						(struct kgd_mem *)mem);
1375 
1376 	/* If freeing the buffer failed, leave the handle in place for
1377 	 * clean-up during process tear-down.
1378 	 */
1379 	if (!ret)
1380 		kfd_process_device_remove_obj_handle(
1381 			pdd, GET_IDR_HANDLE(args->handle));
1382 
1383 err_unlock:
1384 	mutex_unlock(&p->mutex);
1385 	return ret;
1386 }
1387 
1388 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1389 					struct kfd_process *p, void *data)
1390 {
1391 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1392 	struct kfd_process_device *pdd, *peer_pdd;
1393 	void *mem;
1394 	struct kfd_dev *dev, *peer;
1395 	long err = 0;
1396 	int i;
1397 	uint32_t *devices_arr = NULL;
1398 
1399 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1400 	if (!dev)
1401 		return -EINVAL;
1402 
1403 	if (!args->n_devices) {
1404 		pr_debug("Device IDs array empty\n");
1405 		return -EINVAL;
1406 	}
1407 	if (args->n_success > args->n_devices) {
1408 		pr_debug("n_success exceeds n_devices\n");
1409 		return -EINVAL;
1410 	}
1411 
1412 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1413 				    GFP_KERNEL);
1414 	if (!devices_arr)
1415 		return -ENOMEM;
1416 
1417 	err = copy_from_user(devices_arr,
1418 			     (void __user *)args->device_ids_array_ptr,
1419 			     args->n_devices * sizeof(*devices_arr));
1420 	if (err != 0) {
1421 		err = -EFAULT;
1422 		goto copy_from_user_failed;
1423 	}
1424 
1425 	mutex_lock(&p->mutex);
1426 
1427 	pdd = kfd_bind_process_to_device(dev, p);
1428 	if (IS_ERR(pdd)) {
1429 		err = PTR_ERR(pdd);
1430 		goto bind_process_to_device_failed;
1431 	}
1432 
1433 	mem = kfd_process_device_translate_handle(pdd,
1434 						GET_IDR_HANDLE(args->handle));
1435 	if (!mem) {
1436 		err = -ENOMEM;
1437 		goto get_mem_obj_from_handle_failed;
1438 	}
1439 
1440 	for (i = args->n_success; i < args->n_devices; i++) {
1441 		peer = kfd_device_by_id(devices_arr[i]);
1442 		if (!peer) {
1443 			pr_debug("Getting device by id failed for 0x%x\n",
1444 				 devices_arr[i]);
1445 			err = -EINVAL;
1446 			goto get_mem_obj_from_handle_failed;
1447 		}
1448 
1449 		peer_pdd = kfd_bind_process_to_device(peer, p);
1450 		if (IS_ERR(peer_pdd)) {
1451 			err = PTR_ERR(peer_pdd);
1452 			goto get_mem_obj_from_handle_failed;
1453 		}
1454 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1455 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1456 		if (err) {
1457 			pr_err("Failed to map to gpu %d/%d\n",
1458 			       i, args->n_devices);
1459 			goto map_memory_to_gpu_failed;
1460 		}
1461 		args->n_success = i+1;
1462 	}
1463 
1464 	mutex_unlock(&p->mutex);
1465 
1466 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1467 	if (err) {
1468 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1469 		goto sync_memory_failed;
1470 	}
1471 
1472 	/* Flush TLBs after waiting for the page table updates to complete */
1473 	for (i = 0; i < args->n_devices; i++) {
1474 		peer = kfd_device_by_id(devices_arr[i]);
1475 		if (WARN_ON_ONCE(!peer))
1476 			continue;
1477 		peer_pdd = kfd_get_process_device_data(peer, p);
1478 		if (WARN_ON_ONCE(!peer_pdd))
1479 			continue;
1480 		kfd_flush_tlb(peer_pdd);
1481 	}
1482 
1483 	kfree(devices_arr);
1484 
1485 	return err;
1486 
1487 bind_process_to_device_failed:
1488 get_mem_obj_from_handle_failed:
1489 map_memory_to_gpu_failed:
1490 	mutex_unlock(&p->mutex);
1491 copy_from_user_failed:
1492 sync_memory_failed:
1493 	kfree(devices_arr);
1494 
1495 	return err;
1496 }
1497 
1498 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1499 					struct kfd_process *p, void *data)
1500 {
1501 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1502 	struct kfd_process_device *pdd, *peer_pdd;
1503 	void *mem;
1504 	struct kfd_dev *dev, *peer;
1505 	long err = 0;
1506 	uint32_t *devices_arr = NULL, i;
1507 
1508 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1509 	if (!dev)
1510 		return -EINVAL;
1511 
1512 	if (!args->n_devices) {
1513 		pr_debug("Device IDs array empty\n");
1514 		return -EINVAL;
1515 	}
1516 	if (args->n_success > args->n_devices) {
1517 		pr_debug("n_success exceeds n_devices\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1522 				    GFP_KERNEL);
1523 	if (!devices_arr)
1524 		return -ENOMEM;
1525 
1526 	err = copy_from_user(devices_arr,
1527 			     (void __user *)args->device_ids_array_ptr,
