1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61 
62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
68 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
80 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
81 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
89 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
92 };
93 
94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
95 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 };
116 
117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
118 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
119 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
123 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
131 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
132 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
133 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 };
135 
136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
137 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
138 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
139 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
140 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
151 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
152 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
153 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
154 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
165 };
166 
167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
168 {
169 	u32 base;
170 
171 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
172 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
173 		base = adev->reg_offset[GC_HWIP][0][1];
174 		if (instance == 1)
175 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
176 	} else {
177 		base = adev->reg_offset[GC_HWIP][0][0];
178 		if (instance == 1)
179 			internal_offset += SDMA1_REG_OFFSET;
180 	}
181 
182 	return base + internal_offset;
183 }
184 
185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
186 {
187 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
188 	case IP_VERSION(5, 0, 0):
189 		soc15_program_register_sequence(adev,
190 						golden_settings_sdma_5,
191 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
192 		soc15_program_register_sequence(adev,
193 						golden_settings_sdma_nv10,
194 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
195 		break;
196 	case IP_VERSION(5, 0, 2):
197 		soc15_program_register_sequence(adev,
198 						golden_settings_sdma_5,
199 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
200 		soc15_program_register_sequence(adev,
201 						golden_settings_sdma_nv14,
202 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
203 		break;
204 	case IP_VERSION(5, 0, 5):
205 		if (amdgpu_sriov_vf(adev))
206 			soc15_program_register_sequence(adev,
207 							golden_settings_sdma_5_sriov,
208 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
209 		else
210 			soc15_program_register_sequence(adev,
211 							golden_settings_sdma_5,
212 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
213 		soc15_program_register_sequence(adev,
214 						golden_settings_sdma_nv12,
215 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
216 		break;
217 	case IP_VERSION(5, 0, 1):
218 		soc15_program_register_sequence(adev,
219 						golden_settings_sdma_cyan_skillfish,
220 						(const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
221 		break;
222 	default:
223 		break;
224 	}
225 }
226 
227 /**
228  * sdma_v5_0_init_microcode - load ucode images from disk
229  *
230  * @adev: amdgpu_device pointer
231  *
232  * Use the firmware interface to load the ucode images into
233  * the driver (not loaded into hw).
234  * Returns 0 on success, error on failure.
235  */
236 
237 // emulation only, won't work on real chip
238 // navi10 real chip need to use PSP to load firmware
239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
240 {
241 	const char *chip_name;
242 	char fw_name[40];
243 	int ret, i;
244 
245 	if (amdgpu_sriov_vf(adev) && (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(5, 0, 5)))
246 		return 0;
247 
248 	DRM_DEBUG("\n");
249 
250 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
251 	case IP_VERSION(5, 0, 0):
252 		chip_name = "navi10";
253 		break;
254 	case IP_VERSION(5, 0, 2):
255 		chip_name = "navi14";
256 		break;
257 	case IP_VERSION(5, 0, 5):
258 		chip_name = "navi12";
259 		break;
260 	case IP_VERSION(5, 0, 1):
261 		chip_name = "cyan_skillfish2";
262 		break;
263 	default:
264 		BUG();
265 	}
266 
267 	for (i = 0; i < adev->sdma.num_instances; i++) {
268 		if (i == 0)
269 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
270 		else
271 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
272 		ret = amdgpu_sdma_init_microcode(adev, fw_name, i, false);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	return ret;
278 }
279 
280 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
281 {
282 	unsigned ret;
283 
284 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
285 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
286 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
287 	amdgpu_ring_write(ring, 1);
288 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
289 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
290 
291 	return ret;
292 }
293 
294 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
295 					   unsigned offset)
296 {
297 	unsigned cur;
298 
299 	BUG_ON(offset > ring->buf_mask);
300 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
301 
302 	cur = (ring->wptr - 1) & ring->buf_mask;
303 	if (cur > offset)
304 		ring->ring[offset] = cur - offset;
305 	else
306 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
307 }
308 
309 /**
310  * sdma_v5_0_ring_get_rptr - get the current read pointer
311  *
312  * @ring: amdgpu ring pointer
313  *
314  * Get the current rptr from the hardware (NAVI10+).
315  */
316 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
317 {
318 	u64 *rptr;
319 
320 	/* XXX check if swapping is necessary on BE */
321 	rptr = (u64 *)ring->rptr_cpu_addr;
322 
323 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
324 	return ((*rptr) >> 2);
325 }
326 
327 /**
328  * sdma_v5_0_ring_get_wptr - get the current write pointer
329  *
330  * @ring: amdgpu ring pointer
331  *
332  * Get the current wptr from the hardware (NAVI10+).
333  */
334 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
335 {
336 	struct amdgpu_device *adev = ring->adev;
337 	u64 wptr;
338 
339 	if (ring->use_doorbell) {
340 		/* XXX check if swapping is necessary on BE */
341 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
342 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
343 	} else {
344 		wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
345 		wptr = wptr << 32;
346 		wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
347 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
348 	}
349 
350 	return wptr >> 2;
351 }
352 
353 /**
354  * sdma_v5_0_ring_set_wptr - commit the write pointer
355  *
356  * @ring: amdgpu ring pointer
357  *
358  * Write the wptr back to the hardware (NAVI10+).
