xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_2.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_3_0_offset.h"
34 #include "gc/gc_10_3_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
38 #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"
39 
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "navi10_sdma_pkt_open.h"
43 #include "nbio_v2_3.h"
44 #include "sdma_common.h"
45 #include "sdma_v5_2.h"
46 
47 MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
48 MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
49 
50 #define SDMA1_REG_OFFSET 0x600
51 #define SDMA3_REG_OFFSET 0x400
52 #define SDMA0_HYP_DEC_REG_START 0x5880
53 #define SDMA0_HYP_DEC_REG_END 0x5893
54 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
55 
56 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
57 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
58 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
59 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);
60 
61 static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
62 {
63 	u32 base;
64 
65 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
66 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
67 		base = adev->reg_offset[GC_HWIP][0][1];
68 		if (instance != 0)
69 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
70 	} else {
71 		if (instance < 2) {
72 			base = adev->reg_offset[GC_HWIP][0][0];
73 			if (instance == 1)
74 				internal_offset += SDMA1_REG_OFFSET;
75 		} else {
76 			base = adev->reg_offset[GC_HWIP][0][2];
77 			if (instance == 3)
78 				internal_offset += SDMA3_REG_OFFSET;
79 		}
80 	}
81 
82 	return base + internal_offset;
83 }
84 
85 static void sdma_v5_2_init_golden_registers(struct amdgpu_device *adev)
86 {
87 	switch (adev->asic_type) {
88 	case CHIP_SIENNA_CICHLID:
89 	case CHIP_NAVY_FLOUNDER:
90 		break;
91 	default:
92 		break;
93 	}
94 }
95 
96 static int sdma_v5_2_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
97 {
98 	int err = 0;
99 	const struct sdma_firmware_header_v1_0 *hdr;
100 
101 	err = amdgpu_ucode_validate(sdma_inst->fw);
102 	if (err)
103 		return err;
104 
105 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
106 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
107 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
108 
109 	if (sdma_inst->feature_version >= 20)
110 		sdma_inst->burst_nop = true;
111 
112 	return 0;
113 }
114 
115 static void sdma_v5_2_destroy_inst_ctx(struct amdgpu_device *adev)
116 {
117 	int i;
118 
119 	for (i = 0; i < adev->sdma.num_instances; i++) {
120 		release_firmware(adev->sdma.instance[i].fw);
121 		adev->sdma.instance[i].fw = NULL;
122 
123 		if (adev->asic_type == CHIP_SIENNA_CICHLID)
124 			break;
125 	}
126 
127 	memset((void*)adev->sdma.instance, 0,
128 	       sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
129 }
130 
131 /**
132  * sdma_v5_2_init_microcode - load ucode images from disk
133  *
134  * @adev: amdgpu_device pointer
135  *
136  * Use the firmware interface to load the ucode images into
137  * the driver (not loaded into hw).
138  * Returns 0 on success, error on failure.
139  */
140 
141 // emulation only, won't work on real chip
142 // navi10 real chip need to use PSP to load firmware
143 static int sdma_v5_2_init_microcode(struct amdgpu_device *adev)
144 {
145 	const char *chip_name;
146 	char fw_name[40];
147 	int err = 0, i;
148 	struct amdgpu_firmware_info *info = NULL;
149 	const struct common_firmware_header *header = NULL;
150 
151 	if (amdgpu_sriov_vf(adev))
152 		return 0;
153 
154 	DRM_DEBUG("\n");
155 
156 	switch (adev->asic_type) {
157 	case CHIP_SIENNA_CICHLID:
158 		chip_name = "sienna_cichlid";
159 		break;
160 	case CHIP_NAVY_FLOUNDER:
161 		chip_name = "navy_flounder";
162 		break;
163 	default:
164 		BUG();
165 	}
166 
167 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
168 
169 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
170 	if (err)
171 		goto out;
172 
173 	err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
174 	if (err)
175 		goto out;
176 
177 	for (i = 1; i < adev->sdma.num_instances; i++) {
178 		if (adev->asic_type == CHIP_SIENNA_CICHLID ||
179 		    adev->asic_type == CHIP_NAVY_FLOUNDER) {
180 			memcpy((void*)&adev->sdma.instance[i],
181 			       (void*)&adev->sdma.instance[0],
182 			       sizeof(struct amdgpu_sdma_instance));
183 		} else {
184 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
185 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
186 			if (err)
187 				goto out;
188 
189 			err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
190 			if (err)
191 				goto out;
192 		}
193 	}
194 
195 	DRM_DEBUG("psp_load == '%s'\n",
196 		  adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
197 
198 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
199 		for (i = 0; i < adev->sdma.num_instances; i++) {
200 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
201 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
202 			info->fw = adev->sdma.instance[i].fw;
203 			header = (const struct common_firmware_header *)info->fw->data;
204 			adev->firmware.fw_size +=
205 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
206 		}
207 	}
208 
209 out:
210 	if (err) {
211 		DRM_ERROR("sdma_v5_2: Failed to load firmware \"%s\"\n", fw_name);
212 		sdma_v5_2_destroy_inst_ctx(adev);
213 	}
214 	return err;
215 }
216 
217 static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring)
218 {
219 	unsigned ret;
220 
221 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
222 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
223 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
224 	amdgpu_ring_write(ring, 1);
225 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
226 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
227 
228 	return ret;
229 }
230 
231 static void sdma_v5_2_ring_patch_cond_exec(struct amdgpu_ring *ring,
232 					   unsigned offset)
233 {
234 	unsigned cur;
235 
236 	BUG_ON(offset > ring->buf_mask);
237 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
238 
239 	cur = (ring->wptr - 1) & ring->buf_mask;
240 	if (cur > offset)
241 		ring->ring[offset] = cur - offset;
242 	else
243 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
244 }
245 
246 /**
247  * sdma_v5_2_ring_get_rptr - get the current read pointer
248  *
249  * @ring: amdgpu ring pointer
250  *
251  * Get the current rptr from the hardware (NAVI10+).
