1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52 
53 static const char kfd_dev_name[] = "kfd";
54 
55 static const struct file_operations kfd_fops = {
56 	.owner = THIS_MODULE,
57 	.unlocked_ioctl = kfd_ioctl,
58 	.compat_ioctl = compat_ptr_ioctl,
59 	.open = kfd_open,
60 	.release = kfd_release,
61 	.mmap = kfd_mmap,
62 };
63 
64 static int kfd_char_dev_major = -1;
65 static struct class *kfd_class;
66 struct device *kfd_device;
67 
68 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
69 {
70 	struct kfd_process_device *pdd;
71 
72 	mutex_lock(&p->mutex);
73 	pdd = kfd_process_device_data_by_id(p, gpu_id);
74 
75 	if (pdd)
76 		return pdd;
77 
78 	mutex_unlock(&p->mutex);
79 	return NULL;
80 }
81 
82 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
83 {
84 	mutex_unlock(&pdd->process->mutex);
85 }
86 
87 int kfd_chardev_init(void)
88 {
89 	int err = 0;
90 
91 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
92 	err = kfd_char_dev_major;
93 	if (err < 0)
94 		goto err_register_chrdev;
95 
96 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
97 	err = PTR_ERR(kfd_class);
98 	if (IS_ERR(kfd_class))
99 		goto err_class_create;
100 
101 	kfd_device = device_create(kfd_class, NULL,
102 					MKDEV(kfd_char_dev_major, 0),
103 					NULL, kfd_dev_name);
104 	err = PTR_ERR(kfd_device);
105 	if (IS_ERR(kfd_device))
106 		goto err_device_create;
107 
108 	return 0;
109 
110 err_device_create:
111 	class_destroy(kfd_class);
112 err_class_create:
113 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 	return err;
116 }
117 
118 void kfd_chardev_exit(void)
119 {
120 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
121 	class_destroy(kfd_class);
122 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 	kfd_device = NULL;
124 }
125 
126 
127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 	struct kfd_process *process;
130 	bool is_32bit_user_mode;
131 
132 	if (iminor(inode) != 0)
133 		return -ENODEV;
134 
135 	is_32bit_user_mode = in_compat_syscall();
136 
137 	if (is_32bit_user_mode) {
138 		dev_warn(kfd_device,
139 			"Process %d (32-bit) failed to open /dev/kfd\n"
140 			"32-bit processes are not supported by amdkfd\n",
141 			current->pid);
142 		return -EPERM;
143 	}
144 
145 	process = kfd_create_process(filep);
146 	if (IS_ERR(process))
147 		return PTR_ERR(process);
148 
149 	/* filep now owns the reference returned by kfd_create_process */
150 	filep->private_data = process;
151 
152 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
153 		process->pasid, process->is_32bit_user_mode);
154 
155 	return 0;
156 }
157 
158 static int kfd_release(struct inode *inode, struct file *filep)
159 {
160 	struct kfd_process *process = filep->private_data;
161 
162 	if (process)
163 		kfd_unref_process(process);
164 
165 	return 0;
166 }
167 
168 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
169 					void *data)
170 {
171 	struct kfd_ioctl_get_version_args *args = data;
172 
173 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
174 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
175 
176 	return 0;
177 }
178 
179 static int set_queue_properties_from_user(struct queue_properties *q_properties,
180 				struct kfd_ioctl_create_queue_args *args)
181 {
182 	/*
183 	 * Repurpose queue percentage to accommodate new features:
184 	 * bit 0-7: queue percentage
185 	 * bit 8-15: pm4_target_xcc
186 	 */
187 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
188 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
189 		return -EINVAL;
190 	}
191 
192 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
193 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
194 		return -EINVAL;
195 	}
196 
197 	if ((args->ring_base_address) &&
198 		(!access_ok((const void __user *) args->ring_base_address,
199 			sizeof(uint64_t)))) {
200 		pr_err("Can't access ring base address\n");
201 		return -EFAULT;
202 	}
203 
204 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
205 		pr_err("Ring size must be a power of 2 or 0\n");
206 		return -EINVAL;
207 	}
208 
209 	if (!access_ok((const void __user *) args->read_pointer_address,
210 			sizeof(uint32_t))) {
211 		pr_err("Can't access read pointer\n");
212 		return -EFAULT;
213 	}
214 
215 	if (!access_ok((const void __user *) args->write_pointer_address,
216 			sizeof(uint32_t))) {
217 		pr_err("Can't access write pointer\n");
218 		return -EFAULT;
219 	}
220 
221 	if (args->eop_buffer_address &&
222 		!access_ok((const void __user *) args->eop_buffer_address,
223 			sizeof(uint32_t))) {
224 		pr_debug("Can't access eop buffer");
225 		return -EFAULT;
226 	}
227 
228 	if (args->ctx_save_restore_address &&
229 		!access_ok((const void __user *) args->ctx_save_restore_address,
230 			sizeof(uint32_t))) {
231 		pr_debug("Can't access ctx save restore buffer");
232 		return -EFAULT;
233 	}
234 
235 	q_properties->is_interop = false;
236 	q_properties->is_gws = false;
237 	q_properties->queue_percent = args->queue_percentage & 0xFF;
238 	/* bit 8-15 are repurposed to be PM4 target XCC */
239 	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
240 	q_properties->priority = args->queue_priority;
241 	q_properties->queue_address = args->ring_base_address;
242 	q_properties->queue_size = args->ring_size;
243 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
244 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
245 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
246 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
247 	q_properties->ctx_save_restore_area_address =
248 			args->ctx_save_restore_address;
249 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
250 	q_properties->ctl_stack_size = args->ctl_stack_size;
251 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
252 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
253 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
254 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
255 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
256 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
257 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
258 	else
259 		return -ENOTSUPP;
260 
261 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
262 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
263 	else
264 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
265 
266 	pr_debug("Queue Percentage: %d, %d\n",
267 			q_properties->queue_percent, args->queue_percentage);
268 
269 	pr_debug("Queue Priority: %d, %d\n",
270 			q_properties->priority, args->queue_priority);
271 
272 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
273 			q_properties->queue_address, args->ring_base_address);
274 
275 	pr_debug("Queue Size: 0x%llX, %u\n",
276 			q_properties->queue_size, args->ring_size);
277 
278 	pr_debug("Queue r/w Pointers: %px, %px\n",
279 			q_properties->read_ptr,
280 			q_properties->write_ptr);
281 
282 	pr_debug("Queue Format: %d\n", q_properties->format);
283 
284 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
285 
286 	pr_debug("Queue CTX save area: 0x%llX\n",
287 			q_properties->ctx_save_restore_area_address);
288 
289 	return 0;
290 }
291 
292 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
293 					void *data)
294 {
295 	struct kfd_ioctl_create_queue_args *args = data;
296 	struct kfd_node *dev;
297 	int err = 0;
298 	unsigned int queue_id;
299 	struct kfd_process_device *pdd;
300 	struct queue_properties q_properties;
301 	uint32_t doorbell_offset_in_process = 0;
302 	struct amdgpu_bo *wptr_bo = NULL;
303 
304 	memset(&q_properties, 0, sizeof(struct queue_properties));
305 
306 	pr_debug("Creating queue ioctl\n");
307 
308 	err = set_queue_properties_from_user(&q_properties, args);
309 	if (err)
310 		return err;
311 
312 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
313 
314 	mutex_lock(&p->mutex);
315 
316 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
317 	if (!pdd) {
318 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
319 		err = -EINVAL;
320 		goto err_pdd;
321 	}
322 	dev = pdd->dev;
323 
324 	pdd = kfd_bind_process_to_device(dev, p);
325 	if (IS_ERR(pdd)) {
326 		err = -ESRCH;
327 		goto err_bind_process;
328 	}
329 
330 	if (!pdd->doorbell_index &&
331 	    kfd_alloc_process_doorbells(dev->kfd, &pdd->doorbell_index) < 0) {
332 		err = -ENOMEM;
333 		goto err_alloc_doorbells;
334 	}
335 
336 	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
337 	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
338 	 */
339 	if (dev->kfd->shared_resources.enable_mes &&
340 			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
341 			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
342 		struct amdgpu_bo_va_mapping *wptr_mapping;
343 		struct amdgpu_vm *wptr_vm;
344 
345 		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
346 		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
347 		if (err)
348 			goto err_wptr_map_gart;
349 
350 		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
351 				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
352 		amdgpu_bo_unreserve(wptr_vm->root.bo);
353 		if (!wptr_mapping) {
354 			pr_err("Failed to lookup wptr bo\n");
355 			err = -EINVAL;
356 			goto err_wptr_map_gart;
357 		}
358 
359 		wptr_bo = wptr_mapping->bo_va->base.bo;
360 		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
361 			pr_err("Requested GART mapping for wptr bo larger than one page\n");
362 			err = -EINVAL;
363 			goto err_wptr_map_gart;
364 		}
365 
366 		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
367 		if (err) {
368 			pr_err("Failed to map wptr bo to GART\n");
369 			goto err_wptr_map_gart;
370 		}
371 	}
372 
373 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
374 			p->pasid,
375 			dev->id);
376 
377 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
378 			NULL, NULL, NULL, &doorbell_offset_in_process);
379 	if (err != 0)
380 		goto err_create_queue;
381 
382 	args->queue_id = queue_id;
383 
384 
385 	/* Return gpu_id as doorbell offset for mmap usage */
386 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
387 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
388 	if (KFD_IS_SOC15(dev))
389 		/* On SOC15 ASICs, include the doorbell offset within the
390 		 * process doorbell frame, which is 2 pages.