1528 			     args->n_devices * sizeof(*devices_arr));
1529 	if (err != 0) {
1530 		err = -EFAULT;
1531 		goto copy_from_user_failed;
1532 	}
1533 
1534 	mutex_lock(&p->mutex);
1535 
1536 	pdd = kfd_get_process_device_data(dev, p);
1537 	if (!pdd) {
1538 		err = -EINVAL;
1539 		goto bind_process_to_device_failed;
1540 	}
1541 
1542 	mem = kfd_process_device_translate_handle(pdd,
1543 						GET_IDR_HANDLE(args->handle));
1544 	if (!mem) {
1545 		err = -ENOMEM;
1546 		goto get_mem_obj_from_handle_failed;
1547 	}
1548 
1549 	for (i = args->n_success; i < args->n_devices; i++) {
1550 		peer = kfd_device_by_id(devices_arr[i]);
1551 		if (!peer) {
1552 			err = -EINVAL;
1553 			goto get_mem_obj_from_handle_failed;
1554 		}
1555 
1556 		peer_pdd = kfd_get_process_device_data(peer, p);
1557 		if (!peer_pdd) {
1558 			err = -ENODEV;
1559 			goto get_mem_obj_from_handle_failed;
1560 		}
1561 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1562 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1563 		if (err) {
1564 			pr_err("Failed to unmap from gpu %d/%d\n",
1565 			       i, args->n_devices);
1566 			goto unmap_memory_from_gpu_failed;
1567 		}
1568 		args->n_success = i+1;
1569 	}
1570 	kfree(devices_arr);
1571 
1572 	mutex_unlock(&p->mutex);
1573 
1574 	return 0;
1575 
1576 bind_process_to_device_failed:
1577 get_mem_obj_from_handle_failed:
1578 unmap_memory_from_gpu_failed:
1579 	mutex_unlock(&p->mutex);
1580 copy_from_user_failed:
1581 	kfree(devices_arr);
1582 	return err;
1583 }
1584 
1585 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1586 		struct kfd_process *p, void *data)
1587 {
1588 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1589 	struct kfd_dev *dev = NULL;
1590 	struct kgd_dev *dma_buf_kgd;
1591 	void *metadata_buffer = NULL;
1592 	uint32_t flags;
1593 	unsigned int i;
1594 	int r;
1595 
1596 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1597 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1598 		if (dev)
1599 			break;
1600 	if (!dev)
1601 		return -EINVAL;
1602 
1603 	if (args->metadata_ptr) {
1604 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1605 		if (!metadata_buffer)
1606 			return -ENOMEM;
1607 	}
1608 
1609 	/* Get dmabuf info from KGD */
1610 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1611 					  &dma_buf_kgd, &args->size,
1612 					  metadata_buffer, args->metadata_size,
1613 					  &args->metadata_size, &flags);
1614 	if (r)
1615 		goto exit;
1616 
1617 	/* Reverse-lookup gpu_id from kgd pointer */
1618 	dev = kfd_device_by_kgd(dma_buf_kgd);
1619 	if (!dev) {
1620 		r = -EINVAL;
1621 		goto exit;
1622 	}
1623 	args->gpu_id = dev->id;
1624 	args->flags = flags;
1625 
1626 	/* Copy metadata buffer to user mode */
1627 	if (metadata_buffer) {
1628 		r = copy_to_user((void __user *)args->metadata_ptr,
1629 				 metadata_buffer, args->metadata_size);
1630 		if (r != 0)
1631 			r = -EFAULT;
1632 	}
1633 
1634 exit:
1635 	kfree(metadata_buffer);
1636 
1637 	return r;
1638 }
1639 
1640 static int kfd_ioctl_import_dmabuf(struct file *filep,
1641 				   struct kfd_process *p, void *data)
1642 {
1643 	struct kfd_ioctl_import_dmabuf_args *args = data;
1644 	struct kfd_process_device *pdd;
1645 	struct dma_buf *dmabuf;
1646 	struct kfd_dev *dev;
1647 	int idr_handle;
1648 	uint64_t size;
1649 	void *mem;
1650 	int r;
1651 
1652 	dev = kfd_device_by_id(args->gpu_id);
1653 	if (!dev)
1654 		return -EINVAL;
1655 
1656 	dmabuf = dma_buf_get(args->dmabuf_fd);
1657 	if (IS_ERR(dmabuf))
1658 		return PTR_ERR(dmabuf);
1659 
1660 	mutex_lock(&p->mutex);
1661 
1662 	pdd = kfd_bind_process_to_device(dev, p);
1663 	if (IS_ERR(pdd)) {
1664 		r = PTR_ERR(pdd);
1665 		goto err_unlock;
1666 	}
1667 
1668 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1669 					      args->va_addr, pdd->vm,
1670 					      (struct kgd_mem **)&mem, &size,
1671 					      NULL);
1672 	if (r)
1673 		goto err_unlock;
1674 
1675 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1676 	if (idr_handle < 0) {
1677 		r = -EFAULT;
1678 		goto err_free;
1679 	}
1680 
1681 	mutex_unlock(&p->mutex);
1682 
1683 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1684 
1685 	return 0;
1686 
1687 err_free:
1688 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1689 err_unlock:
1690 	mutex_unlock(&p->mutex);
1691 	return r;
1692 }
1693 