252  */
253 static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
254 {
255 	u64 *rptr;
256 
257 	/* XXX check if swapping is necessary on BE */
258 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
259 
260 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
261 	return ((*rptr) >> 2);
262 }
263 
264 /**
265  * sdma_v5_2_ring_get_wptr - get the current write pointer
266  *
267  * @ring: amdgpu ring pointer
268  *
269  * Get the current wptr from the hardware (NAVI10+).
270  */
271 static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
272 {
273 	struct amdgpu_device *adev = ring->adev;
274 	u64 wptr;
275 
276 	if (ring->use_doorbell) {
277 		/* XXX check if swapping is necessary on BE */
278 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
279 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
280 	} else {
281 		wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
282 		wptr = wptr << 32;
283 		wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
284 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
285 	}
286 
287 	return wptr >> 2;
288 }
289 
290 /**
291  * sdma_v5_2_ring_set_wptr - commit the write pointer
292  *
293  * @ring: amdgpu ring pointer
294  *
295  * Write the wptr back to the hardware (NAVI10+).
296  */
297 static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
298 {
299 	struct amdgpu_device *adev = ring->adev;
300 
301 	DRM_DEBUG("Setting write pointer\n");
302 	if (ring->use_doorbell) {
303 		DRM_DEBUG("Using doorbell -- "
304 				"wptr_offs == 0x%08x "
305 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
306 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
307 				ring->wptr_offs,
308 				lower_32_bits(ring->wptr << 2),
309 				upper_32_bits(ring->wptr << 2));
310 		/* XXX check if swapping is necessary on BE */
311 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
312 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
313 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
314 				ring->doorbell_index, ring->wptr << 2);
315 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
316 	} else {
317 		DRM_DEBUG("Not using doorbell -- "
318 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
319 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
320 				ring->me,
321 				lower_32_bits(ring->wptr << 2),
322 				ring->me,
323 				upper_32_bits(ring->wptr << 2));
324 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
325 			lower_32_bits(ring->wptr << 2));
326 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
327 			upper_32_bits(ring->wptr << 2));
328 	}
329 }
330 
331 static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
332 {
333 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
334 	int i;
335 
336 	for (i = 0; i < count; i++)
337 		if (sdma && sdma->burst_nop && (i == 0))
338 			amdgpu_ring_write(ring, ring->funcs->nop |
339 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
340 		else
341 			amdgpu_ring_write(ring, ring->funcs->nop);
342 }
343 
344 /**
345  * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
346  *
347  * @ring: amdgpu ring pointer
348  * @ib: IB object to schedule
349  *
350  * Schedule an IB in the DMA ring.
351  */
352 static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
353 				   struct amdgpu_job *job,
354 				   struct amdgpu_ib *ib,
355 				   uint32_t flags)
356 {
357 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
358 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
359 
360 	/* An IB packet must end on a 8 DW boundary--the next dword
361 	 * must be on a 8-dword boundary. Our IB packet below is 6
362 	 * dwords long, thus add x number of NOPs, such that, in
363 	 * modular arithmetic,
364 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
365 	 * (wptr + 6 + x) % 8 = 0.
366 	 * The expression below, is a solution of x.
367 	 */
368 	sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
369 
370 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
371 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
372 	/* base must be 32 byte aligned */
373 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
374 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
375 	amdgpu_ring_write(ring, ib->length_dw);
376 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
377 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
378 }
379 
380 /**
381  * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
382  *
383  * @ring: amdgpu ring pointer
384  *
385  * Emit an hdp flush packet on the requested DMA ring.
386  */
387 static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
388 {
389 	struct amdgpu_device *adev = ring->adev;
390 	u32 ref_and_mask = 0;
391 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
392 
393 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
394 
395 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
396 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
397 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
398 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
399 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
400 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
401 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
402 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
403 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
404 }
405 
406 /**
407  * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
408  *
409  * @ring: amdgpu ring pointer
410  * @fence: amdgpu fence object
411  *
412  * Add a DMA fence packet to the ring to write
413  * the fence seq number and DMA trap packet to generate
414  * an interrupt if needed.
415  */
416 static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
417 				      unsigned flags)
418 {
419 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
420 	/* write the fence */
421 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
422 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
423 	/* zero in first two bits */
424 	BUG_ON(addr & 0x3);
425 	amdgpu_ring_write(ring, lower_32_bits(addr));
426 	amdgpu_ring_write(ring, upper_32_bits(addr));
427 	amdgpu_ring_write(ring, lower_32_bits(seq));
428 
429 	/* optionally write high bits as well */
430 	if (write64bit) {
431 		addr += 4;
432 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
433 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
434 		/* zero in first two bits */
435 		BUG_ON(addr & 0x3);
436 		amdgpu_ring_write(ring, lower_32_bits(addr));
437 		amdgpu_ring_write(ring, upper_32_bits(addr));
438 		amdgpu_ring_write(ring, upper_32_bits(seq));
439 	}
440 
441 	if (flags & AMDGPU_FENCE_FLAG_INT) {
442 		/* generate an interrupt */
443 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
444 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
445 	}
446 }
447 
448 
449 /**
450  * sdma_v5_2_gfx_stop - stop the gfx async dma engines
451  *
452  * @adev: amdgpu_device pointer
453  *
454  * Stop the gfx async dma ring buffers.
455  */
456 static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
457 {
458 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
459 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
460 	struct amdgpu_ring *sdma2 = &adev->sdma.instance[2].ring;
461 	struct amdgpu_ring *sdma3 = &adev->sdma.instance[3].ring;
462 	u32 rb_cntl, ib_cntl;
463 	int i;
464 
465 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
466 	    (adev->mman.buffer_funcs_ring == sdma1) ||
467 	    (adev->mman.buffer_funcs_ring == sdma2) ||
468 	    (adev->mman.buffer_funcs_ring == sdma3))
469 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
470 
471 	for (i = 0; i < adev->sdma.num_instances; i++) {
472 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
473 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
474 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
475 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
476 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
477 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
478 	}
479 
480 	sdma0->sched.ready = false;
481 	sdma1->sched.ready = false;
482 	sdma2->sched.ready = false;
483 	sdma3->sched.ready = false;
484 }
485 
486 /**
487  * sdma_v5_2_rlc_stop - stop the compute async dma engines
488  *
489  * @adev: amdgpu_device pointer
490  *
491  * Stop the compute async dma queues.
