1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "gc/gc_11_0_0_offset.h" 34 #include "gc/gc_11_0_0_sh_mask.h" 35 #include "gc/gc_11_0_0_default.h" 36 #include "hdp/hdp_6_0_0_offset.h" 37 #include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h" 38 39 #include "soc15_common.h" 40 #include "soc15.h" 41 #include "sdma_v6_0_0_pkt_open.h" 42 #include "nbio_v4_3.h" 43 #include "sdma_common.h" 44 #include "sdma_v6_0.h" 45 #include "v11_structs.h" 46 47 MODULE_FIRMWARE("amdgpu/sdma_6_0_0.bin"); 48 MODULE_FIRMWARE("amdgpu/sdma_6_0_1.bin"); 49 MODULE_FIRMWARE("amdgpu/sdma_6_0_2.bin"); 50 MODULE_FIRMWARE("amdgpu/sdma_6_0_3.bin"); 51 52 #define SDMA1_REG_OFFSET 0x600 53 #define SDMA0_HYP_DEC_REG_START 0x5880 54 #define SDMA0_HYP_DEC_REG_END 0x589a 55 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 56 57 static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev); 58 static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev); 59 static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev); 60 static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev); 61 static int sdma_v6_0_start(struct amdgpu_device *adev); 62 63 static u32 sdma_v6_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) 64 { 65 u32 base; 66 67 if (internal_offset >= SDMA0_HYP_DEC_REG_START && 68 internal_offset <= SDMA0_HYP_DEC_REG_END) { 69 base = adev->reg_offset[GC_HWIP][0][1]; 70 if (instance != 0) 71 internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance; 72 } else { 73 base = adev->reg_offset[GC_HWIP][0][0]; 74 if (instance == 1) 75 internal_offset += SDMA1_REG_OFFSET; 76 } 77 78 return base + internal_offset; 79 } 80 81 /** 82 * sdma_v6_0_init_microcode - load ucode images from disk 83 * 84 * @adev: amdgpu_device pointer 85 * 86 * Use the firmware interface to load the ucode images into 87 * the driver (not loaded into hw). 88 * Returns 0 on success, error on failure. 89 */ 90 static int sdma_v6_0_init_microcode(struct amdgpu_device *adev) 91 { 92 char fw_name[30]; 93 char ucode_prefix[30]; 94 95 DRM_DEBUG("\n"); 96 97 amdgpu_ucode_ip_version_decode(adev, SDMA0_HWIP, ucode_prefix, sizeof(ucode_prefix)); 98 99 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", ucode_prefix); 100 101 return amdgpu_sdma_init_microcode(adev, fw_name, 0, true); 102 } 103 104 static unsigned sdma_v6_0_ring_init_cond_exec(struct amdgpu_ring *ring) 105 { 106 unsigned ret; 107 108 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COND_EXE)); 109 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); 110 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); 111 amdgpu_ring_write(ring, 1); 112 ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */ 113 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */ 114 115 return ret; 116 } 117 118 static void sdma_v6_0_ring_patch_cond_exec(struct amdgpu_ring *ring, 119 unsigned offset) 120 { 121 unsigned cur; 122 123 BUG_ON(offset > ring->buf_mask); 124 BUG_ON(ring->ring[offset] != 0x55aa55aa); 125 126 cur = (ring->wptr - 1) & ring->buf_mask; 127 if (cur > offset) 128 ring->ring[offset] = cur - offset; 129 else 130 ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; 131 } 132 133 /** 134 * sdma_v6_0_ring_get_rptr - get the current read pointer 135 * 136 * @ring: amdgpu ring pointer 137 * 138 * Get the current rptr from the hardware. 139 */ 140 static uint64_t sdma_v6_0_ring_get_rptr(struct amdgpu_ring *ring) 141 { 142 u64 *rptr; 143 144 /* XXX check if swapping is necessary on BE */ 145 rptr = (u64 *)ring->rptr_cpu_addr; 146 147 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 148 return ((*rptr) >> 2); 149 } 150 151 /** 152 * sdma_v6_0_ring_get_wptr - get the current write pointer 153 * 154 * @ring: amdgpu ring pointer 155 * 156 * Get the current wptr from the hardware. 157 */ 158 static uint64_t sdma_v6_0_ring_get_wptr(struct amdgpu_ring *ring) 159 { 160 u64 wptr = 0; 161 162 if (ring->use_doorbell) { 163 /* XXX check if swapping is necessary on BE */ 164 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 165 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 166 } 167 168 return wptr >> 2; 169 } 170 171 /** 172 * sdma_v6_0_ring_set_wptr - commit the write pointer 173 * 174 * @ring: amdgpu ring pointer 175 * 176 * Write the wptr back to the hardware. 177 */ 178 static void sdma_v6_0_ring_set_wptr(struct amdgpu_ring *ring) 179 { 180 struct amdgpu_device *adev = ring->adev; 181 uint32_t *wptr_saved; 182 uint32_t *is_queue_unmap; 183 uint64_t aggregated_db_index; 184 uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size; 185 186 DRM_DEBUG("Setting write pointer\n"); 187 188 if (ring->is_mes_queue) { 189 wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size); 190 is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size + 191 sizeof(uint32_t)); 192 aggregated_db_index = 193 amdgpu_mes_get_aggregated_doorbell_index(adev, 194 ring->hw_prio); 195 196 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 197 ring->wptr << 2); 198 *wptr_saved = ring->wptr << 2; 199 if (*is_queue_unmap) { 200 WDOORBELL64(aggregated_db_index, ring->wptr << 2); 201 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 202 ring->doorbell_index, ring->wptr << 2); 203 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 204 } else { 205 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 206 ring->doorbell_index, ring->wptr << 2); 207 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 208 209 if (*is_queue_unmap) 210 WDOORBELL64(aggregated_db_index, 211 ring->wptr << 2); 212 } 213 } else { 214 if (ring->use_doorbell) { 215 DRM_DEBUG("Using doorbell -- " 216 "wptr_offs == 0x%08x " 217 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 218 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 219 ring->wptr_offs, 220 lower_32_bits(ring->wptr << 2), 221 upper_32_bits(ring->wptr << 2)); 222 /* XXX check if swapping is necessary on BE */ 223 atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 224 ring->wptr << 2); 225 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 226 ring->doorbell_index, ring->wptr << 2); 227 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 228 } else { 229 DRM_DEBUG("Not using doorbell -- " 230 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 231 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 232 ring->me, 233 lower_32_bits(ring->wptr << 2), 234 ring->me, 235 upper_32_bits(ring->wptr << 2)); 236 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 237 ring->me, regSDMA0_QUEUE0_RB_WPTR), 238 lower_32_bits(ring->wptr << 2)); 239 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 240 ring->me, regSDMA0_QUEUE0_RB_WPTR_HI), 241 upper_32_bits(ring->wptr << 2)); 242 } 243 } 244 } 