1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_3_0_offset.h"
34 #include "gc/gc_10_3_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h"
38 #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h"
39 
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "navi10_sdma_pkt_open.h"
43 #include "nbio_v2_3.h"
44 #include "sdma_common.h"
45 #include "sdma_v5_2.h"
46 
47 MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin");
48 MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin");
50 
51 MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin");
52 
53 #define SDMA1_REG_OFFSET 0x600
54 #define SDMA3_REG_OFFSET 0x400
55 #define SDMA0_HYP_DEC_REG_START 0x5880
56 #define SDMA0_HYP_DEC_REG_END 0x5893
57 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
58 
59 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev);
60 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev);
61 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev);
62 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev);
63 
64 static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
65 {
66 	u32 base;
67 
68 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
69 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
70 		base = adev->reg_offset[GC_HWIP][0][1];
71 		if (instance != 0)
72 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance;
73 	} else {
74 		if (instance < 2) {
75 			base = adev->reg_offset[GC_HWIP][0][0];
76 			if (instance == 1)
77 				internal_offset += SDMA1_REG_OFFSET;
78 		} else {
79 			base = adev->reg_offset[GC_HWIP][0][2];
80 			if (instance == 3)
81 				internal_offset += SDMA3_REG_OFFSET;
82 		}
83 	}
84 
85 	return base + internal_offset;
86 }
87 
88 static void sdma_v5_2_init_golden_registers(struct amdgpu_device *adev)
89 {
90 	switch (adev->asic_type) {
91 	case CHIP_SIENNA_CICHLID:
92 	case CHIP_NAVY_FLOUNDER:
93 	case CHIP_VANGOGH:
94 	case CHIP_DIMGREY_CAVEFISH:
95 		break;
96 	default:
97 		break;
98 	}
99 }
100 
101 static int sdma_v5_2_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
102 {
103 	int err = 0;
104 	const struct sdma_firmware_header_v1_0 *hdr;
105 
106 	err = amdgpu_ucode_validate(sdma_inst->fw);
107 	if (err)
108 		return err;
109 
110 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
111 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
112 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
113 
114 	if (sdma_inst->feature_version >= 20)
115 		sdma_inst->burst_nop = true;
116 
117 	return 0;
118 }
119 
120 static void sdma_v5_2_destroy_inst_ctx(struct amdgpu_device *adev)
121 {
122 	int i;
123 
124 	for (i = 0; i < adev->sdma.num_instances; i++) {
125 		release_firmware(adev->sdma.instance[i].fw);
126 		adev->sdma.instance[i].fw = NULL;
127 
128 		if (adev->asic_type == CHIP_SIENNA_CICHLID)
129 			break;
130 	}
131 
132 	memset((void *)adev->sdma.instance, 0,
133 	       sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
134 }
135 
136 /**
137  * sdma_v5_2_init_microcode - load ucode images from disk
138  *
139  * @adev: amdgpu_device pointer
140  *
141  * Use the firmware interface to load the ucode images into
142  * the driver (not loaded into hw).
143  * Returns 0 on success, error on failure.
144  */
145 
146 // emulation only, won't work on real chip
147 // navi10 real chip need to use PSP to load firmware
148 static int sdma_v5_2_init_microcode(struct amdgpu_device *adev)
149 {
150 	const char *chip_name;
151 	char fw_name[40];
152 	int err = 0, i;
153 	struct amdgpu_firmware_info *info = NULL;
154 	const struct common_firmware_header *header = NULL;
155 
156 	if (amdgpu_sriov_vf(adev) && (adev->asic_type == CHIP_SIENNA_CICHLID))
157 		return 0;
158 
159 	DRM_DEBUG("\n");
160 
161 	switch (adev->asic_type) {
162 	case CHIP_SIENNA_CICHLID:
163 		chip_name = "sienna_cichlid";
164 		break;
165 	case CHIP_NAVY_FLOUNDER:
166 		chip_name = "navy_flounder";
167 		break;
168 	case CHIP_VANGOGH:
169 		chip_name = "vangogh";
170 		break;
171 	case CHIP_DIMGREY_CAVEFISH:
172 		chip_name = "dimgrey_cavefish";
173 		break;
174 	default:
175 		BUG();
176 	}
177 
178 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
179 
180 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
181 	if (err)
182 		goto out;
183 
184 	err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[0]);
185 	if (err)
186 		goto out;
187 
188 	for (i = 1; i < adev->sdma.num_instances; i++) {
189 		if (adev->asic_type >= CHIP_SIENNA_CICHLID &&
190 		    adev->asic_type <= CHIP_DIMGREY_CAVEFISH) {
191 			memcpy((void *)&adev->sdma.instance[i],
192 			       (void *)&adev->sdma.instance[0],
193 			       sizeof(struct amdgpu_sdma_instance));
194 		} else {
195 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
196 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
197 			if (err)
198 				goto out;
199 
200 			err = sdma_v5_2_init_inst_ctx(&adev->sdma.instance[i]);
201 			if (err)
202 				goto out;
203 		}
204 	}
205 
206 	DRM_DEBUG("psp_load == '%s'\n",
207 		  adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
208 
209 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
210 		for (i = 0; i < adev->sdma.num_instances; i++) {
211 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
212 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
213 			info->fw = adev->sdma.instance[i].fw;
214 			header = (const struct common_firmware_header *)info->fw->data;
215 			adev->firmware.fw_size +=
216 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
217 		}
218 	}
219 
220 out:
221 	if (err) {
222 		DRM_ERROR("sdma_v5_2: Failed to load firmware \"%s\"\n", fw_name);
223 		sdma_v5_2_destroy_inst_ctx(adev);
224 	}
225 	return err;
226 }
227 
228 static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring)
229 {
230 	unsigned ret;
231 
232 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
233 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
234 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
235 	amdgpu_ring_write(ring, 1);
236 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
237 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
238 
239 	return ret;
240 }
241 
242 static void sdma_v5_2_ring_patch_cond_exec(struct amdgpu_ring *ring,
243 					   unsigned offset)
244 {
245 	unsigned cur;
246 
247 	BUG_ON(offset > ring->buf_mask);
248 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
249 
250 	cur = (ring->wptr - 1) & ring->buf_mask;
251 	if (cur > offset)
252 		ring->ring[offset] = cur - offset;
253 	else
254 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
255 }
256 
257 /**
258  * sdma_v5_2_ring_get_rptr - get the current read pointer
259  *
260  * @ring: amdgpu ring pointer
261  *
262  * Get the current rptr from the hardware (NAVI10+).