492  */
493 static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
494 {
495 	/* XXX todo */
496 }
497 
498 /**
499  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
500  *
501  * @adev: amdgpu_device pointer
502  * @enable: enable/disable the DMA MEs context switch.
503  *
504  * Halt or unhalt the async dma engines context switch.
505  */
506 static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
507 {
508 	u32 f32_cntl, phase_quantum = 0;
509 	int i;
510 
511 	if (amdgpu_sdma_phase_quantum) {
512 		unsigned value = amdgpu_sdma_phase_quantum;
513 		unsigned unit = 0;
514 
515 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
516 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
517 			value = (value + 1) >> 1;
518 			unit++;
519 		}
520 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
521 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
522 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
523 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
524 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
525 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
526 			WARN_ONCE(1,
527 			"clamping sdma_phase_quantum to %uK clock cycles\n",
528 				  value << unit);
529 		}
530 		phase_quantum =
531 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
532 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
533 	}
534 
535 	for (i = 0; i < adev->sdma.num_instances; i++) {
536 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
537 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
538 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
539 		if (enable && amdgpu_sdma_phase_quantum) {
540 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
541 			       phase_quantum);
542 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
543 			       phase_quantum);
544 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
545 			       phase_quantum);
546 		}
547 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
548 	}
549 
550 }
551 
552 /**
553  * sdma_v5_2_enable - stop the async dma engines
554  *
555  * @adev: amdgpu_device pointer
556  * @enable: enable/disable the DMA MEs.
557  *
558  * Halt or unhalt the async dma engines.
559  */
560 static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
561 {
562 	u32 f32_cntl;
563 	int i;
564 
565 	if (!enable) {
566 		sdma_v5_2_gfx_stop(adev);
567 		sdma_v5_2_rlc_stop(adev);
568 	}
569 
570 	for (i = 0; i < adev->sdma.num_instances; i++) {
571 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
572 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
573 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
574 	}
575 }
576 
577 /**
578  * sdma_v5_2_gfx_resume - setup and start the async dma engines
579  *
580  * @adev: amdgpu_device pointer
581  *
582  * Set up the gfx DMA ring buffers and enable them.
583  * Returns 0 for success, error for failure.
584  */
585 static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
586 {
587 	struct amdgpu_ring *ring;
588 	u32 rb_cntl, ib_cntl;
589 	u32 rb_bufsz;
590 	u32 wb_offset;
591 	u32 doorbell;
592 	u32 doorbell_offset;
593 	u32 temp;
594 	u32 wptr_poll_cntl;
595 	u64 wptr_gpu_addr;
596 	int i, r;
597 
598 	for (i = 0; i < adev->sdma.num_instances; i++) {
599 		ring = &adev->sdma.instance[i].ring;
600 		wb_offset = (ring->rptr_offs * 4);
601 
602 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
603 
604 		/* Set ring buffer size in dwords */
605 		rb_bufsz = order_base_2(ring->ring_size / 4);
606 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
607 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
608 #ifdef __BIG_ENDIAN
609 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
610 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
611 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
612 #endif
613 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
614 
615 		/* Initialize the ring buffer's read and write pointers */
616 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
617 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
618 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
619 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
620 
621 		/* setup the wptr shadow polling */
622 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
623 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
624 		       lower_32_bits(wptr_gpu_addr));
625 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
626 		       upper_32_bits(wptr_gpu_addr));
627 		wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i,
628 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
629 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
630 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
631 					       F32_POLL_ENABLE, 1);
632 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
633 		       wptr_poll_cntl);
634 
635 		/* set the wb address whether it's enabled or not */
636 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
637 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
638 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
639 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
640 
641 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
642 
643 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
644 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
645 
646 		ring->wptr = 0;
647 
648 		/* before programing wptr to a less value, need set minor_ptr_update first */
649 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
650 
651 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
652 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
653 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
654 		}
655 
656 		doorbell = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
657 		doorbell_offset = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
658 
659 		if (ring->use_doorbell) {
660 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
661 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
662 					OFFSET, ring->doorbell_index);
663 		} else {
664 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
665 		}
666 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
667 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
668 
669 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
670 						      ring->doorbell_index,
671 						      adev->doorbell_index.sdma_doorbell_range);
672 
673 		if (amdgpu_sriov_vf(adev))
674 			sdma_v5_2_ring_set_wptr(ring);
675 
676 		/* set minor_ptr_update to 0 after wptr programed */
677 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
678 
679 		/* set utc l1 enable flag always to 1 */
680 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
681 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
682 
683 		/* enable MCBP */
684 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
685 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
686 
687 		/* Set up RESP_MODE to non-copy addresses */
688 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
689 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
690 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
691 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
692 
693 		/* program default cache read and write policy */
694 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
695 		/* clean read policy and write policy bits */
696 		temp &= 0xFF0FFF;
697 		temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
698 			 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
699 			 0x01000000);
700 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
701 
702 		if (!amdgpu_sriov_vf(adev)) {
703 			/* unhalt engine */
704 			temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
705 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
706 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
707 		}
708 
709 		/* enable DMA RB */
710 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
711 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
712 
713 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
714 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
715 #ifdef __BIG_ENDIAN
716 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
717 #endif
718 		/* enable DMA IBs */
719 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
720 
721 		ring->sched.ready = true;
722 
723 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
724 			sdma_v5_2_ctx_switch_enable(adev, true);
725 			sdma_v5_2_enable(adev, true);
726 		}
727 
728 		r = amdgpu_ring_test_ring(ring);
729 		if (r) {
730 			ring->sched.ready = false;
731 			return r;
732 		}
733 
734 		if (adev->mman.buffer_funcs_ring == ring)
735 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
736 	}
737 
738 	return 0;
739 }
740 
741 /**
742  * sdma_v5_2_rlc_resume - setup and start the async dma engines
743  *
744  * @adev: amdgpu_device pointer
745  *
746  * Set up the compute DMA queues and enable them.
