1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <asm/processor.h>
37 #include "kfd_priv.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_dbgmgr.h"
40 
41 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
42 static int kfd_open(struct inode *, struct file *);
43 static int kfd_mmap(struct file *, struct vm_area_struct *);
44 
45 static const char kfd_dev_name[] = "kfd";
46 
47 static const struct file_operations kfd_fops = {
48 	.owner = THIS_MODULE,
49 	.unlocked_ioctl = kfd_ioctl,
50 	.compat_ioctl = kfd_ioctl,
51 	.open = kfd_open,
52 	.mmap = kfd_mmap,
53 };
54 
55 static int kfd_char_dev_major = -1;
56 static struct class *kfd_class;
57 struct device *kfd_device;
58 
59 int kfd_chardev_init(void)
60 {
61 	int err = 0;
62 
63 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
64 	err = kfd_char_dev_major;
65 	if (err < 0)
66 		goto err_register_chrdev;
67 
68 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
69 	err = PTR_ERR(kfd_class);
70 	if (IS_ERR(kfd_class))
71 		goto err_class_create;
72 
73 	kfd_device = device_create(kfd_class, NULL,
74 					MKDEV(kfd_char_dev_major, 0),
75 					NULL, kfd_dev_name);
76 	err = PTR_ERR(kfd_device);
77 	if (IS_ERR(kfd_device))
78 		goto err_device_create;
79 
80 	return 0;
81 
82 err_device_create:
83 	class_destroy(kfd_class);
84 err_class_create:
85 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
86 err_register_chrdev:
87 	return err;
88 }
89 
90 void kfd_chardev_exit(void)
91 {
92 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
93 	class_destroy(kfd_class);
94 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
95 }
96 
97 struct device *kfd_chardev(void)
98 {
99 	return kfd_device;
100 }
101 
102 
103 static int kfd_open(struct inode *inode, struct file *filep)
104 {
105 	struct kfd_process *process;
106 	bool is_32bit_user_mode;
107 
108 	if (iminor(inode) != 0)
109 		return -ENODEV;
110 
111 	is_32bit_user_mode = in_compat_syscall();
112 
113 	if (is_32bit_user_mode) {
114 		dev_warn(kfd_device,
115 			"Process %d (32-bit) failed to open /dev/kfd\n"
116 			"32-bit processes are not supported by amdkfd\n",
117 			current->pid);
118 		return -EPERM;
119 	}
120 
121 	process = kfd_create_process(filep);
122 	if (IS_ERR(process))
123 		return PTR_ERR(process);
124 
125 	if (kfd_is_locked())
126 		return -EAGAIN;
127 
128 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
129 		process->pasid, process->is_32bit_user_mode);
130 
131 	return 0;
132 }
133 
134 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
135 					void *data)
136 {
137 	struct kfd_ioctl_get_version_args *args = data;
138 
139 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
140 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
141 
142 	return 0;
143 }
144 
145 static int set_queue_properties_from_user(struct queue_properties *q_properties,
146 				struct kfd_ioctl_create_queue_args *args)
147 {
148 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
149 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
150 		return -EINVAL;
151 	}
152 
153 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
154 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
155 		return -EINVAL;
156 	}
157 
158 	if ((args->ring_base_address) &&
159 		(!access_ok(VERIFY_WRITE,
160 			(const void __user *) args->ring_base_address,
161 			sizeof(uint64_t)))) {
162 		pr_err("Can't access ring base address\n");
163 		return -EFAULT;
164 	}
165 
166 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
167 		pr_err("Ring size must be a power of 2 or 0\n");
168 		return -EINVAL;
169 	}
170 
171 	if (!access_ok(VERIFY_WRITE,
172 			(const void __user *) args->read_pointer_address,
173 			sizeof(uint32_t))) {
174 		pr_err("Can't access read pointer\n");
175 		return -EFAULT;
176 	}
177 
178 	if (!access_ok(VERIFY_WRITE,
179 			(const void __user *) args->write_pointer_address,
180 			sizeof(uint32_t))) {
181 		pr_err("Can't access write pointer\n");
182 		return -EFAULT;
183 	}
184 
185 	if (args->eop_buffer_address &&
186 		!access_ok(VERIFY_WRITE,
187 			(const void __user *) args->eop_buffer_address,
188 			sizeof(uint32_t))) {
189 		pr_debug("Can't access eop buffer");
190 		return -EFAULT;
191 	}
192 
193 	if (args->ctx_save_restore_address &&
194 		!access_ok(VERIFY_WRITE,
195 			(const void __user *) args->ctx_save_restore_address,
196 			sizeof(uint32_t))) {
197 		pr_debug("Can't access ctx save restore buffer");
198 		return -EFAULT;
199 	}
200 
201 	q_properties->is_interop = false;
202 	q_properties->queue_percent = args->queue_percentage;
203 	q_properties->priority = args->queue_priority;
204 	q_properties->queue_address = args->ring_base_address;
205 	q_properties->queue_size = args->ring_size;
206 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
207 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
208 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
209 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
210 	q_properties->ctx_save_restore_area_address =
211 			args->ctx_save_restore_address;
212 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
213 	q_properties->ctl_stack_size = args->ctl_stack_size;
214 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
215 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
216 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
217 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
218 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
219 	else
220 		return -ENOTSUPP;
221 
222 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
223 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
224 	else
225 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
226 
227 	pr_debug("Queue Percentage: %d, %d\n",
228 			q_properties->queue_percent, args->queue_percentage);
229 
230 	pr_debug("Queue Priority: %d, %d\n",
231 			q_properties->priority, args->queue_priority);
232 
233 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
234 			q_properties->queue_address, args->ring_base_address);
235 
236 	pr_debug("Queue Size: 0x%llX, %u\n",
237 			q_properties->queue_size, args->ring_size);
238 
239 	pr_debug("Queue r/w Pointers: %px, %px\n",
240 			q_properties->read_ptr,
241 			q_properties->write_ptr);
242 
243 	pr_debug("Queue Format: %d\n", q_properties->format);
244 
245 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
246 
247 	pr_debug("Queue CTX save area: 0x%llX\n",
248 			q_properties->ctx_save_restore_area_address);
249 
250 	return 0;
251 }
252 
253 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
254 					void *data)
255 {
256 	struct kfd_ioctl_create_queue_args *args = data;
257 	struct kfd_dev *dev;
258 	int err = 0;
259 	unsigned int queue_id;
260 	struct kfd_process_device *pdd;
261 	struct queue_properties q_properties;
262 
263 	memset(&q_properties, 0, sizeof(struct queue_properties));
264 
265 	pr_debug("Creating queue ioctl\n");
266 
267 	err = set_queue_properties_from_user(&q_properties, args);
268 	if (err)
269 		return err;
270 
271 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
272 	dev = kfd_device_by_id(args->gpu_id);
273 	if (!dev) {
274 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
275 		return -EINVAL;
276 	}
277 
278 	mutex_lock(&p->mutex);
279 
280 	pdd = kfd_bind_process_to_device(dev, p);
281 	if (IS_ERR(pdd)) {
282 		err = -ESRCH;
283 		goto err_bind_process;
284 	}
285 
286 	pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
287 			p->pasid,
288 			dev->id);
289 
290 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
291 	if (err != 0)
292 		goto err_create_queue;
293 
294 	args->queue_id = queue_id;
295 
296 
297 	/* Return gpu_id as doorbell offset for mmap usage */
298 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
299 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
300 	args->doorbell_offset <<= PAGE_SHIFT;
301 	if (KFD_IS_SOC15(dev->device_info->asic_family))
302 		/* On SOC15 ASICs, doorbell allocation must be
303 		 * per-device, and independent from the per-process
304 		 * queue_id. Return the doorbell offset within the
305 		 * doorbell aperture to user mode.