359  */
360 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
361 {
362 	struct amdgpu_device *adev = ring->adev;
363 	uint32_t *wptr_saved;
364 	uint32_t *is_queue_unmap;
365 	uint64_t aggregated_db_index;
366 	uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
367 
368 	DRM_DEBUG("Setting write pointer\n");
369 	if (ring->is_mes_queue) {
370 		wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
371 		is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
372 					      sizeof(uint32_t));
373 		aggregated_db_index =
374 			amdgpu_mes_get_aggregated_doorbell_index(adev,
375 			AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
376 
377 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
378 			     ring->wptr << 2);
379 		*wptr_saved = ring->wptr << 2;
380 		if (*is_queue_unmap) {
381 			WDOORBELL64(aggregated_db_index, ring->wptr << 2);
382 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
383 					ring->doorbell_index, ring->wptr << 2);
384 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
385 		} else {
386 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
387 					ring->doorbell_index, ring->wptr << 2);
388 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
389 
390 			if (*is_queue_unmap)
391 				WDOORBELL64(aggregated_db_index,
392 					    ring->wptr << 2);
393 		}
394 	} else {
395 		if (ring->use_doorbell) {
396 			DRM_DEBUG("Using doorbell -- "
397 				  "wptr_offs == 0x%08x "
398 				  "lower_32_bits(ring->wptr) << 2 == 0x%08x "
399 				  "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
400 				  ring->wptr_offs,
401 				  lower_32_bits(ring->wptr << 2),
402 				  upper_32_bits(ring->wptr << 2));
403 			/* XXX check if swapping is necessary on BE */
404 			atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
405 				     ring->wptr << 2);
406 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
407 				  ring->doorbell_index, ring->wptr << 2);
408 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
409 		} else {
410 			DRM_DEBUG("Not using doorbell -- "
411 				  "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
412 				  "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
413 				  ring->me,
414 				  lower_32_bits(ring->wptr << 2),
415 				  ring->me,
416 				  upper_32_bits(ring->wptr << 2));
417 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
418 					     ring->me, mmSDMA0_GFX_RB_WPTR),
419 					lower_32_bits(ring->wptr << 2));
420 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
421 					     ring->me, mmSDMA0_GFX_RB_WPTR_HI),
422 					upper_32_bits(ring->wptr << 2));
423 		}
424 	}
425 }
426 
427 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
428 {
429 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
430 	int i;
431 
432 	for (i = 0; i < count; i++)
433 		if (sdma && sdma->burst_nop && (i == 0))
434 			amdgpu_ring_write(ring, ring->funcs->nop |
435 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
436 		else
437 			amdgpu_ring_write(ring, ring->funcs->nop);
438 }
439 
440 /**
441  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
442  *
443  * @ring: amdgpu ring pointer
444  * @job: job to retrieve vmid from
445  * @ib: IB object to schedule
446  * @flags: unused
447  *
448  * Schedule an IB in the DMA ring (NAVI10).
449  */
450 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
451 				   struct amdgpu_job *job,
452 				   struct amdgpu_ib *ib,
453 				   uint32_t flags)
454 {
455 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
456 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
457 
458 	/* An IB packet must end on a 8 DW boundary--the next dword
459 	 * must be on a 8-dword boundary. Our IB packet below is 6
460 	 * dwords long, thus add x number of NOPs, such that, in
461 	 * modular arithmetic,
462 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
463 	 * (wptr + 6 + x) % 8 = 0.
464 	 * The expression below, is a solution of x.
465 	 */
466 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
467 
468 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
469 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
470 	/* base must be 32 byte aligned */
471 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
472 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
473 	amdgpu_ring_write(ring, ib->length_dw);
474 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
475 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
476 }
477 
478 /**
479  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
480  *
481  * @ring: amdgpu ring pointer
482  *
483  * flush the IB by graphics cache rinse.
484  */
485 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
486 {
487 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
488 			    SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
489 			    SDMA_GCR_GLI_INV(1);
490 
491 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
492 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
493 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
494 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
495 			  SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
496 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
497 			  SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
498 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
499 			  SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
500 }
501 
502 /**
503  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
504  *
505  * @ring: amdgpu ring pointer
506  *
507  * Emit an hdp flush packet on the requested DMA ring.
508  */
509 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
510 {
511 	struct amdgpu_device *adev = ring->adev;
512 	u32 ref_and_mask = 0;
513 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
514 
515 	if (ring->me == 0)
516 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
517 	else
518 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
519 
520 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
521 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
522 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
523 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
524 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
525 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
526 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
527 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
528 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
529 }
530 
531 /**
532  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
533  *
534  * @ring: amdgpu ring pointer
535  * @addr: address
536  * @seq: sequence number
537  * @flags: fence related flags
538  *
539  * Add a DMA fence packet to the ring to write
540  * the fence seq number and DMA trap packet to generate
541  * an interrupt if needed (NAVI10).
542  */
543 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
544 				      unsigned flags)
545 {
546 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
547 	/* write the fence */
548 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
549 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
550 	/* zero in first two bits */
551 	BUG_ON(addr & 0x3);
552 	amdgpu_ring_write(ring, lower_32_bits(addr));
553 	amdgpu_ring_write(ring, upper_32_bits(addr));
554 	amdgpu_ring_write(ring, lower_32_bits(seq));
555 
556 	/* optionally write high bits as well */
557 	if (write64bit) {
558 		addr += 4;
559 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
560 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
561 		/* zero in first two bits */
562 		BUG_ON(addr & 0x3);
563 		amdgpu_ring_write(ring, lower_32_bits(addr));
564 		amdgpu_ring_write(ring, upper_32_bits(addr));
565 		amdgpu_ring_write(ring, upper_32_bits(seq));
566 	}
567 
568 	if (flags & AMDGPU_FENCE_FLAG_INT) {
569 		uint32_t ctx = ring->is_mes_queue ?
570 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
571 		/* generate an interrupt */
572 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
573 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
574 	}
575 }
576 
577 
578 /**
579  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
580  *
581  * @adev: amdgpu_device pointer
582  *
583  * Stop the gfx async dma ring buffers (NAVI10).
584  */
585 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
586 {
587 	u32 rb_cntl, ib_cntl;
588 	int i;
589 
590 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
591 
592 	for (i = 0; i < adev->sdma.num_instances; i++) {
593 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
594 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
595 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
596 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
597 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
598 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
599 	}
600 }
601 
602 /**
603  * sdma_v5_0_rlc_stop - stop the compute async dma engines
604  *
605  * @adev: amdgpu_device pointer
606  *
607  * Stop the compute async dma queues (NAVI10).