747  * Returns 0 for success, error for failure.
748  */
749 static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
750 {
751 	return 0;
752 }
753 
754 /**
755  * sdma_v5_2_load_microcode - load the sDMA ME ucode
756  *
757  * @adev: amdgpu_device pointer
758  *
759  * Loads the sDMA0/1/2/3 ucode.
760  * Returns 0 for success, -EINVAL if the ucode is not available.
761  */
762 static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
763 {
764 	const struct sdma_firmware_header_v1_0 *hdr;
765 	const __le32 *fw_data;
766 	u32 fw_size;
767 	int i, j;
768 
769 	/* halt the MEs */
770 	sdma_v5_2_enable(adev, false);
771 
772 	for (i = 0; i < adev->sdma.num_instances; i++) {
773 		if (!adev->sdma.instance[i].fw)
774 			return -EINVAL;
775 
776 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
777 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
778 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
779 
780 		fw_data = (const __le32 *)
781 			(adev->sdma.instance[i].fw->data +
782 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
783 
784 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
785 
786 		for (j = 0; j < fw_size; j++) {
787 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
788 				msleep(1);
789 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
790 		}
791 
792 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  * sdma_v5_2_start - setup and start the async dma engines
800  *
801  * @adev: amdgpu_device pointer
802  *
803  * Set up the DMA engines and enable them.
804  * Returns 0 for success, error for failure.
805  */
806 static int sdma_v5_2_start(struct amdgpu_device *adev)
807 {
808 	int r = 0;
809 
810 	if (amdgpu_sriov_vf(adev)) {
811 		sdma_v5_2_ctx_switch_enable(adev, false);
812 		sdma_v5_2_enable(adev, false);
813 
814 		/* set RB registers */
815 		r = sdma_v5_2_gfx_resume(adev);
816 		return r;
817 	}
818 
819 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
820 		r = sdma_v5_2_load_microcode(adev);
821 		if (r)
822 			return r;
823 
824 		/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
825 		if (amdgpu_emu_mode == 1)
826 			msleep(1000);
827 	}
828 
829 	/* unhalt the MEs */
830 	sdma_v5_2_enable(adev, true);
831 	/* enable sdma ring preemption */
832 	sdma_v5_2_ctx_switch_enable(adev, true);
833 
834 	/* start the gfx rings and rlc compute queues */
835 	r = sdma_v5_2_gfx_resume(adev);
836 	if (r)
837 		return r;
838 	r = sdma_v5_2_rlc_resume(adev);
839 
840 	return r;
841 }
842 
843 /**
844  * sdma_v5_2_ring_test_ring - simple async dma engine test
845  *
846  * @ring: amdgpu_ring structure holding ring information
847  *
848  * Test the DMA engine by writing using it to write an
849  * value to memory.
850  * Returns 0 for success, error for failure.
851  */
852 static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
853 {
854 	struct amdgpu_device *adev = ring->adev;
855 	unsigned i;
856 	unsigned index;
857 	int r;
858 	u32 tmp;
859 	u64 gpu_addr;
860 
861 	r = amdgpu_device_wb_get(adev, &index);
862 	if (r) {
863 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
864 		return r;
865 	}
866 
867 	gpu_addr = adev->wb.gpu_addr + (index * 4);
868 	tmp = 0xCAFEDEAD;
869 	adev->wb.wb[index] = cpu_to_le32(tmp);
870 
871 	r = amdgpu_ring_alloc(ring, 5);
872 	if (r) {
873 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
874 		amdgpu_device_wb_free(adev, index);
875 		return r;
876 	}
877 
878 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
879 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
880 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
881 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
882 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
883 	amdgpu_ring_write(ring, 0xDEADBEEF);
884 	amdgpu_ring_commit(ring);
885 
886 	for (i = 0; i < adev->usec_timeout; i++) {
887 		tmp = le32_to_cpu(adev->wb.wb[index]);
888 		if (tmp == 0xDEADBEEF)
889 			break;
890 		if (amdgpu_emu_mode == 1)
891 			msleep(1);
892 		else
893 			udelay(1);
894 	}
895 
896 	if (i >= adev->usec_timeout)
897 		r = -ETIMEDOUT;
898 
899 	amdgpu_device_wb_free(adev, index);
900 
901 	return r;
902 }
903 
904 /**
905  * sdma_v5_2_ring_test_ib - test an IB on the DMA engine
906  *
907  * @ring: amdgpu_ring structure holding ring information
908  *
909  * Test a simple IB in the DMA ring.
910  * Returns 0 on success, error on failure.