263  */
264 static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring)
265 {
266 	u64 *rptr;
267 
268 	/* XXX check if swapping is necessary on BE */
269 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
270 
271 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
272 	return ((*rptr) >> 2);
273 }
274 
275 /**
276  * sdma_v5_2_ring_get_wptr - get the current write pointer
277  *
278  * @ring: amdgpu ring pointer
279  *
280  * Get the current wptr from the hardware (NAVI10+).
281  */
282 static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring)
283 {
284 	struct amdgpu_device *adev = ring->adev;
285 	u64 wptr;
286 
287 	if (ring->use_doorbell) {
288 		/* XXX check if swapping is necessary on BE */
289 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
290 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
291 	} else {
292 		wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
293 		wptr = wptr << 32;
294 		wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
295 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
296 	}
297 
298 	return wptr >> 2;
299 }
300 
301 /**
302  * sdma_v5_2_ring_set_wptr - commit the write pointer
303  *
304  * @ring: amdgpu ring pointer
305  *
306  * Write the wptr back to the hardware (NAVI10+).
307  */
308 static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring)
309 {
310 	struct amdgpu_device *adev = ring->adev;
311 
312 	DRM_DEBUG("Setting write pointer\n");
313 	if (ring->use_doorbell) {
314 		DRM_DEBUG("Using doorbell -- "
315 				"wptr_offs == 0x%08x "
316 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
317 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
318 				ring->wptr_offs,
319 				lower_32_bits(ring->wptr << 2),
320 				upper_32_bits(ring->wptr << 2));
321 		/* XXX check if swapping is necessary on BE */
322 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
323 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
324 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
325 				ring->doorbell_index, ring->wptr << 2);
326 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
327 	} else {
328 		DRM_DEBUG("Not using doorbell -- "
329 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
330 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
331 				ring->me,
332 				lower_32_bits(ring->wptr << 2),
333 				ring->me,
334 				upper_32_bits(ring->wptr << 2));
335 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR),
336 			lower_32_bits(ring->wptr << 2));
337 		WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI),
338 			upper_32_bits(ring->wptr << 2));
339 	}
340 }
341 
342 static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
343 {
344 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
345 	int i;
346 
347 	for (i = 0; i < count; i++)
348 		if (sdma && sdma->burst_nop && (i == 0))
349 			amdgpu_ring_write(ring, ring->funcs->nop |
350 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
351 		else
352 			amdgpu_ring_write(ring, ring->funcs->nop);
353 }
354 
355 /**
356  * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine
357  *
358  * @ring: amdgpu ring pointer
359  * @job: job to retrieve vmid from
360  * @ib: IB object to schedule
361  * @flags: unused
362  *
363  * Schedule an IB in the DMA ring.
364  */
365 static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring,
366 				   struct amdgpu_job *job,
367 				   struct amdgpu_ib *ib,
368 				   uint32_t flags)
369 {
370 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
371 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
372 
373 	/* An IB packet must end on a 8 DW boundary--the next dword
374 	 * must be on a 8-dword boundary. Our IB packet below is 6
375 	 * dwords long, thus add x number of NOPs, such that, in
376 	 * modular arithmetic,
377 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
378 	 * (wptr + 6 + x) % 8 = 0.
379 	 * The expression below, is a solution of x.
380 	 */
381 	sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
382 
383 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
384 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
385 	/* base must be 32 byte aligned */
386 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
387 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
388 	amdgpu_ring_write(ring, ib->length_dw);
389 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
390 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
391 }
392 
393 /**
394  * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
395  *
396  * @ring: amdgpu ring pointer
397  *
398  * Emit an hdp flush packet on the requested DMA ring.
399  */
400 static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
401 {
402 	struct amdgpu_device *adev = ring->adev;
403 	u32 ref_and_mask = 0;
404 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
405 
406 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
407 
408 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
409 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
410 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
411 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
412 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
413 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
414 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
415 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
416 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
417 }
418 
419 /**
420  * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring
421  *
422  * @ring: amdgpu ring pointer
423  * @addr: address
424  * @seq: sequence number
425  * @flags: fence related flags
426  *
427  * Add a DMA fence packet to the ring to write
428  * the fence seq number and DMA trap packet to generate
429  * an interrupt if needed.
430  */
431 static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
432 				      unsigned flags)
433 {
434 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
435 	/* write the fence */
436 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
437 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
438 	/* zero in first two bits */
439 	BUG_ON(addr & 0x3);
440 	amdgpu_ring_write(ring, lower_32_bits(addr));
441 	amdgpu_ring_write(ring, upper_32_bits(addr));
442 	amdgpu_ring_write(ring, lower_32_bits(seq));
443 
444 	/* optionally write high bits as well */
445 	if (write64bit) {
446 		addr += 4;
447 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
448 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
449 		/* zero in first two bits */
450 		BUG_ON(addr & 0x3);
451 		amdgpu_ring_write(ring, lower_32_bits(addr));
452 		amdgpu_ring_write(ring, upper_32_bits(addr));
453 		amdgpu_ring_write(ring, upper_32_bits(seq));
454 	}
455 
456 	if (flags & AMDGPU_FENCE_FLAG_INT) {
457 		/* generate an interrupt */
458 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
459 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
460 	}
461 }
462 
463 
464 /**
465  * sdma_v5_2_gfx_stop - stop the gfx async dma engines
466  *
467  * @adev: amdgpu_device pointer
468  *
469  * Stop the gfx async dma ring buffers.
470  */
471 static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev)
472 {
473 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
474 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
475 	struct amdgpu_ring *sdma2 = &adev->sdma.instance[2].ring;
476 	struct amdgpu_ring *sdma3 = &adev->sdma.instance[3].ring;
477 	u32 rb_cntl, ib_cntl;
478 	int i;
479 
480 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
481 	    (adev->mman.buffer_funcs_ring == sdma1) ||
482 	    (adev->mman.buffer_funcs_ring == sdma2) ||
483 	    (adev->mman.buffer_funcs_ring == sdma3))
484 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
485 
486 	for (i = 0; i < adev->sdma.num_instances; i++) {
487 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
488 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
489 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
490 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
491 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
492 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
493 	}
494 
495 	sdma0->sched.ready = false;
496 	sdma1->sched.ready = false;
497 	sdma2->sched.ready = false;
498 	sdma3->sched.ready = false;
499 }
500 
501 /**
502  * sdma_v5_2_rlc_stop - stop the compute async dma engines
503  *
504  * @adev: amdgpu_device pointer
505  *
506  * Stop the compute async dma queues.