391 		 */
392 		args->doorbell_offset |= doorbell_offset_in_process;
393 
394 	mutex_unlock(&p->mutex);
395 
396 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
397 
398 	pr_debug("Ring buffer address == 0x%016llX\n",
399 			args->ring_base_address);
400 
401 	pr_debug("Read ptr address    == 0x%016llX\n",
402 			args->read_pointer_address);
403 
404 	pr_debug("Write ptr address   == 0x%016llX\n",
405 			args->write_pointer_address);
406 
407 	return 0;
408 
409 err_create_queue:
410 	if (wptr_bo)
411 		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
412 err_wptr_map_gart:
413 err_alloc_doorbells:
414 err_bind_process:
415 err_pdd:
416 	mutex_unlock(&p->mutex);
417 	return err;
418 }
419 
420 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
421 					void *data)
422 {
423 	int retval;
424 	struct kfd_ioctl_destroy_queue_args *args = data;
425 
426 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
427 				args->queue_id,
428 				p->pasid);
429 
430 	mutex_lock(&p->mutex);
431 
432 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
433 
434 	mutex_unlock(&p->mutex);
435 	return retval;
436 }
437 
438 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
439 					void *data)
440 {
441 	int retval;
442 	struct kfd_ioctl_update_queue_args *args = data;
443 	struct queue_properties properties;
444 
445 	/*
446 	 * Repurpose queue percentage to accommodate new features:
447 	 * bit 0-7: queue percentage
448 	 * bit 8-15: pm4_target_xcc
449 	 */
450 	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
451 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
452 		return -EINVAL;
453 	}
454 
455 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
456 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
457 		return -EINVAL;
458 	}
459 
460 	if ((args->ring_base_address) &&
461 		(!access_ok((const void __user *) args->ring_base_address,
462 			sizeof(uint64_t)))) {
463 		pr_err("Can't access ring base address\n");
464 		return -EFAULT;
465 	}
466 
467 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
468 		pr_err("Ring size must be a power of 2 or 0\n");
469 		return -EINVAL;
470 	}
471 
472 	properties.queue_address = args->ring_base_address;
473 	properties.queue_size = args->ring_size;
474 	properties.queue_percent = args->queue_percentage & 0xFF;
475 	/* bit 8-15 are repurposed to be PM4 target XCC */
476 	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
477 	properties.priority = args->queue_priority;
478 
479 	pr_debug("Updating queue id %d for pasid 0x%x\n",
480 			args->queue_id, p->pasid);
481 
482 	mutex_lock(&p->mutex);
483 
484 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
485 
486 	mutex_unlock(&p->mutex);
487 
488 	return retval;
489 }
490 
491 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
492 					void *data)
493 {
494 	int retval;
495 	const int max_num_cus = 1024;
496 	struct kfd_ioctl_set_cu_mask_args *args = data;
497 	struct mqd_update_info minfo = {0};
498 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
499 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
500 
501 	if ((args->num_cu_mask % 32) != 0) {
502 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
503 				args->num_cu_mask);
504 		return -EINVAL;
505 	}
506 
507 	minfo.cu_mask.count = args->num_cu_mask;
508 	if (minfo.cu_mask.count == 0) {
509 		pr_debug("CU mask cannot be 0");
510 		return -EINVAL;
511 	}
512 
513 	/* To prevent an unreasonably large CU mask size, set an arbitrary
514 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
515 	 * past max_num_cus bits and just use the first max_num_cus bits.
516 	 */
517 	if (minfo.cu_mask.count > max_num_cus) {
518 		pr_debug("CU mask cannot be greater than 1024 bits");
519 		minfo.cu_mask.count = max_num_cus;
520 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
521 	}
522 
523 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
524 	if (!minfo.cu_mask.ptr)
525 		return -ENOMEM;
526 
527 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
528 	if (retval) {
529 		pr_debug("Could not copy CU mask from userspace");
530 		retval = -EFAULT;
531 		goto out;
532 	}
533 
534 	minfo.update_flag = UPDATE_FLAG_CU_MASK;
535 
536 	mutex_lock(&p->mutex);
537 
538 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
539 
540 	mutex_unlock(&p->mutex);
541 
542 out:
543 	kfree(minfo.cu_mask.ptr);
544 	return retval;
545 }
546 
547 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
548 					  struct kfd_process *p, void *data)
549 {
550 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
551 	int r;
552 
553 	mutex_lock(&p->mutex);
554 
555 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
556 			       (void __user *)args->ctl_stack_address,
557 			       &args->ctl_stack_used_size,
558 			       &args->save_area_used_size);
559 
560 	mutex_unlock(&p->mutex);
561 
562 	return r;
563 }
564 
565 static int kfd_ioctl_set_memory_policy(struct file *filep,
566 					struct kfd_process *p, void *data)
567 {
568 	struct kfd_ioctl_set_memory_policy_args *args = data;
569 	int err = 0;
570 	struct kfd_process_device *pdd;
571 	enum cache_policy default_policy, alternate_policy;
572 
573 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
574 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
575 		return -EINVAL;
576 	}
577 
578 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
579 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
580 		return -EINVAL;
581 	}
582 
583 	mutex_lock(&p->mutex);
584 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
585 	if (!pdd) {
586 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
587 		err = -EINVAL;
588 		goto err_pdd;
589 	}
590 
591 	pdd = kfd_bind_process_to_device(pdd->dev, p);
592 	if (IS_ERR(pdd)) {
593 		err = -ESRCH;
594 		goto out;
595 	}
596 
597 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
598 			 ? cache_policy_coherent : cache_policy_noncoherent;
599 
600 	alternate_policy =
601 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
602 		   ? cache_policy_coherent : cache_policy_noncoherent;
603 
604 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
605 				&pdd->qpd,
606 				default_policy,
607 				alternate_policy,
608 				(void __user *)args->alternate_aperture_base,
609 				args->alternate_aperture_size))
610 		err = -EINVAL;
611 
612 out:
613 err_pdd:
614 	mutex_unlock(&p->mutex);
615 
616 	return err;
617 }
618 
619 static int kfd_ioctl_set_trap_handler(struct file *filep,
620 					struct kfd_process *p, void *data)
621 {
622 	struct kfd_ioctl_set_trap_handler_args *args = data;
623 	int err = 0;
624 	struct kfd_process_device *pdd;
625 
626 	mutex_lock(&p->mutex);
627 
628 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
629 	if (!pdd) {
630 		err = -EINVAL;
631 		goto err_pdd;
632 	}
633 
634 	pdd = kfd_bind_process_to_device(pdd->dev, p);
635 	if (IS_ERR(pdd)) {
636 		err = -ESRCH;
637 		goto out;
638 	}
639 
640 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
641 
642 out:
643 err_pdd:
644 	mutex_unlock(&p->mutex);
645 
646 	return err;
647 }
648 
649 static int kfd_ioctl_dbg_register(struct file *filep,
650 				struct kfd_process *p, void *data)
651 {
652 	return -EPERM;
653 }
654 
655 static int kfd_ioctl_dbg_unregister(struct file *filep,
656 				struct kfd_process *p, void *data)
657 {
658 	return -EPERM;
659 }
660 
661 static int kfd_ioctl_dbg_address_watch(struct file *filep,
662 					struct kfd_process *p, void *data)
663 {
664 	return -EPERM;
665 }
666 
667 /* Parse and generate fixed size data structure for wave control */
668 static int kfd_ioctl_dbg_wave_control(struct file *filep,
669 					struct kfd_process *p, void *data)
670 {
671 	return -EPERM;
672 }
673 
674 static int kfd_ioctl_get_clock_counters(struct file *filep,
675 				struct kfd_process *p, void *data)
676 {
677 	struct kfd_ioctl_get_clock_counters_args *args = data;
678 	struct kfd_process_device *pdd;
679 
680 	mutex_lock(&p->mutex);
681 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
682 	mutex_unlock(&p->mutex);
683 	if (pdd)
684 		/* Reading GPU clock counter from KGD */
685 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
686 	else
687 		/* Node without GPU resource */
688 		args->gpu_clock_counter = 0;
689 
690 	/* No access to rdtsc. Using raw monotonic time */
691 	args->cpu_clock_counter = ktime_get_raw_ns();
692 	args->system_clock_counter = ktime_get_boottime_ns();
693 
694 	/* Since the counter is in nano-seconds we use 1GHz frequency */
695 	args->system_clock_freq = 1000000000;
696 
697 	return 0;
698 }
699 
700 
701 static int kfd_ioctl_get_process_apertures(struct file *filp,
702 				struct kfd_process *p, void *data)
703 {
704 	struct kfd_ioctl_get_process_apertures_args *args = data;
705 	struct kfd_process_device_apertures *pAperture;
706 	int i;
707 
708 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
709 
710 	args->num_of_nodes = 0;
711 
712 	mutex_lock(&p->mutex);
713 	/* Run over all pdd of the process */
714 	for (i = 0; i < p->n_pdds; i++) {
715 		struct kfd_process_device *pdd = p->pdds[i];
716 
717 		pAperture =
718 			&args->process_apertures[args->num_of_nodes];
719 		pAperture->gpu_id = pdd->dev->id;
720 		pAperture->lds_base = pdd->lds_base;
721 		pAperture->lds_limit = pdd->lds_limit;
722 		pAperture->gpuvm_base = pdd->gpuvm_base;
723 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
724 		pAperture->scratch_base = pdd->scratch_base;
725 		pAperture->scratch_limit = pdd->scratch_limit;
726 
727 		dev_dbg(kfd_device,
728 			"node id %u\n", args->num_of_nodes);
729 		dev_dbg(kfd_device,
730 			"gpu id %u\n", pdd->dev->id);
731 		dev_dbg(kfd_device,
732 			"lds_base %llX\n", pdd->lds_base);
733 		dev_dbg(kfd_device,
734 			"lds_limit %llX\n", pdd->lds_limit);
735 		dev_dbg(kfd_device,
736 			"gpuvm_base %llX\n", pdd->gpuvm_base);
737 		dev_dbg(kfd_device,
738 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
739 		dev_dbg(kfd_device,
740 			"scratch_base %llX\n", pdd->scratch_base);
741 		dev_dbg(kfd_device,
742 			"scratch_limit %llX\n", pdd->scratch_limit);
743 
744 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
745 			break;
746 	}
747 	mutex_unlock(&p->mutex);
748 
749 	return 0;
750 }
751 
752 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
753 				struct kfd_process *p, void *data)
754 {
755 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
756 	struct kfd_process_device_apertures *pa;
757 	int ret;
758 	int i;
759 
760 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
761 
762 	if (args->num_of_nodes == 0) {
763 		/* Return number of nodes, so that user space can alloacate
764 		 * sufficient memory
765 		 */
766 		mutex_lock(&p->mutex);
767 		args->num_of_nodes = p->n_pdds;
768 		goto out_unlock;
769 	}
770 
771 	/* Fill in process-aperture information for all available
772 	 * nodes, but not more than args->num_of_nodes as that is
773 	 * the amount of memory allocated by user
774 	 */
775 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
776 				args->num_of_nodes), GFP_KERNEL);
777 	if (!pa)
778 		return -ENOMEM;
779 
780 	mutex_lock(&p->mutex);
781 
782 	if (!p->n_pdds) {
783 		args->num_of_nodes = 0;
784 		kfree(pa);
785 		goto out_unlock;
786 	}
787 
788 	/* Run over all pdd of the process */
789 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
790 		struct kfd_process_device *pdd = p->pdds[i];
791 
792 		pa[i].gpu_id = pdd->dev->id;
793 		pa[i].lds_base = pdd->lds_base;
794 		pa[i].lds_limit = pdd->lds_limit;
795 		pa[i].gpuvm_base = pdd->gpuvm_base;
796 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
797 		pa[i].scratch_base = pdd->scratch_base;
798 		pa[i].scratch_limit = pdd->scratch_limit;
799 
800 		dev_dbg(kfd_device,
801 			"gpu id %u\n", pdd->dev->id);
802 		dev_dbg(kfd_device,
803 			"lds_base %llX\n", pdd->lds_base);
804 		dev_dbg(kfd_device,
805 			"lds_limit %llX\n", pdd->lds_limit);
806 		dev_dbg(kfd_device,
807 			"gpuvm_base %llX\n", pdd->gpuvm_base);
808 		dev_dbg(kfd_device,
809 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
810 		dev_dbg(kfd_device,
811 			"scratch_base %llX\n", pdd->scratch_base);
812 		dev_dbg(kfd_device,
813 			"scratch_limit %llX\n", pdd->scratch_limit);
814 	}
815 	mutex_unlock(&p->mutex);
816 
817 	args->num_of_nodes = i;
818 	ret = copy_to_user(
819 			(void __user *)args->kfd_process_device_apertures_ptr,
820 			pa,
821 			(i * sizeof(struct kfd_process_device_apertures)));
822 	kfree(pa);
823 	return ret ? -EFAULT : 0;
824 
825 out_unlock:
826 	mutex_unlock(&p->mutex);
827 	return 0;
828 }
829 
830 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
831 					void *data)
832 {
833 	struct kfd_ioctl_create_event_args *args = data;
834 	int err;
835 
836 	/* For dGPUs the event page is allocated in user mode. The
837 	 * handle is passed to KFD with the first call to this IOCTL
838 	 * through the event_page_offset field.