608  */
609 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
610 {
611 	/* XXX todo */
612 }
613 
614 /**
615  * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
616  *
617  * @adev: amdgpu_device pointer
618  * @enable: enable/disable the DMA MEs context switch.
619  *
620  * Halt or unhalt the async dma engines context switch (NAVI10).
621  */
622 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
623 {
624 	u32 f32_cntl = 0, phase_quantum = 0;
625 	int i;
626 
627 	if (amdgpu_sdma_phase_quantum) {
628 		unsigned value = amdgpu_sdma_phase_quantum;
629 		unsigned unit = 0;
630 
631 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
632 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
633 			value = (value + 1) >> 1;
634 			unit++;
635 		}
636 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
637 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
638 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
639 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
640 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
641 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
642 			WARN_ONCE(1,
643 			"clamping sdma_phase_quantum to %uK clock cycles\n",
644 				  value << unit);
645 		}
646 		phase_quantum =
647 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
648 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
649 	}
650 
651 	for (i = 0; i < adev->sdma.num_instances; i++) {
652 		if (!amdgpu_sriov_vf(adev)) {
653 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
654 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
655 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
656 		}
657 
658 		if (enable && amdgpu_sdma_phase_quantum) {
659 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
660 			       phase_quantum);
661 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
662 			       phase_quantum);
663 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
664 			       phase_quantum);
665 		}
666 		if (!amdgpu_sriov_vf(adev))
667 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
668 	}
669 
670 }
671 
672 /**
673  * sdma_v5_0_enable - stop the async dma engines
674  *
675  * @adev: amdgpu_device pointer
676  * @enable: enable/disable the DMA MEs.
677  *
678  * Halt or unhalt the async dma engines (NAVI10).
679  */
680 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
681 {
682 	u32 f32_cntl;
683 	int i;
684 
685 	if (!enable) {
686 		sdma_v5_0_gfx_stop(adev);
687 		sdma_v5_0_rlc_stop(adev);
688 	}
689 
690 	if (amdgpu_sriov_vf(adev))
691 		return;
692 
693 	for (i = 0; i < adev->sdma.num_instances; i++) {
694 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
695 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
696 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
697 	}
698 }
699 
700 /**
701  * sdma_v5_0_gfx_resume - setup and start the async dma engines
702  *
703  * @adev: amdgpu_device pointer
704  *
705  * Set up the gfx DMA ring buffers and enable them (NAVI10).
706  * Returns 0 for success, error for failure.
707  */
708 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
709 {
710 	struct amdgpu_ring *ring;
711 	u32 rb_cntl, ib_cntl;
712 	u32 rb_bufsz;
713 	u32 doorbell;
714 	u32 doorbell_offset;
715 	u32 temp;
716 	u32 wptr_poll_cntl;
717 	u64 wptr_gpu_addr;
718 	int i, r;
719 
720 	for (i = 0; i < adev->sdma.num_instances; i++) {
721 		ring = &adev->sdma.instance[i].ring;
722 
723 		if (!amdgpu_sriov_vf(adev))
724 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
725 
726 		/* Set ring buffer size in dwords */
727 		rb_bufsz = order_base_2(ring->ring_size / 4);
728 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
729 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
730 #ifdef __BIG_ENDIAN
731 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
732 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
733 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
734 #endif
735 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
736 
737 		/* Initialize the ring buffer's read and write pointers */
738 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
739 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
740 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
741 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
742 
743 		/* setup the wptr shadow polling */
744 		wptr_gpu_addr = ring->wptr_gpu_addr;
745 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
746 		       lower_32_bits(wptr_gpu_addr));
747 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
748 		       upper_32_bits(wptr_gpu_addr));
749 		wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
750 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
751 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
752 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
753 					       F32_POLL_ENABLE, 1);
754 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
755 		       wptr_poll_cntl);
756 
757 		/* set the wb address whether it's enabled or not */
758 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
759 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
760 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
761 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
762 
763 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
764 
765 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
766 		       ring->gpu_addr >> 8);
767 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
768 		       ring->gpu_addr >> 40);
769 
770 		ring->wptr = 0;
771 
772 		/* before programing wptr to a less value, need set minor_ptr_update first */
773 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
774 
775 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
776 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
777 			       lower_32_bits(ring->wptr << 2));
778 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
779 			       upper_32_bits(ring->wptr << 2));
780 		}
781 
782 		doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
783 		doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
784 						mmSDMA0_GFX_DOORBELL_OFFSET));
785 
786 		if (ring->use_doorbell) {
787 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
788 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
789 					OFFSET, ring->doorbell_index);
790 		} else {
791 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
792 		}
793 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
794 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
795 		       doorbell_offset);
796 
797 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
798 						      ring->doorbell_index, 20);
799 
800 		if (amdgpu_sriov_vf(adev))
801 			sdma_v5_0_ring_set_wptr(ring);
802 
803 		/* set minor_ptr_update to 0 after wptr programed */
804 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
805 
806 		if (!amdgpu_sriov_vf(adev)) {
807 			/* set utc l1 enable flag always to 1 */
808 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
809 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
810 
811 			/* enable MCBP */
812 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
813 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
814 
815 			/* Set up RESP_MODE to non-copy addresses */
816 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
817 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
818 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
819 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
820 
821 			/* program default cache read and write policy */
822 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
823 			/* clean read policy and write policy bits */
824 			temp &= 0xFF0FFF;
825 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
826 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
827 		}
828 
829 		if (!amdgpu_sriov_vf(adev)) {
830 			/* unhalt engine */
831 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
832 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
833 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
834 		}
835 
836 		/* enable DMA RB */
837 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
838 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
839 
840 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
841 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
842 #ifdef __BIG_ENDIAN
843 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
844 #endif
845 		/* enable DMA IBs */
846 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
847 
848 		ring->sched.ready = true;
849 
850 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
851 			sdma_v5_0_ctx_switch_enable(adev, true);
852 			sdma_v5_0_enable(adev, true);
853 		}
854 
855 		r = amdgpu_ring_test_helper(ring);
856 		if (r)
857 			return r;
858 
859 		if (adev->mman.buffer_funcs_ring == ring)
860 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  * sdma_v5_0_rlc_resume - setup and start the async dma engines
868  *
869  * @adev: amdgpu_device pointer
870  *
871  * Set up the compute DMA queues and enable them (NAVI10).