911  */
912 static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
913 {
914 	struct amdgpu_device *adev = ring->adev;
915 	struct amdgpu_ib ib;
916 	struct dma_fence *f = NULL;
917 	unsigned index;
918 	long r;
919 	u32 tmp = 0;
920 	u64 gpu_addr;
921 
922 	r = amdgpu_device_wb_get(adev, &index);
923 	if (r) {
924 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
925 		return r;
926 	}
927 
928 	gpu_addr = adev->wb.gpu_addr + (index * 4);
929 	tmp = 0xCAFEDEAD;
930 	adev->wb.wb[index] = cpu_to_le32(tmp);
931 	memset(&ib, 0, sizeof(ib));
932 	r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
933 	if (r) {
934 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
935 		goto err0;
936 	}
937 
938 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
939 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
940 	ib.ptr[1] = lower_32_bits(gpu_addr);
941 	ib.ptr[2] = upper_32_bits(gpu_addr);
942 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
943 	ib.ptr[4] = 0xDEADBEEF;
944 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
945 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
946 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
947 	ib.length_dw = 8;
948 
949 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
950 	if (r)
951 		goto err1;
952 
953 	r = dma_fence_wait_timeout(f, false, timeout);
954 	if (r == 0) {
955 		DRM_ERROR("amdgpu: IB test timed out\n");
956 		r = -ETIMEDOUT;
957 		goto err1;
958 	} else if (r < 0) {
959 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
960 		goto err1;
961 	}
962 	tmp = le32_to_cpu(adev->wb.wb[index]);
963 	if (tmp == 0xDEADBEEF)
964 		r = 0;
965 	else
966 		r = -EINVAL;
967 
968 err1:
969 	amdgpu_ib_free(adev, &ib, NULL);
970 	dma_fence_put(f);
971 err0:
972 	amdgpu_device_wb_free(adev, index);
973 	return r;
974 }
975 
976 
977 /**
978  * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
979  *
980  * @ib: indirect buffer to fill with commands
981  * @pe: addr of the page entry
982  * @src: src addr to copy from
983  * @count: number of page entries to update
984  *
985  * Update PTEs by copying them from the GART using sDMA.
986  */
987 static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
988 				  uint64_t pe, uint64_t src,
989 				  unsigned count)
990 {
991 	unsigned bytes = count * 8;
992 
993 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
994 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
995 	ib->ptr[ib->length_dw++] = bytes - 1;
996 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
997 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
998 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
999 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1000 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1001 
1002 }
1003 
1004 /**
1005  * sdma_v5_2_vm_write_pte - update PTEs by writing them manually
1006  *
1007  * @ib: indirect buffer to fill with commands
1008  * @pe: addr of the page entry
1009  * @addr: dst addr to write into pe
1010  * @count: number of page entries to update
1011  * @incr: increase next addr by incr bytes
1012  * @flags: access flags
1013  *
1014  * Update PTEs by writing them manually using sDMA.
1015  */
1016 static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1017 				   uint64_t value, unsigned count,
1018 				   uint32_t incr)
1019 {
1020 	unsigned ndw = count * 2;
1021 
1022 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1023 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1024 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1025 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1026 	ib->ptr[ib->length_dw++] = ndw - 1;
1027 	for (; ndw > 0; ndw -= 2) {
1028 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1029 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1030 		value += incr;
1031 	}
1032 }
1033 
1034 /**
1035  * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
1036  *
1037  * @ib: indirect buffer to fill with commands
1038  * @pe: addr of the page entry
1039  * @addr: dst addr to write into pe
1040  * @count: number of page entries to update
1041  * @incr: increase next addr by incr bytes
1042  * @flags: access flags
1043  *
1044  * Update the page tables using sDMA.
1045  */
1046 static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1047 				     uint64_t pe,
1048 				     uint64_t addr, unsigned count,
1049 				     uint32_t incr, uint64_t flags)
1050 {
1051 	/* for physically contiguous pages (vram) */
1052 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1053 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1054 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1055 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1056 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1057 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1058 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1059 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1060 	ib->ptr[ib->length_dw++] = 0;
1061 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1062 }
1063 
1064 /**
1065  * sdma_v5_2_ring_pad_ib - pad the IB
1066  *
1067  * @ib: indirect buffer to fill with padding
1068  *
1069  * Pad the IB with NOPs to a boundary multiple of 8.
1070  */
1071 static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1072 {
1073 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1074 	u32 pad_count;
1075 	int i;
1076 
1077 	pad_count = (-ib->length_dw) & 0x7;
1078 	for (i = 0; i < pad_count; i++)
1079 		if (sdma && sdma->burst_nop && (i == 0))
1080 			ib->ptr[ib->length_dw++] =
1081 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1082 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1083 		else
1084 			ib->ptr[ib->length_dw++] =
1085 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1086 }
1087 
1088 
1089 /**
1090  * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
1091  *
1092  * @ring: amdgpu_ring pointer
1093  *
1094  * Make sure all previous operations are completed (CIK).
1095  */
1096 static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1097 {
1098 	uint32_t seq = ring->fence_drv.sync_seq;
1099 	uint64_t addr = ring->fence_drv.gpu_addr;
1100 
1101 	/* wait for idle */
1102 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1103 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1104 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1105 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1106 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1107 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1108 	amdgpu_ring_write(ring, seq); /* reference */
1109 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1110 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1111 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1112 }
1113 
1114 
1115 /**
1116  * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
1117  *
1118  * @ring: amdgpu_ring pointer
1119  * @vm: amdgpu_vm pointer
1120  *
1121  * Update the page table base and flush the VM TLB
1122  * using sDMA.