839 	 */
840 	if (args->event_page_offset) {
841 		mutex_lock(&p->mutex);
842 		err = kfd_kmap_event_page(p, args->event_page_offset);
843 		mutex_unlock(&p->mutex);
844 		if (err)
845 			return err;
846 	}
847 
848 	err = kfd_event_create(filp, p, args->event_type,
849 				args->auto_reset != 0, args->node_id,
850 				&args->event_id, &args->event_trigger_data,
851 				&args->event_page_offset,
852 				&args->event_slot_index);
853 
854 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
855 	return err;
856 }
857 
858 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
859 					void *data)
860 {
861 	struct kfd_ioctl_destroy_event_args *args = data;
862 
863 	return kfd_event_destroy(p, args->event_id);
864 }
865 
866 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
867 				void *data)
868 {
869 	struct kfd_ioctl_set_event_args *args = data;
870 
871 	return kfd_set_event(p, args->event_id);
872 }
873 
874 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
875 				void *data)
876 {
877 	struct kfd_ioctl_reset_event_args *args = data;
878 
879 	return kfd_reset_event(p, args->event_id);
880 }
881 
882 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
883 				void *data)
884 {
885 	struct kfd_ioctl_wait_events_args *args = data;
886 
887 	return kfd_wait_on_events(p, args->num_events,
888 			(void __user *)args->events_ptr,
889 			(args->wait_for_all != 0),
890 			&args->timeout, &args->wait_result);
891 }
892 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
893 					struct kfd_process *p, void *data)
894 {
895 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
896 	struct kfd_process_device *pdd;
897 	struct kfd_node *dev;
898 	long err;
899 
900 	mutex_lock(&p->mutex);
901 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
902 	if (!pdd) {
903 		err = -EINVAL;
904 		goto err_pdd;
905 	}
906 	dev = pdd->dev;
907 
908 	pdd = kfd_bind_process_to_device(dev, p);
909 	if (IS_ERR(pdd)) {
910 		err = PTR_ERR(pdd);
911 		goto bind_process_to_device_fail;
912 	}
913 
914 	pdd->qpd.sh_hidden_private_base = args->va_addr;
915 
916 	mutex_unlock(&p->mutex);
917 
918 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
919 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
920 		dev->kfd2kgd->set_scratch_backing_va(
921 			dev->adev, args->va_addr, pdd->qpd.vmid);
922 
923 	return 0;
924 
925 bind_process_to_device_fail:
926 err_pdd:
927 	mutex_unlock(&p->mutex);
928 	return err;
929 }
930 
931 static int kfd_ioctl_get_tile_config(struct file *filep,
932 		struct kfd_process *p, void *data)
933 {
934 	struct kfd_ioctl_get_tile_config_args *args = data;
935 	struct kfd_process_device *pdd;
936 	struct tile_config config;
937 	int err = 0;
938 
939 	mutex_lock(&p->mutex);
940 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
941 	mutex_unlock(&p->mutex);
942 	if (!pdd)
943 		return -EINVAL;
944 
945 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
946 
947 	args->gb_addr_config = config.gb_addr_config;
948 	args->num_banks = config.num_banks;
949 	args->num_ranks = config.num_ranks;
950 
951 	if (args->num_tile_configs > config.num_tile_configs)
952 		args->num_tile_configs = config.num_tile_configs;
953 	err = copy_to_user((void __user *)args->tile_config_ptr,
954 			config.tile_config_ptr,
955 			args->num_tile_configs * sizeof(uint32_t));
956 	if (err) {
957 		args->num_tile_configs = 0;
958 		return -EFAULT;
959 	}
960 
961 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
962 		args->num_macro_tile_configs =
963 				config.num_macro_tile_configs;
964 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
965 			config.macro_tile_config_ptr,
966 			args->num_macro_tile_configs * sizeof(uint32_t));
967 	if (err) {
968 		args->num_macro_tile_configs = 0;
969 		return -EFAULT;
970 	}
971 
972 	return 0;
973 }
974 
975 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
976 				void *data)
977 {
978 	struct kfd_ioctl_acquire_vm_args *args = data;
979 	struct kfd_process_device *pdd;
980 	struct file *drm_file;
981 	int ret;
982 
983 	drm_file = fget(args->drm_fd);
984 	if (!drm_file)
985 		return -EINVAL;
986 
987 	mutex_lock(&p->mutex);
988 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
989 	if (!pdd) {
990 		ret = -EINVAL;
991 		goto err_pdd;
992 	}
993 
994 	if (pdd->drm_file) {
995 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
996 		goto err_drm_file;
997 	}
998 
999 	ret = kfd_process_device_init_vm(pdd, drm_file);
1000 	if (ret)
1001 		goto err_unlock;
1002 
1003 	/* On success, the PDD keeps the drm_file reference */
1004 	mutex_unlock(&p->mutex);
1005 
1006 	return 0;
1007 
1008 err_unlock:
1009 err_pdd:
1010 err_drm_file:
1011 	mutex_unlock(&p->mutex);
1012 	fput(drm_file);
1013 	return ret;
1014 }
1015 
1016 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1017 {
1018 	if (debug_largebar) {
1019 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1020 		return true;
1021 	}
1022 
1023 	if (dev->kfd->use_iommu_v2)
1024 		return false;
1025 
1026 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1027 	    dev->local_mem_info.local_mem_size_public > 0)
1028 		return true;
1029 
1030 	if (dev->local_mem_info.local_mem_size_public == 0 &&
1031 	    dev->kfd->adev->gmc.is_app_apu) {
1032 		pr_debug("APP APU, Consider like a large bar system\n");
1033 		return true;
1034 	}
1035 
1036 	return false;
1037 }
1038 
1039 static int kfd_ioctl_get_available_memory(struct file *filep,
1040 					  struct kfd_process *p, void *data)
1041 {
1042 	struct kfd_ioctl_get_available_memory_args *args = data;
1043 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1044 
1045 	if (!pdd)
1046 		return -EINVAL;
1047 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1048 							pdd->dev->node_id);
1049 	kfd_unlock_pdd(pdd);
1050 	return 0;
1051 }
1052 
1053 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1054 					struct kfd_process *p, void *data)
1055 {
1056 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1057 	struct kfd_process_device *pdd;
1058 	void *mem;
1059 	struct kfd_node *dev;
1060 	int idr_handle;
1061 	long err;
1062 	uint64_t offset = args->mmap_offset;
1063 	uint32_t flags = args->flags;
1064 
1065 	if (args->size == 0)
1066 		return -EINVAL;
1067 
1068 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1069 	/* Flush pending deferred work to avoid racing with deferred actions
1070 	 * from previous memory map changes (e.g. munmap).
1071 	 */
1072 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1073 	mutex_lock(&p->svms.lock);
1074 	mmap_write_unlock(current->mm);
1075 	if (interval_tree_iter_first(&p->svms.objects,
1076 				     args->va_addr >> PAGE_SHIFT,
1077 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1078 		pr_err("Address: 0x%llx already allocated by SVM\n",
1079 			args->va_addr);
1080 		mutex_unlock(&p->svms.lock);
1081 		return -EADDRINUSE;
1082 	}
1083 
1084 	/* When register user buffer check if it has been registered by svm by
1085 	 * buffer cpu virtual address.
1086 	 */
1087 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1088 	    interval_tree_iter_first(&p->svms.objects,
1089 				     args->mmap_offset >> PAGE_SHIFT,
1090 				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1091 		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1092 			args->mmap_offset);
1093 		mutex_unlock(&p->svms.lock);
1094 		return -EADDRINUSE;
1095 	}
1096 
1097 	mutex_unlock(&p->svms.lock);
1098 #endif
1099 	mutex_lock(&p->mutex);
1100 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1101 	if (!pdd) {
1102 		err = -EINVAL;
1103 		goto err_pdd;
1104 	}
1105 
1106 	dev = pdd->dev;
1107 
1108 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1109 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1110 		!kfd_dev_is_large_bar(dev)) {
1111 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1112 		err = -EINVAL;
1113 		goto err_large_bar;
1114 	}
1115 
1116 	pdd = kfd_bind_process_to_device(dev, p);
1117 	if (IS_ERR(pdd)) {
1118 		err = PTR_ERR(pdd);
1119 		goto err_unlock;
1120 	}
1121 
1122 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1123 		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1124 			err = -EINVAL;
1125 			goto err_unlock;
1126 		}
1127 		offset = kfd_get_process_doorbells(pdd);
1128 		if (!offset) {
1129 			err = -ENOMEM;
1130 			goto err_unlock;
1131 		}
1132 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1133 		if (args->size != PAGE_SIZE) {
1134 			err = -EINVAL;
1135 			goto err_unlock;
1136 		}
1137 		offset = dev->adev->rmmio_remap.bus_addr;
1138 		if (!offset) {
1139 			err = -ENOMEM;
1140 			goto err_unlock;
1141 		}
1142 	}
1143 
1144 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1145 		dev->adev, args->va_addr, args->size,
1146 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1147 		flags, false);
1148 
1149 	if (err)
1150 		goto err_unlock;
1151 
1152 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1153 	if (idr_handle < 0) {
1154 		err = -EFAULT;
1155 		goto err_free;
1156 	}
1157 
1158 	/* Update the VRAM usage count */
1159 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1160 		uint64_t size = args->size;
1161 
1162 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1163 			size >>= 1;
1164 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1165 	}
1166 
1167 	mutex_unlock(&p->mutex);
1168 
1169 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1170 	args->mmap_offset = offset;
1171 
1172 	/* MMIO is mapped through kfd device
1173 	 * Generate a kfd mmap offset
1174 	 */
1175 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1176 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1177 					| KFD_MMAP_GPU_ID(args->gpu_id);
1178 
1179 	return 0;
1180 
1181 err_free:
1182 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1183 					       pdd->drm_priv, NULL);
1184 err_unlock:
1185 err_pdd:
1186 err_large_bar:
1187 	mutex_unlock(&p->mutex);
1188 	return err;
1189 }
1190 
1191 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1192 					struct kfd_process *p, void *data)
1193 {
1194 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1195 	struct kfd_process_device *pdd;
1196 	void *mem;
1197 	int ret;
1198 	uint64_t size = 0;
1199 
1200 	mutex_lock(&p->mutex);
1201 	/*
1202 	 * Safeguard to prevent user space from freeing signal BO.
