1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "gc/gc_10_1_0_offset.h" 34 #include "gc/gc_10_1_0_sh_mask.h" 35 #include "hdp/hdp_5_0_0_offset.h" 36 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h" 37 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h" 38 39 #include "soc15_common.h" 40 #include "soc15.h" 41 #include "navi10_sdma_pkt_open.h" 42 #include "nbio_v2_3.h" 43 #include "sdma_v5_0.h" 44 45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin"); 46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin"); 47 48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin"); 49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin"); 50 51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin"); 52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin"); 53 54 #define SDMA1_REG_OFFSET 0x600 55 #define SDMA0_HYP_DEC_REG_START 0x5880 56 #define SDMA0_HYP_DEC_REG_END 0x5893 57 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 58 59 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev); 60 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev); 61 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev); 62 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev); 63 64 static const struct soc15_reg_golden golden_settings_sdma_5[] = { 65 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 66 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 67 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 68 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 69 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 70 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 71 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 72 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 73 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 74 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 75 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 76 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00), 77 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 78 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 79 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 80 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 81 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 82 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 83 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 84 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 85 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 86 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 87 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 88 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00) 89 }; 90 91 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = { 92 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 93 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 95 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 97 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 98 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 100 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 102 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 103 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 104 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 105 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 107 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 109 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 110 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 112 }; 113 114 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = { 115 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 116 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 117 }; 118 119 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = { 120 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 121 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 122 }; 123 124 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = { 125 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 126 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 127 }; 128 129 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) 130 { 131 u32 base; 132 133 if (internal_offset >= SDMA0_HYP_DEC_REG_START && 134 internal_offset <= SDMA0_HYP_DEC_REG_END) { 135 base = adev->reg_offset[GC_HWIP][0][1]; 136 if (instance == 1) 137 internal_offset += SDMA1_HYP_DEC_REG_OFFSET; 138 } else { 139 base = adev->reg_offset[GC_HWIP][0][0]; 140 if (instance == 1) 141 internal_offset += SDMA1_REG_OFFSET; 142 } 143 144 return base + internal_offset; 145 } 146 147 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev) 148 { 149 switch (adev->asic_type) { 150 case CHIP_NAVI10: 151 soc15_program_register_sequence(adev, 152 golden_settings_sdma_5, 153 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 154 soc15_program_register_sequence(adev, 155 golden_settings_sdma_nv10, 156 (const u32)ARRAY_SIZE(golden_settings_sdma_nv10)); 157 break; 158 case CHIP_NAVI14: 159 soc15_program_register_sequence(adev, 160 golden_settings_sdma_5, 161 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 162 soc15_program_register_sequence(adev, 163 golden_settings_sdma_nv14, 164 (const u32)ARRAY_SIZE(golden_settings_sdma_nv14)); 165 break; 166 case CHIP_NAVI12: 167 if (amdgpu_sriov_vf(adev)) 168 soc15_program_register_sequence(adev, 169 golden_settings_sdma_5_sriov, 170 (const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov)); 171 else 172 soc15_program_register_sequence(adev, 173 golden_settings_sdma_5, 174 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 175 soc15_program_register_sequence(adev, 176 golden_settings_sdma_nv12, 177 (const u32)ARRAY_SIZE(golden_settings_sdma_nv12)); 178 break; 179 default: 180 break; 181 } 182 } 183 184 /** 185 * sdma_v5_0_init_microcode - load ucode images from disk 186 * 187 * @adev: amdgpu_device pointer 188 * 189 * Use the firmware interface to load the ucode images into 190 * the driver (not loaded into hw). 