306 		 */
307 		args->doorbell_offset |= q_properties.doorbell_off;
308 
309 	mutex_unlock(&p->mutex);
310 
311 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
312 
313 	pr_debug("Ring buffer address == 0x%016llX\n",
314 			args->ring_base_address);
315 
316 	pr_debug("Read ptr address    == 0x%016llX\n",
317 			args->read_pointer_address);
318 
319 	pr_debug("Write ptr address   == 0x%016llX\n",
320 			args->write_pointer_address);
321 
322 	return 0;
323 
324 err_create_queue:
325 err_bind_process:
326 	mutex_unlock(&p->mutex);
327 	return err;
328 }
329 
330 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
331 					void *data)
332 {
333 	int retval;
334 	struct kfd_ioctl_destroy_queue_args *args = data;
335 
336 	pr_debug("Destroying queue id %d for pasid %d\n",
337 				args->queue_id,
338 				p->pasid);
339 
340 	mutex_lock(&p->mutex);
341 
342 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
343 
344 	mutex_unlock(&p->mutex);
345 	return retval;
346 }
347 
348 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
349 					void *data)
350 {
351 	int retval;
352 	struct kfd_ioctl_update_queue_args *args = data;
353 	struct queue_properties properties;
354 
355 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
356 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
357 		return -EINVAL;
358 	}
359 
360 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
361 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
362 		return -EINVAL;
363 	}
364 
365 	if ((args->ring_base_address) &&
366 		(!access_ok(VERIFY_WRITE,
367 			(const void __user *) args->ring_base_address,
368 			sizeof(uint64_t)))) {
369 		pr_err("Can't access ring base address\n");
370 		return -EFAULT;
371 	}
372 
373 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
374 		pr_err("Ring size must be a power of 2 or 0\n");
375 		return -EINVAL;
376 	}
377 
378 	properties.queue_address = args->ring_base_address;
379 	properties.queue_size = args->ring_size;
380 	properties.queue_percent = args->queue_percentage;
381 	properties.priority = args->queue_priority;
382 
383 	pr_debug("Updating queue id %d for pasid %d\n",
384 			args->queue_id, p->pasid);
385 
386 	mutex_lock(&p->mutex);
387 
388 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
389 
390 	mutex_unlock(&p->mutex);
391 
392 	return retval;
393 }
394 
395 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
396 					void *data)
397 {
398 	int retval;
399 	const int max_num_cus = 1024;
400 	struct kfd_ioctl_set_cu_mask_args *args = data;
401 	struct queue_properties properties;
402 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
403 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
404 
405 	if ((args->num_cu_mask % 32) != 0) {
406 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
407 				args->num_cu_mask);
408 		return -EINVAL;
409 	}
410 
411 	properties.cu_mask_count = args->num_cu_mask;
412 	if (properties.cu_mask_count == 0) {
413 		pr_debug("CU mask cannot be 0");
414 		return -EINVAL;
415 	}
416 
417 	/* To prevent an unreasonably large CU mask size, set an arbitrary
418 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
419 	 * past max_num_cus bits and just use the first max_num_cus bits.
420 	 */
421 	if (properties.cu_mask_count > max_num_cus) {
422 		pr_debug("CU mask cannot be greater than 1024 bits");
423 		properties.cu_mask_count = max_num_cus;
424 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
425 	}
426 
427 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
428 	if (!properties.cu_mask)
429 		return -ENOMEM;
430 
431 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
432 	if (retval) {
433 		pr_debug("Could not copy CU mask from userspace");
434 		kfree(properties.cu_mask);
435 		return -EFAULT;
436 	}
437 
438 	mutex_lock(&p->mutex);
439 
440 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
441 
442 	mutex_unlock(&p->mutex);
443 
444 	if (retval)
445 		kfree(properties.cu_mask);
446 
447 	return retval;
448 }
449 
450 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
451 					  struct kfd_process *p, void *data)
452 {
453 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
454 	int r;
455 
456 	mutex_lock(&p->mutex);
457 
458 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
459 			       (void __user *)args->ctl_stack_address,
460 			       &args->ctl_stack_used_size,
461 			       &args->save_area_used_size);
462 
463 	mutex_unlock(&p->mutex);
464 
465 	return r;
466 }
467 
468 static int kfd_ioctl_set_memory_policy(struct file *filep,
469 					struct kfd_process *p, void *data)
470 {
471 	struct kfd_ioctl_set_memory_policy_args *args = data;
472 	struct kfd_dev *dev;
473 	int err = 0;
474 	struct kfd_process_device *pdd;
475 	enum cache_policy default_policy, alternate_policy;
476 
477 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
478 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
479 		return -EINVAL;
480 	}
481 
482 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
483 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
484 		return -EINVAL;
485 	}
486 
487 	dev = kfd_device_by_id(args->gpu_id);
488 	if (!dev)
489 		return -EINVAL;
490 
491 	mutex_lock(&p->mutex);
492 
493 	pdd = kfd_bind_process_to_device(dev, p);
494 	if (IS_ERR(pdd)) {
495 		err = -ESRCH;
496 		goto out;
497 	}
498 
499 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
500 			 ? cache_policy_coherent : cache_policy_noncoherent;
501 
502 	alternate_policy =
503 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
504 		   ? cache_policy_coherent : cache_policy_noncoherent;
