xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_2.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_3_0_offset.h"
34 #include "gc/gc_10_3_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
38 #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"
39 
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "navi10_sdma_pkt_open.h"
43 #include "nbio_v2_3.h"
44 #include "sdma_common.h"
45 #include "sdma_v5_2.h"
46 
47 MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
48 MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
49 
50 #define SDMA1_REG_OFFSET 0x600
51 #define SDMA3_REG_OFFSET 0x400
52 #define SDMA0_HYP_DEC_REG_START 0x5880
53 #define SDMA0_HYP_DEC_REG_END 0x5893
54 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
55 
56 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
57 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
58 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
59 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);
60 
61 static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
62 {
63 	u32 base;
64 
65 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
66 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
67 		base = adev->reg_offset[GC_HWIP][0][1];
68 		if (instance != 0)
69 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
70 	} else {
71 		if (instance < 2) {
72 			base = adev->reg_offset[GC_HWIP][0][0];
73 			if (instance == 1)
74 				internal_offset += SDMA1_REG_OFFSET;
75 		} else {
76 			base = adev->reg_offset[GC_HWIP][0][2];
77 			if (instance == 3)
78 				internal_offset += SDMA3_REG_OFFSET;
79 		}
80 	}
81 
82 	return base + internal_offset;
83 }
84 
85 static void sdma_v5_2_init_golden_registers(struct amdgpu_device *adev)
86 {
87 	switch (adev->asic_type) {
88 	case CHIP_SIENNA_CICHLID:
89 	case CHIP_NAVY_FLOUNDER:
90 		break;
91 	default:
92 		break;
93 	}
94 }
95 
96 static int sdma_v5_2_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
97 {
98 	int err = 0;
99 	const struct sdma_firmware_header_v1_0 *hdr;
100 
101 	err = amdgpu_ucode_validate(sdma_inst->fw);
102 	if (err)
103 		return err;
104 
105 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
106 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
107 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
108 
109 	if (sdma_inst->feature_version >= 20)
110 		sdma_inst->burst_nop = true;
111 
112 	return 0;
113 }
114 
115 static void sdma_v5_2_destroy_inst_ctx(struct amdgpu_device *adev)
116 {
117 	int i;
118 
119 	for (i = 0; i < adev->sdma.num_instances; i++) {
120 		release_firmware(adev->sdma.instance[i].fw);
121 		adev->sdma.instance[i].fw = NULL;
122 
123 		if (adev->asic_type == CHIP_SIENNA_CICHLID)
124 			break;
125 	}
126 
127 	memset((void*)adev->sdma.instance, 0,
128 	       sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
129 }
130 
131 /**
132  * sdma_v5_2_init_microcode - load ucode images from disk
133  *
134  * @adev: amdgpu_device pointer
135  *
136  * Use the firmware interface to load the ucode images into
137  * the driver (not loaded into hw).
138  * Returns 0 on success, error on failure.
139  */
140 
141 // emulation only, won't work on real chip
142 // navi10 real chip need to use PSP to load firmware
143 static int sdma_v5_2_init_microcode(struct amdgpu_device *adev)
144 {
145 	const char *chip_name;
146 	char fw_name[40];
147 	int err = 0, i;
148 	struct amdgpu_firmware_info *info = NULL;
149 	const struct common_firmware_header *header = NULL;
150 
151 	DRM_DEBUG("\n");
152 
153 	switch (adev->asic_type) {
154 	case CHIP_SIENNA_CICHLID:
155 		chip_name = "sienna_cichlid";
156 		break;
157 	case CHIP_NAVY_FLOUNDER:
158 		chip_name = "navy_flounder";
159 		break;
160 	default:
161 		BUG();
162 	}
163 
164 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
165 
166 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
167 	if (err)
168 		goto out;
169 
170 	err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
171 	if (err)
172 		goto out;
173 
174 	for (i = 1; i < adev->sdma.num_instances; i++) {
175 		if (adev->asic_type == CHIP_SIENNA_CICHLID ||
176 		    adev->asic_type == CHIP_NAVY_FLOUNDER) {
177 			memcpy((void*)&adev->sdma.instance[i],
178 			       (void*)&adev->sdma.instance[0],
179 			       sizeof(struct amdgpu_sdma_instance));
180 		} else {
181 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
182 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
183 			if (err)
184 				goto out;
185 
186 			err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
187 			if (err)
188 				goto out;
189 		}
190 	}
191 
192 	DRM_DEBUG("psp_load == '%s'\n",
193 		  adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
194 
195 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
196 		for (i = 0; i < adev->sdma.num_instances; i++) {
197 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
198 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
199 			info->fw = adev->sdma.instance[i].fw;
200 			header = (const struct common_firmware_header *)info->fw->data;
201 			adev->firmware.fw_size +=
202 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
203 		}
204 	}
205 
206 out:
207 	if (err) {
208 		DRM_ERROR("sdma_v5_2: Failed to load firmware \"%s\"\n", fw_name);
209 		sdma_v5_2_destroy_inst_ctx(adev);
210 	}
211 	return err;
212 }
213 
214 static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring)
215 {
216 	unsigned ret;
217 
218 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
219 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
220 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
221 	amdgpu_ring_write(ring, 1);
222 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
223 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
224 
225 	return ret;
226 }
227 
228 static void sdma_v5_2_ring_patch_cond_exec(struct amdgpu_ring *ring,
229 					   unsigned offset)
230 {
231 	unsigned cur;
232 
233 	BUG_ON(offset > ring->buf_mask);
234 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
235 
236 	cur = (ring->wptr - 1) & ring->buf_mask;
237 	if (cur > offset)
238 		ring->ring[offset] = cur - offset;
239 	else
240 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
241 }
242 
243 /**
244  * sdma_v5_2_ring_get_rptr - get the current read pointer
245  *
246  * @ring: amdgpu ring pointer
247  *
248  * Get the current rptr from the hardware (NAVI10+).