872  * Returns 0 for success, error for failure.
873  */
874 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
875 {
876 	return 0;
877 }
878 
879 /**
880  * sdma_v5_0_load_microcode - load the sDMA ME ucode
881  *
882  * @adev: amdgpu_device pointer
883  *
884  * Loads the sDMA0/1 ucode.
885  * Returns 0 for success, -EINVAL if the ucode is not available.
886  */
887 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
888 {
889 	const struct sdma_firmware_header_v1_0 *hdr;
890 	const __le32 *fw_data;
891 	u32 fw_size;
892 	int i, j;
893 
894 	/* halt the MEs */
895 	sdma_v5_0_enable(adev, false);
896 
897 	for (i = 0; i < adev->sdma.num_instances; i++) {
898 		if (!adev->sdma.instance[i].fw)
899 			return -EINVAL;
900 
901 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
902 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
903 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
904 
905 		fw_data = (const __le32 *)
906 			(adev->sdma.instance[i].fw->data +
907 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
908 
909 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
910 
911 		for (j = 0; j < fw_size; j++) {
912 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
913 				msleep(1);
914 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
915 		}
916 
917 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
918 	}
919 
920 	return 0;
921 }
922 
923 /**
924  * sdma_v5_0_start - setup and start the async dma engines
925  *
926  * @adev: amdgpu_device pointer
927  *
928  * Set up the DMA engines and enable them (NAVI10).
929  * Returns 0 for success, error for failure.
930  */
931 static int sdma_v5_0_start(struct amdgpu_device *adev)
932 {
933 	int r = 0;
934 
935 	if (amdgpu_sriov_vf(adev)) {
936 		sdma_v5_0_ctx_switch_enable(adev, false);
937 		sdma_v5_0_enable(adev, false);
938 
939 		/* set RB registers */
940 		r = sdma_v5_0_gfx_resume(adev);
941 		return r;
942 	}
943 
944 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
945 		r = sdma_v5_0_load_microcode(adev);
946 		if (r)
947 			return r;
948 	}
949 
950 	/* unhalt the MEs */
951 	sdma_v5_0_enable(adev, true);
952 	/* enable sdma ring preemption */
953 	sdma_v5_0_ctx_switch_enable(adev, true);
954 
955 	/* start the gfx rings and rlc compute queues */
956 	r = sdma_v5_0_gfx_resume(adev);
957 	if (r)
958 		return r;
959 	r = sdma_v5_0_rlc_resume(adev);
960 
961 	return r;
962 }
963 
964 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
965 			      struct amdgpu_mqd_prop *prop)
966 {
967 	struct v10_sdma_mqd *m = mqd;
968 	uint64_t wb_gpu_addr;
969 
970 	m->sdmax_rlcx_rb_cntl =
971 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
972 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
973 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
974 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
975 
976 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
977 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
978 
979 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
980 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
981 
982 	wb_gpu_addr = prop->wptr_gpu_addr;
983 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
984 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
985 
986 	wb_gpu_addr = prop->rptr_gpu_addr;
987 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
988 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
989 
990 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
991 							mmSDMA0_GFX_IB_CNTL));
992 
993 	m->sdmax_rlcx_doorbell_offset =
994 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
995 
996 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
997 
998 	return 0;
999 }
1000 
1001 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
1002 {
1003 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
1004 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
1005 }
1006 
1007 /**
1008  * sdma_v5_0_ring_test_ring - simple async dma engine test
1009  *
1010  * @ring: amdgpu_ring structure holding ring information
1011  *
1012  * Test the DMA engine by writing using it to write an
1013  * value to memory. (NAVI10).
1014  * Returns 0 for success, error for failure.
1015  */
1016 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
1017 {
1018 	struct amdgpu_device *adev = ring->adev;
1019 	unsigned i;
1020 	unsigned index;
1021 	int r;
1022 	u32 tmp;
1023 	u64 gpu_addr;
1024 	volatile uint32_t *cpu_ptr = NULL;
1025 
1026 	tmp = 0xCAFEDEAD;
1027 
1028 	if (ring->is_mes_queue) {
1029 		uint32_t offset = 0;
1030 		offset = amdgpu_mes_ctx_get_offs(ring,
1031 					 AMDGPU_MES_CTX_PADDING_OFFS);
1032 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1033 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1034 		*cpu_ptr = tmp;
1035 	} else {
1036 		r = amdgpu_device_wb_get(adev, &index);
1037 		if (r) {
1038 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1039 			return r;
1040 		}
1041 
1042 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1043 		adev->wb.wb[index] = cpu_to_le32(tmp);
1044 	}
1045 
1046 	r = amdgpu_ring_alloc(ring, 20);
1047 	if (r) {
1048 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1049 		amdgpu_device_wb_free(adev, index);
1050 		return r;
1051 	}
1052 
1053 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1054 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1055 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1056 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1057 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1058 	amdgpu_ring_write(ring, 0xDEADBEEF);
1059 	amdgpu_ring_commit(ring);
1060 
1061 	for (i = 0; i < adev->usec_timeout; i++) {
1062 		if (ring->is_mes_queue)
1063 			tmp = le32_to_cpu(*cpu_ptr);
1064 		else
1065 			tmp = le32_to_cpu(adev->wb.wb[index]);
1066 		if (tmp == 0xDEADBEEF)
1067 			break;
1068 		if (amdgpu_emu_mode == 1)
1069 			msleep(1);
1070 		else
1071 			udelay(1);
1072 	}
1073 
1074 	if (i >= adev->usec_timeout)
1075 		r = -ETIMEDOUT;
1076 
1077 	if (!ring->is_mes_queue)
1078 		amdgpu_device_wb_free(adev, index);
1079 
1080 	return r;
1081 }
1082 
1083 /**
1084  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1085  *
1086  * @ring: amdgpu_ring structure holding ring information
1087  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1088  *
1089  * Test a simple IB in the DMA ring (NAVI10).