1203 	 * It will be freed at process termination.
1204 	 */
1205 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1206 		pr_err("Free signal BO is not allowed\n");
1207 		ret = -EPERM;
1208 		goto err_unlock;
1209 	}
1210 
1211 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1212 	if (!pdd) {
1213 		pr_err("Process device data doesn't exist\n");
1214 		ret = -EINVAL;
1215 		goto err_pdd;
1216 	}
1217 
1218 	mem = kfd_process_device_translate_handle(
1219 		pdd, GET_IDR_HANDLE(args->handle));
1220 	if (!mem) {
1221 		ret = -EINVAL;
1222 		goto err_unlock;
1223 	}
1224 
1225 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1226 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1227 
1228 	/* If freeing the buffer failed, leave the handle in place for
1229 	 * clean-up during process tear-down.
1230 	 */
1231 	if (!ret)
1232 		kfd_process_device_remove_obj_handle(
1233 			pdd, GET_IDR_HANDLE(args->handle));
1234 
1235 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1236 
1237 err_unlock:
1238 err_pdd:
1239 	mutex_unlock(&p->mutex);
1240 	return ret;
1241 }
1242 
1243 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1244 					struct kfd_process *p, void *data)
1245 {
1246 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1247 	struct kfd_process_device *pdd, *peer_pdd;
1248 	void *mem;
1249 	struct kfd_node *dev;
1250 	long err = 0;
1251 	int i;
1252 	uint32_t *devices_arr = NULL;
1253 
1254 	if (!args->n_devices) {
1255 		pr_debug("Device IDs array empty\n");
1256 		return -EINVAL;
1257 	}
1258 	if (args->n_success > args->n_devices) {
1259 		pr_debug("n_success exceeds n_devices\n");
1260 		return -EINVAL;
1261 	}
1262 
1263 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1264 				    GFP_KERNEL);
1265 	if (!devices_arr)
1266 		return -ENOMEM;
1267 
1268 	err = copy_from_user(devices_arr,
1269 			     (void __user *)args->device_ids_array_ptr,
1270 			     args->n_devices * sizeof(*devices_arr));
1271 	if (err != 0) {
1272 		err = -EFAULT;
1273 		goto copy_from_user_failed;
1274 	}
1275 
1276 	mutex_lock(&p->mutex);
1277 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1278 	if (!pdd) {
1279 		err = -EINVAL;
1280 		goto get_process_device_data_failed;
1281 	}
1282 	dev = pdd->dev;
1283 
1284 	pdd = kfd_bind_process_to_device(dev, p);
1285 	if (IS_ERR(pdd)) {
1286 		err = PTR_ERR(pdd);
1287 		goto bind_process_to_device_failed;
1288 	}
1289 
1290 	mem = kfd_process_device_translate_handle(pdd,
1291 						GET_IDR_HANDLE(args->handle));
1292 	if (!mem) {
1293 		err = -ENOMEM;
1294 		goto get_mem_obj_from_handle_failed;
1295 	}
1296 
1297 	for (i = args->n_success; i < args->n_devices; i++) {
1298 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1299 		if (!peer_pdd) {
1300 			pr_debug("Getting device by id failed for 0x%x\n",
1301 				 devices_arr[i]);
1302 			err = -EINVAL;
1303 			goto get_mem_obj_from_handle_failed;
1304 		}
1305 
1306 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1307 		if (IS_ERR(peer_pdd)) {
1308 			err = PTR_ERR(peer_pdd);
1309 			goto get_mem_obj_from_handle_failed;
1310 		}
1311 
1312 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1313 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1314 			peer_pdd->drm_priv);
1315 		if (err) {
1316 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1317 
1318 			dev_err(dev->adev->dev,
1319 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1320 			       pci_domain_nr(pdev->bus),
1321 			       pdev->bus->number,
1322 			       PCI_SLOT(pdev->devfn),
1323 			       PCI_FUNC(pdev->devfn),
1324 			       ((struct kgd_mem *)mem)->domain);
1325 			goto map_memory_to_gpu_failed;
1326 		}
1327 		args->n_success = i+1;
1328 	}
1329 
1330 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1331 	if (err) {
1332 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1333 		goto sync_memory_failed;
1334 	}
1335 
1336 	mutex_unlock(&p->mutex);
1337 
1338 	/* Flush TLBs after waiting for the page table updates to complete */
1339 	for (i = 0; i < args->n_devices; i++) {
1340 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1341 		if (WARN_ON_ONCE(!peer_pdd))
1342 			continue;
1343 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1344 	}
1345 	kfree(devices_arr);
1346 
1347 	return err;
1348 
1349 get_process_device_data_failed:
1350 bind_process_to_device_failed:
1351 get_mem_obj_from_handle_failed:
1352 map_memory_to_gpu_failed:
1353 sync_memory_failed:
1354 	mutex_unlock(&p->mutex);
1355 copy_from_user_failed:
1356 	kfree(devices_arr);
1357 
1358 	return err;
1359 }
1360 
1361 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1362 					struct kfd_process *p, void *data)
1363 {
1364 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1365 	struct kfd_process_device *pdd, *peer_pdd;
1366 	void *mem;
1367 	long err = 0;
1368 	uint32_t *devices_arr = NULL, i;
1369 	bool flush_tlb;
1370 
1371 	if (!args->n_devices) {
1372 		pr_debug("Device IDs array empty\n");
1373 		return -EINVAL;
1374 	}
1375 	if (args->n_success > args->n_devices) {
1376 		pr_debug("n_success exceeds n_devices\n");
1377 		return -EINVAL;
1378 	}
1379 
1380 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1381 				    GFP_KERNEL);
1382 	if (!devices_arr)
1383 		return -ENOMEM;
1384 
1385 	err = copy_from_user(devices_arr,
1386 			     (void __user *)args->device_ids_array_ptr,
1387 			     args->n_devices * sizeof(*devices_arr));
1388 	if (err != 0) {
1389 		err = -EFAULT;
1390 		goto copy_from_user_failed;
1391 	}
1392 
1393 	mutex_lock(&p->mutex);
1394 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1395 	if (!pdd) {
1396 		err = -EINVAL;
1397 		goto bind_process_to_device_failed;
1398 	}
1399 
1400 	mem = kfd_process_device_translate_handle(pdd,
1401 						GET_IDR_HANDLE(args->handle));
1402 	if (!mem) {
1403 		err = -ENOMEM;
1404 		goto get_mem_obj_from_handle_failed;
1405 	}
1406 
1407 	for (i = args->n_success; i < args->n_devices; i++) {
1408 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1409 		if (!peer_pdd) {
1410 			err = -EINVAL;
1411 			goto get_mem_obj_from_handle_failed;
1412 		}
1413 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1414 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1415 		if (err) {
1416 			pr_err("Failed to unmap from gpu %d/%d\n",
1417 			       i, args->n_devices);
1418 			goto unmap_memory_from_gpu_failed;
1419 		}
1420 		args->n_success = i+1;
1421 	}
1422 
1423 	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1424 	if (flush_tlb) {
1425 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1426 				(struct kgd_mem *) mem, true);
1427 		if (err) {
1428 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1429 			goto sync_memory_failed;
1430 		}
1431 	}
1432 	mutex_unlock(&p->mutex);
1433 
1434 	if (flush_tlb) {
1435 		/* Flush TLBs after waiting for the page table updates to complete */
1436 		for (i = 0; i < args->n_devices; i++) {
1437 			peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1438 			if (WARN_ON_ONCE(!peer_pdd))
1439 				continue;
1440 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1441 		}
1442 	}
1443 	kfree(devices_arr);
1444 
1445 	return 0;
1446 
1447 bind_process_to_device_failed:
1448 get_mem_obj_from_handle_failed:
1449 unmap_memory_from_gpu_failed:
1450 sync_memory_failed:
1451 	mutex_unlock(&p->mutex);
1452 copy_from_user_failed:
1453 	kfree(devices_arr);
1454 	return err;
1455 }
1456 
1457 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1458 		struct kfd_process *p, void *data)
1459 {
1460 	int retval;
1461 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1462 	struct queue *q;
1463 	struct kfd_node *dev;
1464 
1465 	mutex_lock(&p->mutex);
1466 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1467 
1468 	if (q) {
1469 		dev = q->device;
1470 	} else {
1471 		retval = -EINVAL;
1472 		goto out_unlock;
1473 	}
1474 
1475 	if (!dev->gws) {
1476 		retval = -ENODEV;
1477 		goto out_unlock;
1478 	}
1479 
1480 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1481 		retval = -ENODEV;
1482 		goto out_unlock;
1483 	}
1484 
1485 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1486 	mutex_unlock(&p->mutex);
1487 
1488 	args->first_gws = 0;
1489 	return retval;
1490 
1491 out_unlock:
1492 	mutex_unlock(&p->mutex);
1493 	return retval;
1494 }
1495 