1123  */
1124 static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1125 					 unsigned vmid, uint64_t pd_addr)
1126 {
1127 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1128 }
1129 
1130 static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
1131 				     uint32_t reg, uint32_t val)
1132 {
1133 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1134 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1135 	amdgpu_ring_write(ring, reg);
1136 	amdgpu_ring_write(ring, val);
1137 }
1138 
1139 static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1140 					 uint32_t val, uint32_t mask)
1141 {
1142 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1143 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1144 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1145 	amdgpu_ring_write(ring, reg << 2);
1146 	amdgpu_ring_write(ring, 0);
1147 	amdgpu_ring_write(ring, val); /* reference */
1148 	amdgpu_ring_write(ring, mask); /* mask */
1149 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1150 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1151 }
1152 
1153 static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1154 						   uint32_t reg0, uint32_t reg1,
1155 						   uint32_t ref, uint32_t mask)
1156 {
1157 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1158 	/* wait for a cycle to reset vm_inv_eng*_ack */
1159 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1160 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1161 }
1162 
1163 static int sdma_v5_2_early_init(void *handle)
1164 {
1165 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1166 
1167 	switch (adev->asic_type) {
1168 	case CHIP_SIENNA_CICHLID:
1169 		adev->sdma.num_instances = 4;
1170 		break;
1171 	case CHIP_NAVY_FLOUNDER:
1172 		adev->sdma.num_instances = 2;
1173 		break;
1174 	default:
1175 		break;
1176 	}
1177 
1178 	sdma_v5_2_set_ring_funcs(adev);
1179 	sdma_v5_2_set_buffer_funcs(adev);
1180 	sdma_v5_2_set_vm_pte_funcs(adev);
1181 	sdma_v5_2_set_irq_funcs(adev);
1182 
1183 	return 0;
1184 }
1185 
1186 static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
1187 {
1188 	switch (seq_num) {
1189 	case 0:
1190 		return SOC15_IH_CLIENTID_SDMA0;
1191 	case 1:
1192 		return SOC15_IH_CLIENTID_SDMA1;
1193 	case 2:
1194 		return SOC15_IH_CLIENTID_SDMA2;
1195 	case 3:
1196 		return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
1197 	default:
1198 		break;
1199 	}
1200 	return -EINVAL;
1201 }
1202 
1203 static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
1204 {
1205 	switch (seq_num) {
1206 	case 0:
1207 		return SDMA0_5_0__SRCID__SDMA_TRAP;
1208 	case 1:
1209 		return SDMA1_5_0__SRCID__SDMA_TRAP;
1210 	case 2:
1211 		return SDMA2_5_0__SRCID__SDMA_TRAP;
1212 	case 3:
1213 		return SDMA3_5_0__SRCID__SDMA_TRAP;
1214 	default:
1215 		break;
1216 	}
1217 	return -EINVAL;
1218 }
1219 
1220 static int sdma_v5_2_sw_init(void *handle)
1221 {
1222 	struct amdgpu_ring *ring;
1223 	int r, i;
1224 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1225 
1226 	/* SDMA trap event */
1227 	for (i = 0; i < adev->sdma.num_instances; i++) {
1228 		r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
1229 				      sdma_v5_2_seq_to_trap_id(i),
1230 				      &adev->sdma.trap_irq);
1231 		if (r)
1232 			return r;
1233 	}
1234 
1235 	r = sdma_v5_2_init_microcode(adev);
1236 	if (r) {
1237 		DRM_ERROR("Failed to load sdma firmware!\n");
1238 		return r;
1239 	}
1240 
1241 	for (i = 0; i < adev->sdma.num_instances; i++) {
1242 		ring = &adev->sdma.instance[i].ring;
1243 		ring->ring_obj = NULL;
1244 		ring->use_doorbell = true;
1245 		ring->me = i;
1246 
1247 		DRM_INFO("use_doorbell being set to: [%s]\n",
1248 				ring->use_doorbell?"true":"false");
1249 
1250 		ring->doorbell_index =
1251 			(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset
1252 
1253 		sprintf(ring->name, "sdma%d", i);
1254 		r = amdgpu_ring_init(adev, ring, 1024,
1255 				     &adev->sdma.trap_irq,
1256 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1257 				     AMDGPU_RING_PRIO_DEFAULT);
1258 		if (r)
1259 			return r;
1260 	}
1261 
1262 	return r;
1263 }
1264 
1265 static int sdma_v5_2_sw_fini(void *handle)
1266 {
1267 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1268 	int i;
1269 
1270 	for (i = 0; i < adev->sdma.num_instances; i++)
1271 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1272 
1273 	sdma_v5_2_destroy_inst_ctx(adev);
1274 
1275 	return 0;
1276 }
1277 
1278 static int sdma_v5_2_hw_init(void *handle)
1279 {
1280 	int r;
1281 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1282 
1283 	sdma_v5_2_init_golden_registers(adev);
1284 
1285 	r = sdma_v5_2_start(adev);
1286 
1287 	return r;
1288 }
1289 
1290 static int sdma_v5_2_hw_fini(void *handle)
1291 {
1292 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1293 
1294 	if (amdgpu_sriov_vf(adev))
1295 		return 0;
1296 
1297 	sdma_v5_2_ctx_switch_enable(adev, false);
1298 	sdma_v5_2_enable(adev, false);
1299 
1300 	return 0;
1301 }
1302 
1303 static int sdma_v5_2_suspend(void *handle)
1304 {
1305 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1306 
1307 	return sdma_v5_2_hw_fini(adev);
1308 }
1309 
1310 static int sdma_v5_2_resume(void *handle)
1311 {
1312 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1313 
1314 	return sdma_v5_2_hw_init(adev);
1315 }
1316 
1317 static bool sdma_v5_2_is_idle(void *handle)
1318 {
1319 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1320 	u32 i;
1321 
1322 	for (i = 0; i < adev->sdma.num_instances; i++) {
1323 		u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1324 
1325 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1326 			return false;
1327 	}
1328 
1329 	return true;
1330 }
1331 
1332 static int sdma_v5_2_wait_for_idle(void *handle)
1333 {
1334 	unsigned i;
1335 	u32 sdma0, sdma1, sdma2, sdma3;
1336 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1337 
1338 	for (i = 0; i < adev->usec_timeout; i++) {
1339 		sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1340 		sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1341 		sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
1342 		sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));
1343 
1344 		if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
1345 			return 0;
1346 		udelay(1);
1347 	}
1348 	return -ETIMEDOUT;
1349 }
1350 
1351 static int sdma_v5_2_soft_reset(void *handle)
1352 {
1353 	/* todo */
1354 
1355 	return 0;
1356 }
1357 
1358 static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
1359 {
1360 	int i, r = 0;
1361 	struct amdgpu_device *adev = ring->adev;
1362 	u32 index = 0;
1363 	u64 sdma_gfx_preempt;
1364 
1365 	amdgpu_sdma_get_index_from_ring(ring, &index);
1366 	sdma_gfx_preempt =