249  */
250 static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
251 {
252 	u64 *rptr;
253 
254 	/* XXX check if swapping is necessary on BE */
255 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
256 
257 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
258 	return ((*rptr) >> 2);
259 }
260 
261 /**
262  * sdma_v5_2_ring_get_wptr - get the current write pointer
263  *
264  * @ring: amdgpu ring pointer
265  *
266  * Get the current wptr from the hardware (NAVI10+).
267  */
268 static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
269 {
270 	struct amdgpu_device *adev = ring->adev;
271 	u64 wptr;
272 
273 	if (ring->use_doorbell) {
274 		/* XXX check if swapping is necessary on BE */
275 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
276 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
277 	} else {
278 		wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
279 		wptr = wptr << 32;
280 		wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
281 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
282 	}
283 
284 	return wptr >> 2;
285 }
286 
287 /**
288  * sdma_v5_2_ring_set_wptr - commit the write pointer
289  *
290  * @ring: amdgpu ring pointer
291  *
292  * Write the wptr back to the hardware (NAVI10+).
293  */
294 static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
295 {
296 	struct amdgpu_device *adev = ring->adev;
297 
298 	DRM_DEBUG("Setting write pointer\n");
299 	if (ring->use_doorbell) {
300 		DRM_DEBUG("Using doorbell -- "
301 				"wptr_offs == 0x%08x "
302 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
303 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
304 				ring->wptr_offs,
305 				lower_32_bits(ring->wptr << 2),
306 				upper_32_bits(ring->wptr << 2));
307 		/* XXX check if swapping is necessary on BE */
308 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
309 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
310 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
311 				ring->doorbell_index, ring->wptr << 2);
312 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
313 	} else {
314 		DRM_DEBUG("Not using doorbell -- "
315 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
316 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
317 				ring->me,
318 				lower_32_bits(ring->wptr << 2),
319 				ring->me,
320 				upper_32_bits(ring->wptr << 2));
321 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
322 			lower_32_bits(ring->wptr << 2));
323 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
324 			upper_32_bits(ring->wptr << 2));
325 	}
326 }
327 
328 static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
329 {
330 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
331 	int i;
332 
333 	for (i = 0; i < count; i++)
334 		if (sdma && sdma->burst_nop && (i == 0))
335 			amdgpu_ring_write(ring, ring->funcs->nop |
336 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
337 		else
338 			amdgpu_ring_write(ring, ring->funcs->nop);
339 }
340 
341 /**
342  * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
343  *
344  * @ring: amdgpu ring pointer
345  * @ib: IB object to schedule
346  *
347  * Schedule an IB in the DMA ring.
348  */
349 static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
350 				   struct amdgpu_job *job,
351 				   struct amdgpu_ib *ib,
352 				   uint32_t flags)
353 {
354 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
355 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
356 
357 	/* An IB packet must end on a 8 DW boundary--the next dword
358 	 * must be on a 8-dword boundary. Our IB packet below is 6
359 	 * dwords long, thus add x number of NOPs, such that, in
360 	 * modular arithmetic,
361 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
362 	 * (wptr + 6 + x) % 8 = 0.
363 	 * The expression below, is a solution of x.
364 	 */
365 	sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
366 
367 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
368 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
369 	/* base must be 32 byte aligned */
370 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
371 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
372 	amdgpu_ring_write(ring, ib->length_dw);
373 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
374 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
375 }
376 
377 /**
378  * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
379  *
380  * @ring: amdgpu ring pointer
381  *
382  * Emit an hdp flush packet on the requested DMA ring.
383  */
384 static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
385 {
386 	struct amdgpu_device *adev = ring->adev;
387 	u32 ref_and_mask = 0;
388 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
389 
390 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
391 
392 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
393 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
394 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
395 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
396 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
397 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
398 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
399 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
400 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
401 }
402 
403 /**
404  * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
405  *
406  * @ring: amdgpu ring pointer
407  * @fence: amdgpu fence object
408  *
409  * Add a DMA fence packet to the ring to write
410  * the fence seq number and DMA trap packet to generate
411  * an interrupt if needed.
412  */
413 static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
414 				      unsigned flags)
415 {
416 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
417 	/* write the fence */
418 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
419 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
420 	/* zero in first two bits */
421 	BUG_ON(addr & 0x3);
422 	amdgpu_ring_write(ring, lower_32_bits(addr));
423 	amdgpu_ring_write(ring, upper_32_bits(addr));
424 	amdgpu_ring_write(ring, lower_32_bits(seq));
425 
426 	/* optionally write high bits as well */
427 	if (write64bit) {
428 		addr += 4;
429 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
430 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
431 		/* zero in first two bits */
432 		BUG_ON(addr & 0x3);
433 		amdgpu_ring_write(ring, lower_32_bits(addr));
434 		amdgpu_ring_write(ring, upper_32_bits(addr));
435 		amdgpu_ring_write(ring, upper_32_bits(seq));
436 	}
437 
438 	if (flags & AMDGPU_FENCE_FLAG_INT) {
439 		/* generate an interrupt */
440 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
441 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
442 	}
443 }
444 
445 
446 /**
447  * sdma_v5_2_gfx_stop - stop the gfx async dma engines
448  *
449  * @adev: amdgpu_device pointer
450  *
451  * Stop the gfx async dma ring buffers.
452  */
453 static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
454 {
455 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
456 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
457 	struct amdgpu_ring *sdma2 = &adev->sdma.instance[2].ring;
458 	struct amdgpu_ring *sdma3 = &adev->sdma.instance[3].ring;
459 	u32 rb_cntl, ib_cntl;
460 	int i;
461 
462 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
463 	    (adev->mman.buffer_funcs_ring == sdma1) ||
464 	    (adev->mman.buffer_funcs_ring == sdma2) ||
465 	    (adev->mman.buffer_funcs_ring == sdma3))
466 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
467 
468 	for (i = 0; i < adev->sdma.num_instances; i++) {
469 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
470 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
471 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
472 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
473 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
474 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
475 	}
476 
477 	sdma0->sched.ready = false;
478 	sdma1->sched.ready = false;
479 	sdma2->sched.ready = false;
480 	sdma3->sched.ready = false;
481 }
482 
483 /**
484  * sdma_v5_2_rlc_stop - stop the compute async dma engines
485  *
486  * @adev: amdgpu_device pointer
487  *
488  * Stop the compute async dma queues.