507  */
508 static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev)
509 {
510 	/* XXX todo */
511 }
512 
513 /**
514  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
515  *
516  * @adev: amdgpu_device pointer
517  * @enable: enable/disable the DMA MEs context switch.
518  *
519  * Halt or unhalt the async dma engines context switch.
520  */
521 static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
522 {
523 	u32 f32_cntl, phase_quantum = 0;
524 	int i;
525 
526 	if (amdgpu_sdma_phase_quantum) {
527 		unsigned value = amdgpu_sdma_phase_quantum;
528 		unsigned unit = 0;
529 
530 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
531 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
532 			value = (value + 1) >> 1;
533 			unit++;
534 		}
535 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
536 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
537 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
538 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
539 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
540 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
541 			WARN_ONCE(1,
542 			"clamping sdma_phase_quantum to %uK clock cycles\n",
543 				  value << unit);
544 		}
545 		phase_quantum =
546 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
547 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
548 	}
549 
550 	for (i = 0; i < adev->sdma.num_instances; i++) {
551 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
552 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
553 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
554 		if (enable && amdgpu_sdma_phase_quantum) {
555 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
556 			       phase_quantum);
557 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
558 			       phase_quantum);
559 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
560 			       phase_quantum);
561 		}
562 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
563 	}
564 
565 }
566 
567 /**
568  * sdma_v5_2_enable - stop the async dma engines
569  *
570  * @adev: amdgpu_device pointer
571  * @enable: enable/disable the DMA MEs.
572  *
573  * Halt or unhalt the async dma engines.
574  */
575 static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable)
576 {
577 	u32 f32_cntl;
578 	int i;
579 
580 	if (!enable) {
581 		sdma_v5_2_gfx_stop(adev);
582 		sdma_v5_2_rlc_stop(adev);
583 	}
584 
585 	for (i = 0; i < adev->sdma.num_instances; i++) {
586 		f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
587 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
588 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
589 	}
590 }
591 
592 /**
593  * sdma_v5_2_gfx_resume - setup and start the async dma engines
594  *
595  * @adev: amdgpu_device pointer
596  *
597  * Set up the gfx DMA ring buffers and enable them.
598  * Returns 0 for success, error for failure.
599  */
600 static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev)
601 {
602 	struct amdgpu_ring *ring;
603 	u32 rb_cntl, ib_cntl;
604 	u32 rb_bufsz;
605 	u32 wb_offset;
606 	u32 doorbell;
607 	u32 doorbell_offset;
608 	u32 temp;
609 	u32 wptr_poll_cntl;
610 	u64 wptr_gpu_addr;
611 	int i, r;
612 
613 	for (i = 0; i < adev->sdma.num_instances; i++) {
614 		ring = &adev->sdma.instance[i].ring;
615 		wb_offset = (ring->rptr_offs * 4);
616 
617 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
618 
619 		/* Set ring buffer size in dwords */
620 		rb_bufsz = order_base_2(ring->ring_size / 4);
621 		rb_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
622 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
623 #ifdef __BIG_ENDIAN
624 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
625 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
626 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
627 #endif
628 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
629 
630 		/* Initialize the ring buffer's read and write pointers */
631 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
632 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
633 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
634 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
635 
636 		/* setup the wptr shadow polling */
637 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
638 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
639 		       lower_32_bits(wptr_gpu_addr));
640 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
641 		       upper_32_bits(wptr_gpu_addr));
642 		wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i,
643 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
644 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
645 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
646 					       F32_POLL_ENABLE, 1);
647 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
648 		       wptr_poll_cntl);
649 
650 		/* set the wb address whether it's enabled or not */
651 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
652 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
653 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
654 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
655 
656 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
657 
658 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
659 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
660 
661 		ring->wptr = 0;
662 
663 		/* before programing wptr to a less value, need set minor_ptr_update first */
664 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
665 
666 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
667 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
668 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
669 		}
670 
671 		doorbell = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
672 		doorbell_offset = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
673 
674 		if (ring->use_doorbell) {
675 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
676 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
677 					OFFSET, ring->doorbell_index);
678 		} else {
679 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
680 		}
681 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
682 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
683 
684 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
685 						      ring->doorbell_index,
686 						      adev->doorbell_index.sdma_doorbell_range);
687 
688 		if (amdgpu_sriov_vf(adev))
689 			sdma_v5_2_ring_set_wptr(ring);
690 
691 		/* set minor_ptr_update to 0 after wptr programed */
692 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
693 
694 		/* set utc l1 enable flag always to 1 */
695 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL));
696 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
697 
698 		/* enable MCBP */
699 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
700 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
701 
702 		/* Set up RESP_MODE to non-copy addresses */
703 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
704 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
705 		temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
706 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
707 
708 		/* program default cache read and write policy */
709 		temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
710 		/* clean read policy and write policy bits */
711 		temp &= 0xFF0FFF;
712 		temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) |
713 			 (CACHE_WRITE_POLICY_L2__DEFAULT << 14) |
714 			 SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK);
715 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
716 
717 		if (!amdgpu_sriov_vf(adev)) {
718 			/* unhalt engine */
719 			temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
720 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
721 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
722 		}
723 
724 		/* enable DMA RB */
725 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
726 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
727 
728 		ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
729 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
730 #ifdef __BIG_ENDIAN
731 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
732 #endif
733 		/* enable DMA IBs */
734 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
735 
736 		ring->sched.ready = true;
737 
738 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
739 			sdma_v5_2_ctx_switch_enable(adev, true);
740 			sdma_v5_2_enable(adev, true);
741 		}
742 
743 		r = amdgpu_ring_test_ring(ring);
744 		if (r) {
745 			ring->sched.ready = false;
746 			return r;
747 		}
748 
749 		if (adev->mman.buffer_funcs_ring == ring)
750 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
751 	}
752 
753 	return 0;
754 }
755 
756 /**
757  * sdma_v5_2_rlc_resume - setup and start the async dma engines
758  *
759  * @adev: amdgpu_device pointer
760  *
761  * Set up the compute DMA queues and enable them.