1496 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1497 		struct kfd_process *p, void *data)
1498 {
1499 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1500 	struct kfd_node *dev = NULL;
1501 	struct amdgpu_device *dmabuf_adev;
1502 	void *metadata_buffer = NULL;
1503 	uint32_t flags;
1504 	int8_t xcp_id;
1505 	unsigned int i;
1506 	int r;
1507 
1508 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1509 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1510 		if (dev)
1511 			break;
1512 	if (!dev)
1513 		return -EINVAL;
1514 
1515 	if (args->metadata_ptr) {
1516 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1517 		if (!metadata_buffer)
1518 			return -ENOMEM;
1519 	}
1520 
1521 	/* Get dmabuf info from KGD */
1522 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1523 					  &dmabuf_adev, &args->size,
1524 					  metadata_buffer, args->metadata_size,
1525 					  &args->metadata_size, &flags, &xcp_id);
1526 	if (r)
1527 		goto exit;
1528 
1529 	if (xcp_id >= 0)
1530 		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1531 	else
1532 		args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1533 	args->flags = flags;
1534 
1535 	/* Copy metadata buffer to user mode */
1536 	if (metadata_buffer) {
1537 		r = copy_to_user((void __user *)args->metadata_ptr,
1538 				 metadata_buffer, args->metadata_size);
1539 		if (r != 0)
1540 			r = -EFAULT;
1541 	}
1542 
1543 exit:
1544 	kfree(metadata_buffer);
1545 
1546 	return r;
1547 }
1548 
1549 static int kfd_ioctl_import_dmabuf(struct file *filep,
1550 				   struct kfd_process *p, void *data)
1551 {
1552 	struct kfd_ioctl_import_dmabuf_args *args = data;
1553 	struct kfd_process_device *pdd;
1554 	struct dma_buf *dmabuf;
1555 	int idr_handle;
1556 	uint64_t size;
1557 	void *mem;
1558 	int r;
1559 
1560 	dmabuf = dma_buf_get(args->dmabuf_fd);
1561 	if (IS_ERR(dmabuf))
1562 		return PTR_ERR(dmabuf);
1563 
1564 	mutex_lock(&p->mutex);
1565 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1566 	if (!pdd) {
1567 		r = -EINVAL;
1568 		goto err_unlock;
1569 	}
1570 
1571 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1572 	if (IS_ERR(pdd)) {
1573 		r = PTR_ERR(pdd);
1574 		goto err_unlock;
1575 	}
1576 
1577 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1578 					      args->va_addr, pdd->drm_priv,
1579 					      (struct kgd_mem **)&mem, &size,
1580 					      NULL);
1581 	if (r)
1582 		goto err_unlock;
1583 
1584 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1585 	if (idr_handle < 0) {
1586 		r = -EFAULT;
1587 		goto err_free;
1588 	}
1589 
1590 	mutex_unlock(&p->mutex);
1591 	dma_buf_put(dmabuf);
1592 
1593 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1594 
1595 	return 0;
1596 
1597 err_free:
1598 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1599 					       pdd->drm_priv, NULL);
1600 err_unlock:
1601 	mutex_unlock(&p->mutex);
1602 	dma_buf_put(dmabuf);
1603 	return r;
1604 }
1605 
1606 static int kfd_ioctl_export_dmabuf(struct file *filep,
1607 				   struct kfd_process *p, void *data)
1608 {
1609 	struct kfd_ioctl_export_dmabuf_args *args = data;
1610 	struct kfd_process_device *pdd;
1611 	struct dma_buf *dmabuf;
1612 	struct kfd_node *dev;
1613 	void *mem;
1614 	int ret = 0;
1615 
1616 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1617 	if (!dev)
1618 		return -EINVAL;
1619 
1620 	mutex_lock(&p->mutex);
1621 
1622 	pdd = kfd_get_process_device_data(dev, p);
1623 	if (!pdd) {
1624 		ret = -EINVAL;
1625 		goto err_unlock;
1626 	}
1627 
1628 	mem = kfd_process_device_translate_handle(pdd,
1629 						GET_IDR_HANDLE(args->handle));
1630 	if (!mem) {
1631 		ret = -EINVAL;
1632 		goto err_unlock;
1633 	}
1634 
1635 	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1636 	mutex_unlock(&p->mutex);
1637 	if (ret)
1638 		goto err_out;
1639 
1640 	ret = dma_buf_fd(dmabuf, args->flags);
1641 	if (ret < 0) {
1642 		dma_buf_put(dmabuf);
1643 		goto err_out;
1644 	}
1645 	/* dma_buf_fd assigns the reference count to the fd, no need to
1646 	 * put the reference here.
1647 	 */
1648 	args->dmabuf_fd = ret;
1649 
1650 	return 0;
1651 
1652 err_unlock:
1653 	mutex_unlock(&p->mutex);
1654 err_out:
1655 	return ret;
1656 }
1657 
1658 /* Handle requests for watching SMI events */
1659 static int kfd_ioctl_smi_events(struct file *filep,
1660 				struct kfd_process *p, void *data)
1661 {
1662 	struct kfd_ioctl_smi_events_args *args = data;
1663 	struct kfd_process_device *pdd;
1664 
1665 	mutex_lock(&p->mutex);
1666 
1667 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1668 	mutex_unlock(&p->mutex);
1669 	if (!pdd)
1670 		return -EINVAL;
1671 
1672 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1673 }
1674 
1675 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1676 
1677 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1678 				    struct kfd_process *p, void *data)
1679 {
1680 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1681 	int r = 0;
1682 
1683 	mutex_lock(&p->mutex);
1684 	if (args->xnack_enabled >= 0) {
1685 		if (!list_empty(&p->pqm.queues)) {
1686 			pr_debug("Process has user queues running\n");
1687 			r = -EBUSY;
1688 			goto out_unlock;
1689 		}
1690 
1691 		if (p->xnack_enabled == args->xnack_enabled)
1692 			goto out_unlock;
1693 
1694 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1695 			r = -EPERM;
1696 			goto out_unlock;
1697 		}
1698 
1699 		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1700 	} else {
1701 		args->xnack_enabled = p->xnack_enabled;
1702 	}
1703 
1704 out_unlock:
1705 	mutex_unlock(&p->mutex);
1706 
1707 	return r;
1708 }
1709 
1710 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1711 {
1712 	struct kfd_ioctl_svm_args *args = data;
1713 	int r = 0;
1714 
1715 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1716 		 args->start_addr, args->size, args->op, args->nattr);
1717 
1718 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1719 		return -EINVAL;
1720 	if (!args->start_addr || !args->size)
1721 		return -EINVAL;
1722 
1723 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1724 		      args->attrs);
1725 
1726 	return r;
1727 }
1728 #else
1729 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1730 				    struct kfd_process *p, void *data)
1731 {
1732 	return -EPERM;
1733 }
1734 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1735 {
1736 	return -EPERM;
1737 }
1738 #endif
1739 
1740 static int criu_checkpoint_process(struct kfd_process *p,
1741 			     uint8_t __user *user_priv_data,
1742 			     uint64_t *priv_offset)
1743 {
1744 	struct kfd_criu_process_priv_data process_priv;
1745 	int ret;
1746 
1747 	memset(&process_priv, 0, sizeof(process_priv));
1748 
1749 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1750 	/* For CR, we don't consider negative xnack mode which is used for
1751 	 * querying without changing it, here 0 simply means disabled and 1
1752 	 * means enabled so retry for finding a valid PTE.
1753 	 */
1754 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1755 
1756 	ret = copy_to_user(user_priv_data + *priv_offset,
1757 				&process_priv, sizeof(process_priv));
1758 
1759 	if (ret) {
1760 		pr_err("Failed to copy process information to user\n");
1761 		ret = -EFAULT;
1762 	}
1763 
1764 	*priv_offset += sizeof(process_priv);
1765 	return ret;
1766 }
1767 
1768 static int criu_checkpoint_devices(struct kfd_process *p,
1769 			     uint32_t num_devices,
1770 			     uint8_t __user *user_addr,
1771 			     uint8_t __user *user_priv_data,
1772 			     uint64_t *priv_offset)
1773 {
1774 	struct kfd_criu_device_priv_data *device_priv = NULL;
1775 	struct kfd_criu_device_bucket *device_buckets = NULL;
1776 	int ret = 0, i;
1777 
1778 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1779 	if (!device_buckets) {
1780 		ret = -ENOMEM;
1781 		goto exit;
1782 	}
1783 
1784 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1785 	if (!device_priv) {
1786 		ret = -ENOMEM;
1787 		goto exit;
1788 	}
1789 
1790 	for (i = 0; i < num_devices; i++) {
1791 		struct kfd_process_device *pdd = p->pdds[i];
1792 
1793 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1794 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1795 
1796 		/*
1797 		 * priv_data does not contain useful information for now and is reserved for
1798 		 * future use, so we do not set its contents.