191 * Returns 0 on success, error on failure. 192 */ 193 194 // emulation only, won't work on real chip 195 // navi10 real chip need to use PSP to load firmware 196 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev) 197 { 198 const char *chip_name; 199 char fw_name[30]; 200 int err = 0, i; 201 struct amdgpu_firmware_info *info = NULL; 202 const struct common_firmware_header *header = NULL; 203 const struct sdma_firmware_header_v1_0 *hdr; 204 205 DRM_DEBUG("\n"); 206 207 switch (adev->asic_type) { 208 case CHIP_NAVI10: 209 chip_name = "navi10"; 210 break; 211 case CHIP_NAVI14: 212 chip_name = "navi14"; 213 break; 214 case CHIP_NAVI12: 215 chip_name = "navi12"; 216 break; 217 default: 218 BUG(); 219 } 220 221 for (i = 0; i < adev->sdma.num_instances; i++) { 222 if (i == 0) 223 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 224 else 225 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 226 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 227 if (err) 228 goto out; 229 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 230 if (err) 231 goto out; 232 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 233 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 234 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 235 if (adev->sdma.instance[i].feature_version >= 20) 236 adev->sdma.instance[i].burst_nop = true; 237 DRM_DEBUG("psp_load == '%s'\n", 238 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); 239 240 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 241 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 242 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 243 info->fw = adev->sdma.instance[i].fw; 244 header = (const struct common_firmware_header *)info->fw->data; 245 adev->firmware.fw_size += 246 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 247 } 248 } 249 out: 250 if (err) { 251 DRM_ERROR("sdma_v5_0: Failed to load firmware \"%s\"\n", fw_name); 252 for (i = 0; i < adev->sdma.num_instances; i++) { 253 release_firmware(adev->sdma.instance[i].fw); 254 adev->sdma.instance[i].fw = NULL; 255 } 256 } 257 return err; 258 } 259 260 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring) 261 { 262 unsigned ret; 263 264 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE)); 265 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); 266 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); 267 amdgpu_ring_write(ring, 1); 268 ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */ 269 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */ 270 271 return ret; 272 } 273 274 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring, 275 unsigned offset) 276 { 277 unsigned cur; 278 279 BUG_ON(offset > ring->buf_mask); 280 BUG_ON(ring->ring[offset] != 0x55aa55aa); 281 282 cur = (ring->wptr - 1) & ring->buf_mask; 283 if (cur > offset) 284 ring->ring[offset] = cur - offset; 285 else 286 ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; 287 } 288 289 /** 290 * sdma_v5_0_ring_get_rptr - get the current read pointer 291 * 292 * @ring: amdgpu ring pointer 293 * 294 * Get the current rptr from the hardware (NAVI10+). 295 */ 296 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring) 297 { 298 u64 *rptr; 299 300 /* XXX check if swapping is necessary on BE */ 301 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 302 303 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 304 return ((*rptr) >> 2); 305 } 306 307 /** 308 * sdma_v5_0_ring_get_wptr - get the current write pointer 309 * 310 * @ring: amdgpu ring pointer 311 * 312 * Get the current wptr from the hardware (NAVI10+). 313 */ 314 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring) 315 { 316 struct amdgpu_device *adev = ring->adev; 317 u64 *wptr = NULL; 318 uint64_t local_wptr = 0; 319 320 if (ring->use_doorbell) { 321 /* XXX check if swapping is necessary on BE */ 322 wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]); 323 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr); 324 *wptr = (*wptr) >> 2; 325 DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr); 326 } else { 327 u32 lowbit, highbit; 328 329 wptr = &local_wptr; 330 lowbit = RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2; 331 highbit = RREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2; 332 333 DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n", 334 ring->me, highbit, lowbit); 335 *wptr = highbit; 336 *wptr = (*wptr) << 32; 337 *wptr |= lowbit; 338 } 339 340 return *wptr; 341 } 342 343 /** 344 * sdma_v5_0_ring_set_wptr - commit the write pointer 345 * 346 * @ring: amdgpu ring pointer 347 * 348 * Write the wptr back to the hardware (NAVI10+). 