762  * Returns 0 for success, error for failure.
763  */
764 static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev)
765 {
766 	return 0;
767 }
768 
769 /**
770  * sdma_v5_2_load_microcode - load the sDMA ME ucode
771  *
772  * @adev: amdgpu_device pointer
773  *
774  * Loads the sDMA0/1/2/3 ucode.
775  * Returns 0 for success, -EINVAL if the ucode is not available.
776  */
777 static int sdma_v5_2_load_microcode(struct amdgpu_device *adev)
778 {
779 	const struct sdma_firmware_header_v1_0 *hdr;
780 	const __le32 *fw_data;
781 	u32 fw_size;
782 	int i, j;
783 
784 	/* halt the MEs */
785 	sdma_v5_2_enable(adev, false);
786 
787 	for (i = 0; i < adev->sdma.num_instances; i++) {
788 		if (!adev->sdma.instance[i].fw)
789 			return -EINVAL;
790 
791 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
792 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
793 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
794 
795 		fw_data = (const __le32 *)
796 			(adev->sdma.instance[i].fw->data +
797 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
798 
799 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
800 
801 		for (j = 0; j < fw_size; j++) {
802 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
803 				msleep(1);
804 			WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
805 		}
806 
807 		WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
808 	}
809 
810 	return 0;
811 }
812 
813 static int sdma_v5_2_soft_reset(void *handle)
814 {
815 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
816 	u32 grbm_soft_reset;
817 	u32 tmp;
818 	int i;
819 
820 	for (i = 0; i < adev->sdma.num_instances; i++) {
821 		grbm_soft_reset = REG_SET_FIELD(0,
822 						GRBM_SOFT_RESET, SOFT_RESET_SDMA0,
823 						1);
824 		grbm_soft_reset <<= i;
825 
826 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
827 		tmp |= grbm_soft_reset;
828 		DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp);
829 		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
830 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
831 
832 		udelay(50);
833 
834 		tmp &= ~grbm_soft_reset;
835 		WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp);
836 		tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET);
837 
838 		udelay(50);
839 	}
840 
841 	return 0;
842 }
843 
844 /**
845  * sdma_v5_2_start - setup and start the async dma engines
846  *
847  * @adev: amdgpu_device pointer
848  *
849  * Set up the DMA engines and enable them.
850  * Returns 0 for success, error for failure.
851  */
852 static int sdma_v5_2_start(struct amdgpu_device *adev)
853 {
854 	int r = 0;
855 
856 	if (amdgpu_sriov_vf(adev)) {
857 		sdma_v5_2_ctx_switch_enable(adev, false);
858 		sdma_v5_2_enable(adev, false);
859 
860 		/* set RB registers */
861 		r = sdma_v5_2_gfx_resume(adev);
862 		return r;
863 	}
864 
865 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
866 		r = sdma_v5_2_load_microcode(adev);
867 		if (r)
868 			return r;
869 
870 		/* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */
871 		if (amdgpu_emu_mode == 1)
872 			msleep(1000);
873 	}
874 
875 	sdma_v5_2_soft_reset(adev);
876 	/* unhalt the MEs */
877 	sdma_v5_2_enable(adev, true);
878 	/* enable sdma ring preemption */
879 	sdma_v5_2_ctx_switch_enable(adev, true);
880 
881 	/* start the gfx rings and rlc compute queues */
882 	r = sdma_v5_2_gfx_resume(adev);
883 	if (r)
884 		return r;
885 	r = sdma_v5_2_rlc_resume(adev);
886 
887 	return r;
888 }
889 
890 /**
891  * sdma_v5_2_ring_test_ring - simple async dma engine test
892  *
893  * @ring: amdgpu_ring structure holding ring information
894  *
895  * Test the DMA engine by writing using it to write an
896  * value to memory.
897  * Returns 0 for success, error for failure.
898  */
899 static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring)
900 {
901 	struct amdgpu_device *adev = ring->adev;
902 	unsigned i;
903 	unsigned index;
904 	int r;
905 	u32 tmp;
906 	u64 gpu_addr;
907 
908 	r = amdgpu_device_wb_get(adev, &index);
909 	if (r) {
910 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
911 		return r;
912 	}
913 
914 	gpu_addr = adev->wb.gpu_addr + (index * 4);
915 	tmp = 0xCAFEDEAD;
916 	adev->wb.wb[index] = cpu_to_le32(tmp);
917 
918 	r = amdgpu_ring_alloc(ring, 5);
919 	if (r) {
920 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
921 		amdgpu_device_wb_free(adev, index);
922 		return r;
923 	}
924 
925 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
926 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
927 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
928 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
929 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
930 	amdgpu_ring_write(ring, 0xDEADBEEF);
931 	amdgpu_ring_commit(ring);
932 
933 	for (i = 0; i < adev->usec_timeout; i++) {
934 		tmp = le32_to_cpu(adev->wb.wb[index]);
935 		if (tmp == 0xDEADBEEF)
936 			break;
937 		if (amdgpu_emu_mode == 1)
938 			msleep(1);
939 		else
940 			udelay(1);
941 	}
942 
943 	if (i >= adev->usec_timeout)
944 		r = -ETIMEDOUT;
945 
946 	amdgpu_device_wb_free(adev, index);
947 
948 	return r;
949 }
950 
951 /**
952  * sdma_v5_2_ring_test_ib - test an IB on the DMA engine
953  *
954  * @ring: amdgpu_ring structure holding ring information
955  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
956  *
957  * Test a simple IB in the DMA ring.
958  * Returns 0 on success, error on failure.