1090  * Returns 0 on success, error on failure.
1091  */
1092 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1093 {
1094 	struct amdgpu_device *adev = ring->adev;
1095 	struct amdgpu_ib ib;
1096 	struct dma_fence *f = NULL;
1097 	unsigned index;
1098 	long r;
1099 	u32 tmp = 0;
1100 	u64 gpu_addr;
1101 	volatile uint32_t *cpu_ptr = NULL;
1102 
1103 	tmp = 0xCAFEDEAD;
1104 	memset(&ib, 0, sizeof(ib));
1105 
1106 	if (ring->is_mes_queue) {
1107 		uint32_t offset = 0;
1108 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1109 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1110 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1111 
1112 		offset = amdgpu_mes_ctx_get_offs(ring,
1113 					 AMDGPU_MES_CTX_PADDING_OFFS);
1114 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1115 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1116 		*cpu_ptr = tmp;
1117 	} else {
1118 		r = amdgpu_device_wb_get(adev, &index);
1119 		if (r) {
1120 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1121 			return r;
1122 		}
1123 
1124 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1125 		adev->wb.wb[index] = cpu_to_le32(tmp);
1126 
1127 		r = amdgpu_ib_get(adev, NULL, 256,
1128 					AMDGPU_IB_POOL_DIRECT, &ib);
1129 		if (r) {
1130 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1131 			goto err0;
1132 		}
1133 	}
1134 
1135 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1136 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1137 	ib.ptr[1] = lower_32_bits(gpu_addr);
1138 	ib.ptr[2] = upper_32_bits(gpu_addr);
1139 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1140 	ib.ptr[4] = 0xDEADBEEF;
1141 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1142 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1143 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1144 	ib.length_dw = 8;
1145 
1146 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1147 	if (r)
1148 		goto err1;
1149 
1150 	r = dma_fence_wait_timeout(f, false, timeout);
1151 	if (r == 0) {
1152 		DRM_ERROR("amdgpu: IB test timed out\n");
1153 		r = -ETIMEDOUT;
1154 		goto err1;
1155 	} else if (r < 0) {
1156 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1157 		goto err1;
1158 	}
1159 
1160 	if (ring->is_mes_queue)
1161 		tmp = le32_to_cpu(*cpu_ptr);
1162 	else
1163 		tmp = le32_to_cpu(adev->wb.wb[index]);
1164 
1165 	if (tmp == 0xDEADBEEF)
1166 		r = 0;
1167 	else
1168 		r = -EINVAL;
1169 
1170 err1:
1171 	amdgpu_ib_free(adev, &ib, NULL);
1172 	dma_fence_put(f);
1173 err0:
1174 	if (!ring->is_mes_queue)
1175 		amdgpu_device_wb_free(adev, index);
1176 	return r;
1177 }
1178 
1179 
1180 /**
1181  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1182  *
1183  * @ib: indirect buffer to fill with commands
1184  * @pe: addr of the page entry
1185  * @src: src addr to copy from
1186  * @count: number of page entries to update
1187  *
1188  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1189  */
1190 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1191 				  uint64_t pe, uint64_t src,
1192 				  unsigned count)
1193 {
1194 	unsigned bytes = count * 8;
1195 
1196 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1197 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1198 	ib->ptr[ib->length_dw++] = bytes - 1;
1199 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1200 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1201 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1202 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1203 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1204 
1205 }
1206 
1207 /**
1208  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1209  *
1210  * @ib: indirect buffer to fill with commands
1211  * @pe: addr of the page entry
1212  * @value: dst addr to write into pe
1213  * @count: number of page entries to update
1214  * @incr: increase next addr by incr bytes
1215  *
1216  * Update PTEs by writing them manually using sDMA (NAVI10).
1217  */
1218 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1219 				   uint64_t value, unsigned count,
1220 				   uint32_t incr)
1221 {
1222 	unsigned ndw = count * 2;
1223 
1224 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1225 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1226 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1227 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1228 	ib->ptr[ib->length_dw++] = ndw - 1;
1229 	for (; ndw > 0; ndw -= 2) {
1230 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1231 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1232 		value += incr;
1233 	}
1234 }
1235 
1236 /**
1237  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1238  *
1239  * @ib: indirect buffer to fill with commands
1240  * @pe: addr of the page entry
1241  * @addr: dst addr to write into pe
1242  * @count: number of page entries to update
1243  * @incr: increase next addr by incr bytes
1244  * @flags: access flags
1245  *
1246  * Update the page tables using sDMA (NAVI10).
1247  */
1248 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1249 				     uint64_t pe,
1250 				     uint64_t addr, unsigned count,
1251 				     uint32_t incr, uint64_t flags)
1252 {
1253 	/* for physically contiguous pages (vram) */
1254 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1255 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1256 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1257 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1258 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1259 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1260 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1261 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1262 	ib->ptr[ib->length_dw++] = 0;
1263 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1264 }
1265 
1266 /**
1267  * sdma_v5_0_ring_pad_ib - pad the IB
1268  * @ring: amdgpu_ring structure holding ring information
1269  * @ib: indirect buffer to fill with padding
1270  *
1271  * Pad the IB with NOPs to a boundary multiple of 8.