505 
506 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
507 				&pdd->qpd,
508 				default_policy,
509 				alternate_policy,
510 				(void __user *)args->alternate_aperture_base,
511 				args->alternate_aperture_size))
512 		err = -EINVAL;
513 
514 out:
515 	mutex_unlock(&p->mutex);
516 
517 	return err;
518 }
519 
520 static int kfd_ioctl_set_trap_handler(struct file *filep,
521 					struct kfd_process *p, void *data)
522 {
523 	struct kfd_ioctl_set_trap_handler_args *args = data;
524 	struct kfd_dev *dev;
525 	int err = 0;
526 	struct kfd_process_device *pdd;
527 
528 	dev = kfd_device_by_id(args->gpu_id);
529 	if (dev == NULL)
530 		return -EINVAL;
531 
532 	mutex_lock(&p->mutex);
533 
534 	pdd = kfd_bind_process_to_device(dev, p);
535 	if (IS_ERR(pdd)) {
536 		err = -ESRCH;
537 		goto out;
538 	}
539 
540 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
541 					&pdd->qpd,
542 					args->tba_addr,
543 					args->tma_addr))
544 		err = -EINVAL;
545 
546 out:
547 	mutex_unlock(&p->mutex);
548 
549 	return err;
550 }
551 
552 static int kfd_ioctl_dbg_register(struct file *filep,
553 				struct kfd_process *p, void *data)
554 {
555 	struct kfd_ioctl_dbg_register_args *args = data;
556 	struct kfd_dev *dev;
557 	struct kfd_dbgmgr *dbgmgr_ptr;
558 	struct kfd_process_device *pdd;
559 	bool create_ok;
560 	long status = 0;
561 
562 	dev = kfd_device_by_id(args->gpu_id);
563 	if (!dev)
564 		return -EINVAL;
565 
566 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
567 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
568 		return -EINVAL;
569 	}
570 
571 	mutex_lock(&p->mutex);
572 	mutex_lock(kfd_get_dbgmgr_mutex());
573 
574 	/*
575 	 * make sure that we have pdd, if this the first queue created for
576 	 * this process
577 	 */
578 	pdd = kfd_bind_process_to_device(dev, p);
579 	if (IS_ERR(pdd)) {
580 		status = PTR_ERR(pdd);
581 		goto out;
582 	}
583 
584 	if (!dev->dbgmgr) {
585 		/* In case of a legal call, we have no dbgmgr yet */
586 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
587 		if (create_ok) {
588 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
589 			if (status != 0)
590 				kfd_dbgmgr_destroy(dbgmgr_ptr);
591 			else
592 				dev->dbgmgr = dbgmgr_ptr;
593 		}
594 	} else {
595 		pr_debug("debugger already registered\n");
596 		status = -EINVAL;
597 	}
598 
599 out:
600 	mutex_unlock(kfd_get_dbgmgr_mutex());
601 	mutex_unlock(&p->mutex);
602 
603 	return status;
604 }
605 
606 static int kfd_ioctl_dbg_unregister(struct file *filep,
607 				struct kfd_process *p, void *data)
608 {
609 	struct kfd_ioctl_dbg_unregister_args *args = data;
610 	struct kfd_dev *dev;
611 	long status;
612 
613 	dev = kfd_device_by_id(args->gpu_id);
614 	if (!dev || !dev->dbgmgr)
615 		return -EINVAL;
616 
617 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
618 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
619 		return -EINVAL;
620 	}
621 
622 	mutex_lock(kfd_get_dbgmgr_mutex());
623 
624 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
625 	if (!status) {
626 		kfd_dbgmgr_destroy(dev->dbgmgr);
627 		dev->dbgmgr = NULL;
628 	}
629 
630 	mutex_unlock(kfd_get_dbgmgr_mutex());
631 
632 	return status;
633 }
634 
635 /*
636  * Parse and generate variable size data structure for address watch.
637  * Total size of the buffer and # watch points is limited in order
638  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
639  * which is enforced by dbgdev module)
640  * please also note that the watch address itself are not "copied from user",
641  * since it be set into the HW in user mode values.
642  *
643  */
644 static int kfd_ioctl_dbg_address_watch(struct file *filep,
645 					struct kfd_process *p, void *data)
646 {
647 	struct kfd_ioctl_dbg_address_watch_args *args = data;
648 	struct kfd_dev *dev;
649 	struct dbg_address_watch_info aw_info;
650 	unsigned char *args_buff;
651 	long status;
652 	void __user *cmd_from_user;
653 	uint64_t watch_mask_value = 0;
654 	unsigned int args_idx = 0;
655 
656 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
657 
658 	dev = kfd_device_by_id(args->gpu_id);
659 	if (!dev)
660 		return -EINVAL;
661 
662 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
663 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
664 		return -EINVAL;
665 	}
666 
667 	cmd_from_user = (void __user *) args->content_ptr;
668 
669 	/* Validate arguments */
670 
671 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
672 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
673 		(cmd_from_user == NULL))
674 		return -EINVAL;
675 
676 	/* this is the actual buffer to work with */
677 	args_buff = memdup_user(cmd_from_user,
678 				args->buf_size_in_bytes - sizeof(*args));
679 	if (IS_ERR(args_buff))
680 		return PTR_ERR(args_buff);
681 
682 	aw_info.process = p;
683 
684 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
685 	args_idx += sizeof(aw_info.num_watch_points);
686 
687 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
688 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
689 
690 	/*
691 	 * set watch address base pointer to point on the array base
692 	 * within args_buff
693 	 */
694 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
695 
696 	/* skip over the addresses buffer */
697 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
698 
699 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
700 		status = -EINVAL;
701 		goto out;
702 	}
703 
704 	watch_mask_value = (uint64_t) args_buff[args_idx];
705 
706 	if (watch_mask_value > 0) {
707 		/*
708 		 * There is an array of masks.