245 246 static void sdma_v6_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 247 { 248 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 249 int i; 250 251 for (i = 0; i < count; i++) 252 if (sdma && sdma->burst_nop && (i == 0)) 253 amdgpu_ring_write(ring, ring->funcs->nop | 254 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 255 else 256 amdgpu_ring_write(ring, ring->funcs->nop); 257 } 258 259 /** 260 * sdma_v6_0_ring_emit_ib - Schedule an IB on the DMA engine 261 * 262 * @ring: amdgpu ring pointer 263 * @ib: IB object to schedule 264 * 265 * Schedule an IB in the DMA ring. 266 */ 267 static void sdma_v6_0_ring_emit_ib(struct amdgpu_ring *ring, 268 struct amdgpu_job *job, 269 struct amdgpu_ib *ib, 270 uint32_t flags) 271 { 272 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 273 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); 274 275 /* An IB packet must end on a 8 DW boundary--the next dword 276 * must be on a 8-dword boundary. Our IB packet below is 6 277 * dwords long, thus add x number of NOPs, such that, in 278 * modular arithmetic, 279 * wptr + 6 + x = 8k, k >= 0, which in C is, 280 * (wptr + 6 + x) % 8 = 0. 281 * The expression below, is a solution of x. 282 */ 283 sdma_v6_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 284 285 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_INDIRECT) | 286 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 287 /* base must be 32 byte aligned */ 288 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 289 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 290 amdgpu_ring_write(ring, ib->length_dw); 291 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 292 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 293 } 294 295 /** 296 * sdma_v6_0_ring_emit_mem_sync - flush the IB by graphics cache rinse 297 * 298 * @ring: amdgpu ring pointer 299 * @job: job to retrieve vmid from 300 * @ib: IB object to schedule 301 * 302 * flush the IB by graphics cache rinse. 303 */ 304 static void sdma_v6_0_ring_emit_mem_sync(struct amdgpu_ring *ring) 305 { 306 uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV | 307 SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | 308 SDMA_GCR_GLI_INV(1); 309 310 /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ 311 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_GCR_REQ)); 312 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); 313 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | 314 SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); 315 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | 316 SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); 317 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | 318 SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); 319 } 320 321 322 /** 323 * sdma_v6_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 324 * 325 * @ring: amdgpu ring pointer 326 * 327 * Emit an hdp flush packet on the requested DMA ring. 328 */ 329 static void sdma_v6_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 330 { 331 struct amdgpu_device *adev = ring->adev; 332 u32 ref_and_mask = 0; 333 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 334 335 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 336 337 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 338 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 339 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 340 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); 341 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); 342 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 343 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 344 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 345 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 346 } 347 348 /** 349 * sdma_v6_0_ring_emit_fence - emit a fence on the DMA ring 350 * 351 * @ring: amdgpu ring pointer 352 * @fence: amdgpu fence object 353 * 354 * Add a DMA fence packet to the ring to write 355 * the fence seq number and DMA trap packet to generate 356 * an interrupt if needed. 357 */ 358 static void sdma_v6_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 359 unsigned flags) 360 { 361 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 362 /* write the fence */ 363 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | 364 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ 365 /* zero in first two bits */ 366 BUG_ON(addr & 0x3); 367 amdgpu_ring_write(ring, lower_32_bits(addr)); 368 amdgpu_ring_write(ring, upper_32_bits(addr)); 369 amdgpu_ring_write(ring, lower_32_bits(seq)); 370 371 /* optionally write high bits as well */ 372 if (write64bit) { 373 addr += 4; 374 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_FENCE) | 375 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); 376 /* zero in first two bits */ 377 BUG_ON(addr & 0x3); 378 amdgpu_ring_write(ring, lower_32_bits(addr)); 379 amdgpu_ring_write(ring, upper_32_bits(addr)); 380 amdgpu_ring_write(ring, upper_32_bits(seq)); 381 } 382 383 if (flags & AMDGPU_FENCE_FLAG_INT) { 384 uint32_t ctx = ring->is_mes_queue ? 385 (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0; 386 /* generate an interrupt */ 387 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_TRAP)); 388 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx)); 389 } 390 } 391 392 /** 393 * sdma_v6_0_gfx_stop - stop the gfx async dma engines 394 * 395 * @adev: amdgpu_device pointer 396 * 397 * Stop the gfx async dma ring buffers. 398 */ 399 static void sdma_v6_0_gfx_stop(struct amdgpu_device *adev) 400 { 401 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 402 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 403 u32 rb_cntl, ib_cntl; 404 int i; 405 406 if ((adev->mman.buffer_funcs_ring == sdma0) || 407 (adev->mman.buffer_funcs_ring == sdma1)) 408 amdgpu_ttm_set_buffer_funcs_status(adev, false); 409 410 for (i = 0; i < adev->sdma.num_instances; i++) { 411 rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); 412 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 0); 413 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 414 ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); 415 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 0); 416 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); 417 } 418 419 sdma0->sched.ready = false; 420 sdma1->sched.ready = false; 421 } 422 423 /** 424 * sdma_v6_0_rlc_stop - stop the compute async dma engines 425 * 426 * @adev: amdgpu_device pointer 427 * 428 * Stop the compute async dma queues. 