1367 		sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);
1368 
1369 	/* assert preemption condition */
1370 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1371 
1372 	/* emit the trailing fence */
1373 	ring->trail_seq += 1;
1374 	amdgpu_ring_alloc(ring, 10);
1375 	sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1376 				  ring->trail_seq, 0);
1377 	amdgpu_ring_commit(ring);
1378 
1379 	/* assert IB preemption */
1380 	WREG32(sdma_gfx_preempt, 1);
1381 
1382 	/* poll the trailing fence */
1383 	for (i = 0; i < adev->usec_timeout; i++) {
1384 		if (ring->trail_seq ==
1385 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1386 			break;
1387 		udelay(1);
1388 	}
1389 
1390 	if (i >= adev->usec_timeout) {
1391 		r = -EINVAL;
1392 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1393 	}
1394 
1395 	/* deassert IB preemption */
1396 	WREG32(sdma_gfx_preempt, 0);
1397 
1398 	/* deassert the preemption condition */
1399 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1400 	return r;
1401 }
1402 
1403 static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
1404 					struct amdgpu_irq_src *source,
1405 					unsigned type,
1406 					enum amdgpu_interrupt_state state)
1407 {
1408 	u32 sdma_cntl;
1409 
1410 	u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);
1411 
1412 	sdma_cntl = RREG32(reg_offset);
1413 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1414 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1415 	WREG32(reg_offset, sdma_cntl);
1416 
1417 	return 0;
1418 }
1419 
1420 static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
1421 				      struct amdgpu_irq_src *source,
1422 				      struct amdgpu_iv_entry *entry)
1423 {
1424 	DRM_DEBUG("IH: SDMA trap\n");
1425 	switch (entry->client_id) {
1426 	case SOC15_IH_CLIENTID_SDMA0:
1427 		switch (entry->ring_id) {
1428 		case 0:
1429 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1430 			break;
1431 		case 1:
1432 			/* XXX compute */
1433 			break;
1434 		case 2:
1435 			/* XXX compute */
1436 			break;
1437 		case 3:
1438 			/* XXX page queue*/
1439 			break;
1440 		}
1441 		break;
1442 	case SOC15_IH_CLIENTID_SDMA1:
1443 		switch (entry->ring_id) {
1444 		case 0:
1445 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1446 			break;
1447 		case 1:
1448 			/* XXX compute */
1449 			break;
1450 		case 2:
1451 			/* XXX compute */
1452 			break;
1453 		case 3:
1454 			/* XXX page queue*/
1455 			break;
1456 		}
1457 		break;
1458 	case SOC15_IH_CLIENTID_SDMA2:
1459 		switch (entry->ring_id) {
1460 		case 0:
1461 			amdgpu_fence_process(&adev->sdma.instance[2].ring);
1462 			break;
1463 		case 1:
1464 			/* XXX compute */
1465 			break;
1466 		case 2:
1467 			/* XXX compute */
1468 			break;
1469 		case 3:
1470 			/* XXX page queue*/
1471 			break;
1472 		}
1473 		break;
1474 	case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
1475 		switch (entry->ring_id) {
1476 		case 0:
1477 			amdgpu_fence_process(&adev->sdma.instance[3].ring);
1478 			break;
1479 		case 1:
1480 			/* XXX compute */
1481 			break;
1482 		case 2:
1483 			/* XXX compute */
1484 			break;
1485 		case 3:
1486 			/* XXX page queue*/
1487 			break;
1488 		}
1489 		break;
1490 	}
1491 	return 0;
1492 }
1493 
1494 static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1495 					      struct amdgpu_irq_src *source,
1496 					      struct amdgpu_iv_entry *entry)
1497 {
1498 	return 0;
1499 }
1500 
1501 static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1502 						       bool enable)
1503 {
1504 	uint32_t data, def;
1505 	int i;
1506 
1507 	for (i = 0; i < adev->sdma.num_instances; i++) {
1508 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1509 			/* Enable sdma clock gating */
1510 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1511 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1512 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1513 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1514 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1515 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1516 				  SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1517 			if (def != data)
1518 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1519 		} else {
1520 			/* Disable sdma clock gating */
1521 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1522 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1523 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1524 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1525 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1526 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1527 				 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1528 			if (def != data)
1529 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1530 		}
1531 	}
1532 }
1533 
1534 static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1535 						      bool enable)
1536 {
1537 	uint32_t data, def;
1538 	int i;
1539 
1540 	for (i = 0; i < adev->sdma.num_instances; i++) {
1541 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1542 			/* Enable sdma mem light sleep */
1543 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1544 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1545 			if (def != data)
1546 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1547 
1548 		} else {
1549 			/* Disable sdma mem light sleep */
1550 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1551 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1552 			if (def != data)
1553 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1554 
1555 		}
1556 	}
1557 }
1558 
1559 static int sdma_v5_2_set_clockgating_state(void *handle,
1560 					   enum amd_clockgating_state state)
1561 {
1562 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1563 
1564 	if (amdgpu_sriov_vf(adev))
1565 		return 0;
1566 
1567 	switch (adev->asic_type) {
1568 	case CHIP_SIENNA_CICHLID:
1569 	case CHIP_NAVY_FLOUNDER:
1570 		sdma_v5_2_update_medium_grain_clock_gating(adev,
1571 				state == AMD_CG_STATE_GATE ? true : false);
1572 		sdma_v5_2_update_medium_grain_light_sleep(adev,
1573 				state == AMD_CG_STATE_GATE ? true : false);
1574 		break;
1575 	default:
1576 		break;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int sdma_v5_2_set_powergating_state(void *handle,
1583 					  enum amd_powergating_state state)
1584 {
1585 	return 0;
1586 }
1587 
1588 static void sdma_v5_2_get_clockgating_state(void *handle, u32 *flags)
1589 {
1590 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1591 	int data;
1592 
1593 	if (amdgpu_sriov_vf(adev))
1594 		*flags = 0;
1595 
1596 	/* AMD_CG_SUPPORT_SDMA_LS */