959  */
960 static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
961 {
962 	struct amdgpu_device *adev = ring->adev;
963 	struct amdgpu_ib ib;
964 	struct dma_fence *f = NULL;
965 	unsigned index;
966 	long r;
967 	u32 tmp = 0;
968 	u64 gpu_addr;
969 
970 	r = amdgpu_device_wb_get(adev, &index);
971 	if (r) {
972 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
973 		return r;
974 	}
975 
976 	gpu_addr = adev->wb.gpu_addr + (index * 4);
977 	tmp = 0xCAFEDEAD;
978 	adev->wb.wb[index] = cpu_to_le32(tmp);
979 	memset(&ib, 0, sizeof(ib));
980 	r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
981 	if (r) {
982 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
983 		goto err0;
984 	}
985 
986 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
987 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
988 	ib.ptr[1] = lower_32_bits(gpu_addr);
989 	ib.ptr[2] = upper_32_bits(gpu_addr);
990 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
991 	ib.ptr[4] = 0xDEADBEEF;
992 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
993 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
994 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
995 	ib.length_dw = 8;
996 
997 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
998 	if (r)
999 		goto err1;
1000 
1001 	r = dma_fence_wait_timeout(f, false, timeout);
1002 	if (r == 0) {
1003 		DRM_ERROR("amdgpu: IB test timed out\n");
1004 		r = -ETIMEDOUT;
1005 		goto err1;
1006 	} else if (r < 0) {
1007 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1008 		goto err1;
1009 	}
1010 	tmp = le32_to_cpu(adev->wb.wb[index]);
1011 	if (tmp == 0xDEADBEEF)
1012 		r = 0;
1013 	else
1014 		r = -EINVAL;
1015 
1016 err1:
1017 	amdgpu_ib_free(adev, &ib, NULL);
1018 	dma_fence_put(f);
1019 err0:
1020 	amdgpu_device_wb_free(adev, index);
1021 	return r;
1022 }
1023 
1024 
1025 /**
1026  * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART
1027  *
1028  * @ib: indirect buffer to fill with commands
1029  * @pe: addr of the page entry
1030  * @src: src addr to copy from
1031  * @count: number of page entries to update
1032  *
1033  * Update PTEs by copying them from the GART using sDMA.
1034  */
1035 static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib,
1036 				  uint64_t pe, uint64_t src,
1037 				  unsigned count)
1038 {
1039 	unsigned bytes = count * 8;
1040 
1041 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1042 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1043 	ib->ptr[ib->length_dw++] = bytes - 1;
1044 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1045 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1046 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1047 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1048 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1049 
1050 }
1051 
1052 /**
1053  * sdma_v5_2_vm_write_pte - update PTEs by writing them manually
1054  *
1055  * @ib: indirect buffer to fill with commands
1056  * @pe: addr of the page entry
1057  * @value: dst addr to write into pe
1058  * @count: number of page entries to update
1059  * @incr: increase next addr by incr bytes
1060  *
1061  * Update PTEs by writing them manually using sDMA.
1062  */
1063 static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1064 				   uint64_t value, unsigned count,
1065 				   uint32_t incr)
1066 {
1067 	unsigned ndw = count * 2;
1068 
1069 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1070 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1071 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1072 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1073 	ib->ptr[ib->length_dw++] = ndw - 1;
1074 	for (; ndw > 0; ndw -= 2) {
1075 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1076 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1077 		value += incr;
1078 	}
1079 }
1080 
1081 /**
1082  * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA
1083  *
1084  * @ib: indirect buffer to fill with commands
1085  * @pe: addr of the page entry
1086  * @addr: dst addr to write into pe
1087  * @count: number of page entries to update
1088  * @incr: increase next addr by incr bytes
1089  * @flags: access flags
1090  *
1091  * Update the page tables using sDMA.
1092  */
1093 static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1094 				     uint64_t pe,
1095 				     uint64_t addr, unsigned count,
1096 				     uint32_t incr, uint64_t flags)
1097 {
1098 	/* for physically contiguous pages (vram) */
1099 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1100 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1101 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1102 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1103 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1104 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1105 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1106 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1107 	ib->ptr[ib->length_dw++] = 0;
1108 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1109 }
1110 
1111 /**
1112  * sdma_v5_2_ring_pad_ib - pad the IB
1113  *
1114  * @ib: indirect buffer to fill with padding
1115  * @ring: amdgpu_ring structure holding ring information
1116  *
1117  * Pad the IB with NOPs to a boundary multiple of 8.
1118  */
1119 static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1120 {
1121 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1122 	u32 pad_count;
1123 	int i;
1124 
1125 	pad_count = (-ib->length_dw) & 0x7;
1126 	for (i = 0; i < pad_count; i++)
1127 		if (sdma && sdma->burst_nop && (i == 0))
1128 			ib->ptr[ib->length_dw++] =
1129 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1130 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1131 		else
1132 			ib->ptr[ib->length_dw++] =
1133 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1134 }
1135 
1136 
1137 /**
1138  * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline
1139  *
1140  * @ring: amdgpu_ring pointer
1141  *
1142  * Make sure all previous operations are completed (CIK).
1143  */
1144 static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1145 {
1146 	uint32_t seq = ring->fence_drv.sync_seq;
1147 	uint64_t addr = ring->fence_drv.gpu_addr;
1148 
1149 	/* wait for idle */
1150 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1151 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1152 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1153 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1154 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1155 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1156 	amdgpu_ring_write(ring, seq); /* reference */
1157 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1158 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1159 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1160 }
1161 
1162 
1163 /**
1164  * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA
1165  *
1166  * @ring: amdgpu_ring pointer
1167  * @vmid: vmid number to use
1168  * @pd_addr: address
1169  *
1170  * Update the page table base and flush the VM TLB
1171  * using sDMA.