709 		 * set watch mask base pointer to point on the array base
710 		 * within args_buff
711 		 */
712 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
713 
714 		/* skip over the masks buffer */
715 		args_idx += sizeof(aw_info.watch_mask) *
716 				aw_info.num_watch_points;
717 	} else {
718 		/* just the NULL mask, set to NULL and skip over it */
719 		aw_info.watch_mask = NULL;
720 		args_idx += sizeof(aw_info.watch_mask);
721 	}
722 
723 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
724 		status = -EINVAL;
725 		goto out;
726 	}
727 
728 	/* Currently HSA Event is not supported for DBG */
729 	aw_info.watch_event = NULL;
730 
731 	mutex_lock(kfd_get_dbgmgr_mutex());
732 
733 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
734 
735 	mutex_unlock(kfd_get_dbgmgr_mutex());
736 
737 out:
738 	kfree(args_buff);
739 
740 	return status;
741 }
742 
743 /* Parse and generate fixed size data structure for wave control */
744 static int kfd_ioctl_dbg_wave_control(struct file *filep,
745 					struct kfd_process *p, void *data)
746 {
747 	struct kfd_ioctl_dbg_wave_control_args *args = data;
748 	struct kfd_dev *dev;
749 	struct dbg_wave_control_info wac_info;
750 	unsigned char *args_buff;
751 	uint32_t computed_buff_size;
752 	long status;
753 	void __user *cmd_from_user;
754 	unsigned int args_idx = 0;
755 
756 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
757 
758 	/* we use compact form, independent of the packing attribute value */
759 	computed_buff_size = sizeof(*args) +
760 				sizeof(wac_info.mode) +
761 				sizeof(wac_info.operand) +
762 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
763 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
764 				sizeof(wac_info.trapId);
765 
766 	dev = kfd_device_by_id(args->gpu_id);
767 	if (!dev)
768 		return -EINVAL;
769 
770 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
771 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
772 		return -EINVAL;
773 	}
774 
775 	/* input size must match the computed "compact" size */
776 	if (args->buf_size_in_bytes != computed_buff_size) {
777 		pr_debug("size mismatch, computed : actual %u : %u\n",
778 				args->buf_size_in_bytes, computed_buff_size);
779 		return -EINVAL;
780 	}
781 
782 	cmd_from_user = (void __user *) args->content_ptr;
783 
784 	if (cmd_from_user == NULL)
785 		return -EINVAL;
786 
787 	/* copy the entire buffer from user */
788 
789 	args_buff = memdup_user(cmd_from_user,
790 				args->buf_size_in_bytes - sizeof(*args));
791 	if (IS_ERR(args_buff))
792 		return PTR_ERR(args_buff);
793 
794 	/* move ptr to the start of the "pay-load" area */
795 	wac_info.process = p;
796 
797 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
798 	args_idx += sizeof(wac_info.operand);
799 
800 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
801 	args_idx += sizeof(wac_info.mode);
802 
803 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
804 	args_idx += sizeof(wac_info.trapId);
805 
806 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
807 					*((uint32_t *)(&args_buff[args_idx]));
808 	wac_info.dbgWave_msg.MemoryVA = NULL;
809 
810 	mutex_lock(kfd_get_dbgmgr_mutex());
811 
812 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
813 			wac_info.process, wac_info.operand,
814 			wac_info.mode, wac_info.trapId,
815 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
816 
817 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
818 
819 	pr_debug("Returned status of dbg manager is %ld\n", status);
820 
821 	mutex_unlock(kfd_get_dbgmgr_mutex());
822 
823 	kfree(args_buff);
824 
825 	return status;
826 }
827 
828 static int kfd_ioctl_get_clock_counters(struct file *filep,
829 				struct kfd_process *p, void *data)
830 {
831 	struct kfd_ioctl_get_clock_counters_args *args = data;
832 	struct kfd_dev *dev;
833 
834 	dev = kfd_device_by_id(args->gpu_id);
835 	if (dev)
836 		/* Reading GPU clock counter from KGD */
837 		args->gpu_clock_counter =
838 			dev->kfd2kgd->get_gpu_clock_counter(dev->kgd);
839 	else
840 		/* Node without GPU resource */
841 		args->gpu_clock_counter = 0;
842 
843 	/* No access to rdtsc. Using raw monotonic time */
844 	args->cpu_clock_counter = ktime_get_raw_ns();
845 	args->system_clock_counter = ktime_get_boot_ns();
846 
847 	/* Since the counter is in nano-seconds we use 1GHz frequency */
848 	args->system_clock_freq = 1000000000;
849 
850 	return 0;
851 }
852 
853 
854 static int kfd_ioctl_get_process_apertures(struct file *filp,
855 				struct kfd_process *p, void *data)
856 {
857 	struct kfd_ioctl_get_process_apertures_args *args = data;
858 	struct kfd_process_device_apertures *pAperture;
859 	struct kfd_process_device *pdd;
860 
861 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
862 
863 	args->num_of_nodes = 0;
864 
865 	mutex_lock(&p->mutex);
866 
867 	/*if the process-device list isn't empty*/
868 	if (kfd_has_process_device_data(p)) {
869 		/* Run over all pdd of the process */
870 		pdd = kfd_get_first_process_device_data(p);
871 		do {
872 			pAperture =
873 				&args->process_apertures[args->num_of_nodes];
874 			pAperture->gpu_id = pdd->dev->id;
875 			pAperture->lds_base = pdd->lds_base;
876 			pAperture->lds_limit = pdd->lds_limit;
877 			pAperture->gpuvm_base = pdd->gpuvm_base;
878 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
879 			pAperture->scratch_base = pdd->scratch_base;
880 			pAperture->scratch_limit = pdd->scratch_limit;
881 
882 			dev_dbg(kfd_device,
883 				"node id %u\n", args->num_of_nodes);
884 			dev_dbg(kfd_device,
885 				"gpu id %u\n", pdd->dev->id);
886 			dev_dbg(kfd_device,
887 				"lds_base %llX\n", pdd->lds_base);
888 			dev_dbg(kfd_device,
889 				"lds_limit %llX\n", pdd->lds_limit);
890 			dev_dbg(kfd_device,
891 				"gpuvm_base %llX\n", pdd->gpuvm_base);
892 			dev_dbg(kfd_device,
893 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
894 			dev_dbg(kfd_device,
895 				"scratch_base %llX\n", pdd->scratch_base);
896 			dev_dbg(kfd_device,
897 				"scratch_limit %llX\n", pdd->scratch_limit);
898 
899 			args->num_of_nodes++;
900 
901 			pdd = kfd_get_next_process_device_data(p, pdd);