489  */
490 static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
491 {
492 	/* XXX todo */
493 }
494 
495 /**
496  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
497  *
498  * @adev: amdgpu_device pointer
499  * @enable: enable/disable the DMA MEs context switch.
500  *
501  * Halt or unhalt the async dma engines context switch.
502  */
503 static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
504 {
505 	u32 f32_cntl, phase_quantum = 0;
506 	int i;
507 
508 	if (amdgpu_sdma_phase_quantum) {
509 		unsigned value = amdgpu_sdma_phase_quantum;
510 		unsigned unit = 0;
511 
512 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
513 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
514 			value = (value + 1) >> 1;
515 			unit++;
516 		}
517 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
518 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
519 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
520 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
521 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
522 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
523 			WARN_ONCE(1,
524 			"clamping sdma_phase_quantum to %uK clock cycles\n",
525 				  value << unit);
526 		}
527 		phase_quantum =
528 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
529 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
530 	}
531 
532 	for (i = 0; i < adev->sdma.num_instances; i++) {
533 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
534 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
535 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
536 		if (enable && amdgpu_sdma_phase_quantum) {
537 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
538 			       phase_quantum);
539 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
540 			       phase_quantum);
541 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
542 			       phase_quantum);
543 		}
544 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
545 	}
546 
547 }
548 
549 /**
550  * sdma_v5_2_enable - stop the async dma engines
551  *
552  * @adev: amdgpu_device pointer
553  * @enable: enable/disable the DMA MEs.
554  *
555  * Halt or unhalt the async dma engines.
556  */
557 static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
558 {
559 	u32 f32_cntl;
560 	int i;
561 
562 	if (enable == false) {
563 		sdma_v5_2_gfx_stop(adev);
564 		sdma_v5_2_rlc_stop(adev);
565 	}
566 
567 	for (i = 0; i < adev->sdma.num_instances; i++) {
568 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
569 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
570 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
571 	}
572 }
573 
574 /**
575  * sdma_v5_2_gfx_resume - setup and start the async dma engines
576  *
577  * @adev: amdgpu_device pointer
578  *
579  * Set up the gfx DMA ring buffers and enable them.
580  * Returns 0 for success, error for failure.
581  */
582 static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
583 {
584 	struct amdgpu_ring *ring;
585 	u32 rb_cntl, ib_cntl;
586 	u32 rb_bufsz;
587 	u32 wb_offset;
588 	u32 doorbell;
589 	u32 doorbell_offset;
590 	u32 temp;
591 	u32 wptr_poll_cntl;
592 	u64 wptr_gpu_addr;
593 	int i, r;
594 
595 	for (i = 0; i < adev->sdma.num_instances; i++) {
596 		ring = &adev->sdma.instance[i].ring;
597 		wb_offset = (ring->rptr_offs * 4);
598 
599 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
600 
601 		/* Set ring buffer size in dwords */
602 		rb_bufsz = order_base_2(ring->ring_size / 4);
603 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
604 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
605 #ifdef __BIG_ENDIAN
606 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
607 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
608 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
609 #endif
610 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
611 
612 		/* Initialize the ring buffer's read and write pointers */
613 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
614 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
615 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
616 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
617 
618 		/* setup the wptr shadow polling */
619 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
620 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
621 		       lower_32_bits(wptr_gpu_addr));
622 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
623 		       upper_32_bits(wptr_gpu_addr));
624 		wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i,
625 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
626 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
627 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
628 					       F32_POLL_ENABLE, 1);
629 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
630 		       wptr_poll_cntl);
631 
632 		/* set the wb address whether it's enabled or not */
633 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
634 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
635 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
636 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
637 
638 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
639 
640 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
641 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
642 
643 		ring->wptr = 0;
644 
645 		/* before programing wptr to a less value, need set minor_ptr_update first */
646 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
647 
648 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
649 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
650 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
651 		}
652 
653 		doorbell = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
654 		doorbell_offset = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
655 
656 		if (ring->use_doorbell) {
657 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
658 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
659 					OFFSET, ring->doorbell_index);
660 		} else {
661 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
662 		}
663 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
664 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
665 
666 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
667 						      ring->doorbell_index,
668 						      adev->doorbell_index.sdma_doorbell_range);
669 
670 		if (amdgpu_sriov_vf(adev))
671 			sdma_v5_2_ring_set_wptr(ring);
672 
673 		/* set minor_ptr_update to 0 after wptr programed */
674 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
675 
676 		/* set utc l1 enable flag always to 1 */
677 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
678 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
679 
680 		/* enable MCBP */
681 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
682 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
683 
684 		/* Set up RESP_MODE to non-copy addresses */
685 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
686 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
687 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
688 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
689 
690 		/* program default cache read and write policy */
691 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
692 		/* clean read policy and write policy bits */
693 		temp &= 0xFF0FFF;
694 		temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
695 			 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
696 			 0x01000000);
697 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
698 
699 		if (!amdgpu_sriov_vf(adev)) {
700 			/* unhalt engine */
701 			temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
702 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
703 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
704 		}
705 
706 		/* enable DMA RB */
707 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
708 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
709 
710 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
711 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
712 #ifdef __BIG_ENDIAN
713 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
714 #endif
715 		/* enable DMA IBs */
716 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
717 
718 		ring->sched.ready = true;
719 
720 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
721 			sdma_v5_2_ctx_switch_enable(adev, true);
722 			sdma_v5_2_enable(adev, true);
723 		}
724 
725 		r = amdgpu_ring_test_ring(ring);
726 		if (r) {
727 			ring->sched.ready = false;
728 			return r;
729 		}
730 
731 		if (adev->mman.buffer_funcs_ring == ring)
732 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * sdma_v5_2_rlc_resume - setup and start the async dma engines
740  *
741  * @adev: amdgpu_device pointer
742  *
743  * Set up the compute DMA queues and enable them.