349 */ 350 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring) 351 { 352 struct amdgpu_device *adev = ring->adev; 353 354 DRM_DEBUG("Setting write pointer\n"); 355 if (ring->use_doorbell) { 356 DRM_DEBUG("Using doorbell -- " 357 "wptr_offs == 0x%08x " 358 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 359 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 360 ring->wptr_offs, 361 lower_32_bits(ring->wptr << 2), 362 upper_32_bits(ring->wptr << 2)); 363 /* XXX check if swapping is necessary on BE */ 364 adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2); 365 adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2); 366 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 367 ring->doorbell_index, ring->wptr << 2); 368 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 369 } else { 370 DRM_DEBUG("Not using doorbell -- " 371 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 372 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 373 ring->me, 374 lower_32_bits(ring->wptr << 2), 375 ring->me, 376 upper_32_bits(ring->wptr << 2)); 377 WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), 378 lower_32_bits(ring->wptr << 2)); 379 WREG32(sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), 380 upper_32_bits(ring->wptr << 2)); 381 } 382 } 383 384 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 385 { 386 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 387 int i; 388 389 for (i = 0; i < count; i++) 390 if (sdma && sdma->burst_nop && (i == 0)) 391 amdgpu_ring_write(ring, ring->funcs->nop | 392 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 393 else 394 amdgpu_ring_write(ring, ring->funcs->nop); 395 } 396 397 /** 398 * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine 399 * 400 * @ring: amdgpu ring pointer 401 * @ib: IB object to schedule 402 * 403 * Schedule an IB in the DMA ring (NAVI10). 404 */ 405 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring, 406 struct amdgpu_job *job, 407 struct amdgpu_ib *ib, 408 uint32_t flags) 409 { 410 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 411 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); 412 413 /* Invalidate L2, because if we don't do it, we might get stale cache 414 * lines from previous IBs. 415 */ 416 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ)); 417 amdgpu_ring_write(ring, 0); 418 amdgpu_ring_write(ring, (SDMA_GCR_GL2_INV | 419 SDMA_GCR_GL2_WB | 420 SDMA_GCR_GLM_INV | 421 SDMA_GCR_GLM_WB) << 16); 422 amdgpu_ring_write(ring, 0xffffff80); 423 amdgpu_ring_write(ring, 0xffff); 424 425 /* An IB packet must end on a 8 DW boundary--the next dword 426 * must be on a 8-dword boundary. Our IB packet below is 6 427 * dwords long, thus add x number of NOPs, such that, in 428 * modular arithmetic, 429 * wptr + 6 + x = 8k, k >= 0, which in C is, 430 * (wptr + 6 + x) % 8 = 0. 431 * The expression below, is a solution of x. 432 */ 433 sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 434 435 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 436 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 437 /* base must be 32 byte aligned */ 438 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 439 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 440 amdgpu_ring_write(ring, ib->length_dw); 441 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 442 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 443 } 444 445 /** 446 * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 447 * 448 * @ring: amdgpu ring pointer 449 * 450 * Emit an hdp flush packet on the requested DMA ring. 451 */ 452 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 453 { 454 struct amdgpu_device *adev = ring->adev; 455 u32 ref_and_mask = 0; 456 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 457 458 if (ring->me == 0) 459 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0; 460 else 461 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1; 462 463 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 464 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 465 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 466 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); 467 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); 468 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 469 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 470 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 471 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 472 } 473 474 /** 475 * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring 476 * 477 * @ring: amdgpu ring pointer 478 * @fence: amdgpu fence object 479 * 480 * Add a DMA fence packet to the ring to write 481 * the fence seq number and DMA trap packet to generate 482 * an interrupt if needed (NAVI10). 483 */ 484 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 485 unsigned flags) 486 { 487 struct amdgpu_device *adev = ring->adev; 488 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 489 /* write the fence */ 490 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 491 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ 492 /* zero in first two bits */ 493 BUG_ON(addr & 0x3); 494 amdgpu_ring_write(ring, lower_32_bits(addr)); 495 amdgpu_ring_write(ring, upper_32_bits(addr)); 496 amdgpu_ring_write(ring, lower_32_bits(seq)); 497 498 /* optionally write high bits as well */ 499 if (write64bit) { 500 addr += 4; 501 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 502 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); 503 /* zero in first two bits */ 504 BUG_ON(addr & 0x3); 505 amdgpu_ring_write(ring, lower_32_bits(addr)); 506 amdgpu_ring_write(ring, upper_32_bits(addr)); 507 amdgpu_ring_write(ring, upper_32_bits(seq)); 508 } 509 510 /* Interrupt not work fine on GFX10.1 model yet. Use fallback instead */ 511 if ((flags & AMDGPU_FENCE_FLAG_INT) && adev->pdev->device != 0x50) { 512 /* generate an interrupt */ 513 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 514 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 515 } 516 } 517 518 519 /** 520 * sdma_v5_0_gfx_stop - stop the gfx async dma engines 521 * 522 * @adev: amdgpu_device pointer 523 * 524 * Stop the gfx async dma ring buffers (NAVI10). 