902 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
903 	}
904 
905 	mutex_unlock(&p->mutex);
906 
907 	return 0;
908 }
909 
910 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
911 				struct kfd_process *p, void *data)
912 {
913 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
914 	struct kfd_process_device_apertures *pa;
915 	struct kfd_process_device *pdd;
916 	uint32_t nodes = 0;
917 	int ret;
918 
919 	dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
920 
921 	if (args->num_of_nodes == 0) {
922 		/* Return number of nodes, so that user space can alloacate
923 		 * sufficient memory
924 		 */
925 		mutex_lock(&p->mutex);
926 
927 		if (!kfd_has_process_device_data(p))
928 			goto out_unlock;
929 
930 		/* Run over all pdd of the process */
931 		pdd = kfd_get_first_process_device_data(p);
932 		do {
933 			args->num_of_nodes++;
934 			pdd = kfd_get_next_process_device_data(p, pdd);
935 		} while (pdd);
936 
937 		goto out_unlock;
938 	}
939 
940 	/* Fill in process-aperture information for all available
941 	 * nodes, but not more than args->num_of_nodes as that is
942 	 * the amount of memory allocated by user
943 	 */
944 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
945 				args->num_of_nodes), GFP_KERNEL);
946 	if (!pa)
947 		return -ENOMEM;
948 
949 	mutex_lock(&p->mutex);
950 
951 	if (!kfd_has_process_device_data(p)) {
952 		args->num_of_nodes = 0;
953 		kfree(pa);
954 		goto out_unlock;
955 	}
956 
957 	/* Run over all pdd of the process */
958 	pdd = kfd_get_first_process_device_data(p);
959 	do {
960 		pa[nodes].gpu_id = pdd->dev->id;
961 		pa[nodes].lds_base = pdd->lds_base;
962 		pa[nodes].lds_limit = pdd->lds_limit;
963 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
964 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
965 		pa[nodes].scratch_base = pdd->scratch_base;
966 		pa[nodes].scratch_limit = pdd->scratch_limit;
967 
968 		dev_dbg(kfd_device,
969 			"gpu id %u\n", pdd->dev->id);
970 		dev_dbg(kfd_device,
971 			"lds_base %llX\n", pdd->lds_base);
972 		dev_dbg(kfd_device,
973 			"lds_limit %llX\n", pdd->lds_limit);
974 		dev_dbg(kfd_device,
975 			"gpuvm_base %llX\n", pdd->gpuvm_base);
976 		dev_dbg(kfd_device,
977 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
978 		dev_dbg(kfd_device,
979 			"scratch_base %llX\n", pdd->scratch_base);
980 		dev_dbg(kfd_device,
981 			"scratch_limit %llX\n", pdd->scratch_limit);
982 		nodes++;
983 
984 		pdd = kfd_get_next_process_device_data(p, pdd);
985 	} while (pdd && (nodes < args->num_of_nodes));
986 	mutex_unlock(&p->mutex);
987 
988 	args->num_of_nodes = nodes;
989 	ret = copy_to_user(
990 			(void __user *)args->kfd_process_device_apertures_ptr,
991 			pa,
992 			(nodes * sizeof(struct kfd_process_device_apertures)));
993 	kfree(pa);
994 	return ret ? -EFAULT : 0;
995 
996 out_unlock:
997 	mutex_unlock(&p->mutex);
998 	return 0;
999 }
1000 
1001 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
1002 					void *data)
1003 {
1004 	struct kfd_ioctl_create_event_args *args = data;
1005 	int err;
1006 
1007 	/* For dGPUs the event page is allocated in user mode. The
1008 	 * handle is passed to KFD with the first call to this IOCTL
1009 	 * through the event_page_offset field.
1010 	 */
1011 	if (args->event_page_offset) {
1012 		struct kfd_dev *kfd;
1013 		struct kfd_process_device *pdd;
1014 		void *mem, *kern_addr;
1015 		uint64_t size;
1016 
1017 		if (p->signal_page) {
1018 			pr_err("Event page is already set\n");
1019 			return -EINVAL;
1020 		}
1021 
1022 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1023 		if (!kfd) {
1024 			pr_err("Getting device by id failed in %s\n", __func__);
1025 			return -EINVAL;
1026 		}
1027 
1028 		mutex_lock(&p->mutex);
1029 		pdd = kfd_bind_process_to_device(kfd, p);
1030 		if (IS_ERR(pdd)) {
1031 			err = PTR_ERR(pdd);
1032 			goto out_unlock;
1033 		}
1034 
1035 		mem = kfd_process_device_translate_handle(pdd,
1036 				GET_IDR_HANDLE(args->event_page_offset));
1037 		if (!mem) {
1038 			pr_err("Can't find BO, offset is 0x%llx\n",
1039 			       args->event_page_offset);
1040 			err = -EINVAL;
1041 			goto out_unlock;
1042 		}
1043 		mutex_unlock(&p->mutex);
1044 
1045 		err = kfd->kfd2kgd->map_gtt_bo_to_kernel(kfd->kgd,
1046 						mem, &kern_addr, &size);
1047 		if (err) {
1048 			pr_err("Failed to map event page to kernel\n");
1049 			return err;
1050 		}
1051 
1052 		err = kfd_event_page_set(p, kern_addr, size);
1053 		if (err) {
1054 			pr_err("Failed to set event page\n");
1055 			return err;
1056 		}
1057 	}
1058 
1059 	err = kfd_event_create(filp, p, args->event_type,
1060 				args->auto_reset != 0, args->node_id,
1061 				&args->event_id, &args->event_trigger_data,
1062 				&args->event_page_offset,
1063 				&args->event_slot_index);
1064 
1065 	return err;
1066 
1067 out_unlock:
1068 	mutex_unlock(&p->mutex);
1069 	return err;
1070 }
1071 
1072 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1073 					void *data)
1074 {
1075 	struct kfd_ioctl_destroy_event_args *args = data;
1076 
1077 	return kfd_event_destroy(p, args->event_id);
1078 }
1079 
1080 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1081 				void *data)
1082 {
1083 	struct kfd_ioctl_set_event_args *args = data;
1084 
1085 	return kfd_set_event(p, args->event_id);
1086 }
1087 
1088 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1089 				void *data)
1090 {
1091 	struct kfd_ioctl_reset_event_args *args = data;
1092 
1093 	return kfd_reset_event(p, args->event_id);
1094 }
1095 
1096 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1097 				void *data)
1098 {
1099 	struct kfd_ioctl_wait_events_args *args = data;
1100 	int err;
1101 
1102 	err = kfd_wait_on_events(p, args->num_events,
1103 			(void __user *)args->events_ptr,
1104 			(args->wait_for_all != 0),
1105 			args->timeout, &args->wait_result);
1106 
1107 	return err;
1108 }
1109 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1110 					struct kfd_process *p, void *data)
1111 {
1112 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1113 	struct kfd_process_device *pdd;