1597 	data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1598 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1599 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1600 }
1601 
1602 const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
1603 	.name = "sdma_v5_2",
1604 	.early_init = sdma_v5_2_early_init,
1605 	.late_init = NULL,
1606 	.sw_init = sdma_v5_2_sw_init,
1607 	.sw_fini = sdma_v5_2_sw_fini,
1608 	.hw_init = sdma_v5_2_hw_init,
1609 	.hw_fini = sdma_v5_2_hw_fini,
1610 	.suspend = sdma_v5_2_suspend,
1611 	.resume = sdma_v5_2_resume,
1612 	.is_idle = sdma_v5_2_is_idle,
1613 	.wait_for_idle = sdma_v5_2_wait_for_idle,
1614 	.soft_reset = sdma_v5_2_soft_reset,
1615 	.set_clockgating_state = sdma_v5_2_set_clockgating_state,
1616 	.set_powergating_state = sdma_v5_2_set_powergating_state,
1617 	.get_clockgating_state = sdma_v5_2_get_clockgating_state,
1618 };
1619 
1620 static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
1621 	.type = AMDGPU_RING_TYPE_SDMA,
1622 	.align_mask = 0xf,
1623 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1624 	.support_64bit_ptrs = true,
1625 	.vmhub = AMDGPU_GFXHUB_0,
1626 	.get_rptr = sdma_v5_2_ring_get_rptr,
1627 	.get_wptr = sdma_v5_2_ring_get_wptr,
1628 	.set_wptr = sdma_v5_2_ring_set_wptr,
1629 	.emit_frame_size =
1630 		5 + /* sdma_v5_2_ring_init_cond_exec */
1631 		6 + /* sdma_v5_2_ring_emit_hdp_flush */
1632 		3 + /* hdp_invalidate */
1633 		6 + /* sdma_v5_2_ring_emit_pipeline_sync */
1634 		/* sdma_v5_2_ring_emit_vm_flush */
1635 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1636 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1637 		10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
1638 	.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
1639 	.emit_ib = sdma_v5_2_ring_emit_ib,
1640 	.emit_fence = sdma_v5_2_ring_emit_fence,
1641 	.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
1642 	.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
1643 	.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
1644 	.test_ring = sdma_v5_2_ring_test_ring,
1645 	.test_ib = sdma_v5_2_ring_test_ib,
1646 	.insert_nop = sdma_v5_2_ring_insert_nop,
1647 	.pad_ib = sdma_v5_2_ring_pad_ib,
1648 	.emit_wreg = sdma_v5_2_ring_emit_wreg,
1649 	.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
1650 	.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
1651 	.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
1652 	.patch_cond_exec = sdma_v5_2_ring_patch_cond_exec,
1653 	.preempt_ib = sdma_v5_2_ring_preempt_ib,
1654 };
1655 
1656 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < adev->sdma.num_instances; i++) {
1661 		adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
1662 		adev->sdma.instance[i].ring.me = i;
1663 	}
1664 }
1665 
1666 static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
1667 	.set = sdma_v5_2_set_trap_irq_state,
1668 	.process = sdma_v5_2_process_trap_irq,
1669 };
1670 
1671 static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
1672 	.process = sdma_v5_2_process_illegal_inst_irq,
1673 };
1674 
1675 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
1676 {
1677 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1678 					adev->sdma.num_instances;
1679 	adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
1680 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
1681 }
1682 
1683 /**
1684  * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
1685  *
1686  * @ring: amdgpu_ring structure holding ring information
1687  * @src_offset: src GPU address
1688  * @dst_offset: dst GPU address
1689  * @byte_count: number of bytes to xfer
1690  *
1691  * Copy GPU buffers using the DMA engine.
1692  * Used by the amdgpu ttm implementation to move pages if
1693  * registered as the asic copy callback.
1694  */
1695 static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
1696 				       uint64_t src_offset,
1697 				       uint64_t dst_offset,
1698 				       uint32_t byte_count,
1699 				       bool tmz)
1700 {
1701 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1702 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1703 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1704 	ib->ptr[ib->length_dw++] = byte_count - 1;
1705 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1706 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1707 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1708 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1709 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1710 }
1711 
1712 /**
1713  * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
1714  *
1715  * @ring: amdgpu_ring structure holding ring information
1716  * @src_data: value to write to buffer
1717  * @dst_offset: dst GPU address
1718  * @byte_count: number of bytes to xfer
1719  *
1720  * Fill GPU buffers using the DMA engine.
1721  */
1722 static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
1723 				       uint32_t src_data,
1724 				       uint64_t dst_offset,
1725 				       uint32_t byte_count)
1726 {
1727 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1728 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1729 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1730 	ib->ptr[ib->length_dw++] = src_data;
1731 	ib->ptr[ib->length_dw++] = byte_count - 1;
1732 }
1733 
1734 static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
1735 	.copy_max_bytes = 0x400000,
1736 	.copy_num_dw = 7,
1737 	.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,
1738 
1739 	.fill_max_bytes = 0x400000,
1740 	.fill_num_dw = 5,
1741 	.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
1742 };
1743 
1744 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
1745 {
1746 	if (adev->mman.buffer_funcs == NULL) {
1747 		adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
1748 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1749 	}
1750 }
1751 
1752 static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
1753 	.copy_pte_num_dw = 7,
1754 	.copy_pte = sdma_v5_2_vm_copy_pte,
1755 	.write_pte = sdma_v5_2_vm_write_pte,
1756 	.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
1757 };
1758 
1759 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
1760 {
1761 	unsigned i;
1762 
1763 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1764 		adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
1765 		for (i = 0; i < adev->sdma.num_instances; i++) {
1766 			adev->vm_manager.vm_pte_scheds[i] =
1767 				&adev->sdma.instance[i].ring.sched;
1768 		}
1769 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1770 	}
1771 }
1772 
1773 const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
1774 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1775 	.major = 5,
1776 	.minor = 2,
1777 	.rev = 0,
1778 	.funcs = &sdma_v5_2_ip_funcs,
1779 };
1780