525 */ 526 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev) 527 { 528 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 529 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 530 u32 rb_cntl, ib_cntl; 531 int i; 532 533 if ((adev->mman.buffer_funcs_ring == sdma0) || 534 (adev->mman.buffer_funcs_ring == sdma1)) 535 amdgpu_ttm_set_buffer_funcs_status(adev, false); 536 537 for (i = 0; i < adev->sdma.num_instances; i++) { 538 rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 539 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 540 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 541 ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 542 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 543 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 544 } 545 } 546 547 /** 548 * sdma_v5_0_rlc_stop - stop the compute async dma engines 549 * 550 * @adev: amdgpu_device pointer 551 * 552 * Stop the compute async dma queues (NAVI10). 553 */ 554 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev) 555 { 556 /* XXX todo */ 557 } 558 559 /** 560 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch 561 * 562 * @adev: amdgpu_device pointer 563 * @enable: enable/disable the DMA MEs context switch. 564 * 565 * Halt or unhalt the async dma engines context switch (NAVI10). 566 */ 567 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 568 { 569 u32 f32_cntl = 0, phase_quantum = 0; 570 int i; 571 572 if (amdgpu_sdma_phase_quantum) { 573 unsigned value = amdgpu_sdma_phase_quantum; 574 unsigned unit = 0; 575 576 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 577 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 578 value = (value + 1) >> 1; 579 unit++; 580 } 581 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 582 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 583 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 584 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 585 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 586 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 587 WARN_ONCE(1, 588 "clamping sdma_phase_quantum to %uK clock cycles\n", 589 value << unit); 590 } 591 phase_quantum = 592 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 593 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 594 } 595 596 for (i = 0; i < adev->sdma.num_instances; i++) { 597 if (!amdgpu_sriov_vf(adev)) { 598 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL)); 599 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 600 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 601 } 602 603 if (enable && amdgpu_sdma_phase_quantum) { 604 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM), 605 phase_quantum); 606 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM), 607 phase_quantum); 608 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM), 609 phase_quantum); 610 } 611 if (!amdgpu_sriov_vf(adev)) 612 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl); 613 } 614 615 } 616 617 /** 618 * sdma_v5_0_enable - stop the async dma engines 619 * 620 * @adev: amdgpu_device pointer 621 * @enable: enable/disable the DMA MEs. 622 * 623 * Halt or unhalt the async dma engines (NAVI10). 624 */ 625 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable) 626 { 627 u32 f32_cntl; 628 int i; 629 630 if (enable == false) { 631 sdma_v5_0_gfx_stop(adev); 632 sdma_v5_0_rlc_stop(adev); 633 } 634 635 if (amdgpu_sriov_vf(adev)) 636 return; 637 638 for (i = 0; i < adev->sdma.num_instances; i++) { 639 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 640 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 641 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl); 642 } 643 } 644 645 /** 646 * sdma_v5_0_gfx_resume - setup and start the async dma engines 647 * 648 * @adev: amdgpu_device pointer 649 * 650 * Set up the gfx DMA ring buffers and enable them (NAVI10). 651 * Returns 0 for success, error for failure. 652 */ 653 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev) 654 { 655 struct amdgpu_ring *ring; 656 u32 rb_cntl, ib_cntl; 657 u32 rb_bufsz; 658 u32 wb_offset; 659 u32 doorbell; 660 u32 doorbell_offset; 661 u32 temp; 662 u32 wptr_poll_cntl; 663 u64 wptr_gpu_addr; 664 int i, r; 665 666 for (i = 0; i < adev->sdma.num_instances; i++) { 667 ring = &adev->sdma.instance[i].ring; 668 wb_offset = (ring->rptr_offs * 4); 669 670 if (!amdgpu_sriov_vf(adev)) 671 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); 672 673 /* Set ring buffer size in dwords */ 674 rb_bufsz = order_base_2(ring->ring_size / 4); 675 rb_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 677 #ifdef __BIG_ENDIAN 678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 679 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 680 RPTR_WRITEBACK_SWAP_ENABLE, 1); 681 #endif 682 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 683 684 /* Initialize the ring buffer's read and write pointers */ 685 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0); 686 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0); 687 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0); 688 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0); 689 690 /* setup the wptr shadow polling */ 691 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 692 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO), 693 lower_32_bits(wptr_gpu_addr)); 694 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI), 695 upper_32_bits(wptr_gpu_addr)); 696 wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, 697 mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); 698 