744  * Returns 0 for success, error for failure.
745  */
746 static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
747 {
748 	return 0;
749 }
750 
751 /**
752  * sdma_v5_2_load_microcode - load the sDMA ME ucode
753  *
754  * @adev: amdgpu_device pointer
755  *
756  * Loads the sDMA0/1/2/3 ucode.
757  * Returns 0 for success, -EINVAL if the ucode is not available.
758  */
759 static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
760 {
761 	const struct sdma_firmware_header_v1_0 *hdr;
762 	const __le32 *fw_data;
763 	u32 fw_size;
764 	int i, j;
765 
766 	/* halt the MEs */
767 	sdma_v5_2_enable(adev, false);
768 
769 	for (i = 0; i < adev->sdma.num_instances; i++) {
770 		if (!adev->sdma.instance[i].fw)
771 			return -EINVAL;
772 
773 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
774 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
775 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
776 
777 		fw_data = (const __le32 *)
778 			(adev->sdma.instance[i].fw->data +
779 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
780 
781 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
782 
783 		for (j = 0; j < fw_size; j++) {
784 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
785 				msleep(1);
786 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
787 		}
788 
789 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
790 	}
791 
792 	return 0;
793 }
794 
795 /**
796  * sdma_v5_2_start - setup and start the async dma engines
797  *
798  * @adev: amdgpu_device pointer
799  *
800  * Set up the DMA engines and enable them.
801  * Returns 0 for success, error for failure.
802  */
803 static int sdma_v5_2_start(struct amdgpu_device *adev)
804 {
805 	int r = 0;
806 
807 	if (amdgpu_sriov_vf(adev)) {
808 		sdma_v5_2_ctx_switch_enable(adev, false);
809 		sdma_v5_2_enable(adev, false);
810 
811 		/* set RB registers */
812 		r = sdma_v5_2_gfx_resume(adev);
813 		return r;
814 	}
815 
816 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
817 		r = sdma_v5_2_load_microcode(adev);
818 		if (r)
819 			return r;
820 
821 		/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
822 		if (amdgpu_emu_mode == 1)
823 			msleep(1000);
824 	}
825 
826 	/* unhalt the MEs */
827 	sdma_v5_2_enable(adev, true);
828 	/* enable sdma ring preemption */
829 	sdma_v5_2_ctx_switch_enable(adev, true);
830 
831 	/* start the gfx rings and rlc compute queues */
832 	r = sdma_v5_2_gfx_resume(adev);
833 	if (r)
834 		return r;
835 	r = sdma_v5_2_rlc_resume(adev);
836 
837 	return r;
838 }
839 
840 /**
841  * sdma_v5_2_ring_test_ring - simple async dma engine test
842  *
843  * @ring: amdgpu_ring structure holding ring information
844  *
845  * Test the DMA engine by writing using it to write an
846  * value to memory.
847  * Returns 0 for success, error for failure.
848  */
849 static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
850 {
851 	struct amdgpu_device *adev = ring->adev;
852 	unsigned i;
853 	unsigned index;
854 	int r;
855 	u32 tmp;
856 	u64 gpu_addr;
857 
858 	r = amdgpu_device_wb_get(adev, &index);
859 	if (r) {
860 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
861 		return r;
862 	}
863 
864 	gpu_addr = adev->wb.gpu_addr + (index * 4);
865 	tmp = 0xCAFEDEAD;
866 	adev->wb.wb[index] = cpu_to_le32(tmp);
867 
868 	r = amdgpu_ring_alloc(ring, 5);
869 	if (r) {
870 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
871 		amdgpu_device_wb_free(adev, index);
872 		return r;
873 	}
874 
875 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
876 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
877 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
878 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
879 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
880 	amdgpu_ring_write(ring, 0xDEADBEEF);
881 	amdgpu_ring_commit(ring);
882 
883 	for (i = 0; i < adev->usec_timeout; i++) {
884 		tmp = le32_to_cpu(adev->wb.wb[index]);
885 		if (tmp == 0xDEADBEEF)
886 			break;
887 		if (amdgpu_emu_mode == 1)
888 			msleep(1);
889 		else
890 			udelay(1);
891 	}
892 
893 	if (i >= adev->usec_timeout)
894 		r = -ETIMEDOUT;
895 
896 	amdgpu_device_wb_free(adev, index);
897 
898 	return r;
899 }
900 
901 /**
902  * sdma_v5_2_ring_test_ib - test an IB on the DMA engine
903  *
904  * @ring: amdgpu_ring structure holding ring information
905  *
906  * Test a simple IB in the DMA ring.
907  * Returns 0 on success, error on failure.