1272  */
1273 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1274 {
1275 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1276 	u32 pad_count;
1277 	int i;
1278 
1279 	pad_count = (-ib->length_dw) & 0x7;
1280 	for (i = 0; i < pad_count; i++)
1281 		if (sdma && sdma->burst_nop && (i == 0))
1282 			ib->ptr[ib->length_dw++] =
1283 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1284 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1285 		else
1286 			ib->ptr[ib->length_dw++] =
1287 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1288 }
1289 
1290 
1291 /**
1292  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1293  *
1294  * @ring: amdgpu_ring pointer
1295  *
1296  * Make sure all previous operations are completed (CIK).
1297  */
1298 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1299 {
1300 	uint32_t seq = ring->fence_drv.sync_seq;
1301 	uint64_t addr = ring->fence_drv.gpu_addr;
1302 
1303 	/* wait for idle */
1304 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1305 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1306 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1307 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1308 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1309 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1310 	amdgpu_ring_write(ring, seq); /* reference */
1311 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1312 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1313 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1314 }
1315 
1316 
1317 /**
1318  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1319  *
1320  * @ring: amdgpu_ring pointer
1321  * @vmid: vmid number to use
1322  * @pd_addr: address
1323  *
1324  * Update the page table base and flush the VM TLB
1325  * using sDMA (NAVI10).
1326  */
1327 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1328 					 unsigned vmid, uint64_t pd_addr)
1329 {
1330 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1331 }
1332 
1333 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1334 				     uint32_t reg, uint32_t val)
1335 {
1336 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1337 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1338 	amdgpu_ring_write(ring, reg);
1339 	amdgpu_ring_write(ring, val);
1340 }
1341 
1342 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1343 					 uint32_t val, uint32_t mask)
1344 {
1345 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1346 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1347 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1348 	amdgpu_ring_write(ring, reg << 2);
1349 	amdgpu_ring_write(ring, 0);
1350 	amdgpu_ring_write(ring, val); /* reference */
1351 	amdgpu_ring_write(ring, mask); /* mask */
1352 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1353 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1354 }
1355 
1356 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1357 						   uint32_t reg0, uint32_t reg1,
1358 						   uint32_t ref, uint32_t mask)
1359 {
1360 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1361 	/* wait for a cycle to reset vm_inv_eng*_ack */
1362 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1363 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1364 }
1365 
1366 static int sdma_v5_0_early_init(void *handle)
1367 {
1368 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1369 
1370 	sdma_v5_0_set_ring_funcs(adev);
1371 	sdma_v5_0_set_buffer_funcs(adev);
1372 	sdma_v5_0_set_vm_pte_funcs(adev);
1373 	sdma_v5_0_set_irq_funcs(adev);
1374 	sdma_v5_0_set_mqd_funcs(adev);
1375 
1376 	return 0;
1377 }
1378 
1379 
1380 static int sdma_v5_0_sw_init(void *handle)
1381 {
1382 	struct amdgpu_ring *ring;
1383 	int r, i;
1384 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1385 
1386 	/* SDMA trap event */
1387 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1388 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1389 			      &adev->sdma.trap_irq);
1390 	if (r)
1391 		return r;
1392 
1393 	/* SDMA trap event */
1394 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1395 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1396 			      &adev->sdma.trap_irq);
1397 	if (r)
1398 		return r;
1399 
1400 	r = sdma_v5_0_init_microcode(adev);
1401 	if (r) {
1402 		DRM_ERROR("Failed to load sdma firmware!\n");
1403 		return r;
1404 	}
1405 
1406 	for (i = 0; i < adev->sdma.num_instances; i++) {
1407 		ring = &adev->sdma.instance[i].ring;
1408 		ring->ring_obj = NULL;
1409 		ring->use_doorbell = true;
1410 
1411 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1412 				ring->use_doorbell?"true":"false");
1413 
1414 		ring->doorbell_index = (i == 0) ?
1415 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1416 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1417 
1418 		sprintf(ring->name, "sdma%d", i);
1419 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1420 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1421 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1422 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1423 		if (r)
1424 			return r;
1425 	}
1426 
1427 	return r;
1428 }
1429 
1430 static int sdma_v5_0_sw_fini(void *handle)
1431 {
1432 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1433 	int i;
1434 
1435 	for (i = 0; i < adev->sdma.num_instances; i++)
1436 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1437 
1438 	amdgpu_sdma_destroy_inst_ctx(adev, false);
1439 
1440 	return 0;
1441 }
1442 
1443 static int sdma_v5_0_hw_init(void *handle)
1444 {
1445 	int r;
1446 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1447 
1448 	sdma_v5_0_init_golden_registers(adev);
1449 
1450 	r = sdma_v5_0_start(adev);
1451 
1452 	return r;
1453 }
1454 
1455 static int sdma_v5_0_hw_fini(void *handle)
1456 {
1457 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1458 
1459 	if (amdgpu_sriov_vf(adev)) {
1460 		/* disable the scheduler for SDMA */
1461 		amdgpu_sdma_unset_buffer_funcs_helper(adev);
1462 		return 0;
1463 	}
1464 
1465 	sdma_v5_0_ctx_switch_enable(adev, false);
1466 	sdma_v5_0_enable(adev, false);
1467 
1468 	return 0;
1469 }
1470 
1471 static int sdma_v5_0_suspend(void *handle)
1472 {
1473 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1474 
1475 	return sdma_v5_0_hw_fini(adev);
1476 }
1477 
1478 static int sdma_v5_0_resume(void *handle)
1479 {
1480 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1481 
1482 	return sdma_v5_0_hw_init(adev);
1483 }
1484 
1485 static bool sdma_v5_0_is_idle(void *handle)
1486 {
1487 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1488 	u32 i;
1489 
1490 	for (i = 0; i < adev->sdma.num_instances; i++) {
1491 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1492 
1493 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1494 			return false;
1495 	}
1496 
1497 	return true;
1498 }
1499 
1500 static int sdma_v5_0_wait_for_idle(void *handle)
1501 {
1502 	unsigned i;
1503 	u32 sdma0, sdma1;
1504 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1505 
1506 	for (i = 0; i < adev->usec_timeout; i++) {
1507 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1508 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1509 