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 699 SDMA0_GFX_RB_WPTR_POLL_CNTL, 700 F32_POLL_ENABLE, 1); 701 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 702 wptr_poll_cntl); 703 704 /* set the wb address whether it's enabled or not */ 705 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI), 706 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 707 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO), 708 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 709 710 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 711 712 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8); 713 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40); 714 715 ring->wptr = 0; 716 717 /* before programing wptr to a less value, need set minor_ptr_update first */ 718 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1); 719 720 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ 721 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2); 722 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2); 723 } 724 725 doorbell = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL)); 726 doorbell_offset = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET)); 727 728 if (ring->use_doorbell) { 729 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 730 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET, 731 OFFSET, ring->doorbell_index); 732 } else { 733 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 734 } 735 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell); 736 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset); 737 738 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, 739 ring->doorbell_index, 20); 740 741 if (amdgpu_sriov_vf(adev)) 742 sdma_v5_0_ring_set_wptr(ring); 743 744 /* set minor_ptr_update to 0 after wptr programed */ 745 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0); 746 747 if (!amdgpu_sriov_vf(adev)) { 748 /* set utc l1 enable flag always to 1 */ 749 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL)); 750 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 751 752 /* enable MCBP */ 753 temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1); 754 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp); 755 756 /* Set up RESP_MODE to non-copy addresses */ 757 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL)); 758 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); 759 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); 760 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp); 761 762 /* program default cache read and write policy */ 763 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE)); 764 /* clean read policy and write policy bits */ 765 temp &= 0xFF0FFF; 766 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14)); 767 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp); 768 } 769 770 if (!amdgpu_sriov_vf(adev)) { 771 /* unhalt engine */ 772 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 773 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 774 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp); 775 } 776 777 /* enable DMA RB */ 778 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 779 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 780 781 ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 782 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 783 #ifdef __BIG_ENDIAN 784 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 785 #endif 786 /* enable DMA IBs */ 787 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 788 789 ring->sched.ready = true; 790 791 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */ 792 sdma_v5_0_ctx_switch_enable(adev, true); 793 sdma_v5_0_enable(adev, true); 794 } 795 796 r = amdgpu_ring_test_helper(ring); 797 if (r) 798 return r; 799 800 if (adev->mman.buffer_funcs_ring == ring) 801 amdgpu_ttm_set_buffer_funcs_status(adev, true); 802 } 803 804 return 0; 805 } 806 807 /** 808 * sdma_v5_0_rlc_resume - setup and start the async dma engines 809 * 810 * @adev: amdgpu_device pointer 811 * 812 * Set up the compute DMA queues and enable them (NAVI10). 813 * Returns 0 for success, error for failure. 814 */ 815 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev) 816 { 817 return 0; 818 } 819 820 /** 821 * sdma_v5_0_load_microcode - load the sDMA ME ucode 822 * 823 * @adev: amdgpu_device pointer 824 * 825 * Loads the sDMA0/1 ucode. 826 * Returns 0 for success, -EINVAL if the ucode is not available. 827 */ 828 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev) 829 { 830 const struct sdma_firmware_header_v1_0 *hdr; 831 const __le32 *fw_data; 832 u32 fw_size; 833 int i, j; 834 835 /* halt the MEs */ 836 sdma_v5_0_enable(adev, false); 837 838 for (i = 0; i < adev->sdma.num_instances; i++) { 839 if (!adev->sdma.instance[i].fw) 840 return -EINVAL; 841 842 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 843 amdgpu_ucode_print_sdma_hdr(&hdr->header); 844 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 845 846 fw_data = (const __le32 *) 847 (adev->sdma.instance[i].fw->data + 848 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 849 850 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0); 851 852 for (j = 0; j < fw_size; j++) { 853 if (amdgpu_emu_mode == 1 && j % 500 == 0) 854 msleep(1); 855 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 856 } 857 858 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version); 859 } 860 861 return 0; 862 } 863 864 /** 865 * sdma_v5_0_start - setup and start the async dma engines 866 * 867 * @adev: amdgpu_device pointer 868 * 869 * Set up the DMA engines and enable them (NAVI10). 