1694 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1695 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1696 			    .cmd_drv = 0, .name = #ioctl}
1697 
1698 /** Ioctl table */
1699 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1700 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1701 			kfd_ioctl_get_version, 0),
1702 
1703 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1704 			kfd_ioctl_create_queue, 0),
1705 
1706 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1707 			kfd_ioctl_destroy_queue, 0),
1708 
1709 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1710 			kfd_ioctl_set_memory_policy, 0),
1711 
1712 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1713 			kfd_ioctl_get_clock_counters, 0),
1714 
1715 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1716 			kfd_ioctl_get_process_apertures, 0),
1717 
1718 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1719 			kfd_ioctl_update_queue, 0),
1720 
1721 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1722 			kfd_ioctl_create_event, 0),
1723 
1724 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1725 			kfd_ioctl_destroy_event, 0),
1726 
1727 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1728 			kfd_ioctl_set_event, 0),
1729 
1730 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1731 			kfd_ioctl_reset_event, 0),
1732 
1733 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1734 			kfd_ioctl_wait_events, 0),
1735 
1736 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1737 			kfd_ioctl_dbg_register, 0),
1738 
1739 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1740 			kfd_ioctl_dbg_unregister, 0),
1741 
1742 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1743 			kfd_ioctl_dbg_address_watch, 0),
1744 
1745 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1746 			kfd_ioctl_dbg_wave_control, 0),
1747 
1748 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1749 			kfd_ioctl_set_scratch_backing_va, 0),
1750 
1751 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1752 			kfd_ioctl_get_tile_config, 0),
1753 
1754 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1755 			kfd_ioctl_set_trap_handler, 0),
1756 
1757 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1758 			kfd_ioctl_get_process_apertures_new, 0),
1759 
1760 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1761 			kfd_ioctl_acquire_vm, 0),
1762 
1763 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1764 			kfd_ioctl_alloc_memory_of_gpu, 0),
1765 
1766 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1767 			kfd_ioctl_free_memory_of_gpu, 0),
1768 
1769 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1770 			kfd_ioctl_map_memory_to_gpu, 0),
1771 
1772 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1773 			kfd_ioctl_unmap_memory_from_gpu, 0),
1774 
1775 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1776 			kfd_ioctl_set_cu_mask, 0),
1777 
1778 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1779 			kfd_ioctl_get_queue_wave_state, 0),
1780 
1781 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1782 				kfd_ioctl_get_dmabuf_info, 0),
1783 
1784 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1785 				kfd_ioctl_import_dmabuf, 0),
1786 
1787 };
1788 
1789 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1790 
1791 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1792 {
1793 	struct kfd_process *process;
1794 	amdkfd_ioctl_t *func;
1795 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1796 	unsigned int nr = _IOC_NR(cmd);
1797 	char stack_kdata[128];
1798 	char *kdata = NULL;
1799 	unsigned int usize, asize;
1800 	int retcode = -EINVAL;
1801 
1802 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1803 		goto err_i1;
1804 
1805 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1806 		u32 amdkfd_size;
1807 
1808 		ioctl = &amdkfd_ioctls[nr];
1809 
1810 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1811 		usize = asize = _IOC_SIZE(cmd);
1812 		if (amdkfd_size > asize)
1813 			asize = amdkfd_size;
1814 
1815 		cmd = ioctl->cmd;
1816 	} else
1817 		goto err_i1;
1818 
1819 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1820 
1821 	/* Get the process struct from the filep. Only the process
1822 	 * that opened /dev/kfd can use the file descriptor. Child
1823 	 * processes need to create their own KFD device context.