1114 	struct kfd_dev *dev;
1115 	long err;
1116 
1117 	dev = kfd_device_by_id(args->gpu_id);
1118 	if (!dev)
1119 		return -EINVAL;
1120 
1121 	mutex_lock(&p->mutex);
1122 
1123 	pdd = kfd_bind_process_to_device(dev, p);
1124 	if (IS_ERR(pdd)) {
1125 		err = PTR_ERR(pdd);
1126 		goto bind_process_to_device_fail;
1127 	}
1128 
1129 	pdd->qpd.sh_hidden_private_base = args->va_addr;
1130 
1131 	mutex_unlock(&p->mutex);
1132 
1133 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1134 	    pdd->qpd.vmid != 0)
1135 		dev->kfd2kgd->set_scratch_backing_va(
1136 			dev->kgd, args->va_addr, pdd->qpd.vmid);
1137 
1138 	return 0;
1139 
1140 bind_process_to_device_fail:
1141 	mutex_unlock(&p->mutex);
1142 	return err;
1143 }
1144 
1145 static int kfd_ioctl_get_tile_config(struct file *filep,
1146 		struct kfd_process *p, void *data)
1147 {
1148 	struct kfd_ioctl_get_tile_config_args *args = data;
1149 	struct kfd_dev *dev;
1150 	struct tile_config config;
1151 	int err = 0;
1152 
1153 	dev = kfd_device_by_id(args->gpu_id);
1154 	if (!dev)
1155 		return -EINVAL;
1156 
1157 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1158 
1159 	args->gb_addr_config = config.gb_addr_config;
1160 	args->num_banks = config.num_banks;
1161 	args->num_ranks = config.num_ranks;
1162 
1163 	if (args->num_tile_configs > config.num_tile_configs)
1164 		args->num_tile_configs = config.num_tile_configs;
1165 	err = copy_to_user((void __user *)args->tile_config_ptr,
1166 			config.tile_config_ptr,
1167 			args->num_tile_configs * sizeof(uint32_t));
1168 	if (err) {
1169 		args->num_tile_configs = 0;
1170 		return -EFAULT;
1171 	}
1172 
1173 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1174 		args->num_macro_tile_configs =
1175 				config.num_macro_tile_configs;
1176 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1177 			config.macro_tile_config_ptr,
1178 			args->num_macro_tile_configs * sizeof(uint32_t));
1179 	if (err) {
1180 		args->num_macro_tile_configs = 0;
1181 		return -EFAULT;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1188 				void *data)
1189 {
1190 	struct kfd_ioctl_acquire_vm_args *args = data;
1191 	struct kfd_process_device *pdd;
1192 	struct kfd_dev *dev;
1193 	struct file *drm_file;
1194 	int ret;
1195 
1196 	dev = kfd_device_by_id(args->gpu_id);
1197 	if (!dev)
1198 		return -EINVAL;
1199 
1200 	drm_file = fget(args->drm_fd);
1201 	if (!drm_file)
1202 		return -EINVAL;
1203 
1204 	mutex_lock(&p->mutex);
1205 
1206 	pdd = kfd_get_process_device_data(dev, p);
1207 	if (!pdd) {
1208 		ret = -EINVAL;
1209 		goto err_unlock;
1210 	}
1211 
1212 	if (pdd->drm_file) {
1213 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1214 		goto err_unlock;
1215 	}
1216 
1217 	ret = kfd_process_device_init_vm(pdd, drm_file);
1218 	if (ret)
1219 		goto err_unlock;
1220 	/* On success, the PDD keeps the drm_file reference */
1221 	mutex_unlock(&p->mutex);
1222 
1223 	return 0;
1224 
1225 err_unlock:
1226 	mutex_unlock(&p->mutex);
1227 	fput(drm_file);
1228 	return ret;
1229 }
1230 
1231 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1232 {
1233 	struct kfd_local_mem_info mem_info;
1234 
1235 	if (debug_largebar) {
1236 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1237 		return true;
1238 	}
1239 
1240 	if (dev->device_info->needs_iommu_device)
1241 		return false;
1242 
1243 	dev->kfd2kgd->get_local_mem_info(dev->kgd, &mem_info);
1244 	if (mem_info.local_mem_size_private == 0 &&
1245 			mem_info.local_mem_size_public > 0)
1246 		return true;
1247 	return false;
1248 }
1249 
1250 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1251 					struct kfd_process *p, void *data)
1252 {
1253 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1254 	struct kfd_process_device *pdd;
1255 	void *mem;
1256 	struct kfd_dev *dev;
1257 	int idr_handle;
1258 	long err;
1259 	uint64_t offset = args->mmap_offset;
1260 	uint32_t flags = args->flags;
1261 
1262 	if (args->size == 0)
1263 		return -EINVAL;
1264 
1265 	dev = kfd_device_by_id(args->gpu_id);
1266 	if (!dev)
1267 		return -EINVAL;
1268 
1269 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1270 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1271 		!kfd_dev_is_large_bar(dev)) {
1272 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	mutex_lock(&p->mutex);
1277 
1278 	pdd = kfd_bind_process_to_device(dev, p);
1279 	if (IS_ERR(pdd)) {
1280 		err = PTR_ERR(pdd);
1281 		goto err_unlock;
1282 	}
1283 
1284 	err = dev->kfd2kgd->alloc_memory_of_gpu(
1285 		dev->kgd, args->va_addr, args->size,
1286 		pdd->vm, (struct kgd_mem **) &mem, &offset,
1287 		flags);
1288 
1289 	if (err)
1290 		goto err_unlock;
1291 
1292 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1293 	if (idr_handle < 0) {
1294 		err = -EFAULT;
1295 		goto err_free;
1296 	}
1297 
1298 	mutex_unlock(&p->mutex);
1299 
1300 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1301 	args->mmap_offset = offset;
1302 
1303 	return 0;
1304 
1305 err_free:
1306 	dev->kfd2kgd->free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1307 err_unlock:
1308 	mutex_unlock(&p->mutex);
1309 	return err;
1310 }
1311 
1312 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1313 					struct kfd_process *p, void *data)
1314 {
1315 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1316 	struct kfd_process_device *pdd;
1317 	void *mem;
1318 	struct kfd_dev *dev;
1319 	int ret;
1320 
1321 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1322 	if (!dev)
1323 		return -EINVAL;
1324 
1325 	mutex_lock(&p->mutex);
1326 
1327 	pdd = kfd_get_process_device_data(dev, p);
1328 	if (!pdd) {
1329 		pr_err("Process device data doesn't exist\n");
1330 		ret = -EINVAL;
1331 		goto err_unlock;
1332 	}
1333 
1334 	mem = kfd_process_device_translate_handle(
1335 		pdd, GET_IDR_HANDLE(args->handle));
1336 	if (!mem) {
1337 		ret = -EINVAL;
1338 		goto err_unlock;
1339 	}
1340 
1341 	ret = dev->kfd2kgd->free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1342 
1343 	/* If freeing the buffer failed, leave the handle in place for
1344 	 * clean-up during process tear-down.