870 * Returns 0 for success, error for failure. 871 */ 872 static int sdma_v5_0_start(struct amdgpu_device *adev) 873 { 874 int r = 0; 875 876 if (amdgpu_sriov_vf(adev)) { 877 sdma_v5_0_ctx_switch_enable(adev, false); 878 sdma_v5_0_enable(adev, false); 879 880 /* set RB registers */ 881 r = sdma_v5_0_gfx_resume(adev); 882 return r; 883 } 884 885 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 886 r = sdma_v5_0_load_microcode(adev); 887 if (r) 888 return r; 889 890 /* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */ 891 if (amdgpu_emu_mode == 1 && adev->pdev->device == 0x4d) 892 msleep(1000); 893 } 894 895 /* unhalt the MEs */ 896 sdma_v5_0_enable(adev, true); 897 /* enable sdma ring preemption */ 898 sdma_v5_0_ctx_switch_enable(adev, true); 899 900 /* start the gfx rings and rlc compute queues */ 901 r = sdma_v5_0_gfx_resume(adev); 902 if (r) 903 return r; 904 r = sdma_v5_0_rlc_resume(adev); 905 906 return r; 907 } 908 909 /** 910 * sdma_v5_0_ring_test_ring - simple async dma engine test 911 * 912 * @ring: amdgpu_ring structure holding ring information 913 * 914 * Test the DMA engine by writing using it to write an 915 * value to memory. (NAVI10). 916 * Returns 0 for success, error for failure. 917 */ 918 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring) 919 { 920 struct amdgpu_device *adev = ring->adev; 921 unsigned i; 922 unsigned index; 923 int r; 924 u32 tmp; 925 u64 gpu_addr; 926 927 r = amdgpu_device_wb_get(adev, &index); 928 if (r) { 929 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 930 return r; 931 } 932 933 gpu_addr = adev->wb.gpu_addr + (index * 4); 934 tmp = 0xCAFEDEAD; 935 adev->wb.wb[index] = cpu_to_le32(tmp); 936 937 r = amdgpu_ring_alloc(ring, 5); 938 if (r) { 939 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 940 amdgpu_device_wb_free(adev, index); 941 return r; 942 } 943 944 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 945 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 946 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 947 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 948 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 949 amdgpu_ring_write(ring, 0xDEADBEEF); 950 amdgpu_ring_commit(ring); 951 952 for (i = 0; i < adev->usec_timeout; i++) { 953 tmp = le32_to_cpu(adev->wb.wb[index]); 954 if (tmp == 0xDEADBEEF) 955 break; 956 if (amdgpu_emu_mode == 1) 957 msleep(1); 958 else 959 udelay(1); 960 } 961 962 if (i >= adev->usec_timeout) 963 r = -ETIMEDOUT; 964 965 amdgpu_device_wb_free(adev, index); 966 967 return r; 968 } 969 970 /** 971 * sdma_v5_0_ring_test_ib - test an IB on the DMA engine 972 * 973 * @ring: amdgpu_ring structure holding ring information 974 * 975 * Test a simple IB in the DMA ring (NAVI10). 976 * Returns 0 on success, error on failure. 977 */ 978 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 979 { 980 struct amdgpu_device *adev = ring->adev; 981 struct amdgpu_ib ib; 982 struct dma_fence *f = NULL; 983 unsigned index; 984 long r; 985 u32 tmp = 0; 986 u64 gpu_addr; 987 988 r = amdgpu_device_wb_get(adev, &index); 989 if (r) { 990 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 991 return r; 992 } 993 994 gpu_addr = adev->wb.gpu_addr + (index * 4); 995 tmp = 0xCAFEDEAD; 996 adev->wb.wb[index] = cpu_to_le32(tmp); 997 memset(&ib, 0, sizeof(ib)); 998 r = amdgpu_ib_get(adev, NULL, 256, 999 AMDGPU_IB_POOL_DIRECT, &ib); 1000 if (r) { 1001 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 1002 goto err0; 1003 } 1004 1005 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1006 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1007 ib.ptr[1] = lower_32_bits(gpu_addr); 1008 ib.ptr[2] = upper_32_bits(gpu_addr); 1009 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1010 ib.ptr[4] = 0xDEADBEEF; 1011 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1012 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1013 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1014 ib.length_dw = 8; 1015 1016 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1017 if (r) 1018 goto err1; 1019 1020 r = dma_fence_wait_timeout(f, false, timeout); 1021 if (r == 0) { 1022 DRM_ERROR("amdgpu: IB test timed out\n"); 1023 r = -ETIMEDOUT; 1024 goto err1; 1025 } else if (r < 0) { 1026 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 1027 goto err1; 1028 } 1029 tmp = le32_to_cpu(adev->wb.wb[index]); 1030 if (tmp == 0xDEADBEEF) 1031 r = 0; 1032 else 1033 r = -EINVAL; 1034 1035 err1: 1036 amdgpu_ib_free(adev, &ib, NULL); 1037 dma_fence_put(f); 1038 err0: 1039 amdgpu_device_wb_free(adev, index); 1040 return r; 1041 } 1042 1043 1044 /** 1045 * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART 1046 * 1047 * @ib: indirect buffer to fill with commands 1048 * @pe: addr of the page entry 1049 * @src: src addr to copy from 1050 * @count: number of page entries to update 1051 * 1052 * Update PTEs by copying them from the GART using sDMA (NAVI10). 1053 */ 1054 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib, 1055 uint64_t pe, uint64_t src, 1056 unsigned count) 1057 { 1058 unsigned bytes = count * 8; 1059 1060 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1061 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1062 ib->ptr[ib->length_dw++] = bytes - 1; 1063 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1064 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1065 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1066 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1067 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1068 1069 } 1070 1071 /** 1072 * sdma_v5_0_vm_write_pte - update PTEs by writing them manually 1073 * 1074 * @ib: indirect buffer to fill with commands 1075 * @pe: addr of the page entry 1076 * @addr: dst addr to write into pe 1077 * @count: number of page entries to update 1078 * @incr: increase next addr by incr bytes 1079 * @flags: access flags 1080 * 1081 * Update PTEs by writing them manually using sDMA (NAVI10). 