908  */
909 static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
910 {
911 	struct amdgpu_device *adev = ring->adev;
912 	struct amdgpu_ib ib;
913 	struct dma_fence *f = NULL;
914 	unsigned index;
915 	long r;
916 	u32 tmp = 0;
917 	u64 gpu_addr;
918 
919 	r = amdgpu_device_wb_get(adev, &index);
920 	if (r) {
921 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
922 		return r;
923 	}
924 
925 	gpu_addr = adev->wb.gpu_addr + (index * 4);
926 	tmp = 0xCAFEDEAD;
927 	adev->wb.wb[index] = cpu_to_le32(tmp);
928 	memset(&ib, 0, sizeof(ib));
929 	r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
930 	if (r) {
931 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
932 		goto err0;
933 	}
934 
935 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
936 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
937 	ib.ptr[1] = lower_32_bits(gpu_addr);
938 	ib.ptr[2] = upper_32_bits(gpu_addr);
939 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
940 	ib.ptr[4] = 0xDEADBEEF;
941 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
942 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
943 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
944 	ib.length_dw = 8;
945 
946 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
947 	if (r)
948 		goto err1;
949 
950 	r = dma_fence_wait_timeout(f, false, timeout);
951 	if (r == 0) {
952 		DRM_ERROR("amdgpu: IB test timed out\n");
953 		r = -ETIMEDOUT;
954 		goto err1;
955 	} else if (r < 0) {
956 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
957 		goto err1;
958 	}
959 	tmp = le32_to_cpu(adev->wb.wb[index]);
960 	if (tmp == 0xDEADBEEF)
961 		r = 0;
962 	else
963 		r = -EINVAL;
964 
965 err1:
966 	amdgpu_ib_free(adev, &ib, NULL);
967 	dma_fence_put(f);
968 err0:
969 	amdgpu_device_wb_free(adev, index);
970 	return r;
971 }
972 
973 
974 /**
975  * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
976  *
977  * @ib: indirect buffer to fill with commands
978  * @pe: addr of the page entry
979  * @src: src addr to copy from
980  * @count: number of page entries to update
981  *
982  * Update PTEs by copying them from the GART using sDMA.
983  */
984 static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
985 				  uint64_t pe, uint64_t src,
986 				  unsigned count)
987 {
988 	unsigned bytes = count * 8;
989 
990 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
991 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
992 	ib->ptr[ib->length_dw++] = bytes - 1;
993 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
994 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
995 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
996 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
997 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
998 
999 }
1000 
1001 /**
1002  * sdma_v5_2_vm_write_pte - update PTEs by writing them manually
1003  *
1004  * @ib: indirect buffer to fill with commands
1005  * @pe: addr of the page entry
1006  * @addr: dst addr to write into pe
1007  * @count: number of page entries to update
1008  * @incr: increase next addr by incr bytes
1009  * @flags: access flags
1010  *
1011  * Update PTEs by writing them manually using sDMA.
1012  */
1013 static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1014 				   uint64_t value, unsigned count,
1015 				   uint32_t incr)
1016 {
1017 	unsigned ndw = count * 2;
1018 
1019 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1020 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1021 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1022 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1023 	ib->ptr[ib->length_dw++] = ndw - 1;
1024 	for (; ndw > 0; ndw -= 2) {
1025 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1026 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1027 		value += incr;
1028 	}
1029 }
1030 
1031 /**
1032  * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
1033  *
1034  * @ib: indirect buffer to fill with commands
1035  * @pe: addr of the page entry
1036  * @addr: dst addr to write into pe
1037  * @count: number of page entries to update
1038  * @incr: increase next addr by incr bytes
1039  * @flags: access flags
1040  *
1041  * Update the page tables using sDMA.
1042  */
1043 static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1044 				     uint64_t pe,
1045 				     uint64_t addr, unsigned count,
1046 				     uint32_t incr, uint64_t flags)
1047 {
1048 	/* for physically contiguous pages (vram) */
1049 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1050 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1051 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1052 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1053 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1054 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1055 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1056 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1057 	ib->ptr[ib->length_dw++] = 0;
1058 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1059 }
1060 
1061 /**
1062  * sdma_v5_2_ring_pad_ib - pad the IB
1063  *
1064  * @ib: indirect buffer to fill with padding
1065  *
1066  * Pad the IB with NOPs to a boundary multiple of 8.
1067  */
1068 static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1069 {
1070 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1071 	u32 pad_count;
1072 	int i;
1073 
1074 	pad_count = (-ib->length_dw) & 0x7;
1075 	for (i = 0; i < pad_count; i++)
1076 		if (sdma && sdma->burst_nop && (i == 0))
1077 			ib->ptr[ib->length_dw++] =
1078 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1079 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1080 		else
1081 			ib->ptr[ib->length_dw++] =
1082 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1083 }
1084 
1085 
1086 /**
1087  * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
1088  *
1089  * @ring: amdgpu_ring pointer
1090  *
1091  * Make sure all previous operations are completed (CIK).
1092  */
1093 static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1094 {
1095 	uint32_t seq = ring->fence_drv.sync_seq;
1096 	uint64_t addr = ring->fence_drv.gpu_addr;
1097 
1098 	/* wait for idle */
1099 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1100 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1101 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1102 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1103 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1104 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1105 	amdgpu_ring_write(ring, seq); /* reference */
1106 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1107 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1108 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1109 }
1110 
1111 
1112 /**
1113  * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
1114  *
1115  * @ring: amdgpu_ring pointer
1116  * @vm: amdgpu_vm pointer
1117  *
1118  * Update the page table base and flush the VM TLB
1119  * using sDMA.