1799 		 */
1800 	}
1801 
1802 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1803 	if (ret) {
1804 		pr_err("Failed to copy device information to user\n");
1805 		ret = -EFAULT;
1806 		goto exit;
1807 	}
1808 
1809 	ret = copy_to_user(user_priv_data + *priv_offset,
1810 			   device_priv,
1811 			   num_devices * sizeof(*device_priv));
1812 	if (ret) {
1813 		pr_err("Failed to copy device information to user\n");
1814 		ret = -EFAULT;
1815 	}
1816 	*priv_offset += num_devices * sizeof(*device_priv);
1817 
1818 exit:
1819 	kvfree(device_buckets);
1820 	kvfree(device_priv);
1821 	return ret;
1822 }
1823 
1824 static uint32_t get_process_num_bos(struct kfd_process *p)
1825 {
1826 	uint32_t num_of_bos = 0;
1827 	int i;
1828 
1829 	/* Run over all PDDs of the process */
1830 	for (i = 0; i < p->n_pdds; i++) {
1831 		struct kfd_process_device *pdd = p->pdds[i];
1832 		void *mem;
1833 		int id;
1834 
1835 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1836 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1837 
1838 			if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1839 				num_of_bos++;
1840 		}
1841 	}
1842 	return num_of_bos;
1843 }
1844 
1845 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1846 				      u32 *shared_fd)
1847 {
1848 	struct dma_buf *dmabuf;
1849 	int ret;
1850 
1851 	dmabuf = amdgpu_gem_prime_export(gobj, flags);
1852 	if (IS_ERR(dmabuf)) {
1853 		ret = PTR_ERR(dmabuf);
1854 		pr_err("dmabuf export failed for the BO\n");
1855 		return ret;
1856 	}
1857 
1858 	ret = dma_buf_fd(dmabuf, flags);
1859 	if (ret < 0) {
1860 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1861 		goto out_free_dmabuf;
1862 	}
1863 
1864 	*shared_fd = ret;
1865 	return 0;
1866 
1867 out_free_dmabuf:
1868 	dma_buf_put(dmabuf);
1869 	return ret;
1870 }
1871 
1872 static int criu_checkpoint_bos(struct kfd_process *p,
1873 			       uint32_t num_bos,
1874 			       uint8_t __user *user_bos,
1875 			       uint8_t __user *user_priv_data,
1876 			       uint64_t *priv_offset)
1877 {
1878 	struct kfd_criu_bo_bucket *bo_buckets;
1879 	struct kfd_criu_bo_priv_data *bo_privs;
1880 	int ret = 0, pdd_index, bo_index = 0, id;
1881 	void *mem;
1882 
1883 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1884 	if (!bo_buckets)
1885 		return -ENOMEM;
1886 
1887 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1888 	if (!bo_privs) {
1889 		ret = -ENOMEM;
1890 		goto exit;
1891 	}
1892 
1893 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1894 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1895 		struct amdgpu_bo *dumper_bo;
1896 		struct kgd_mem *kgd_mem;
1897 
1898 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1899 			struct kfd_criu_bo_bucket *bo_bucket;
1900 			struct kfd_criu_bo_priv_data *bo_priv;
1901 			int i, dev_idx = 0;
1902 
1903 			if (!mem) {
1904 				ret = -ENOMEM;
1905 				goto exit;
1906 			}
1907 
1908 			kgd_mem = (struct kgd_mem *)mem;
1909 			dumper_bo = kgd_mem->bo;
1910 
1911 			if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
1912 				continue;
1913 
1914 			bo_bucket = &bo_buckets[bo_index];
1915 			bo_priv = &bo_privs[bo_index];
1916 
1917 			bo_bucket->gpu_id = pdd->user_gpu_id;
1918 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1919 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1920 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1921 			bo_priv->idr_handle = id;
1922 
1923 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1924 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1925 								&bo_priv->user_addr);
1926 				if (ret) {
1927 					pr_err("Failed to obtain user address for user-pointer bo\n");
1928 					goto exit;
1929 				}
1930 			}
1931 			if (bo_bucket->alloc_flags
1932 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1933 				ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1934 						bo_bucket->alloc_flags &
1935 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1936 						&bo_bucket->dmabuf_fd);
1937 				if (ret)
1938 					goto exit;
1939 			} else {
1940 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1941 			}
1942 
1943 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1944 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1945 					KFD_MMAP_GPU_ID(pdd->dev->id);
1946 			else if (bo_bucket->alloc_flags &
1947 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1948 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1949 					KFD_MMAP_GPU_ID(pdd->dev->id);
1950 			else
1951 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1952 
1953 			for (i = 0; i < p->n_pdds; i++) {
1954 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1955 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1956 			}
1957 
1958 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1959 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1960 					bo_bucket->size,
1961 					bo_bucket->addr,
1962 					bo_bucket->offset,
1963 					bo_bucket->gpu_id,
1964 					bo_bucket->alloc_flags,
1965 					bo_priv->idr_handle);
1966 			bo_index++;
1967 		}
1968 	}
1969 
1970 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1971 	if (ret) {
1972 		pr_err("Failed to copy BO information to user\n");
1973 		ret = -EFAULT;
1974 		goto exit;
1975 	}
1976 
1977 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1978 	if (ret) {
1979 		pr_err("Failed to copy BO priv information to user\n");
1980 		ret = -EFAULT;
1981 		goto exit;
1982 	}
1983 
1984 	*priv_offset += num_bos * sizeof(*bo_privs);
1985 
1986 exit:
1987 	while (ret && bo_index--) {
1988 		if (bo_buckets[bo_index].alloc_flags
1989 		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1990 			close_fd(bo_buckets[bo_index].dmabuf_fd);
1991 	}
1992 
1993 	kvfree(bo_buckets);
1994 	kvfree(bo_privs);
1995 	return ret;
1996 }
1997 
1998 static int criu_get_process_object_info(struct kfd_process *p,
1999 					uint32_t *num_devices,
2000 					uint32_t *num_bos,
2001 					uint32_t *num_objects,
2002 					uint64_t *objs_priv_size)
2003 {
2004 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2005 	uint32_t num_queues, num_events, num_svm_ranges;
2006 	int ret;
2007 
2008 	*num_devices = p->n_pdds;
2009 	*num_bos = get_process_num_bos(p);
2010 
2011 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2012 	if (ret)
2013 		return ret;
2014 
2015 	num_events = kfd_get_num_events(p);
2016 
2017 	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2018 	if (ret)
2019 		return ret;
2020 
2021 	*num_objects = num_queues + num_events + num_svm_ranges;
2022 
2023 	if (objs_priv_size) {
2024 		priv_size = sizeof(struct kfd_criu_process_priv_data);
2025 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2026 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2027 		priv_size += queues_priv_data_size;
2028 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2029 		priv_size += svm_priv_data_size;
2030 		*objs_priv_size = priv_size;
2031 	}
2032 	return 0;
2033 }
2034 
2035 static int criu_checkpoint(struct file *filep,
2036 			   struct kfd_process *p,
2037 			   struct kfd_ioctl_criu_args *args)
2038 {
2039 	int ret;
2040 	uint32_t num_devices, num_bos, num_objects;
2041 	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2042 
2043 	if (!args->devices || !args->bos || !args->priv_data)
2044 		return -EINVAL;
2045 
2046 	mutex_lock(&p->mutex);
2047 
2048 	if (!p->n_pdds) {
2049 		pr_err("No pdd for given process\n");
2050 		ret = -ENODEV;
2051 		goto exit_unlock;
2052 	}
2053 
2054 	/* Confirm all process queues are evicted */
2055 	if (!p->queues_paused) {
2056 		pr_err("Cannot dump process when queues are not in evicted state\n");
2057 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2058 		ret = -EINVAL;
2059 		goto exit_unlock;
2060 	}
2061 
2062 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2063 	if (ret)
2064 		goto exit_unlock;
2065 
2066 	if (num_devices != args->num_devices ||
2067 	    num_bos != args->num_bos ||
2068 	    num_objects != args->num_objects ||
2069 	    priv_size != args->priv_data_size) {
2070 
2071 		ret = -EINVAL;
2072 		goto exit_unlock;
2073 	}
2074 
2075 	/* each function will store private data inside priv_data and adjust priv_offset */
2076 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2077 	if (ret)
2078 		goto exit_unlock;
2079 
2080 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2081 				(uint8_t __user *)args->priv_data, &priv_offset);
2082 	if (ret)
2083 		goto exit_unlock;
2084 
2085 	/* Leave room for BOs in the private data. They need to be restored
2086 	 * before events, but we checkpoint them last to simplify the error
2087 	 * handling.
2088 	 */
2089 	bo_priv_offset = priv_offset;
2090 	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2091 
2092 	if (num_objects) {
2093 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2094 						 &priv_offset);
2095 		if (ret)
2096 			goto exit_unlock;
2097 
2098 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2099 						 &priv_offset);
2100 		if (ret)
2101 			goto exit_unlock;
2102 
2103 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2104 		if (ret)
2105 			goto exit_unlock;
2106 	}
2107 
2108 	/* This must be the last thing in this function that can fail.
2109 	 * Otherwise we leak dmabuf file descriptors.
2110 	 */
2111 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2112 			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2113 
2114 exit_unlock:
2115 	mutex_unlock(&p->mutex);
2116 	if (ret)
2117 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2118 	else
2119 		pr_debug("CRIU dump ret:%d\n", ret);
2120 
2121 	return ret;
2122 }
2123 
2124 static int criu_restore_process(struct kfd_process *p,
2125 				struct kfd_ioctl_criu_args *args,
2126 				uint64_t *priv_offset,
2127 				uint64_t max_priv_data_size)
2128 {
2129 	int ret = 0;
2130 	struct kfd_criu_process_priv_data process_priv;
2131 
2132 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2133 		return -EINVAL;
2134 
2135 	ret = copy_from_user(&process_priv,
2136 				(void __user *)(args->priv_data + *priv_offset),
2137 				sizeof(process_priv));
2138 	if (ret) {
2139 		pr_err("Failed to copy process private information from user\n");
2140 		ret = -EFAULT;
2141 		goto exit;
2142 	}
2143 	*priv_offset += sizeof(process_priv);
2144 
2145 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2146 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2147 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2148 		return -EINVAL;
2149 	}
2150 
2151 	pr_debug("Setting XNACK mode\n");
2152 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2153 		pr_err("xnack mode cannot be set\n");
2154 		ret = -EPERM;
2155 		goto exit;
2156 	} else {
2157 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2158 		p->xnack_enabled = process_priv.xnack_mode;
2159 	}
2160 
2161 exit:
2162 	return ret;
2163 }
2164 
2165 static int criu_restore_devices(struct kfd_process *p,
2166 				struct kfd_ioctl_criu_args *args,
2167 				uint64_t *priv_offset,
2168 				uint64_t max_priv_data_size)
2169 {
2170 	struct kfd_criu_device_bucket *device_buckets;
2171 	struct kfd_criu_device_priv_data *device_privs;
2172 	int ret = 0;
2173 	uint32_t i;
2174 
2175 	if (args->num_devices != p->n_pdds)
2176 		return -EINVAL;
2177 
2178 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2179 		return -EINVAL;
2180 
2181 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2182 	if (!device_buckets)
2183 		return -ENOMEM;
2184 
2185 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2186 				args->num_devices * sizeof(*device_buckets));
2187 	if (ret) {
2188 		pr_err("Failed to copy devices buckets from user\n");
2189 		ret = -EFAULT;
2190 		goto exit;
2191 	}
2192 
2193 	for (i = 0; i < args->num_devices; i++) {
2194 		struct kfd_node *dev;
2195 		struct kfd_process_device *pdd;
2196 		struct file *drm_file;
2197 
2198 		/* device private data is not currently used */
2199 
2200 		if (!device_buckets[i].user_gpu_id) {
2201 			pr_err("Invalid user gpu_id\n");
2202 			ret = -EINVAL;
2203 			goto exit;
2204 		}
2205 
2206 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2207 		if (!dev) {
2208 			pr_err("Failed to find device with gpu_id = %x\n",
2209 				device_buckets[i].actual_gpu_id);
2210 			ret = -EINVAL;
2211 			goto exit;
2212 		}
2213 
2214 		pdd = kfd_get_process_device_data(dev, p);
2215 		if (!pdd) {
2216 			pr_err("Failed to get pdd for gpu_id = %x\n",
2217 					device_buckets[i].actual_gpu_id);
2218 			ret = -EINVAL;
2219 			goto exit;
2220 		}
2221 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2222 
2223 		drm_file = fget(device_buckets[i].drm_fd);
2224 		if (!drm_file) {
2225 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2226 				device_buckets[i].drm_fd);
2227 			ret = -EINVAL;
2228 			goto exit;
2229 		}
2230 
2231 		if (pdd->drm_file) {
2232 			ret = -EINVAL;
2233 			goto exit;
2234 		}
2235 
2236 		/* create the vm using render nodes for kfd pdd */
2237 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2238 			pr_err("could not init vm for given pdd\n");
2239 			/* On success, the PDD keeps the drm_file reference */
2240 			fput(drm_file);
2241 			ret = -EINVAL;
2242 			goto exit;
2243 		}
2244 		/*
2245 		 * pdd now already has the vm bound to render node so below api won't create a new
2246 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2247 		 * for iommu v2 binding  and runtime pm.
2248 		 */
2249 		pdd = kfd_bind_process_to_device(dev, p);
2250 		if (IS_ERR(pdd)) {
2251 			ret = PTR_ERR(pdd);
2252 			goto exit;
2253 		}
2254 
2255 		if (!pdd->doorbell_index &&
2256 		    kfd_alloc_process_doorbells(pdd->dev->kfd, &pdd->doorbell_index) < 0) {
2257 			ret = -ENOMEM;
2258 			goto exit;
2259 		}
2260 	}
2261 
2262 	/*
2263 	 * We are not copying device private data from user as we are not using the data for now,
2264 	 * but we still adjust for its private data.