429 */ 430 static void sdma_v6_0_rlc_stop(struct amdgpu_device *adev) 431 { 432 /* XXX todo */ 433 } 434 435 /** 436 * sdma_v6_0_ctx_switch_enable - stop the async dma engines context switch 437 * 438 * @adev: amdgpu_device pointer 439 * @enable: enable/disable the DMA MEs context switch. 440 * 441 * Halt or unhalt the async dma engines context switch. 442 */ 443 static void sdma_v6_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 444 { 445 } 446 447 /** 448 * sdma_v6_0_enable - stop the async dma engines 449 * 450 * @adev: amdgpu_device pointer 451 * @enable: enable/disable the DMA MEs. 452 * 453 * Halt or unhalt the async dma engines. 454 */ 455 static void sdma_v6_0_enable(struct amdgpu_device *adev, bool enable) 456 { 457 u32 f32_cntl; 458 int i; 459 460 if (!enable) { 461 sdma_v6_0_gfx_stop(adev); 462 sdma_v6_0_rlc_stop(adev); 463 } 464 465 for (i = 0; i < adev->sdma.num_instances; i++) { 466 f32_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 467 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 468 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), f32_cntl); 469 } 470 } 471 472 /** 473 * sdma_v6_0_gfx_resume - setup and start the async dma engines 474 * 475 * @adev: amdgpu_device pointer 476 * 477 * Set up the gfx DMA ring buffers and enable them. 478 * Returns 0 for success, error for failure. 479 */ 480 static int sdma_v6_0_gfx_resume(struct amdgpu_device *adev) 481 { 482 struct amdgpu_ring *ring; 483 u32 rb_cntl, ib_cntl; 484 u32 rb_bufsz; 485 u32 doorbell; 486 u32 doorbell_offset; 487 u32 temp; 488 u64 wptr_gpu_addr; 489 int i, r; 490 491 for (i = 0; i < adev->sdma.num_instances; i++) { 492 ring = &adev->sdma.instance[i].ring; 493 494 if (!amdgpu_sriov_vf(adev)) 495 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); 496 497 /* Set ring buffer size in dwords */ 498 rb_bufsz = order_base_2(ring->ring_size / 4); 499 rb_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL)); 500 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SIZE, rb_bufsz); 501 #ifdef __BIG_ENDIAN 502 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_SWAP_ENABLE, 1); 503 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, 504 RPTR_WRITEBACK_SWAP_ENABLE, 1); 505 #endif 506 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_PRIV, 1); 507 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 508 509 /* Initialize the ring buffer's read and write pointers */ 510 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR), 0); 511 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_HI), 0); 512 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), 0); 513 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), 0); 514 515 /* setup the wptr shadow polling */ 516 wptr_gpu_addr = ring->wptr_gpu_addr; 517 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_LO), 518 lower_32_bits(wptr_gpu_addr)); 519 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_POLL_ADDR_HI), 520 upper_32_bits(wptr_gpu_addr)); 521 522 /* set the wb address whether it's enabled or not */ 523 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_HI), 524 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 525 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_RPTR_ADDR_LO), 526 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 527 528 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 529 if (amdgpu_sriov_vf(adev)) 530 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, WPTR_POLL_ENABLE, 1); 531 else 532 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, WPTR_POLL_ENABLE, 0); 533 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, F32_WPTR_POLL_ENABLE, 1); 534 535 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE), ring->gpu_addr >> 8); 536 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_BASE_HI), ring->gpu_addr >> 40); 537 538 ring->wptr = 0; 539 540 /* before programing wptr to a less value, need set minor_ptr_update first */ 541 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 1); 542 543 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ 544 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR), lower_32_bits(ring->wptr) << 2); 545 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2); 546 } 547 548 doorbell = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL)); 549 doorbell_offset = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET)); 550 551 if (ring->use_doorbell) { 552 doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); 553 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_QUEUE0_DOORBELL_OFFSET, 554 OFFSET, ring->doorbell_index); 555 } else { 556 doorbell = REG_SET_FIELD(doorbell, SDMA0_QUEUE0_DOORBELL, ENABLE, 0); 557 } 558 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL), doorbell); 559 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_DOORBELL_OFFSET), doorbell_offset); 560 561 if (i == 0) 562 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, 563 ring->doorbell_index, 564 adev->doorbell_index.sdma_doorbell_range * adev->sdma.num_instances); 565 566 if (amdgpu_sriov_vf(adev)) 567 sdma_v6_0_ring_set_wptr(ring); 568 569 /* set minor_ptr_update to 0 after wptr programed */ 570 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_MINOR_PTR_UPDATE), 0); 571 572 /* Set up RESP_MODE to non-copy addresses */ 573 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL)); 574 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); 575 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); 576 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_CNTL), temp); 577 578 /* program default cache read and write policy */ 579 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE)); 580 /* clean read policy and write policy bits */ 581 temp &= 0xFF0FFF; 582 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | 583 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) | 584 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK); 585 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UTCL1_PAGE), temp); 586 587 if (!amdgpu_sriov_vf(adev)) { 588 /* unhalt engine */ 589 temp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 590 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 591 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, TH1_RESET, 0); 592 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), temp); 593 } 594 595 /* enable DMA RB */ 596 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_QUEUE0_RB_CNTL, RB_ENABLE, 1); 597 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_RB_CNTL), rb_cntl); 598 599 ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL)); 600 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_ENABLE, 1); 601 #ifdef __BIG_ENDIAN 602 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_QUEUE0_IB_CNTL, IB_SWAP_ENABLE, 1); 603 #endif 604 /* enable DMA IBs */ 605 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_IB_CNTL), ib_cntl); 606 607 ring->sched.ready = true; 608 609 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */ 610 sdma_v6_0_ctx_switch_enable(adev, true); 611 sdma_v6_0_enable(adev, true); 612 } 613 614 r = amdgpu_ring_test_helper(ring); 615 if (r) { 616 ring->sched.ready = false; 617 return r; 618 } 619 620 if (adev->mman.buffer_funcs_ring == ring) 621 amdgpu_ttm_set_buffer_funcs_status(adev, true); 622 } 623 624 return 0; 625 } 626 627 /** 628 * sdma_v6_0_rlc_resume - setup and start the async dma engines 629 * 630 * @adev: amdgpu_device pointer 631 * 632 * Set up the compute DMA queues and enable them. 633 * Returns 0 for success, error for failure. 