1082 */ 1083 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1084 uint64_t value, unsigned count, 1085 uint32_t incr) 1086 { 1087 unsigned ndw = count * 2; 1088 1089 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1090 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1091 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1092 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1093 ib->ptr[ib->length_dw++] = ndw - 1; 1094 for (; ndw > 0; ndw -= 2) { 1095 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1096 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1097 value += incr; 1098 } 1099 } 1100 1101 /** 1102 * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA 1103 * 1104 * @ib: indirect buffer to fill with commands 1105 * @pe: addr of the page entry 1106 * @addr: dst addr to write into pe 1107 * @count: number of page entries to update 1108 * @incr: increase next addr by incr bytes 1109 * @flags: access flags 1110 * 1111 * Update the page tables using sDMA (NAVI10). 1112 */ 1113 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1114 uint64_t pe, 1115 uint64_t addr, unsigned count, 1116 uint32_t incr, uint64_t flags) 1117 { 1118 /* for physically contiguous pages (vram) */ 1119 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1120 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1121 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1122 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1123 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1124 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1125 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1126 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1127 ib->ptr[ib->length_dw++] = 0; 1128 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1129 } 1130 1131 /** 1132 * sdma_v5_0_ring_pad_ib - pad the IB 1133 * @ib: indirect buffer to fill with padding 1134 * 1135 * Pad the IB with NOPs to a boundary multiple of 8. 1136 */ 1137 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1138 { 1139 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1140 u32 pad_count; 1141 int i; 1142 1143 pad_count = (-ib->length_dw) & 0x7; 1144 for (i = 0; i < pad_count; i++) 1145 if (sdma && sdma->burst_nop && (i == 0)) 1146 ib->ptr[ib->length_dw++] = 1147 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1148 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1149 else 1150 ib->ptr[ib->length_dw++] = 1151 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1152 } 1153 1154 1155 /** 1156 * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline 1157 * 1158 * @ring: amdgpu_ring pointer 1159 * 1160 * Make sure all previous operations are completed (CIK). 1161 */ 1162 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1163 { 1164 uint32_t seq = ring->fence_drv.sync_seq; 1165 uint64_t addr = ring->fence_drv.gpu_addr; 1166 1167 /* wait for idle */ 1168 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1169 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1170 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1171 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1172 amdgpu_ring_write(ring, addr & 0xfffffffc); 1173 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1174 amdgpu_ring_write(ring, seq); /* reference */ 1175 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1176 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1177 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1178 } 1179 1180 1181 /** 1182 * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA 1183 * 1184 * @ring: amdgpu_ring pointer 1185 * @vm: amdgpu_vm pointer 1186 * 1187 * Update the page table base and flush the VM TLB 1188 * using sDMA (NAVI10). 1189 */ 1190 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1191 unsigned vmid, uint64_t pd_addr) 1192 { 1193 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1194 } 1195 1196 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring, 1197 uint32_t reg, uint32_t val) 1198 { 1199 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1200 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1201 amdgpu_ring_write(ring, reg); 1202 amdgpu_ring_write(ring, val); 1203 } 1204 1205 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1206 uint32_t val, uint32_t mask) 1207 { 1208 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1209 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1210 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ 1211 amdgpu_ring_write(ring, reg << 2); 1212 amdgpu_ring_write(ring, 0); 1213 amdgpu_ring_write(ring, val); /* reference */ 1214 amdgpu_ring_write(ring, mask); /* mask */ 1215 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1216 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); 1217 } 1218 1219 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, 1220 uint32_t reg0, uint32_t reg1, 1221 uint32_t ref, uint32_t mask) 1222 { 1223 amdgpu_ring_emit_wreg(ring, reg0, ref); 1224 /* wait for a cycle to reset vm_inv_eng*_ack */ 1225 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); 1226 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); 1227 } 1228 1229 static int sdma_v5_0_early_init(void *handle) 1230 { 1231 