2265 	 */
2266 	*priv_offset += args->num_devices * sizeof(*device_privs);
2267 
2268 exit:
2269 	kfree(device_buckets);
2270 	return ret;
2271 }
2272 
2273 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2274 				      struct kfd_criu_bo_bucket *bo_bucket,
2275 				      struct kfd_criu_bo_priv_data *bo_priv,
2276 				      struct kgd_mem **kgd_mem)
2277 {
2278 	int idr_handle;
2279 	int ret;
2280 	const bool criu_resume = true;
2281 	u64 offset;
2282 
2283 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2284 		if (bo_bucket->size !=
2285 				kfd_doorbell_process_slice(pdd->dev->kfd))
2286 			return -EINVAL;
2287 
2288 		offset = kfd_get_process_doorbells(pdd);
2289 		if (!offset)
2290 			return -ENOMEM;
2291 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2292 		/* MMIO BOs need remapped bus address */
2293 		if (bo_bucket->size != PAGE_SIZE) {
2294 			pr_err("Invalid page size\n");
2295 			return -EINVAL;
2296 		}
2297 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2298 		if (!offset) {
2299 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2300 			return -ENOMEM;
2301 		}
2302 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2303 		offset = bo_priv->user_addr;
2304 	}
2305 	/* Create the BO */
2306 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2307 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2308 						      &offset, bo_bucket->alloc_flags, criu_resume);
2309 	if (ret) {
2310 		pr_err("Could not create the BO\n");
2311 		return ret;
2312 	}
2313 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2314 		 bo_bucket->size, bo_bucket->addr, offset);
2315 
2316 	/* Restore previous IDR handle */
2317 	pr_debug("Restoring old IDR handle for the BO");
2318 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2319 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2320 
2321 	if (idr_handle < 0) {
2322 		pr_err("Could not allocate idr\n");
2323 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2324 						       NULL);
2325 		return -ENOMEM;
2326 	}
2327 
2328 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2329 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2330 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2331 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2332 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2333 		bo_bucket->restored_offset = offset;
2334 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2335 		bo_bucket->restored_offset = offset;
2336 		/* Update the VRAM usage count */
2337 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2338 	}
2339 	return 0;
2340 }
2341 
2342 static int criu_restore_bo(struct kfd_process *p,
2343 			   struct kfd_criu_bo_bucket *bo_bucket,
2344 			   struct kfd_criu_bo_priv_data *bo_priv)
2345 {
2346 	struct kfd_process_device *pdd;
2347 	struct kgd_mem *kgd_mem;
2348 	int ret;
2349 	int j;
2350 
2351 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2352 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2353 		 bo_priv->idr_handle);
2354 
2355 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2356 	if (!pdd) {
2357 		pr_err("Failed to get pdd\n");
2358 		return -ENODEV;
2359 	}
2360 
2361 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2362 	if (ret)
2363 		return ret;
2364 
2365 	/* now map these BOs to GPU/s */
2366 	for (j = 0; j < p->n_pdds; j++) {
2367 		struct kfd_node *peer;
2368 		struct kfd_process_device *peer_pdd;
2369 
2370 		if (!bo_priv->mapped_gpuids[j])
2371 			break;
2372 
2373 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2374 		if (!peer_pdd)
2375 			return -EINVAL;
2376 
2377 		peer = peer_pdd->dev;
2378 
2379 		peer_pdd = kfd_bind_process_to_device(peer, p);
2380 		if (IS_ERR(peer_pdd))
2381 			return PTR_ERR(peer_pdd);
2382 
2383 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2384 							    peer_pdd->drm_priv);
2385 		if (ret) {
2386 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2387 			return ret;
2388 		}
2389 	}
2390 
2391 	pr_debug("map memory was successful for the BO\n");
2392 	/* create the dmabuf object and export the bo */
2393 	if (bo_bucket->alloc_flags
2394 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2395 		ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2396 					    &bo_bucket->dmabuf_fd);
2397 		if (ret)
2398 			return ret;
2399 	} else {
2400 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int criu_restore_bos(struct kfd_process *p,
2407 			    struct kfd_ioctl_criu_args *args,
2408 			    uint64_t *priv_offset,
2409 			    uint64_t max_priv_data_size)
2410 {
2411 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2412 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2413 	int ret = 0;
2414 	uint32_t i = 0;
2415 
2416 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2417 		return -EINVAL;
2418 
2419 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2420 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2421 
2422 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2423 	if (!bo_buckets)
2424 		return -ENOMEM;
2425 
2426 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2427 			     args->num_bos * sizeof(*bo_buckets));
2428 	if (ret) {
2429 		pr_err("Failed to copy BOs information from user\n");
2430 		ret = -EFAULT;
2431 		goto exit;
2432 	}
2433 
2434 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2435 	if (!bo_privs) {
2436 		ret = -ENOMEM;
2437 		goto exit;
2438 	}
2439 
2440 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2441 			     args->num_bos * sizeof(*bo_privs));
2442 	if (ret) {
2443 		pr_err("Failed to copy BOs information from user\n");
2444 		ret = -EFAULT;
2445 		goto exit;
2446 	}
2447 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2448 
2449 	/* Create and map new BOs */
2450 	for (; i < args->num_bos; i++) {
2451 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2452 		if (ret) {
2453 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2454 			goto exit;
2455 		}
2456 	} /* done */
2457 
2458 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2459 	ret = copy_to_user((void __user *)args->bos,
2460 				bo_buckets,
2461 				(args->num_bos * sizeof(*bo_buckets)));
2462 	if (ret)
2463 		ret = -EFAULT;
2464 
2465 exit:
2466 	while (ret && i--) {
2467 		if (bo_buckets[i].alloc_flags
2468 		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2469 			close_fd(bo_buckets[i].dmabuf_fd);
2470 	}
2471 	kvfree(bo_buckets);
2472 	kvfree(bo_privs);
2473 	return ret;
2474 }
2475 
2476 static int criu_restore_objects(struct file *filep,
2477 				struct kfd_process *p,
2478 				struct kfd_ioctl_criu_args *args,
2479 				uint64_t *priv_offset,
2480 				uint64_t max_priv_data_size)
2481 {
2482 	int ret = 0;
2483 	uint32_t i;
2484 
2485 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2486 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2487 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2488 
2489 	for (i = 0; i < args->num_objects; i++) {
2490 		uint32_t object_type;
2491 
2492 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2493 			pr_err("Invalid private data size\n");
2494 			return -EINVAL;
2495 		}
2496 
2497 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2498 		if (ret) {
2499 			pr_err("Failed to copy private information from user\n");
2500 			goto exit;
2501 		}
2502 
2503 		switch (object_type) {
2504 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2505 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2506 						     priv_offset, max_priv_data_size);
2507 			if (ret)
2508 				goto exit;
2509 			break;
2510 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2511 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2512 						     priv_offset, max_priv_data_size);
2513 			if (ret)
2514 				goto exit;
2515 			break;
2516 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2517 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2518 						     priv_offset, max_priv_data_size);
2519 			if (ret)
2520 				goto exit;
2521 			break;
2522 		default:
2523 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2524 			ret = -EINVAL;
2525 			goto exit;
2526 		}
2527 	}
2528 exit:
2529 	return ret;
2530 }
2531 
2532 static int criu_restore(struct file *filep,
2533 			struct kfd_process *p,
2534 			struct kfd_ioctl_criu_args *args)
2535 {
2536 	uint64_t priv_offset = 0;
2537 	int ret = 0;
2538 
2539 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2540 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2541 
2542 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2543 	    !args->num_devices || !args->num_bos)
2544 		return -EINVAL;
2545 
2546 	mutex_lock(&p->mutex);
2547 
2548 	/*
2549 	 * Set the process to evicted state to avoid running any new queues before all the memory
2550 	 * mappings are ready.