1120  */
1121 static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1122 					 unsigned vmid, uint64_t pd_addr)
1123 {
1124 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1125 }
1126 
1127 static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
1128 				     uint32_t reg, uint32_t val)
1129 {
1130 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1131 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1132 	amdgpu_ring_write(ring, reg);
1133 	amdgpu_ring_write(ring, val);
1134 }
1135 
1136 static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1137 					 uint32_t val, uint32_t mask)
1138 {
1139 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1140 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1141 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1142 	amdgpu_ring_write(ring, reg << 2);
1143 	amdgpu_ring_write(ring, 0);
1144 	amdgpu_ring_write(ring, val); /* reference */
1145 	amdgpu_ring_write(ring, mask); /* mask */
1146 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1147 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1148 }
1149 
1150 static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1151 						   uint32_t reg0, uint32_t reg1,
1152 						   uint32_t ref, uint32_t mask)
1153 {
1154 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1155 	/* wait for a cycle to reset vm_inv_eng*_ack */
1156 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1157 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1158 }
1159 
1160 static int sdma_v5_2_early_init(void *handle)
1161 {
1162 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1163 
1164 	switch (adev->asic_type) {
1165 	case CHIP_SIENNA_CICHLID:
1166 		adev->sdma.num_instances = 4;
1167 		break;
1168 	case CHIP_NAVY_FLOUNDER:
1169 		adev->sdma.num_instances = 2;
1170 		break;
1171 	default:
1172 		break;
1173 	}
1174 
1175 	sdma_v5_2_set_ring_funcs(adev);
1176 	sdma_v5_2_set_buffer_funcs(adev);
1177 	sdma_v5_2_set_vm_pte_funcs(adev);
1178 	sdma_v5_2_set_irq_funcs(adev);
1179 
1180 	return 0;
1181 }
1182 
1183 static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
1184 {
1185 	switch (seq_num) {
1186 	case 0:
1187 		return SOC15_IH_CLIENTID_SDMA0;
1188 	case 1:
1189 		return SOC15_IH_CLIENTID_SDMA1;
1190 	case 2:
1191 		return SOC15_IH_CLIENTID_SDMA2;
1192 	case 3:
1193 		return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
1194 	default:
1195 		break;
1196 	}
1197 	return -EINVAL;
1198 }
1199 
1200 static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
1201 {
1202 	switch (seq_num) {
1203 	case 0:
1204 		return SDMA0_5_0__SRCID__SDMA_TRAP;
1205 	case 1:
1206 		return SDMA1_5_0__SRCID__SDMA_TRAP;
1207 	case 2:
1208 		return SDMA2_5_0__SRCID__SDMA_TRAP;
1209 	case 3:
1210 		return SDMA3_5_0__SRCID__SDMA_TRAP;
1211 	default:
1212 		break;
1213 	}
1214 	return -EINVAL;
1215 }
1216 
1217 static int sdma_v5_2_sw_init(void *handle)
1218 {
1219 	struct amdgpu_ring *ring;
1220 	int r, i;
1221 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1222 
1223 	/* SDMA trap event */
1224 	for (i = 0; i < adev->sdma.num_instances; i++) {
1225 		r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
1226 				      sdma_v5_2_seq_to_trap_id(i),
1227 				      &adev->sdma.trap_irq);
1228 		if (r)
1229 			return r;
1230 	}
1231 
1232 	r = sdma_v5_2_init_microcode(adev);
1233 	if (r) {
1234 		DRM_ERROR("Failed to load sdma firmware!\n");
1235 		return r;
1236 	}
1237 
1238 	for (i = 0; i < adev->sdma.num_instances; i++) {
1239 		ring = &adev->sdma.instance[i].ring;
1240 		ring->ring_obj = NULL;
1241 		ring->use_doorbell = true;
1242 		ring->me = i;
1243 
1244 		DRM_INFO("use_doorbell being set to: [%s]\n",
1245 				ring->use_doorbell?"true":"false");
1246 
1247 		ring->doorbell_index =
1248 			(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset
1249 
1250 		sprintf(ring->name, "sdma%d", i);
1251 		r = amdgpu_ring_init(adev, ring, 1024,
1252 				     &adev->sdma.trap_irq,
1253 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1254 				     AMDGPU_RING_PRIO_DEFAULT);
1255 		if (r)
1256 			return r;
1257 	}
1258 
1259 	return r;
1260 }
1261 
1262 static int sdma_v5_2_sw_fini(void *handle)
1263 {
1264 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1265 	int i;
1266 
1267 	for (i = 0; i < adev->sdma.num_instances; i++)
1268 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1269 
1270 	sdma_v5_2_destroy_inst_ctx(adev);
1271 
1272 	return 0;
1273 }
1274 
1275 static int sdma_v5_2_hw_init(void *handle)
1276 {
1277 	int r;
1278 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1279 
1280 	sdma_v5_2_init_golden_registers(adev);
1281 
1282 	r = sdma_v5_2_start(adev);
1283 
1284 	return r;
1285 }
1286 
1287 static int sdma_v5_2_hw_fini(void *handle)
1288 {
1289 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290 
1291 	if (amdgpu_sriov_vf(adev))
1292 		return 0;
1293 
1294 	sdma_v5_2_ctx_switch_enable(adev, false);
1295 	sdma_v5_2_enable(adev, false);
1296 
1297 	return 0;
1298 }
1299 
1300 static int sdma_v5_2_suspend(void *handle)
1301 {
1302 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1303 
1304 	return sdma_v5_2_hw_fini(adev);
1305 }
1306 
1307 static int sdma_v5_2_resume(void *handle)
1308 {
1309 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1310 
1311 	return sdma_v5_2_hw_init(adev);
1312 }
1313 
1314 static bool sdma_v5_2_is_idle(void *handle)
1315 {
1316 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1317 	u32 i;
1318 
1319 	for (i = 0; i < adev->sdma.num_instances; i++) {
1320 		u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1321 
1322 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1323 			return false;
1324 	}
1325 
1326 	return true;
1327 }
1328 
1329 static int sdma_v5_2_wait_for_idle(void *handle)
1330 {
1331 	unsigned i;
1332 	u32 sdma0, sdma1, sdma2, sdma3;
1333 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1334 
1335 	for (i = 0; i < adev->usec_timeout; i++) {
1336 		sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1337 		sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1338 		sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
1339 		sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));
1340 
1341 		if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
1342 			return 0;
1343 		udelay(1);
1344 	}
1345 	return -ETIMEDOUT;
1346 }
1347 
1348 static int sdma_v5_2_soft_reset(void *handle)
1349 {
1350 	/* todo */
1351 
1352 	return 0;
1353 }
1354 
1355 static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
1356 {
1357 	int i, r = 0;
1358 	struct amdgpu_device *adev = ring->adev;
1359 	u32 index = 0;
1360 	u64 sdma_gfx_preempt;
1361 
1362 	amdgpu_sdma_get_index_from_ring(ring, &index);