1345 	 */
1346 	if (!ret)
1347 		kfd_process_device_remove_obj_handle(
1348 			pdd, GET_IDR_HANDLE(args->handle));
1349 
1350 err_unlock:
1351 	mutex_unlock(&p->mutex);
1352 	return ret;
1353 }
1354 
1355 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1356 					struct kfd_process *p, void *data)
1357 {
1358 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1359 	struct kfd_process_device *pdd, *peer_pdd;
1360 	void *mem;
1361 	struct kfd_dev *dev, *peer;
1362 	long err = 0;
1363 	int i;
1364 	uint32_t *devices_arr = NULL;
1365 
1366 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1367 	if (!dev)
1368 		return -EINVAL;
1369 
1370 	if (!args->n_devices) {
1371 		pr_debug("Device IDs array empty\n");
1372 		return -EINVAL;
1373 	}
1374 	if (args->n_success > args->n_devices) {
1375 		pr_debug("n_success exceeds n_devices\n");
1376 		return -EINVAL;
1377 	}
1378 
1379 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1380 				    GFP_KERNEL);
1381 	if (!devices_arr)
1382 		return -ENOMEM;
1383 
1384 	err = copy_from_user(devices_arr,
1385 			     (void __user *)args->device_ids_array_ptr,
1386 			     args->n_devices * sizeof(*devices_arr));
1387 	if (err != 0) {
1388 		err = -EFAULT;
1389 		goto copy_from_user_failed;
1390 	}
1391 
1392 	mutex_lock(&p->mutex);
1393 
1394 	pdd = kfd_bind_process_to_device(dev, p);
1395 	if (IS_ERR(pdd)) {
1396 		err = PTR_ERR(pdd);
1397 		goto bind_process_to_device_failed;
1398 	}
1399 
1400 	mem = kfd_process_device_translate_handle(pdd,
1401 						GET_IDR_HANDLE(args->handle));
1402 	if (!mem) {
1403 		err = -ENOMEM;
1404 		goto get_mem_obj_from_handle_failed;
1405 	}
1406 
1407 	for (i = args->n_success; i < args->n_devices; i++) {
1408 		peer = kfd_device_by_id(devices_arr[i]);
1409 		if (!peer) {
1410 			pr_debug("Getting device by id failed for 0x%x\n",
1411 				 devices_arr[i]);
1412 			err = -EINVAL;
1413 			goto get_mem_obj_from_handle_failed;
1414 		}
1415 
1416 		peer_pdd = kfd_bind_process_to_device(peer, p);
1417 		if (IS_ERR(peer_pdd)) {
1418 			err = PTR_ERR(peer_pdd);
1419 			goto get_mem_obj_from_handle_failed;
1420 		}
1421 		err = peer->kfd2kgd->map_memory_to_gpu(
1422 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1423 		if (err) {
1424 			pr_err("Failed to map to gpu %d/%d\n",
1425 			       i, args->n_devices);
1426 			goto map_memory_to_gpu_failed;
1427 		}
1428 		args->n_success = i+1;
1429 	}
1430 
1431 	mutex_unlock(&p->mutex);
1432 
1433 	err = dev->kfd2kgd->sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1434 	if (err) {
1435 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1436 		goto sync_memory_failed;
1437 	}
1438 
1439 	/* Flush TLBs after waiting for the page table updates to complete */
1440 	for (i = 0; i < args->n_devices; i++) {
1441 		peer = kfd_device_by_id(devices_arr[i]);
1442 		if (WARN_ON_ONCE(!peer))
1443 			continue;
1444 		peer_pdd = kfd_get_process_device_data(peer, p);
1445 		if (WARN_ON_ONCE(!peer_pdd))
1446 			continue;
1447 		kfd_flush_tlb(peer_pdd);
1448 	}
1449 
1450 	kfree(devices_arr);
1451 
1452 	return err;
1453 
1454 bind_process_to_device_failed:
1455 get_mem_obj_from_handle_failed:
1456 map_memory_to_gpu_failed:
1457 	mutex_unlock(&p->mutex);
1458 copy_from_user_failed:
1459 sync_memory_failed:
1460 	kfree(devices_arr);
1461 
1462 	return err;
1463 }
1464 
1465 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1466 					struct kfd_process *p, void *data)
1467 {
1468 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1469 	struct kfd_process_device *pdd, *peer_pdd;
1470 	void *mem;
1471 	struct kfd_dev *dev, *peer;
1472 	long err = 0;
1473 	uint32_t *devices_arr = NULL, i;
1474 
1475 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1476 	if (!dev)
1477 		return -EINVAL;
1478 
1479 	if (!args->n_devices) {
1480 		pr_debug("Device IDs array empty\n");
1481 		return -EINVAL;
1482 	}
1483 	if (args->n_success > args->n_devices) {
1484 		pr_debug("n_success exceeds n_devices\n");
1485 		return -EINVAL;
1486 	}
1487 
1488 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1489 				    GFP_KERNEL);
1490 	if (!devices_arr)
1491 		return -ENOMEM;
1492 
1493 	err = copy_from_user(devices_arr,
1494 			     (void __user *)args->device_ids_array_ptr,
1495 			     args->n_devices * sizeof(*devices_arr));
1496 	if (err != 0) {
1497 		err = -EFAULT;
1498 		goto copy_from_user_failed;
1499 	}
1500 
1501 	mutex_lock(&p->mutex);
1502 
1503 	pdd = kfd_get_process_device_data(dev, p);
1504 	if (!pdd) {
1505 		err = -EINVAL;
1506 		goto bind_process_to_device_failed;
1507 	}
1508 
1509 	mem = kfd_process_device_translate_handle(pdd,
1510 						GET_IDR_HANDLE(args->handle));
1511 	if (!mem) {
1512 		err = -ENOMEM;
1513 		goto get_mem_obj_from_handle_failed;
1514 	}
1515 
1516 	for (i = args->n_success; i < args->n_devices; i++) {
1517 		peer = kfd_device_by_id(devices_arr[i]);
1518 		if (!peer) {
1519 			err = -EINVAL;
1520 			goto get_mem_obj_from_handle_failed;
1521 		}
1522 
1523 		peer_pdd = kfd_get_process_device_data(peer, p);
1524 		if (!peer_pdd) {
1525 			err = -ENODEV;
1526 			goto get_mem_obj_from_handle_failed;
1527 		}
1528 		err = dev->kfd2kgd->unmap_memory_to_gpu(
1529 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1530 		if (err) {
1531 			pr_err("Failed to unmap from gpu %d/%d\n",
1532 			       i, args->n_devices);
1533 			goto unmap_memory_from_gpu_failed;
1534 		}
1535 		args->n_success = i+1;
1536 	}
1537 	kfree(devices_arr);
1538 
1539 	mutex_unlock(&p->mutex);
1540 
1541 	return 0;
1542 
1543 bind_process_to_device_failed:
1544 get_mem_obj_from_handle_failed:
1545 unmap_memory_from_gpu_failed:
1546 	mutex_unlock(&p->mutex);
1547 copy_from_user_failed:
1548 	kfree(devices_arr);
1549 	return err;
1550 }
1551 
1552 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1553 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1554 			    .cmd_drv = 0, .name = #ioctl}
1555 
1556 /** Ioctl table */
1557 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1558 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1559 			kfd_ioctl_get_version, 0),