2551 	 */
2552 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2553 	if (ret)
2554 		goto exit_unlock;
2555 
2556 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2557 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2558 	if (ret)
2559 		goto exit_unlock;
2560 
2561 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2562 	if (ret)
2563 		goto exit_unlock;
2564 
2565 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2566 	if (ret)
2567 		goto exit_unlock;
2568 
2569 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2570 	if (ret)
2571 		goto exit_unlock;
2572 
2573 	if (priv_offset != args->priv_data_size) {
2574 		pr_err("Invalid private data size\n");
2575 		ret = -EINVAL;
2576 	}
2577 
2578 exit_unlock:
2579 	mutex_unlock(&p->mutex);
2580 	if (ret)
2581 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2582 	else
2583 		pr_debug("CRIU restore successful\n");
2584 
2585 	return ret;
2586 }
2587 
2588 static int criu_unpause(struct file *filep,
2589 			struct kfd_process *p,
2590 			struct kfd_ioctl_criu_args *args)
2591 {
2592 	int ret;
2593 
2594 	mutex_lock(&p->mutex);
2595 
2596 	if (!p->queues_paused) {
2597 		mutex_unlock(&p->mutex);
2598 		return -EINVAL;
2599 	}
2600 
2601 	ret = kfd_process_restore_queues(p);
2602 	if (ret)
2603 		pr_err("Failed to unpause queues ret:%d\n", ret);
2604 	else
2605 		p->queues_paused = false;
2606 
2607 	mutex_unlock(&p->mutex);
2608 
2609 	return ret;
2610 }
2611 
2612 static int criu_resume(struct file *filep,
2613 			struct kfd_process *p,
2614 			struct kfd_ioctl_criu_args *args)
2615 {
2616 	struct kfd_process *target = NULL;
2617 	struct pid *pid = NULL;
2618 	int ret = 0;
2619 
2620 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2621 		 args->pid);
2622 
2623 	pid = find_get_pid(args->pid);
2624 	if (!pid) {
2625 		pr_err("Cannot find pid info for %i\n", args->pid);
2626 		return -ESRCH;
2627 	}
2628 
2629 	pr_debug("calling kfd_lookup_process_by_pid\n");
2630 	target = kfd_lookup_process_by_pid(pid);
2631 
2632 	put_pid(pid);
2633 
2634 	if (!target) {
2635 		pr_debug("Cannot find process info for %i\n", args->pid);
2636 		return -ESRCH;
2637 	}
2638 
2639 	mutex_lock(&target->mutex);
2640 	ret = kfd_criu_resume_svm(target);
2641 	if (ret) {
2642 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2643 		goto exit;
2644 	}
2645 
2646 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2647 	if (ret)
2648 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2649 
2650 exit:
2651 	mutex_unlock(&target->mutex);
2652 
2653 	kfd_unref_process(target);
2654 	return ret;
2655 }
2656 
2657 static int criu_process_info(struct file *filep,
2658 				struct kfd_process *p,
2659 				struct kfd_ioctl_criu_args *args)
2660 {
2661 	int ret = 0;
2662 
2663 	mutex_lock(&p->mutex);
2664 
2665 	if (!p->n_pdds) {
2666 		pr_err("No pdd for given process\n");
2667 		ret = -ENODEV;
2668 		goto err_unlock;
2669 	}
2670 
2671 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2672 	if (ret)
2673 		goto err_unlock;
2674 
2675 	p->queues_paused = true;
2676 
2677 	args->pid = task_pid_nr_ns(p->lead_thread,
2678 					task_active_pid_ns(p->lead_thread));
2679 
2680 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2681 					   &args->num_objects, &args->priv_data_size);
2682 	if (ret)
2683 		goto err_unlock;
2684 
2685 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2686 				args->num_devices, args->num_bos, args->num_objects,
2687 				args->priv_data_size);
2688 
2689 err_unlock:
2690 	if (ret) {
2691 		kfd_process_restore_queues(p);
2692 		p->queues_paused = false;
2693 	}
2694 	mutex_unlock(&p->mutex);
2695 	return ret;
2696 }
2697 
2698 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2699 {
2700 	struct kfd_ioctl_criu_args *args = data;
2701 	int ret;
2702 
2703 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2704 	switch (args->op) {
2705 	case KFD_CRIU_OP_PROCESS_INFO:
2706 		ret = criu_process_info(filep, p, args);
2707 		break;
2708 	case KFD_CRIU_OP_CHECKPOINT:
2709 		ret = criu_checkpoint(filep, p, args);
2710 		break;
2711 	case KFD_CRIU_OP_UNPAUSE:
2712 		ret = criu_unpause(filep, p, args);
2713 		break;
2714 	case KFD_CRIU_OP_RESTORE:
2715 		ret = criu_restore(filep, p, args);
2716 		break;
2717 	case KFD_CRIU_OP_RESUME:
2718 		ret = criu_resume(filep, p, args);
2719 		break;
2720 	default:
2721 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2722 		ret = -EINVAL;
2723 		break;
2724 	}
2725 
2726 	if (ret)
2727 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2728 
2729 	return ret;
2730 }
2731 
2732 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2733 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2734 			    .cmd_drv = 0, .name = #ioctl}
2735 
2736 /** Ioctl table */
2737 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2738 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2739 			kfd_ioctl_get_version, 0),
2740 
2741 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2742 			kfd_ioctl_create_queue, 0),
2743 
2744 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2745 			kfd_ioctl_destroy_queue, 0),
2746 
2747 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2748 			kfd_ioctl_set_memory_policy, 0),
2749 
2750 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2751 			kfd_ioctl_get_clock_counters, 0),
2752 
2753 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2754 			kfd_ioctl_get_process_apertures, 0),
2755 
2756 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2757 			kfd_ioctl_update_queue, 0),
2758 
2759 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2760 			kfd_ioctl_create_event, 0),
2761 
2762 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2763 			kfd_ioctl_destroy_event, 0),
2764 
2765 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2766 			kfd_ioctl_set_event, 0),
2767 
2768 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2769 			kfd_ioctl_reset_event, 0),
2770 
2771 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2772 			kfd_ioctl_wait_events, 0),
2773 
2774 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2775 			kfd_ioctl_dbg_register, 0),
2776 
2777 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2778 			kfd_ioctl_dbg_unregister, 0),
2779 
2780 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2781 			kfd_ioctl_dbg_address_watch, 0),
2782 
2783 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2784 			kfd_ioctl_dbg_wave_control, 0),
2785 
2786 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2787 			kfd_ioctl_set_scratch_backing_va, 0),
2788 
2789 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2790 			kfd_ioctl_get_tile_config, 0),
2791 
2792 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2793 			kfd_ioctl_set_trap_handler, 0),
2794 
2795 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2796 			kfd_ioctl_get_process_apertures_new, 0),
2797 
2798 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2799 			kfd_ioctl_acquire_vm, 0),
2800 
2801 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2802 			kfd_ioctl_alloc_memory_of_gpu, 0),
2803 
2804 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2805 			kfd_ioctl_free_memory_of_gpu, 0),
2806 
2807 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2808 			kfd_ioctl_map_memory_to_gpu, 0),
2809 
2810 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2811 			kfd_ioctl_unmap_memory_from_gpu, 0),
2812 
2813 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2814 			kfd_ioctl_set_cu_mask, 0),
2815 
2816 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2817 			kfd_ioctl_get_queue_wave_state, 0),
2818 
2819 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2820 				kfd_ioctl_get_dmabuf_info, 0),
2821 
2822 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2823 				kfd_ioctl_import_dmabuf, 0),
2824 
2825 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2826 			kfd_ioctl_alloc_queue_gws, 0),
2827 
2828 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2829 			kfd_ioctl_smi_events, 0),
2830 
2831 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2832 
2833 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2834 			kfd_ioctl_set_xnack_mode, 0),
2835 
2836 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2837 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2838 
2839 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
2840 			kfd_ioctl_get_available_memory, 0),
2841 
2842 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
2843 				kfd_ioctl_export_dmabuf, 0),
2844 };
2845 
2846 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
2847 
2848 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2849 {
2850 	struct kfd_process *process;
2851 	amdkfd_ioctl_t *func;
2852 	const struct amdkfd_ioctl_desc *ioctl = NULL;
2853 	unsigned int nr = _IOC_NR(cmd);
2854 	char stack_kdata[128];
2855 	char *kdata = NULL;
2856 	unsigned int usize, asize;
2857 	int retcode = -EINVAL;
2858 	bool ptrace_attached = false;
2859 
2860 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2861 		goto err_i1;
2862 
2863 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2864 		u32 amdkfd_size;
2865 
2866 		ioctl = &amdkfd_ioctls[nr];
2867 
2868 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
2869 		usize = asize = _IOC_SIZE(cmd);
2870 		if (amdkfd_size > asize)
2871 			asize = amdkfd_size;
2872 
2873 		cmd = ioctl->cmd;
2874 	} else
2875 		goto err_i1;
2876 
2877 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2878 
2879 	/* Get the process struct from the filep. Only the process
2880 	 * that opened /dev/kfd can use the file descriptor. Child
2881 	 * processes need to create their own KFD device context.
2882 	 */
2883 	process = filep->private_data;
2884 
2885 	rcu_read_lock();
2886 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2887 	    ptrace_parent(process->lead_thread) == current)
2888 		ptrace_attached = true;
2889 	rcu_read_unlock();
2890 
2891 	if (process->lead_thread != current->group_leader
2892 	    && !ptrace_attached) {
2893 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2894 		retcode = -EBADF;
2895 		goto err_i1;
2896 	}
2897 
2898 	/* Do not trust userspace, use our own definition */
2899 	func = ioctl->func;
2900 
2901 	if (unlikely(!func)) {
2902 		dev_dbg(kfd_device, "no function\n");
2903 		retcode = -EINVAL;
2904 		goto err_i1;
2905 	}
2906 
2907 	/*
2908 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2909 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2910 	 * more priviledged access.
2911 	 */
2912 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2913 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
2914 						!capable(CAP_SYS_ADMIN)) {
2915 			retcode = -EACCES;
2916 			goto err_i1;
2917 		}
2918 	}
2919 
2920 	if (cmd & (IOC_IN | IOC_OUT)) {
2921 		if (asize <= sizeof(stack_kdata)) {
2922 			kdata = stack_kdata;
2923 		} else {
2924 			kdata = kmalloc(asize, GFP_KERNEL);
2925 			if (!kdata) {
2926 				retcode = -ENOMEM;
2927 				goto err_i1;
2928 			}
2929 		}
2930 		if (asize > usize)
2931 			memset(kdata + usize, 0, asize - usize);
2932 	}
2933 
2934 	if (cmd & IOC_IN) {
2935 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2936 			retcode = -EFAULT;
2937 			goto err_i1;
2938 		}
2939 	} else if (cmd & IOC_OUT) {
2940 		memset(kdata, 0, usize);
2941 	}
2942 
2943 	retcode = func(filep, process, kdata);
2944 
2945 	if (cmd & IOC_OUT)
2946 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2947 			retcode = -EFAULT;
2948 
2949 err_i1:
2950 	if (!ioctl)
2951 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2952 			  task_pid_nr(current), cmd, nr);
2953 
2954 	if (kdata != stack_kdata)
2955 		kfree(kdata);
2956 
2957 	if (retcode)
2958 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2959 				nr, arg, retcode);
2960 
2961 	return retcode;
2962 }
2963 
2964 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
2965 		      struct vm_area_struct *vma)
2966 {
2967 	phys_addr_t address;
2968 
2969 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2970 		return -EINVAL;
2971 
2972 	address = dev->adev->rmmio_remap.bus_addr;
2973 
2974 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2975 				VM_DONTDUMP | VM_PFNMAP);
2976 
2977 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2978 
2979 	pr_debug("pasid 0x%x mapping mmio page\n"
2980 		 "     target user address == 0x%08llX\n"
2981 		 "     physical address    == 0x%08llX\n"
2982 		 "     vm_flags            == 0x%04lX\n"
2983 		 "     size                == 0x%04lX\n",
2984 		 process->pasid, (unsigned long long) vma->vm_start,
2985 		 address, vma->vm_flags, PAGE_SIZE);
2986 
2987 	return io_remap_pfn_range(vma,
2988 				vma->vm_start,
2989 				address >> PAGE_SHIFT,
2990 				PAGE_SIZE,
2991 				vma->vm_page_prot);
2992 }
2993 
2994 
2995 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2996 {
2997 	struct kfd_process *process;
2998 	struct kfd_node *dev = NULL;
2999 	unsigned long mmap_offset;
3000 	unsigned int gpu_id;
3001 
3002 	process = kfd_get_process(current);
3003 	if (IS_ERR(process))
3004 		return PTR_ERR(process);
3005 
3006 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3007 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3008 	if (gpu_id)
3009 		dev = kfd_device_by_id(gpu_id);
3010 
3011 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3012 	case KFD_MMAP_TYPE_DOORBELL:
3013 		if (!dev)
3014 			return -ENODEV;
3015 		return kfd_doorbell_mmap(dev, process, vma);
3016 
3017 	case KFD_MMAP_TYPE_EVENTS:
3018 		return kfd_event_mmap(process, vma);
3019 
3020 	case KFD_MMAP_TYPE_RESERVED_MEM:
3021 		if (!dev)
3022 			return -ENODEV;
3023 		return kfd_reserved_mem_mmap(dev, process, vma);
3024 	case KFD_MMAP_TYPE_MMIO:
3025 		if (!dev)
3026 			return -ENODEV;
3027 		return kfd_mmio_mmap(dev, process, vma);
3028 	}
3029 
3030 	return -EFAULT;
3031 }
3032