1172  */
1173 static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1174 					 unsigned vmid, uint64_t pd_addr)
1175 {
1176 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1177 }
1178 
1179 static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring,
1180 				     uint32_t reg, uint32_t val)
1181 {
1182 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1183 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1184 	amdgpu_ring_write(ring, reg);
1185 	amdgpu_ring_write(ring, val);
1186 }
1187 
1188 static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1189 					 uint32_t val, uint32_t mask)
1190 {
1191 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1192 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1193 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1194 	amdgpu_ring_write(ring, reg << 2);
1195 	amdgpu_ring_write(ring, 0);
1196 	amdgpu_ring_write(ring, val); /* reference */
1197 	amdgpu_ring_write(ring, mask); /* mask */
1198 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1199 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1200 }
1201 
1202 static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1203 						   uint32_t reg0, uint32_t reg1,
1204 						   uint32_t ref, uint32_t mask)
1205 {
1206 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1207 	/* wait for a cycle to reset vm_inv_eng*_ack */
1208 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1209 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1210 }
1211 
1212 static int sdma_v5_2_early_init(void *handle)
1213 {
1214 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1215 
1216 	switch (adev->asic_type) {
1217 	case CHIP_SIENNA_CICHLID:
1218 		adev->sdma.num_instances = 4;
1219 		break;
1220 	case CHIP_NAVY_FLOUNDER:
1221 	case CHIP_DIMGREY_CAVEFISH:
1222 		adev->sdma.num_instances = 2;
1223 		break;
1224 	case CHIP_VANGOGH:
1225 		adev->sdma.num_instances = 1;
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 
1231 	sdma_v5_2_set_ring_funcs(adev);
1232 	sdma_v5_2_set_buffer_funcs(adev);
1233 	sdma_v5_2_set_vm_pte_funcs(adev);
1234 	sdma_v5_2_set_irq_funcs(adev);
1235 
1236 	return 0;
1237 }
1238 
1239 static unsigned sdma_v5_2_seq_to_irq_id(int seq_num)
1240 {
1241 	switch (seq_num) {
1242 	case 0:
1243 		return SOC15_IH_CLIENTID_SDMA0;
1244 	case 1:
1245 		return SOC15_IH_CLIENTID_SDMA1;
1246 	case 2:
1247 		return SOC15_IH_CLIENTID_SDMA2;
1248 	case 3:
1249 		return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid;
1250 	default:
1251 		break;
1252 	}
1253 	return -EINVAL;
1254 }
1255 
1256 static unsigned sdma_v5_2_seq_to_trap_id(int seq_num)
1257 {
1258 	switch (seq_num) {
1259 	case 0:
1260 		return SDMA0_5_0__SRCID__SDMA_TRAP;
1261 	case 1:
1262 		return SDMA1_5_0__SRCID__SDMA_TRAP;
1263 	case 2:
1264 		return SDMA2_5_0__SRCID__SDMA_TRAP;
1265 	case 3:
1266 		return SDMA3_5_0__SRCID__SDMA_TRAP;
1267 	default:
1268 		break;
1269 	}
1270 	return -EINVAL;
1271 }
1272 
1273 static int sdma_v5_2_sw_init(void *handle)
1274 {
1275 	struct amdgpu_ring *ring;
1276 	int r, i;
1277 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 
1279 	/* SDMA trap event */
1280 	for (i = 0; i < adev->sdma.num_instances; i++) {
1281 		r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i),
1282 				      sdma_v5_2_seq_to_trap_id(i),
1283 				      &adev->sdma.trap_irq);
1284 		if (r)
1285 			return r;
1286 	}
1287 
1288 	r = sdma_v5_2_init_microcode(adev);
1289 	if (r) {
1290 		DRM_ERROR("Failed to load sdma firmware!\n");
1291 		return r;
1292 	}
1293 
1294 	for (i = 0; i < adev->sdma.num_instances; i++) {
1295 		ring = &adev->sdma.instance[i].ring;
1296 		ring->ring_obj = NULL;
1297 		ring->use_doorbell = true;
1298 		ring->me = i;
1299 
1300 		DRM_INFO("use_doorbell being set to: [%s]\n",
1301 				ring->use_doorbell?"true":"false");
1302 
1303 		ring->doorbell_index =
1304 			(adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset
1305 
1306 		sprintf(ring->name, "sdma%d", i);
1307 		r = amdgpu_ring_init(adev, ring, 1024,
1308 				     &adev->sdma.trap_irq,
1309 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1310 				     AMDGPU_RING_PRIO_DEFAULT);
1311 		if (r)
1312 			return r;
1313 	}
1314 
1315 	return r;
1316 }
1317 
1318 static int sdma_v5_2_sw_fini(void *handle)
1319 {
1320 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1321 	int i;
1322 
1323 	for (i = 0; i < adev->sdma.num_instances; i++)
1324 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1325 
1326 	sdma_v5_2_destroy_inst_ctx(adev);
1327 
1328 	return 0;
1329 }
1330 
1331 static int sdma_v5_2_hw_init(void *handle)
1332 {
1333 	int r;
1334 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1335 
1336 	sdma_v5_2_init_golden_registers(adev);
1337 
1338 	r = sdma_v5_2_start(adev);
1339 
1340 	return r;
1341 }
1342 
1343 static int sdma_v5_2_hw_fini(void *handle)
1344 {
1345 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1346 
1347 	if (amdgpu_sriov_vf(adev))
1348 		return 0;
1349 
1350 	sdma_v5_2_ctx_switch_enable(adev, false);
1351 	sdma_v5_2_enable(adev, false);
1352 
1353 	return 0;
1354 }
1355 
1356 static int sdma_v5_2_suspend(void *handle)
1357 {
1358 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1359 
1360 	return sdma_v5_2_hw_fini(adev);
1361 }
1362 
1363 static int sdma_v5_2_resume(void *handle)
1364 {
1365 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1366 
1367 	return sdma_v5_2_hw_init(adev);
1368 }
1369 
1370 static bool sdma_v5_2_is_idle(void *handle)
1371 {
1372 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1373 	u32 i;
1374 
1375 	for (i = 0; i < adev->sdma.num_instances; i++) {
1376 		u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1377 
1378 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1379 			return false;
1380 	}
1381 
1382 	return true;
1383 }
1384 
1385 static int sdma_v5_2_wait_for_idle(void *handle)
1386 {
1387 	unsigned i;
1388 	u32 sdma0, sdma1, sdma2, sdma3;
1389 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1390 
1391 	for (i = 0; i < adev->usec_timeout; i++) {
1392 		sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1393 		sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1394 		sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG));
1395 		sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG));
1396 
1397 		if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK)
1398 			return 0;
1399 		udelay(1);
1400 	}
1401 	return -ETIMEDOUT;
1402 }
1403 
1404 static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring)
1405 {
1406 	int i, r = 0;
1407 	struct amdgpu_device *adev = ring->adev;
1408 	u32 index = 0;
1409 	u64 sdma_gfx_preempt;
1410 
1411 	amdgpu_sdma_get_index_from_ring(ring, &index);
1412 	sdma_gfx_preempt =
1413 		sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT);