1363 	sdma_gfx_preempt =
1364 		sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);
1365 
1366 	/* assert preemption condition */
1367 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1368 
1369 	/* emit the trailing fence */
1370 	ring->trail_seq += 1;
1371 	amdgpu_ring_alloc(ring, 10);
1372 	sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1373 				  ring->trail_seq, 0);
1374 	amdgpu_ring_commit(ring);
1375 
1376 	/* assert IB preemption */
1377 	WREG32(sdma_gfx_preempt, 1);
1378 
1379 	/* poll the trailing fence */
1380 	for (i = 0; i < adev->usec_timeout; i++) {
1381 		if (ring->trail_seq ==
1382 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1383 			break;
1384 		udelay(1);
1385 	}
1386 
1387 	if (i >= adev->usec_timeout) {
1388 		r = -EINVAL;
1389 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1390 	}
1391 
1392 	/* deassert IB preemption */
1393 	WREG32(sdma_gfx_preempt, 0);
1394 
1395 	/* deassert the preemption condition */
1396 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1397 	return r;
1398 }
1399 
1400 static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
1401 					struct amdgpu_irq_src *source,
1402 					unsigned type,
1403 					enum amdgpu_interrupt_state state)
1404 {
1405 	u32 sdma_cntl;
1406 
1407 	u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);
1408 
1409 	sdma_cntl = RREG32(reg_offset);
1410 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1411 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1412 	WREG32(reg_offset, sdma_cntl);
1413 
1414 	return 0;
1415 }
1416 
1417 static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
1418 				      struct amdgpu_irq_src *source,
1419 				      struct amdgpu_iv_entry *entry)
1420 {
1421 	DRM_DEBUG("IH: SDMA trap\n");
1422 	switch (entry->client_id) {
1423 	case SOC15_IH_CLIENTID_SDMA0:
1424 		switch (entry->ring_id) {
1425 		case 0:
1426 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1427 			break;
1428 		case 1:
1429 			/* XXX compute */
1430 			break;
1431 		case 2:
1432 			/* XXX compute */
1433 			break;
1434 		case 3:
1435 			/* XXX page queue*/
1436 			break;
1437 		}
1438 		break;
1439 	case SOC15_IH_CLIENTID_SDMA1:
1440 		switch (entry->ring_id) {
1441 		case 0:
1442 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1443 			break;
1444 		case 1:
1445 			/* XXX compute */
1446 			break;
1447 		case 2:
1448 			/* XXX compute */
1449 			break;
1450 		case 3:
1451 			/* XXX page queue*/
1452 			break;
1453 		}
1454 		break;
1455 	case SOC15_IH_CLIENTID_SDMA2:
1456 		switch (entry->ring_id) {
1457 		case 0:
1458 			amdgpu_fence_process(&adev->sdma.instance[2].ring);
1459 			break;
1460 		case 1:
1461 			/* XXX compute */
1462 			break;
1463 		case 2:
1464 			/* XXX compute */
1465 			break;
1466 		case 3:
1467 			/* XXX page queue*/
1468 			break;
1469 		}
1470 		break;
1471 	case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
1472 		switch (entry->ring_id) {
1473 		case 0:
1474 			amdgpu_fence_process(&adev->sdma.instance[3].ring);
1475 			break;
1476 		case 1:
1477 			/* XXX compute */
1478 			break;
1479 		case 2:
1480 			/* XXX compute */
1481 			break;
1482 		case 3:
1483 			/* XXX page queue*/
1484 			break;
1485 		}
1486 		break;
1487 	}
1488 	return 0;
1489 }
1490 
1491 static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1492 					      struct amdgpu_irq_src *source,
1493 					      struct amdgpu_iv_entry *entry)
1494 {
1495 	return 0;
1496 }
1497 
1498 static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1499 						       bool enable)
1500 {
1501 	uint32_t data, def;
1502 	int i;
1503 
1504 	for (i = 0; i < adev->sdma.num_instances; i++) {
1505 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1506 			/* Enable sdma clock gating */
1507 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1508 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1509 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1510 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1511 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1512 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1513 				  SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1514 			if (def != data)
1515 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1516 		} else {
1517 			/* Disable sdma clock gating */
1518 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1519 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1520 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1521 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1522 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1523 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1524 				 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1525 			if (def != data)
1526 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1527 		}
1528 	}
1529 }
1530 
1531 static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1532 						      bool enable)
1533 {
1534 	uint32_t data, def;
1535 	int i;
1536 
1537 	for (i = 0; i < adev->sdma.num_instances; i++) {
1538 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1539 			/* Enable sdma mem light sleep */
1540 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1541 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1542 			if (def != data)
1543 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1544 
1545 		} else {
1546 			/* Disable sdma mem light sleep */
1547 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1548 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1549 			if (def != data)
1550 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1551 
1552 		}
1553 	}
1554 }
1555 
1556 static int sdma_v5_2_set_clockgating_state(void *handle,
1557 					   enum amd_clockgating_state state)
1558 {
1559 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1560 
1561 	if (amdgpu_sriov_vf(adev))
1562 		return 0;
1563 
1564 	switch (adev->asic_type) {
1565 	case CHIP_SIENNA_CICHLID:
1566 	case CHIP_NAVY_FLOUNDER:
1567 		sdma_v5_2_update_medium_grain_clock_gating(adev,
1568 				state == AMD_CG_STATE_GATE ? true : false);
1569 		sdma_v5_2_update_medium_grain_light_sleep(adev,
1570 				state == AMD_CG_STATE_GATE ? true : false);
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int sdma_v5_2_set_powergating_state(void *handle,
1580 					  enum amd_powergating_state state)
1581 {
1582 	return 0;
1583 }
1584 
1585 static void sdma_v5_2_get_clockgating_state(void *handle, u32 *flags)
1586 {
1587 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1588 	int data;
1589 
1590 	if (amdgpu_sriov_vf(adev))
1591 		*flags = 0;
1592 
1593 	/* AMD_CG_SUPPORT_SDMA_LS */
1594 	data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1595 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1596 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1597 }