634 */ 635 static int sdma_v6_0_rlc_resume(struct amdgpu_device *adev) 636 { 637 return 0; 638 } 639 640 /** 641 * sdma_v6_0_load_microcode - load the sDMA ME ucode 642 * 643 * @adev: amdgpu_device pointer 644 * 645 * Loads the sDMA0/1 ucode. 646 * Returns 0 for success, -EINVAL if the ucode is not available. 647 */ 648 static int sdma_v6_0_load_microcode(struct amdgpu_device *adev) 649 { 650 const struct sdma_firmware_header_v2_0 *hdr; 651 const __le32 *fw_data; 652 u32 fw_size; 653 int i, j; 654 bool use_broadcast; 655 656 /* halt the MEs */ 657 sdma_v6_0_enable(adev, false); 658 659 if (!adev->sdma.instance[0].fw) 660 return -EINVAL; 661 662 /* use broadcast mode to load SDMA microcode by default */ 663 use_broadcast = true; 664 665 if (use_broadcast) { 666 dev_info(adev->dev, "Use broadcast method to load SDMA firmware\n"); 667 /* load Control Thread microcode */ 668 hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; 669 amdgpu_ucode_print_sdma_hdr(&hdr->header); 670 fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; 671 672 fw_data = (const __le32 *) 673 (adev->sdma.instance[0].fw->data + 674 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 675 676 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0); 677 678 for (j = 0; j < fw_size; j++) { 679 if (amdgpu_emu_mode == 1 && j % 500 == 0) 680 msleep(1); 681 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); 682 } 683 684 /* load Context Switch microcode */ 685 fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; 686 687 fw_data = (const __le32 *) 688 (adev->sdma.instance[0].fw->data + 689 le32_to_cpu(hdr->ctl_ucode_offset)); 690 691 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_ADDR), 0x8000); 692 693 for (j = 0; j < fw_size; j++) { 694 if (amdgpu_emu_mode == 1 && j % 500 == 0) 695 msleep(1); 696 WREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_BROADCAST_UCODE_DATA), le32_to_cpup(fw_data++)); 697 } 698 } else { 699 dev_info(adev->dev, "Use legacy method to load SDMA firmware\n"); 700 for (i = 0; i < adev->sdma.num_instances; i++) { 701 /* load Control Thread microcode */ 702 hdr = (const struct sdma_firmware_header_v2_0 *)adev->sdma.instance[0].fw->data; 703 amdgpu_ucode_print_sdma_hdr(&hdr->header); 704 fw_size = le32_to_cpu(hdr->ctx_jt_offset + hdr->ctx_jt_size) / 4; 705 706 fw_data = (const __le32 *) 707 (adev->sdma.instance[0].fw->data + 708 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 709 710 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0); 711 712 for (j = 0; j < fw_size; j++) { 713 if (amdgpu_emu_mode == 1 && j % 500 == 0) 714 msleep(1); 715 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 716 } 717 718 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); 719 720 /* load Context Switch microcode */ 721 fw_size = le32_to_cpu(hdr->ctl_jt_offset + hdr->ctl_jt_size) / 4; 722 723 fw_data = (const __le32 *) 724 (adev->sdma.instance[0].fw->data + 725 le32_to_cpu(hdr->ctl_ucode_offset)); 726 727 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), 0x8000); 728 729 for (j = 0; j < fw_size; j++) { 730 if (amdgpu_emu_mode == 1 && j % 500 == 0) 731 msleep(1); 732 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 733 } 734 735 WREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_UCODE_ADDR), adev->sdma.instance[0].fw_version); 736 } 737 } 738 739 return 0; 740 } 741 742 static int sdma_v6_0_soft_reset(void *handle) 743 { 744 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 745 u32 tmp; 746 int i; 747 748 sdma_v6_0_gfx_stop(adev); 749 750 for (i = 0; i < adev->sdma.num_instances; i++) { 751 tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE)); 752 tmp |= SDMA0_FREEZE__FREEZE_MASK; 753 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_FREEZE), tmp); 754 tmp = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL)); 755 tmp |= SDMA0_F32_CNTL__HALT_MASK; 756 tmp |= SDMA0_F32_CNTL__TH1_RESET_MASK; 757 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_F32_CNTL), tmp); 758 759 WREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, i, regSDMA0_QUEUE0_PREEMPT), 0); 760 761 udelay(100); 762 763 tmp = GRBM_SOFT_RESET__SOFT_RESET_SDMA0_MASK << i; 764 WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, tmp); 765 tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); 766 767 udelay(100); 768 769 WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, 0); 770 tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); 771 772 udelay(100); 773 } 774 775 return sdma_v6_0_start(adev); 776 } 777 778 static bool sdma_v6_0_check_soft_reset(void *handle) 779 { 780 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 781 struct amdgpu_ring *ring; 782 int i, r; 783 long tmo = msecs_to_jiffies(1000); 784 785 for (i = 0; i < adev->sdma.num_instances; i++) { 786 ring = &adev->sdma.instance[i].ring; 787 r = amdgpu_ring_test_ib(ring, tmo); 788 if (r) 789 return true; 790 } 791 792 return false; 793 } 794 795 /** 796 * sdma_v6_0_start - setup and start the async dma engines 797 * 798 * @adev: amdgpu_device pointer 799 * 800 * Set up the DMA engines and enable them. 801 * Returns 0 for success, error for failure. 