1510 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1511 			return 0;
1512 		udelay(1);
1513 	}
1514 	return -ETIMEDOUT;
1515 }
1516 
1517 static int sdma_v5_0_soft_reset(void *handle)
1518 {
1519 	/* todo */
1520 
1521 	return 0;
1522 }
1523 
1524 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1525 {
1526 	int i, r = 0;
1527 	struct amdgpu_device *adev = ring->adev;
1528 	u32 index = 0;
1529 	u64 sdma_gfx_preempt;
1530 
1531 	amdgpu_sdma_get_index_from_ring(ring, &index);
1532 	if (index == 0)
1533 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1534 	else
1535 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1536 
1537 	/* assert preemption condition */
1538 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1539 
1540 	/* emit the trailing fence */
1541 	ring->trail_seq += 1;
1542 	amdgpu_ring_alloc(ring, 10);
1543 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1544 				  ring->trail_seq, 0);
1545 	amdgpu_ring_commit(ring);
1546 
1547 	/* assert IB preemption */
1548 	WREG32(sdma_gfx_preempt, 1);
1549 
1550 	/* poll the trailing fence */
1551 	for (i = 0; i < adev->usec_timeout; i++) {
1552 		if (ring->trail_seq ==
1553 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1554 			break;
1555 		udelay(1);
1556 	}
1557 
1558 	if (i >= adev->usec_timeout) {
1559 		r = -EINVAL;
1560 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1561 	}
1562 
1563 	/* deassert IB preemption */
1564 	WREG32(sdma_gfx_preempt, 0);
1565 
1566 	/* deassert the preemption condition */
1567 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1568 	return r;
1569 }
1570 
1571 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1572 					struct amdgpu_irq_src *source,
1573 					unsigned type,
1574 					enum amdgpu_interrupt_state state)
1575 {
1576 	u32 sdma_cntl;
1577 
1578 	if (!amdgpu_sriov_vf(adev)) {
1579 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1580 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1581 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1582 
1583 		sdma_cntl = RREG32(reg_offset);
1584 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1585 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1586 		WREG32(reg_offset, sdma_cntl);
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1593 				      struct amdgpu_irq_src *source,
1594 				      struct amdgpu_iv_entry *entry)
1595 {
1596 	uint32_t mes_queue_id = entry->src_data[0];
1597 
1598 	DRM_DEBUG("IH: SDMA trap\n");
1599 
1600 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1601 		struct amdgpu_mes_queue *queue;
1602 
1603 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1604 
1605 		spin_lock(&adev->mes.queue_id_lock);
1606 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1607 		if (queue) {
1608 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1609 			amdgpu_fence_process(queue->ring);
1610 		}
1611 		spin_unlock(&adev->mes.queue_id_lock);
1612 		return 0;
1613 	}
1614 
1615 	switch (entry->client_id) {
1616 	case SOC15_IH_CLIENTID_SDMA0:
1617 		switch (entry->ring_id) {
1618 		case 0:
1619 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1620 			break;
1621 		case 1:
1622 			/* XXX compute */
1623 			break;
1624 		case 2:
1625 			/* XXX compute */
1626 			break;
1627 		case 3:
1628 			/* XXX page queue*/
1629 			break;
1630 		}
1631 		break;
1632 	case SOC15_IH_CLIENTID_SDMA1:
1633 		switch (entry->ring_id) {
1634 		case 0:
1635 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1636 			break;
1637 		case 1:
1638 			/* XXX compute */
1639 			break;
1640 		case 2:
1641 			/* XXX compute */
1642 			break;
1643 		case 3:
1644 			/* XXX page queue*/
1645 			break;
1646 		}
1647 		break;
1648 	}
1649 	return 0;
1650 }
1651 
1652 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1653 					      struct amdgpu_irq_src *source,
1654 					      struct amdgpu_iv_entry *entry)
1655 {
1656 	return 0;
1657 }
1658 
1659 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1660 						       bool enable)
1661 {
1662 	uint32_t data, def;
1663 	int i;
1664 
1665 	for (i = 0; i < adev->sdma.num_instances; i++) {
1666 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1667 			/* Enable sdma clock gating */
1668 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1669 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1670 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1671 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1672 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1673 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1674 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1675 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1676 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1677 			if (def != data)
1678 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1679 		} else {
1680 			/* Disable sdma clock gating */
1681 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1682 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1683 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1684 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1685 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1686 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1687 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1688 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1689 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1690 			if (def != data)
1691 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1692 		}
1693 	}
1694 }
1695 
1696 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1697 						      bool enable)
1698 {
1699 	uint32_t data, def;
1700 	int i;
1701 
1702 	for (i = 0; i < adev->sdma.num_instances; i++) {
1703 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1704 			/* Enable sdma mem light sleep */
1705 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1706 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1707 			if (def != data)
1708 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1709 
1710 		} else {
1711 			/* Disable sdma mem light sleep */
1712 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1713 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1714 			if (def != data)
1715 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1716 
1717 		}
1718 	}
1719 }
1720 
1721 static int sdma_v5_0_set_clockgating_state(void *handle,
1722 					   enum amd_clockgating_state state)
1723 {
1724 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1725 
1726 	if (amdgpu_sriov_vf(adev))
1727 		return 0;
1728 
1729 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
1730 	case IP_VERSION(5, 0, 0):
1731 	case IP_VERSION(5, 0, 2):
1732 	case IP_VERSION(5, 0, 5):
1733 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1734 				state == AMD_CG_STATE_GATE);
1735 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1736 				state == AMD_CG_STATE_GATE);
1737 		break;
1738 	default:
1739 		break;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static int sdma_v5_0_set_powergating_state(void *handle,
1746 					  enum amd_powergating_state state)
1747 {
1748 	return 0;
1749 }
1750 
1751 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1752 {
1753 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1754 	int data;