1598 
1599 const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
1600 	.name = "sdma_v5_2",
1601 	.early_init = sdma_v5_2_early_init,
1602 	.late_init = NULL,
1603 	.sw_init = sdma_v5_2_sw_init,
1604 	.sw_fini = sdma_v5_2_sw_fini,
1605 	.hw_init = sdma_v5_2_hw_init,
1606 	.hw_fini = sdma_v5_2_hw_fini,
1607 	.suspend = sdma_v5_2_suspend,
1608 	.resume = sdma_v5_2_resume,
1609 	.is_idle = sdma_v5_2_is_idle,
1610 	.wait_for_idle = sdma_v5_2_wait_for_idle,
1611 	.soft_reset = sdma_v5_2_soft_reset,
1612 	.set_clockgating_state = sdma_v5_2_set_clockgating_state,
1613 	.set_powergating_state = sdma_v5_2_set_powergating_state,
1614 	.get_clockgating_state = sdma_v5_2_get_clockgating_state,
1615 };
1616 
1617 static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
1618 	.type = AMDGPU_RING_TYPE_SDMA,
1619 	.align_mask = 0xf,
1620 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1621 	.support_64bit_ptrs = true,
1622 	.vmhub = AMDGPU_GFXHUB_0,
1623 	.get_rptr = sdma_v5_2_ring_get_rptr,
1624 	.get_wptr = sdma_v5_2_ring_get_wptr,
1625 	.set_wptr = sdma_v5_2_ring_set_wptr,
1626 	.emit_frame_size =
1627 		5 + /* sdma_v5_2_ring_init_cond_exec */
1628 		6 + /* sdma_v5_2_ring_emit_hdp_flush */
1629 		3 + /* hdp_invalidate */
1630 		6 + /* sdma_v5_2_ring_emit_pipeline_sync */
1631 		/* sdma_v5_2_ring_emit_vm_flush */
1632 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1633 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1634 		10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
1635 	.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
1636 	.emit_ib = sdma_v5_2_ring_emit_ib,
1637 	.emit_fence = sdma_v5_2_ring_emit_fence,
1638 	.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
1639 	.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
1640 	.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
1641 	.test_ring = sdma_v5_2_ring_test_ring,
1642 	.test_ib = sdma_v5_2_ring_test_ib,
1643 	.insert_nop = sdma_v5_2_ring_insert_nop,
1644 	.pad_ib = sdma_v5_2_ring_pad_ib,
1645 	.emit_wreg = sdma_v5_2_ring_emit_wreg,
1646 	.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
1647 	.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
1648 	.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
1649 	.patch_cond_exec = sdma_v5_2_ring_patch_cond_exec,
1650 	.preempt_ib = sdma_v5_2_ring_preempt_ib,
1651 };
1652 
1653 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adev->sdma.num_instances; i++) {
1658 		adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
1659 		adev->sdma.instance[i].ring.me = i;
1660 	}
1661 }
1662 
1663 static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
1664 	.set = sdma_v5_2_set_trap_irq_state,
1665 	.process = sdma_v5_2_process_trap_irq,
1666 };
1667 
1668 static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
1669 	.process = sdma_v5_2_process_illegal_inst_irq,
1670 };
1671 
1672 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
1673 {
1674 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1675 					adev->sdma.num_instances;
1676 	adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
1677 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
1678 }
1679 
1680 /**
1681  * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
1682  *
1683  * @ring: amdgpu_ring structure holding ring information
1684  * @src_offset: src GPU address
1685  * @dst_offset: dst GPU address
1686  * @byte_count: number of bytes to xfer
1687  *
1688  * Copy GPU buffers using the DMA engine.
1689  * Used by the amdgpu ttm implementation to move pages if
1690  * registered as the asic copy callback.
1691  */
1692 static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
1693 				       uint64_t src_offset,
1694 				       uint64_t dst_offset,
1695 				       uint32_t byte_count,
1696 				       bool tmz)
1697 {
1698 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1699 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1700 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1701 	ib->ptr[ib->length_dw++] = byte_count - 1;
1702 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1703 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1704 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1705 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1706 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1707 }
1708 
1709 /**
1710  * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
1711  *
1712  * @ring: amdgpu_ring structure holding ring information
1713  * @src_data: value to write to buffer
1714  * @dst_offset: dst GPU address
1715  * @byte_count: number of bytes to xfer
1716  *
1717  * Fill GPU buffers using the DMA engine.
1718  */
1719 static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
1720 				       uint32_t src_data,
1721 				       uint64_t dst_offset,
1722 				       uint32_t byte_count)
1723 {
1724 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1725 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1726 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1727 	ib->ptr[ib->length_dw++] = src_data;
1728 	ib->ptr[ib->length_dw++] = byte_count - 1;
1729 }
1730 
1731 static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
1732 	.copy_max_bytes = 0x400000,
1733 	.copy_num_dw = 7,
1734 	.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,
1735 
1736 	.fill_max_bytes = 0x400000,
1737 	.fill_num_dw = 5,
1738 	.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
1739 };
1740 
1741 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
1742 {
1743 	if (adev->mman.buffer_funcs == NULL) {
1744 		adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
1745 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1746 	}
1747 }
1748 
1749 static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
1750 	.copy_pte_num_dw = 7,
1751 	.copy_pte = sdma_v5_2_vm_copy_pte,
1752 	.write_pte = sdma_v5_2_vm_write_pte,
1753 	.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
1754 };
1755 
1756 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
1757 {
1758 	unsigned i;
1759 
1760 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1761 		adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
1762 		for (i = 0; i < adev->sdma.num_instances; i++) {
1763 			adev->vm_manager.vm_pte_scheds[i] =
1764 				&adev->sdma.instance[i].ring.sched;
1765 		}
1766 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1767 	}
1768 }
1769 
1770 const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
1771 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1772 	.major = 5,
1773 	.minor = 2,
1774 	.rev = 0,
1775 	.funcs = &sdma_v5_2_ip_funcs,
1776 };
1777