802 */ 803 static int sdma_v6_0_start(struct amdgpu_device *adev) 804 { 805 int r = 0; 806 807 if (amdgpu_sriov_vf(adev)) { 808 sdma_v6_0_ctx_switch_enable(adev, false); 809 sdma_v6_0_enable(adev, false); 810 811 /* set RB registers */ 812 r = sdma_v6_0_gfx_resume(adev); 813 return r; 814 } 815 816 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 817 r = sdma_v6_0_load_microcode(adev); 818 if (r) 819 return r; 820 821 /* The value of regSDMA_F32_CNTL is invalid the moment after loading fw */ 822 if (amdgpu_emu_mode == 1) 823 msleep(1000); 824 } 825 826 /* unhalt the MEs */ 827 sdma_v6_0_enable(adev, true); 828 /* enable sdma ring preemption */ 829 sdma_v6_0_ctx_switch_enable(adev, true); 830 831 /* start the gfx rings and rlc compute queues */ 832 r = sdma_v6_0_gfx_resume(adev); 833 if (r) 834 return r; 835 r = sdma_v6_0_rlc_resume(adev); 836 837 return r; 838 } 839 840 static int sdma_v6_0_mqd_init(struct amdgpu_device *adev, void *mqd, 841 struct amdgpu_mqd_prop *prop) 842 { 843 struct v11_sdma_mqd *m = mqd; 844 uint64_t wb_gpu_addr; 845 846 m->sdmax_rlcx_rb_cntl = 847 order_base_2(prop->queue_size / 4) << SDMA0_QUEUE0_RB_CNTL__RB_SIZE__SHIFT | 848 1 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 849 4 << SDMA0_QUEUE0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; 850 851 m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8); 852 m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8); 853 854 wb_gpu_addr = prop->wptr_gpu_addr; 855 m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr); 856 m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr); 857 858 wb_gpu_addr = prop->rptr_gpu_addr; 859 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr); 860 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr); 861 862 m->sdmax_rlcx_ib_cntl = RREG32_SOC15_IP(GC, sdma_v6_0_get_reg_offset(adev, 0, 863 regSDMA0_QUEUE0_IB_CNTL)); 864 865 m->sdmax_rlcx_doorbell_offset = 866 prop->doorbell_index << SDMA0_QUEUE0_DOORBELL_OFFSET__OFFSET__SHIFT; 867 868 m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_QUEUE0_DOORBELL, ENABLE, 1); 869 870 m->sdmax_rlcx_skip_cntl = 0; 871 m->sdmax_rlcx_context_status = 0; 872 m->sdmax_rlcx_doorbell_log = 0; 873 874 m->sdmax_rlcx_rb_aql_cntl = regSDMA0_QUEUE0_RB_AQL_CNTL_DEFAULT; 875 m->sdmax_rlcx_dummy_reg = regSDMA0_QUEUE0_DUMMY_REG_DEFAULT; 876 877 return 0; 878 } 879 880 static void sdma_v6_0_set_mqd_funcs(struct amdgpu_device *adev) 881 { 882 adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v11_sdma_mqd); 883 adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v6_0_mqd_init; 884 } 885 886 /** 887 * sdma_v6_0_ring_test_ring - simple async dma engine test 888 * 889 * @ring: amdgpu_ring structure holding ring information 890 * 891 * Test the DMA engine by writing using it to write an 892 * value to memory. 893 * Returns 0 for success, error for failure. 894 */ 895 static int sdma_v6_0_ring_test_ring(struct amdgpu_ring *ring) 896 { 897 struct amdgpu_device *adev = ring->adev; 898 unsigned i; 899 unsigned index; 900 int r; 901 u32 tmp; 902 u64 gpu_addr; 903 volatile uint32_t *cpu_ptr = NULL; 904 905 tmp = 0xCAFEDEAD; 906 907 if (ring->is_mes_queue) { 908 uint32_t offset = 0; 909 offset = amdgpu_mes_ctx_get_offs(ring, 910 AMDGPU_MES_CTX_PADDING_OFFS); 911 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 912 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 913 *cpu_ptr = tmp; 914 } else { 915 r = amdgpu_device_wb_get(adev, &index); 916 if (r) { 917 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 918 return r; 919 } 920 921 gpu_addr = adev->wb.gpu_addr + (index * 4); 922 adev->wb.wb[index] = cpu_to_le32(tmp); 923 } 924 925 r = amdgpu_ring_alloc(ring, 5); 926 if (r) { 927 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 928 amdgpu_device_wb_free(adev, index); 929 return r; 930 } 931 932 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 933 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 934 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 935 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 936 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 937 amdgpu_ring_write(ring, 0xDEADBEEF); 938 amdgpu_ring_commit(ring); 939 940 for (i = 0; i < adev->usec_timeout; i++) { 941 if (ring->is_mes_queue) 942 tmp = le32_to_cpu(*cpu_ptr); 943 else 944 tmp = le32_to_cpu(adev->wb.wb[index]); 945 if (tmp == 0xDEADBEEF) 946 break; 947 if (amdgpu_emu_mode == 1) 948 msleep(1); 949 else 950 udelay(1); 951 } 952 953 if (i >= adev->usec_timeout) 954 r = -ETIMEDOUT; 955 956 if (!ring->is_mes_queue) 957 amdgpu_device_wb_free(adev, index); 958 959 return r; 960 } 961 962 /** 963 * sdma_v6_0_ring_test_ib - test an IB on the DMA engine 964 * 965 * @ring: amdgpu_ring structure holding ring information 966 * 967 * Test a simple IB in the DMA ring. 968 * Returns 0 on success, error on failure. 969 */ 970 static int sdma_v6_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 971 { 972 struct amdgpu_device *adev = ring->adev; 973 struct amdgpu_ib ib; 974 struct dma_fence *f = NULL; 975 unsigned index; 976 long r; 977 u32 tmp = 0; 978 u64 gpu_addr; 979 volatile uint32_t *cpu_ptr = NULL; 980 981 tmp = 0xCAFEDEAD; 982 memset(&ib, 0, sizeof(ib)); 983 984 if (ring->is_mes_queue) { 985 uint32_t offset = 0; 986 offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); 987 ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 988 ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 989 990 offset = amdgpu_mes_ctx_get_offs(ring, 991 AMDGPU_MES_CTX_PADDING_OFFS); 992 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); 993 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); 994 *cpu_ptr = tmp; 995 } else { 996 r = amdgpu_device_wb_get(adev, &index); 997 if (r) { 998 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 999 return r; 1000 } 1001 1002 gpu_addr = adev->wb.gpu_addr + (index * 4); 1003 adev->wb.wb[index] = cpu_to_le32(tmp); 1004 1005 r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); 1006 if (r) { 1007 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 1008 goto err0; 1009 } 1010 } 1011 1012 ib.ptr[0] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 1013 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1014 ib.ptr[1] = lower_32_bits(gpu_addr); 1015 ib.ptr[2] = upper_32_bits(gpu_addr); 1016 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1017 ib.ptr[4] = 0xDEADBEEF; 1018 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1019 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1020 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1021 ib.length_dw = 8; 1022 1023 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1024 if (r) 1025 goto err1; 1026 1027 r = dma_fence_wait_timeout(f, false, timeout); 1028 if (r == 0) { 1029 DRM_ERROR("amdgpu: IB test timed out\n"); 1030 r = -ETIMEDOUT; 1031 goto err1; 1032 } else if (r < 0) { 1033 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 1034 goto err1; 1035 } 1036 1037 if (ring->is_mes_queue) 1038 tmp = le32_to_cpu(*cpu_ptr); 1039 else 1040 tmp = le32_to_cpu(adev->wb.wb[index]); 1041 1042 if (tmp == 0xDEADBEEF) 1043 r = 0; 1044 else 1045 r = -EINVAL; 1046 1047 err1: 1048 amdgpu_ib_free(adev, &ib, NULL); 1049 dma_fence_put(f); 1050 err0: 1051 if (!ring->is_mes_queue) 1052 amdgpu_device_wb_free(adev, index); 1053 return r; 1054 } 1055 1056 1057 /** 1058 * sdma_v6_0_vm_copy_pte - update PTEs by copying them from the GART 1059 * 1060 * @ib: indirect buffer to fill with commands 1061 * @pe: addr of the page entry 1062 * @src: src addr to copy