1560 
1561 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1562 			kfd_ioctl_create_queue, 0),
1563 
1564 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1565 			kfd_ioctl_destroy_queue, 0),
1566 
1567 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1568 			kfd_ioctl_set_memory_policy, 0),
1569 
1570 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1571 			kfd_ioctl_get_clock_counters, 0),
1572 
1573 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1574 			kfd_ioctl_get_process_apertures, 0),
1575 
1576 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1577 			kfd_ioctl_update_queue, 0),
1578 
1579 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1580 			kfd_ioctl_create_event, 0),
1581 
1582 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1583 			kfd_ioctl_destroy_event, 0),
1584 
1585 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1586 			kfd_ioctl_set_event, 0),
1587 
1588 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1589 			kfd_ioctl_reset_event, 0),
1590 
1591 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1592 			kfd_ioctl_wait_events, 0),
1593 
1594 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1595 			kfd_ioctl_dbg_register, 0),
1596 
1597 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1598 			kfd_ioctl_dbg_unregister, 0),
1599 
1600 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1601 			kfd_ioctl_dbg_address_watch, 0),
1602 
1603 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1604 			kfd_ioctl_dbg_wave_control, 0),
1605 
1606 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1607 			kfd_ioctl_set_scratch_backing_va, 0),
1608 
1609 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1610 			kfd_ioctl_get_tile_config, 0),
1611 
1612 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1613 			kfd_ioctl_set_trap_handler, 0),
1614 
1615 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1616 			kfd_ioctl_get_process_apertures_new, 0),
1617 
1618 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1619 			kfd_ioctl_acquire_vm, 0),
1620 
1621 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1622 			kfd_ioctl_alloc_memory_of_gpu, 0),
1623 
1624 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1625 			kfd_ioctl_free_memory_of_gpu, 0),
1626 
1627 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1628 			kfd_ioctl_map_memory_to_gpu, 0),
1629 
1630 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1631 			kfd_ioctl_unmap_memory_from_gpu, 0),
1632 
1633 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1634 			kfd_ioctl_set_cu_mask, 0),
1635 
1636 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1637 			kfd_ioctl_get_queue_wave_state, 0)
1638 
1639 };
1640 
1641 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1642 
1643 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1644 {
1645 	struct kfd_process *process;
1646 	amdkfd_ioctl_t *func;
1647 	const struct amdkfd_ioctl_desc *ioctl = NULL;
1648 	unsigned int nr = _IOC_NR(cmd);
1649 	char stack_kdata[128];
1650 	char *kdata = NULL;
1651 	unsigned int usize, asize;
1652 	int retcode = -EINVAL;
1653 
1654 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1655 		goto err_i1;
1656 
1657 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1658 		u32 amdkfd_size;
1659 
1660 		ioctl = &amdkfd_ioctls[nr];
1661 
1662 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1663 		usize = asize = _IOC_SIZE(cmd);
1664 		if (amdkfd_size > asize)
1665 			asize = amdkfd_size;
1666 
1667 		cmd = ioctl->cmd;
1668 	} else
1669 		goto err_i1;
1670 
1671 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1672 
1673 	process = kfd_get_process(current);
1674 	if (IS_ERR(process)) {
1675 		dev_dbg(kfd_device, "no process\n");
1676 		goto err_i1;
1677 	}
1678 
1679 	/* Do not trust userspace, use our own definition */
1680 	func = ioctl->func;
1681 
1682 	if (unlikely(!func)) {
1683 		dev_dbg(kfd_device, "no function\n");
1684 		retcode = -EINVAL;
1685 		goto err_i1;
1686 	}
1687 
1688 	if (cmd & (IOC_IN | IOC_OUT)) {
1689 		if (asize <= sizeof(stack_kdata)) {
1690 			kdata = stack_kdata;
1691 		} else {
1692 			kdata = kmalloc(asize, GFP_KERNEL);
1693 			if (!kdata) {
1694 				retcode = -ENOMEM;
1695 				goto err_i1;
1696 			}
1697 		}
1698 		if (asize > usize)
1699 			memset(kdata + usize, 0, asize - usize);
1700 	}
1701 
1702 	if (cmd & IOC_IN) {
1703 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1704 			retcode = -EFAULT;
1705 			goto err_i1;
1706 		}
1707 	} else if (cmd & IOC_OUT) {
1708 		memset(kdata, 0, usize);
1709 	}
1710 
1711 	retcode = func(filep, process, kdata);
1712 
1713 	if (cmd & IOC_OUT)
1714 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1715 			retcode = -EFAULT;
1716 
1717 err_i1:
1718 	if (!ioctl)
1719 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1720 			  task_pid_nr(current), cmd, nr);
1721 
1722 	if (kdata != stack_kdata)
1723 		kfree(kdata);
1724 
1725 	if (retcode)
1726 		dev_dbg(kfd_device, "ret = %d\n", retcode);
1727 
1728 	return retcode;
1729 }
1730 
1731 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1732 {
1733 	struct kfd_process *process;
1734 	struct kfd_dev *dev = NULL;
1735 	unsigned long vm_pgoff;
1736 	unsigned int gpu_id;
1737 
1738 	process = kfd_get_process(current);
1739 	if (IS_ERR(process))
1740 		return PTR_ERR(process);
1741 
1742 	vm_pgoff = vma->vm_pgoff;
1743 	vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1744 	gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1745 	if (gpu_id)
1746 		dev = kfd_device_by_id(gpu_id);
1747 
1748 	switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1749 	case KFD_MMAP_TYPE_DOORBELL:
1750 		if (!dev)
1751 			return -ENODEV;
1752 		return kfd_doorbell_mmap(dev, process, vma);
1753 
1754 	case KFD_MMAP_TYPE_EVENTS:
1755 		return kfd_event_mmap(process, vma);
1756 
1757 	case KFD_MMAP_TYPE_RESERVED_MEM:
1758 		if (!dev)
1759 			return -ENODEV;
1760 		return kfd_reserved_mem_mmap(dev, process, vma);
1761 	}
1762 
1763 	return -EFAULT;
1764 }
1765