1824 	 */
1825 	process = filep->private_data;
1826 	if (process->lead_thread != current->group_leader) {
1827 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1828 		retcode = -EBADF;
1829 		goto err_i1;
1830 	}
1831 
1832 	/* Do not trust userspace, use our own definition */
1833 	func = ioctl->func;
1834 
1835 	if (unlikely(!func)) {
1836 		dev_dbg(kfd_device, "no function\n");
1837 		retcode = -EINVAL;
1838 		goto err_i1;
1839 	}
1840 
1841 	if (cmd & (IOC_IN | IOC_OUT)) {
1842 		if (asize <= sizeof(stack_kdata)) {
1843 			kdata = stack_kdata;
1844 		} else {
1845 			kdata = kmalloc(asize, GFP_KERNEL);
1846 			if (!kdata) {
1847 				retcode = -ENOMEM;
1848 				goto err_i1;
1849 			}
1850 		}
1851 		if (asize > usize)
1852 			memset(kdata + usize, 0, asize - usize);
1853 	}
1854 
1855 	if (cmd & IOC_IN) {
1856 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1857 			retcode = -EFAULT;
1858 			goto err_i1;
1859 		}
1860 	} else if (cmd & IOC_OUT) {
1861 		memset(kdata, 0, usize);
1862 	}
1863 
1864 	retcode = func(filep, process, kdata);
1865 
1866 	if (cmd & IOC_OUT)
1867 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1868 			retcode = -EFAULT;
1869 
1870 err_i1:
1871 	if (!ioctl)
1872 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1873 			  task_pid_nr(current), cmd, nr);
1874 
1875 	if (kdata != stack_kdata)
1876 		kfree(kdata);
1877 
1878 	if (retcode)
1879 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1880 				nr, arg, retcode);
1881 
1882 	return retcode;
1883 }
1884 
1885 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1886 		      struct vm_area_struct *vma)
1887 {
1888 	phys_addr_t address;
1889 	int ret;
1890 
1891 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1892 		return -EINVAL;
1893 
1894 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1895 
1896 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1897 				VM_DONTDUMP | VM_PFNMAP;
1898 
1899 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1900 
1901 	pr_debug("pasid 0x%x mapping mmio page\n"
1902 		 "     target user address == 0x%08llX\n"
1903 		 "     physical address    == 0x%08llX\n"
1904 		 "     vm_flags            == 0x%04lX\n"
1905 		 "     size                == 0x%04lX\n",
1906 		 process->pasid, (unsigned long long) vma->vm_start,
1907 		 address, vma->vm_flags, PAGE_SIZE);
1908 
1909 	ret = io_remap_pfn_range(vma,
1910 				vma->vm_start,
1911 				address >> PAGE_SHIFT,
1912 				PAGE_SIZE,
1913 				vma->vm_page_prot);
1914 	return ret;
1915 }
1916 
1917 
1918 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1919 {
1920 	struct kfd_process *process;
1921 	struct kfd_dev *dev = NULL;
1922 	unsigned long mmap_offset;
1923 	unsigned int gpu_id;
1924 
1925 	process = kfd_get_process(current);
1926 	if (IS_ERR(process))
1927 		return PTR_ERR(process);
1928 
1929 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
1930 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
1931 	if (gpu_id)
1932 		dev = kfd_device_by_id(gpu_id);
1933 
1934 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
1935 	case KFD_MMAP_TYPE_DOORBELL:
1936 		if (!dev)
1937 			return -ENODEV;
1938 		return kfd_doorbell_mmap(dev, process, vma);
1939 
1940 	case KFD_MMAP_TYPE_EVENTS:
1941 		return kfd_event_mmap(process, vma);
1942 
1943 	case KFD_MMAP_TYPE_RESERVED_MEM:
1944 		if (!dev)
1945 			return -ENODEV;
1946 		return kfd_reserved_mem_mmap(dev, process, vma);
1947 	case KFD_MMAP_TYPE_MMIO:
1948 		if (!dev)
1949 			return -ENODEV;
1950 		return kfd_mmio_mmap(dev, process, vma);
1951 	}
1952 
1953 	return -EFAULT;
1954 }
1955