from 1063 * @count: number of page entries to update 1064 * 1065 * Update PTEs by copying them from the GART using sDMA. 1066 */ 1067 static void sdma_v6_0_vm_copy_pte(struct amdgpu_ib *ib, 1068 uint64_t pe, uint64_t src, 1069 unsigned count) 1070 { 1071 unsigned bytes = count * 8; 1072 1073 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | 1074 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1075 ib->ptr[ib->length_dw++] = bytes - 1; 1076 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1077 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1078 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1079 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1080 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1081 1082 } 1083 1084 /** 1085 * sdma_v6_0_vm_write_pte - update PTEs by writing them manually 1086 * 1087 * @ib: indirect buffer to fill with commands 1088 * @pe: addr of the page entry 1089 * @addr: dst addr to write into pe 1090 * @count: number of page entries to update 1091 * @incr: increase next addr by incr bytes 1092 * @flags: access flags 1093 * 1094 * Update PTEs by writing them manually using sDMA. 1095 */ 1096 static void sdma_v6_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1097 uint64_t value, unsigned count, 1098 uint32_t incr) 1099 { 1100 unsigned ndw = count * 2; 1101 1102 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_WRITE) | 1103 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1104 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1105 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1106 ib->ptr[ib->length_dw++] = ndw - 1; 1107 for (; ndw > 0; ndw -= 2) { 1108 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1109 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1110 value += incr; 1111 } 1112 } 1113 1114 /** 1115 * sdma_v6_0_vm_set_pte_pde - update the page tables using sDMA 1116 * 1117 * @ib: indirect buffer to fill with commands 1118 * @pe: addr of the page entry 1119 * @addr: dst addr to write into pe 1120 * @count: number of page entries to update 1121 * @incr: increase next addr by incr bytes 1122 * @flags: access flags 1123 * 1124 * Update the page tables using sDMA. 1125 */ 1126 static void sdma_v6_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1127 uint64_t pe, 1128 uint64_t addr, unsigned count, 1129 uint32_t incr, uint64_t flags) 1130 { 1131 /* for physically contiguous pages (vram) */ 1132 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_PTEPDE); 1133 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1134 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1135 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1136 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1137 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1138 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1139 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1140 ib->ptr[ib->length_dw++] = 0; 1141 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1142 } 1143 1144 /** 1145 * sdma_v6_0_ring_pad_ib - pad the IB 1146 * @ib: indirect buffer to fill with padding 1147 * 1148 * Pad the IB with NOPs to a boundary multiple of 8. 1149 */ 1150 static void sdma_v6_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1151 { 1152 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1153 u32 pad_count; 1154 int i; 1155 1156 pad_count = (-ib->length_dw) & 0x7; 1157 for (i = 0; i < pad_count; i++) 1158 if (sdma && sdma->burst_nop && (i == 0)) 1159 ib->ptr[ib->length_dw++] = 1160 SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP) | 1161 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1162 else 1163 ib->ptr[ib->length_dw++] = 1164 SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_NOP); 1165 } 1166 1167 /** 1168 * sdma_v6_0_ring_emit_pipeline_sync - sync the pipeline 1169 * 1170 * @ring: amdgpu_ring pointer 1171 * 1172 * Make sure all previous operations are completed (CIK). 1173 */ 1174 static void sdma_v6_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1175 { 1176 uint32_t seq = ring->fence_drv.sync_seq; 1177 uint64_t addr = ring->fence_drv.gpu_addr; 1178 1179 /* wait for idle */ 1180 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1181 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1182 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1183 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1184 amdgpu_ring_write(ring, addr & 0xfffffffc); 1185 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1186 amdgpu_ring_write(ring, seq); /* reference */ 1187 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1188 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1189 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1190 } 1191 1192 /** 1193 * sdma_v6_0_ring_emit_vm_flush - vm flush using sDMA 1194 * 1195 * @ring: amdgpu_ring pointer 1196 * @vm: amdgpu_vm pointer 1197 * 1198 * Update the page table base and flush the VM TLB 1199 * using sDMA. 1200 */ 1201 static void sdma_v6_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1202 unsigned vmid, uint64_t pd_addr) 1203 { 1204 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1205 } 1206 1207 static void sdma_v6_0_ring_emit_wreg(struct amdgpu_ring *ring, 1208 uint32_t reg, uint32_t val) 1209 { 1210 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1211 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1212 amdgpu_ring_write(ring, reg); 1213 amdgpu_ring_write(ring, val); 1214 } 1215 1216 static void sdma_v6_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1217 uint32_t val, uint32_t mask) 1218 { 1219 amdgpu_ring_write(ring, SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1220 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1221 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ 1222 amdgpu_ring_write(ring, reg << 2); 1223 amdgpu_ring_write(ring, 0); 1224 amdgpu_ring_write(ring, val); /* reference */ 1225 amdgpu_ring_write(ring, mask); /* mask */ 1226 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1227 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); 1228 } 1229 1230 static void sdma_v6_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, 1231 uint32_t reg0, uint32_t reg1, 1232 uint32_t ref, uint32_t mask) 1233 { 1234 amdgpu_ring_emit_wreg(ring, reg0, ref); 1235 /* wait for a cycle to reset vm_inv_eng*_ack */ 1236 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); 1237 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); 1238 } 1239 1240 static int sdma_v6_0_early_init(void *handle) 1241 { 1242 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1243 1244 sdma_v6_0_set_ring_funcs(adev); 1245 sdma_v6_0_set_buffer_funcs(adev); 1246 sdma_v6_0_set_vm_pte_funcs(adev); 1247 sdma_v6_0_set_irq_funcs(adev); 1248 sdma_v6_0_set_mqd_funcs(adev); 1249 1250 return 0; 1251 } 1252 1253 static int sdma_v6_0_sw_init(void *handle) 1254 { 1255 struct amdgpu_ring *ring; 1256 int r, i; 1257 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1258 1259 /* SDMA trap event */ 1260 r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX, 1261 GFX_11_0_0__SRCID__SDMA_TRAP, 1262 &adev->sdma.trap_irq); 1263 if (r) 1264 return r; 1265 1266 r = sdma_v6_0_init_microcode(adev); 1267 if (r) { 1268 DRM_ERROR("Failed to load sdma firmware!