1414 
1415 	/* assert preemption condition */
1416 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1417 
1418 	/* emit the trailing fence */
1419 	ring->trail_seq += 1;
1420 	amdgpu_ring_alloc(ring, 10);
1421 	sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1422 				  ring->trail_seq, 0);
1423 	amdgpu_ring_commit(ring);
1424 
1425 	/* assert IB preemption */
1426 	WREG32(sdma_gfx_preempt, 1);
1427 
1428 	/* poll the trailing fence */
1429 	for (i = 0; i < adev->usec_timeout; i++) {
1430 		if (ring->trail_seq ==
1431 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1432 			break;
1433 		udelay(1);
1434 	}
1435 
1436 	if (i >= adev->usec_timeout) {
1437 		r = -EINVAL;
1438 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1439 	}
1440 
1441 	/* deassert IB preemption */
1442 	WREG32(sdma_gfx_preempt, 0);
1443 
1444 	/* deassert the preemption condition */
1445 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1446 	return r;
1447 }
1448 
1449 static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev,
1450 					struct amdgpu_irq_src *source,
1451 					unsigned type,
1452 					enum amdgpu_interrupt_state state)
1453 {
1454 	u32 sdma_cntl;
1455 
1456 	u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL);
1457 
1458 	sdma_cntl = RREG32(reg_offset);
1459 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1460 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1461 	WREG32(reg_offset, sdma_cntl);
1462 
1463 	return 0;
1464 }
1465 
1466 static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev,
1467 				      struct amdgpu_irq_src *source,
1468 				      struct amdgpu_iv_entry *entry)
1469 {
1470 	DRM_DEBUG("IH: SDMA trap\n");
1471 	switch (entry->client_id) {
1472 	case SOC15_IH_CLIENTID_SDMA0:
1473 		switch (entry->ring_id) {
1474 		case 0:
1475 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1476 			break;
1477 		case 1:
1478 			/* XXX compute */
1479 			break;
1480 		case 2:
1481 			/* XXX compute */
1482 			break;
1483 		case 3:
1484 			/* XXX page queue*/
1485 			break;
1486 		}
1487 		break;
1488 	case SOC15_IH_CLIENTID_SDMA1:
1489 		switch (entry->ring_id) {
1490 		case 0:
1491 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1492 			break;
1493 		case 1:
1494 			/* XXX compute */
1495 			break;
1496 		case 2:
1497 			/* XXX compute */
1498 			break;
1499 		case 3:
1500 			/* XXX page queue*/
1501 			break;
1502 		}
1503 		break;
1504 	case SOC15_IH_CLIENTID_SDMA2:
1505 		switch (entry->ring_id) {
1506 		case 0:
1507 			amdgpu_fence_process(&adev->sdma.instance[2].ring);
1508 			break;
1509 		case 1:
1510 			/* XXX compute */
1511 			break;
1512 		case 2:
1513 			/* XXX compute */
1514 			break;
1515 		case 3:
1516 			/* XXX page queue*/
1517 			break;
1518 		}
1519 		break;
1520 	case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid:
1521 		switch (entry->ring_id) {
1522 		case 0:
1523 			amdgpu_fence_process(&adev->sdma.instance[3].ring);
1524 			break;
1525 		case 1:
1526 			/* XXX compute */
1527 			break;
1528 		case 2:
1529 			/* XXX compute */
1530 			break;
1531 		case 3:
1532 			/* XXX page queue*/
1533 			break;
1534 		}
1535 		break;
1536 	}
1537 	return 0;
1538 }
1539 
1540 static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1541 					      struct amdgpu_irq_src *source,
1542 					      struct amdgpu_iv_entry *entry)
1543 {
1544 	return 0;
1545 }
1546 
1547 static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1548 						       bool enable)
1549 {
1550 	uint32_t data, def;
1551 	int i;
1552 
1553 	for (i = 0; i < adev->sdma.num_instances; i++) {
1554 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1555 			/* Enable sdma clock gating */
1556 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1557 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1558 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1559 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1560 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1561 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1562 				  SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1563 			if (def != data)
1564 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1565 		} else {
1566 			/* Disable sdma clock gating */
1567 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1568 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1569 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1570 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1571 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1572 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK |
1573 				 SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK);
1574 			if (def != data)
1575 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1576 		}
1577 	}
1578 }
1579 
1580 static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1581 						      bool enable)
1582 {
1583 	uint32_t data, def;
1584 	int i;
1585 
1586 	for (i = 0; i < adev->sdma.num_instances; i++) {
1587 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1588 			/* Enable sdma mem light sleep */
1589 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1590 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1591 			if (def != data)
1592 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1593 
1594 		} else {
1595 			/* Disable sdma mem light sleep */
1596 			def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1597 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1598 			if (def != data)
1599 				WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1600 
1601 		}
1602 	}
1603 }
1604 
1605 static int sdma_v5_2_set_clockgating_state(void *handle,
1606 					   enum amd_clockgating_state state)
1607 {
1608 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1609 
1610 	if (amdgpu_sriov_vf(adev))
1611 		return 0;
1612 
1613 	switch (adev->asic_type) {
1614 	case CHIP_SIENNA_CICHLID:
1615 	case CHIP_NAVY_FLOUNDER:
1616 	case CHIP_VANGOGH:
1617 	case CHIP_DIMGREY_CAVEFISH:
1618 		sdma_v5_2_update_medium_grain_clock_gating(adev,
1619 				state == AMD_CG_STATE_GATE ? true : false);
1620 		sdma_v5_2_update_medium_grain_light_sleep(adev,
1621 				state == AMD_CG_STATE_GATE ? true : false);
1622 		break;
1623 	default:
1624 		break;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 static int sdma_v5_2_set_powergating_state(void *handle,
1631 					  enum amd_powergating_state state)
1632 {
1633 	return 0;
1634 }
1635 
1636 static void sdma_v5_2_get_clockgating_state(void *handle, u32 *flags)
1637 {
1638 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1639 	int data;
1640 
1641 	if (amdgpu_sriov_vf(adev))
1642 		*flags = 0;
1643 
1644 	/* AMD_CG_SUPPORT_SDMA_LS */
1645 	data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1646 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1647 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1648 }