1755 
1756 	if (amdgpu_sriov_vf(adev))
1757 		*flags = 0;
1758 
1759 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1760 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1761 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1762 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1763 
1764 	/* AMD_CG_SUPPORT_SDMA_LS */
1765 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1766 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1767 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1768 }
1769 
1770 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1771 	.name = "sdma_v5_0",
1772 	.early_init = sdma_v5_0_early_init,
1773 	.late_init = NULL,
1774 	.sw_init = sdma_v5_0_sw_init,
1775 	.sw_fini = sdma_v5_0_sw_fini,
1776 	.hw_init = sdma_v5_0_hw_init,
1777 	.hw_fini = sdma_v5_0_hw_fini,
1778 	.suspend = sdma_v5_0_suspend,
1779 	.resume = sdma_v5_0_resume,
1780 	.is_idle = sdma_v5_0_is_idle,
1781 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1782 	.soft_reset = sdma_v5_0_soft_reset,
1783 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1784 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1785 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1786 };
1787 
1788 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1789 	.type = AMDGPU_RING_TYPE_SDMA,
1790 	.align_mask = 0xf,
1791 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1792 	.support_64bit_ptrs = true,
1793 	.secure_submission_supported = true,
1794 	.vmhub = AMDGPU_GFXHUB_0,
1795 	.get_rptr = sdma_v5_0_ring_get_rptr,
1796 	.get_wptr = sdma_v5_0_ring_get_wptr,
1797 	.set_wptr = sdma_v5_0_ring_set_wptr,
1798 	.emit_frame_size =
1799 		5 + /* sdma_v5_0_ring_init_cond_exec */
1800 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1801 		3 + /* hdp_invalidate */
1802 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1803 		/* sdma_v5_0_ring_emit_vm_flush */
1804 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1805 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1806 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1807 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1808 	.emit_ib = sdma_v5_0_ring_emit_ib,
1809 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1810 	.emit_fence = sdma_v5_0_ring_emit_fence,
1811 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1812 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1813 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1814 	.test_ring = sdma_v5_0_ring_test_ring,
1815 	.test_ib = sdma_v5_0_ring_test_ib,
1816 	.insert_nop = sdma_v5_0_ring_insert_nop,
1817 	.pad_ib = sdma_v5_0_ring_pad_ib,
1818 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1819 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1820 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1821 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1822 	.patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1823 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1824 };
1825 
1826 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1827 {
1828 	int i;
1829 
1830 	for (i = 0; i < adev->sdma.num_instances; i++) {
1831 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1832 		adev->sdma.instance[i].ring.me = i;
1833 	}
1834 }
1835 
1836 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1837 	.set = sdma_v5_0_set_trap_irq_state,
1838 	.process = sdma_v5_0_process_trap_irq,
1839 };
1840 
1841 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1842 	.process = sdma_v5_0_process_illegal_inst_irq,
1843 };
1844 
1845 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1846 {
1847 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1848 					adev->sdma.num_instances;
1849 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1850 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1851 }
1852 
1853 /**
1854  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1855  *
1856  * @ib: indirect buffer to copy to
1857  * @src_offset: src GPU address
1858  * @dst_offset: dst GPU address
1859  * @byte_count: number of bytes to xfer
1860  * @tmz: if a secure copy should be used
1861  *
1862  * Copy GPU buffers using the DMA engine (NAVI10).
1863  * Used by the amdgpu ttm implementation to move pages if
1864  * registered as the asic copy callback.
1865  */
1866 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1867 				       uint64_t src_offset,
1868 				       uint64_t dst_offset,
1869 				       uint32_t byte_count,
1870 				       bool tmz)
1871 {
1872 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1873 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1874 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1875 	ib->ptr[ib->length_dw++] = byte_count - 1;
1876 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1877 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1878 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1879 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1880 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1881 }
1882 
1883 /**
1884  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1885  *
1886  * @ib: indirect buffer to fill
1887  * @src_data: value to write to buffer
1888  * @dst_offset: dst GPU address
1889  * @byte_count: number of bytes to xfer
1890  *
1891  * Fill GPU buffers using the DMA engine (NAVI10).
1892  */
1893 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1894 				       uint32_t src_data,
1895 				       uint64_t dst_offset,
1896 				       uint32_t byte_count)
1897 {
1898 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1899 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1900 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1901 	ib->ptr[ib->length_dw++] = src_data;
1902 	ib->ptr[ib->length_dw++] = byte_count - 1;
1903 }
1904 
1905 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1906 	.copy_max_bytes = 0x400000,
1907 	.copy_num_dw = 7,
1908 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1909 
1910 	.fill_max_bytes = 0x400000,
1911 	.fill_num_dw = 5,
1912 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1913 };
1914 
1915 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1916 {
1917 	if (adev->mman.buffer_funcs == NULL) {
1918 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1919 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1920 	}
1921 }
1922 
1923 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1924 	.copy_pte_num_dw = 7,
1925 	.copy_pte = sdma_v5_0_vm_copy_pte,
1926 	.write_pte = sdma_v5_0_vm_write_pte,
1927 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1928 };
1929 
1930 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1931 {
1932 	unsigned i;
1933 
1934 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1935 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1936 		for (i = 0; i < adev->sdma.num_instances; i++) {
1937 			adev->vm_manager.vm_pte_scheds[i] =
1938 				&adev->sdma.instance[i].ring.sched;
1939 		}
1940 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1941 	}
1942 }
1943 
1944 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1945 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1946 	.major = 5,
1947 	.minor = 0,
1948 	.rev = 0,
1949 	.funcs = &sdma_v5_0_ip_funcs,
1950 };
1951