\n"); 1269 return r; 1270 } 1271 1272 for (i = 0; i < adev->sdma.num_instances; i++) { 1273 ring = &adev->sdma.instance[i].ring; 1274 ring->ring_obj = NULL; 1275 ring->use_doorbell = true; 1276 ring->me = i; 1277 1278 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1279 ring->use_doorbell?"true":"false"); 1280 1281 ring->doorbell_index = 1282 (adev->doorbell_index.sdma_engine[i] << 1); // get DWORD offset 1283 1284 sprintf(ring->name, "sdma%d", i); 1285 r = amdgpu_ring_init(adev, ring, 1024, 1286 &adev->sdma.trap_irq, 1287 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1288 AMDGPU_RING_PRIO_DEFAULT, NULL); 1289 if (r) 1290 return r; 1291 } 1292 1293 return r; 1294 } 1295 1296 static int sdma_v6_0_sw_fini(void *handle) 1297 { 1298 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1299 int i; 1300 1301 for (i = 0; i < adev->sdma.num_instances; i++) 1302 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1303 1304 amdgpu_sdma_destroy_inst_ctx(adev, true); 1305 1306 return 0; 1307 } 1308 1309 static int sdma_v6_0_hw_init(void *handle) 1310 { 1311 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1312 1313 return sdma_v6_0_start(adev); 1314 } 1315 1316 static int sdma_v6_0_hw_fini(void *handle) 1317 { 1318 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1319 1320 if (amdgpu_sriov_vf(adev)) 1321 return 0; 1322 1323 sdma_v6_0_ctx_switch_enable(adev, false); 1324 sdma_v6_0_enable(adev, false); 1325 1326 return 0; 1327 } 1328 1329 static int sdma_v6_0_suspend(void *handle) 1330 { 1331 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1332 1333 return sdma_v6_0_hw_fini(adev); 1334 } 1335 1336 static int sdma_v6_0_resume(void *handle) 1337 { 1338 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1339 1340 return sdma_v6_0_hw_init(adev); 1341 } 1342 1343 static bool sdma_v6_0_is_idle(void *handle) 1344 { 1345 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1346 u32 i; 1347 1348 for (i = 0; i < adev->sdma.num_instances; i++) { 1349 u32 tmp = RREG32(sdma_v6_0_get_reg_offset(adev, i, regSDMA0_STATUS_REG)); 1350 1351 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1352 return false; 1353 } 1354 1355 return true; 1356 } 1357 1358 static int sdma_v6_0_wait_for_idle(void *handle) 1359 { 1360 unsigned i; 1361 u32 sdma0, sdma1; 1362 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1363 1364 for (i = 0; i < adev->usec_timeout; i++) { 1365 sdma0 = RREG32(sdma_v6_0_get_reg_offset(adev, 0, regSDMA0_STATUS_REG)); 1366 sdma1 = RREG32(sdma_v6_0_get_reg_offset(adev, 1, regSDMA0_STATUS_REG)); 1367 1368 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) 1369 return 0; 1370 udelay(1); 1371 } 1372 return -ETIMEDOUT; 1373 } 1374 1375 static int sdma_v6_0_ring_preempt_ib(struct amdgpu_ring *ring) 1376 { 1377 int i, r = 0; 1378 struct amdgpu_device *adev = ring->adev; 1379 u32 index = 0; 1380 u64 sdma_gfx_preempt; 1381 1382 amdgpu_sdma_get_index_from_ring(ring, &index); 1383 sdma_gfx_preempt = 1384 sdma_v6_0_get_reg_offset(adev, index, regSDMA0_QUEUE0_PREEMPT); 1385 1386 /* assert preemption condition */ 1387 amdgpu_ring_set_preempt_cond_exec(ring, false); 1388 1389 /* emit the trailing fence */ 1390 ring->trail_seq += 1; 1391 amdgpu_ring_alloc(ring, 10); 1392 sdma_v6_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr, 1393 ring->trail_seq, 0); 1394 amdgpu_ring_commit(ring); 1395 1396 /* assert IB preemption */ 1397 WREG32(sdma_gfx_preempt, 1); 1398 1399 /* poll the trailing fence */ 1400 for (i = 0; i < adev->usec_timeout; i++) { 1401 if (ring->trail_seq == 1402 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 1403 break; 1404 udelay(1); 1405 } 1406 1407 if (i >= adev->usec_timeout) { 1408 r = -EINVAL; 1409 DRM_ERROR("ring %d failed to be preempted\n", ring->idx); 1410 } 1411 1412 /* deassert IB preemption */ 1413 WREG32(sdma_gfx_preempt, 0); 1414 1415 /* deassert the preemption condition */ 1416 amdgpu_ring_set_preempt_cond_exec(ring, true); 1417 return r; 1418 } 1419 1420 static int sdma_v6_0_set_trap_irq_state(struct amdgpu_device *adev, 1421 struct amdgpu_irq_src *source, 1422 unsigned type, 1423 enum amdgpu_interrupt_state state) 1424 { 1425 u32 sdma_cntl; 1426 1427 u32 reg_offset = sdma_v6_0_get_reg_offset(adev, type, regSDMA0_CNTL); 1428 1429 sdma_cntl = RREG32(reg_offset); 1430 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1431 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1432 WREG32(reg_offset, sdma_cntl); 1433 1434 return 0; 1435 } 1436 1437 static int sdma_v6_0_process_trap_irq(struct amdgpu_device *adev, 1438 struct amdgpu_irq_src *source, 1439 struct amdgpu_iv_entry *entry) 1440 { 1441 int instances, queue; 1442 uint32_t mes_queue_id = entry->src_data[0]; 1443 1444 DRM_DEBUG("IH: SDMA trap\n"); 1445 1446 if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { 1447 struct amdgpu_mes_queue *queue; 1448 1449 mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; 1450 1451 spin_lock(&adev->mes.queue_id_lock); 1452 queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); 1453 if (queue) { 1454 DRM_DEBUG("process smda queue id = %d\n", mes_queue_id); 1455 amdgpu_fence_process(queue->ring); 1456 } 1457 spin_unlock(&adev->mes.queue_id_lock); 1458 return 0; 1459 } 1460 1461 queue = entry->ring_id & 0xf; 1462 instances = (entry->ring_id & 0xf0) >> 4; 1463 if (instances > 1) { 1464 DRM_ERROR("IH: wrong ring_ID detected, as wrong sdma instance\n"); 1465 return -EINVAL; 1466 } 1467 1468 switch (entry->client_id) { 1469 case SOC21_IH_CLIENTID_GFX: 1470 switch (queue) { 1471 case 0: 1472 amdgpu_fence_process(&adev->sdma.instance[instances].ring); 1473 break; 1474 default: 1475 break; 1476 } 1477 break; 1478 } 1479 return 0; 1480 } 1481 1482 static int sdma_v6_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1483 struct amdgpu_irq_src *source, 1484 struct amdgpu_iv_entry *entry) 1485 { 1486 return 0; 1487 } 1488 1489 static int sdma_v6_0_set_clockgating_state(void *handle, 1490 enum amd_clockgating_state state) 1491 { 1492 return 0; 1493 } 1494 1495 static int sdma_v6_0_set_powergating_state(void *handle, 1496 enum amd_powergating_state state) 1497 { 1498 return 0; 1499 } 1500 1501 static void sdma_v6_0_get_clockgating_state(void *handle, u64 *flags) 1502 { 1503 } 1504 1505 const struct amd_ip_funcs sdma_v6_0_ip_funcs = { 1506 .name = "sdma_v6_0", 1507 .early_init = sdma_v6_0_early_init, 1508 .late_init = NULL, 1509 .sw_init = sdma_v6_0_sw_init, 1510 .sw_fini = sdma_v6_0_sw_fini, 1511 .hw_init = sdma_v6_0_hw_init, 1512 .hw_fini = sdma_v6_0_hw_fini, 1513 .suspend = sdma_v6_0_suspend, 1514 .resume = sdma_v6_0_resume, 1515 .is_idle = sdma_v6_0_is_idle, 1516 .wait_for_idle = sdma_v6_0_wait_for_idle, 1517 .soft_reset = sdma_v6_0_soft_reset, 1518 .check_soft_reset = sdma_v6_0_check_soft_reset, 1519 .set_clockgating_state = sdma_v6_0_set_clockgating_state, 1520 .set_powergating_state = sdma_v6_0_set_powergating_state, 1521 .get_clockgating_state = sdma_v6_0_get_clockgating_state, 1522 }; 1523 1524 static const struct amdgpu_ring_funcs sdma_v6_0_ring_funcs = { 1525 .type = AMDGPU_RING_TYPE_SDMA, 1526 .align_mask = 0xf, 1527 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1528 .support_64bit_ptrs = true, 1529 .vmhub = AMDGPU_GFXHUB_0, 1530 .get_rptr = sdma_v6_0_ring_get_rptr, 1531 .get_wptr = sdma_v6_0_ring_get_wptr, 1532 .set_wptr = sdma_v6_0_ring_set_wptr, 1533 .emit_frame_size = 1534 5 + /* sdma_v6_0_ring_init_cond_exec */ 1535 6 + /* sdma_v6_0_ring_emit_hdp_flush */ 1536 6 + /* sdma_v6_0_ring_emit_pipeline_sync */ 1537 /* sdma_v6_0_ring_emit_vm_flush */ 1538 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1539 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1540 10 + 10 + 10, /* sdma_v6_0_ring_emit_fence x3 for user fence, vm fence */ 1541 .emit_ib_size = 5 + 7 + 6, /* sdma_v6_0_ring_emit_ib */ 1542 .emit_ib = sdma_v6_0_ring_emit_ib, 1543 .emit_mem_sync = sdma_v6_0_ring_emit_mem_sync, 1544 .emit_fence = sdma_v6_0_ring_emit_fence, 1545 .emit_pipeline_sync = sdma_v6_0_ring_emit_pipeline_sync, 1546 .emit_vm_flush = sdma_v6_0_ring_emit_vm_flush, 1547 .emit_hdp_flush = sdma_v6_0_ring_emit_hdp_flush, 1548 .test_ring = sdma_v6_0_ring_test_ring, 1549 .test_ib = sdma_v6_0_ring_test_ib, 1550 .insert_nop = sdma_v6_0_ring_insert_nop, 1551 .pad_ib = sdma_v6_0_ring_pad_ib, 1552 .emit_wreg = sdma_v6_0_ring_emit_wreg, 1553 .emit_reg_wait = sdma_v6_0_ring_emit_reg_wait, 1554 .emit_reg_write_reg_wait = sdma_v6_0_ring_emit_reg_write_reg_wait, 1555 .init_cond_exec = sdma_v6_0_ring_init_cond_exec, 1556 .patch_cond_exec = sdma_v6_0_ring_patch_cond_exec, 1557 .preempt_ib = sdma_v6_0_ring_preempt_ib, 1558 }; 1559 1560 static void sdma_v6_0_set_ring_funcs(struct amdgpu_device *adev) 1561 { 1562 int i; 1563 1564 for (i = 0; i < adev->sdma.num_instances; i++) { 1565 adev->sdma.instance[i].ring.funcs = &sdma_v6_0_ring_funcs; 1566 adev->sdma.instance[i].ring.me = i; 1567 } 1568 } 1569 1570 static const struct amdgpu_irq_src_funcs sdma_v6_0_trap_irq_funcs = { 1571 .set = sdma_v6_0_set_trap_irq_state, 1572 .process = sdma_v6_0_process_trap_irq, 1573 }; 1574 1575 static const struct amdgpu_irq_src_funcs sdma_v6_0_illegal_inst_irq_funcs = { 1576 .process = sdma_v6_0_process_illegal_inst_irq, 1577 }; 1578 1579 static void sdma_v6_0_set_irq_funcs(struct amdgpu_device *adev) 1580 { 1581 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + 1582 adev->sdma.num_instances; 1583 adev->sdma.trap_irq.funcs = &sdma_v6_0_trap_irq_funcs; 1584 adev->sdma.illegal_inst_irq.funcs = &sdma_v6_0_illegal_inst_irq_funcs; 1585 } 1586 1587 /** 1588 * sdma_v6_0_emit_copy_buffer - copy buffer using the sDMA engine 1589 * 1590 * @ring: amdgpu_ring structure holding ring information 1591 * @src_offset: src GPU address 1592 * @dst_offset: dst GPU address 1593 * @byte_count: number of bytes to xfer 1594 * 1595 * Copy GPU buffers using the DMA engine. 1596 * Used by the amdgpu ttm implementation to move pages if 1597 * registered as the asic copy callback. 1598 */ 1599 static void sdma_v6_0_emit_copy_buffer(struct amdgpu_ib *ib, 1600 uint64_t src_offset, 1601 uint64_t dst_offset, 1602 uint32_t byte_count, 1603 bool tmz) 1604 { 1605 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_COPY) | 1606 SDMA_PKT_COPY_LINEAR_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1607 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 1608 ib->ptr[ib->length_dw++] = byte_count - 1; 1609 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1610 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1611 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1612 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1613 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1614 } 1615 1616 /** 1617 * sdma_v6_0_emit_fill_buffer - fill buffer using the sDMA engine 1618 * 1619 * @ring: amdgpu_ring structure holding ring information 1620 * @src_data: value to write to buffer 1621 * @dst_offset: dst GPU address 1622 * @byte_count: number of bytes to xfer 1623 * 1624 * Fill GPU buffers using the DMA engine. 1625 */ 1626 static void sdma_v6_0_emit_fill_buffer(struct amdgpu_ib *ib, 1627 uint32_t src_data, 1628 uint64_t dst_offset, 1629 uint32_t byte_count) 1630 { 1631 ib->ptr[ib->length_dw++] = SDMA_PKT_COPY_LINEAR_HEADER_OP(SDMA_OP_CONST_FILL); 1632 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1633 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1634 ib->ptr[ib->length_dw++] = src_data; 1635 ib->ptr[ib->length_dw++] = byte_count - 1; 1636 } 1637 1638 static const struct amdgpu_buffer_funcs sdma_v6_0_buffer_funcs = { 1639 .copy_max_bytes = 0x400000, 1640 .copy_num_dw = 7, 1641 .emit_copy_buffer = sdma_v6_0_emit_copy_buffer, 1642 1643 .fill_max_bytes = 0x400000, 1644 .fill_num_dw = 5, 1645 .emit_fill_buffer = sdma_v6_0_emit_fill_buffer, 1646 }; 1647 1648 static void sdma_v6_0_set_buffer_funcs(struct amdgpu_device *adev) 1649 { 1650 adev->mman.buffer_funcs = &sdma_v6_0_buffer_funcs; 1651 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1652 } 1653 1654 static const struct amdgpu_vm_pte_funcs sdma_v6_0_vm_pte_funcs = { 1655 .copy_pte_num_dw = 7, 1656 .copy_pte = sdma_v6_0_vm_copy_pte, 1657 .write_pte = sdma_v6_0_vm_write_pte, 1658 .set_pte_pde = sdma_v6_0_vm_set_pte_pde, 1659 }; 1660 1661 static void sdma_v6_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1662 { 1663 unsigned i; 1664 1665 adev->vm_manager.vm_pte_funcs = &sdma_v6_0_vm_pte_funcs; 1666 for (i = 0; i < adev->sdma.num_instances; i++) { 1667 adev->vm_manager.vm_pte_scheds[i] = 1668 &adev->sdma.instance[i].ring.sched; 1669 } 1670 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1671 } 1672 1673 const struct amdgpu_ip_block_version sdma_v6_0_ip_block = { 1674 .type = AMD_IP_BLOCK_TYPE_SDMA, 1675 .major = 6, 1676 .minor = 0, 1677 .rev = 0, 1678 .funcs = &sdma_v6_0_ip_funcs, 1679 }; 1680