1649 
1650 const struct amd_ip_funcs sdma_v5_2_ip_funcs = {
1651 	.name = "sdma_v5_2",
1652 	.early_init = sdma_v5_2_early_init,
1653 	.late_init = NULL,
1654 	.sw_init = sdma_v5_2_sw_init,
1655 	.sw_fini = sdma_v5_2_sw_fini,
1656 	.hw_init = sdma_v5_2_hw_init,
1657 	.hw_fini = sdma_v5_2_hw_fini,
1658 	.suspend = sdma_v5_2_suspend,
1659 	.resume = sdma_v5_2_resume,
1660 	.is_idle = sdma_v5_2_is_idle,
1661 	.wait_for_idle = sdma_v5_2_wait_for_idle,
1662 	.soft_reset = sdma_v5_2_soft_reset,
1663 	.set_clockgating_state = sdma_v5_2_set_clockgating_state,
1664 	.set_powergating_state = sdma_v5_2_set_powergating_state,
1665 	.get_clockgating_state = sdma_v5_2_get_clockgating_state,
1666 };
1667 
1668 static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = {
1669 	.type = AMDGPU_RING_TYPE_SDMA,
1670 	.align_mask = 0xf,
1671 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1672 	.support_64bit_ptrs = true,
1673 	.vmhub = AMDGPU_GFXHUB_0,
1674 	.get_rptr = sdma_v5_2_ring_get_rptr,
1675 	.get_wptr = sdma_v5_2_ring_get_wptr,
1676 	.set_wptr = sdma_v5_2_ring_set_wptr,
1677 	.emit_frame_size =
1678 		5 + /* sdma_v5_2_ring_init_cond_exec */
1679 		6 + /* sdma_v5_2_ring_emit_hdp_flush */
1680 		3 + /* hdp_invalidate */
1681 		6 + /* sdma_v5_2_ring_emit_pipeline_sync */
1682 		/* sdma_v5_2_ring_emit_vm_flush */
1683 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1684 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1685 		10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */
1686 	.emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */
1687 	.emit_ib = sdma_v5_2_ring_emit_ib,
1688 	.emit_fence = sdma_v5_2_ring_emit_fence,
1689 	.emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync,
1690 	.emit_vm_flush = sdma_v5_2_ring_emit_vm_flush,
1691 	.emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush,
1692 	.test_ring = sdma_v5_2_ring_test_ring,
1693 	.test_ib = sdma_v5_2_ring_test_ib,
1694 	.insert_nop = sdma_v5_2_ring_insert_nop,
1695 	.pad_ib = sdma_v5_2_ring_pad_ib,
1696 	.emit_wreg = sdma_v5_2_ring_emit_wreg,
1697 	.emit_reg_wait = sdma_v5_2_ring_emit_reg_wait,
1698 	.emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait,
1699 	.init_cond_exec = sdma_v5_2_ring_init_cond_exec,
1700 	.patch_cond_exec = sdma_v5_2_ring_patch_cond_exec,
1701 	.preempt_ib = sdma_v5_2_ring_preempt_ib,
1702 };
1703 
1704 static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev)
1705 {
1706 	int i;
1707 
1708 	for (i = 0; i < adev->sdma.num_instances; i++) {
1709 		adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs;
1710 		adev->sdma.instance[i].ring.me = i;
1711 	}
1712 }
1713 
1714 static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = {
1715 	.set = sdma_v5_2_set_trap_irq_state,
1716 	.process = sdma_v5_2_process_trap_irq,
1717 };
1718 
1719 static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = {
1720 	.process = sdma_v5_2_process_illegal_inst_irq,
1721 };
1722 
1723 static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev)
1724 {
1725 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1726 					adev->sdma.num_instances;
1727 	adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs;
1728 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs;
1729 }
1730 
1731 /**
1732  * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine
1733  *
1734  * @ib: indirect buffer to copy to
1735  * @src_offset: src GPU address
1736  * @dst_offset: dst GPU address
1737  * @byte_count: number of bytes to xfer
1738  * @tmz: if a secure copy should be used
1739  *
1740  * Copy GPU buffers using the DMA engine.
1741  * Used by the amdgpu ttm implementation to move pages if
1742  * registered as the asic copy callback.
1743  */
1744 static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib,
1745 				       uint64_t src_offset,
1746 				       uint64_t dst_offset,
1747 				       uint32_t byte_count,
1748 				       bool tmz)
1749 {
1750 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1751 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1752 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1753 	ib->ptr[ib->length_dw++] = byte_count - 1;
1754 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1755 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1756 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1757 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1758 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1759 }
1760 
1761 /**
1762  * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine
1763  *
1764  * @ib: indirect buffer to fill
1765  * @src_data: value to write to buffer
1766  * @dst_offset: dst GPU address
1767  * @byte_count: number of bytes to xfer
1768  *
1769  * Fill GPU buffers using the DMA engine.
1770  */
1771 static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib,
1772 				       uint32_t src_data,
1773 				       uint64_t dst_offset,
1774 				       uint32_t byte_count)
1775 {
1776 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1777 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1778 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1779 	ib->ptr[ib->length_dw++] = src_data;
1780 	ib->ptr[ib->length_dw++] = byte_count - 1;
1781 }
1782 
1783 static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = {
1784 	.copy_max_bytes = 0x400000,
1785 	.copy_num_dw = 7,
1786 	.emit_copy_buffer = sdma_v5_2_emit_copy_buffer,
1787 
1788 	.fill_max_bytes = 0x400000,
1789 	.fill_num_dw = 5,
1790 	.emit_fill_buffer = sdma_v5_2_emit_fill_buffer,
1791 };
1792 
1793 static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev)
1794 {
1795 	if (adev->mman.buffer_funcs == NULL) {
1796 		adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs;
1797 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1798 	}
1799 }
1800 
1801 static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = {
1802 	.copy_pte_num_dw = 7,
1803 	.copy_pte = sdma_v5_2_vm_copy_pte,
1804 	.write_pte = sdma_v5_2_vm_write_pte,
1805 	.set_pte_pde = sdma_v5_2_vm_set_pte_pde,
1806 };
1807 
1808 static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev)
1809 {
1810 	unsigned i;
1811 
1812 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1813 		adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs;
1814 		for (i = 0; i < adev->sdma.num_instances; i++) {
1815 			adev->vm_manager.vm_pte_scheds[i] =
1816 				&adev->sdma.instance[i].ring.sched;
1817 		}
1818 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1819 	}
1820 }
1821 
1822 const struct amdgpu_ip_block_version sdma_v5_2_ip_block = {
1823 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1824 	.major = 5,
1825 	.minor = 2,
1826 	.rev = 0,
1827 	.funcs = &sdma_v5_2_ip_funcs,
1828 };
1829