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1232 1233 adev->sdma.num_instances = 2; 1234 1235 sdma_v5_0_set_ring_funcs(adev); 1236 sdma_v5_0_set_buffer_funcs(adev); 1237 sdma_v5_0_set_vm_pte_funcs(adev); 1238 sdma_v5_0_set_irq_funcs(adev); 1239 1240 return 0; 1241 } 1242 1243 1244 static int sdma_v5_0_sw_init(void *handle) 1245 { 1246 struct amdgpu_ring *ring; 1247 int r, i; 1248 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1249 1250 /* SDMA trap event */ 1251 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, 1252 SDMA0_5_0__SRCID__SDMA_TRAP, 1253 &adev->sdma.trap_irq); 1254 if (r) 1255 return r; 1256 1257 /* SDMA trap event */ 1258 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, 1259 SDMA1_5_0__SRCID__SDMA_TRAP, 1260 &adev->sdma.trap_irq); 1261 if (r) 1262 return r; 1263 1264 r = sdma_v5_0_init_microcode(adev); 1265 if (r) { 1266 DRM_ERROR("Failed to load sdma firmware!\n"); 1267 return r; 1268 } 1269 1270 for (i = 0; i < adev->sdma.num_instances; i++) { 1271 ring = &adev->sdma.instance[i].ring; 1272 ring->ring_obj = NULL; 1273 ring->use_doorbell = true; 1274 1275 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1276 ring->use_doorbell?"true":"false"); 1277 1278 ring->doorbell_index = (i == 0) ? 1279 (adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset 1280 : (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset 1281 1282 sprintf(ring->name, "sdma%d", i); 1283 r = amdgpu_ring_init(adev, ring, 1024, 1284 &adev->sdma.trap_irq, 1285 (i == 0) ? 1286 AMDGPU_SDMA_IRQ_INSTANCE0 : 1287 AMDGPU_SDMA_IRQ_INSTANCE1, 1288 AMDGPU_RING_PRIO_DEFAULT); 1289 if (r) 1290 return r; 1291 } 1292 1293 return r; 1294 } 1295 1296 static int sdma_v5_0_sw_fini(void *handle) 1297 { 1298 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1299 int i; 1300 1301 for (i = 0; i < adev->sdma.num_instances; i++) { 1302 if (adev->sdma.instance[i].fw != NULL) 1303 release_firmware(adev->sdma.instance[i].fw); 1304 1305 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1306 } 1307 1308 return 0; 1309 } 1310 1311 static int sdma_v5_0_hw_init(void *handle) 1312 { 1313 int r; 1314 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1315 1316 sdma_v5_0_init_golden_registers(adev); 1317 1318 r = sdma_v5_0_start(adev); 1319 1320 return r; 1321 } 1322 1323 static int sdma_v5_0_hw_fini(void *handle) 1324 { 1325 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1326 1327 if (amdgpu_sriov_vf(adev)) 1328 return 0; 1329 1330 sdma_v5_0_ctx_switch_enable(adev, false); 1331 sdma_v5_0_enable(adev, false); 1332 1333 return 0; 1334 } 1335 1336 static int sdma_v5_0_suspend(void *handle) 1337 { 1338 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1339 1340 return sdma_v5_0_hw_fini(adev); 1341 } 1342 1343 static int sdma_v5_0_resume(void *handle) 1344 { 1345 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1346 1347 return sdma_v5_0_hw_init(adev); 1348 } 1349 1350 static bool sdma_v5_0_is_idle(void *handle) 1351 { 1352 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1353 u32 i; 1354 1355 for (i = 0; i < adev->sdma.num_instances; i++) { 1356 u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG)); 1357 1358 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1359 return false; 1360 } 1361 1362 return true; 1363 } 1364 1365 static int sdma_v5_0_wait_for_idle(void *handle) 1366 { 1367 unsigned i; 1368 u32 sdma0, sdma1; 1369 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1370 1371 for (i = 0; i < adev->usec_timeout; i++) { 1372 sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG)); 1373 sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG)); 1374 1375 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) 1376 return 0; 1377 udelay(1); 1378 } 1379 return -ETIMEDOUT; 1380 } 1381 1382 static int sdma_v5_0_soft_reset(void *handle) 1383 { 1384 /* todo */ 1385 1386 return 0; 1387 } 1388 1389 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring) 1390 { 1391 int i, r = 0; 1392 struct amdgpu_device *adev = ring->adev; 1393 u32 index = 0; 1394 u64 sdma_gfx_preempt; 1395 1396 amdgpu_sdma_get_index_from_ring(ring, &index); 1397 if (index == 0) 1398 sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT; 1399 else 1400 sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT; 1401 1402 /* assert preemption condition */ 1403 amdgpu_ring_set_preempt_cond_exec(ring, false); 1404 1405 /* emit the trailing fence */ 1406 ring->trail_seq += 1; 1407 amdgpu_ring_alloc(ring, 10); 1408 sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr, 1409 ring->trail_seq, 0); 1410 amdgpu_ring_commit(ring); 1411 1412 /* assert IB preemption */ 1413 WREG32(sdma_gfx_preempt, 1); 1414 1415 /* poll the trailing fence */ 1416 for (i = 0; i < adev->usec_timeout; i++) { 1417 if (ring->trail_seq == 1418 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 1419 break; 1420 udelay(1); 1421 } 1422 1423 if (i >= adev->usec_timeout) { 1424 r = -EINVAL; 1425 DRM_ERROR("ring %d failed to be preempted\n", ring->idx); 1426 } 1427 1428 /* deassert IB preemption */ 1429 WREG32(sdma_gfx_preempt, 0); 1430 1431 /* deassert the preemption condition */ 1432 amdgpu_ring_set_preempt_cond_exec(ring, true); 1433 return r; 1434 } 1435 1436 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev, 1437 struct amdgpu_irq_src *source, 1438 unsigned type, 1439 enum amdgpu_interrupt_state state) 1440 { 1441 u32 sdma_cntl; 1442 1443 if (!amdgpu_sriov_vf(adev)) { 1444 u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ? 1445 sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) : 1446 sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL); 1447 1448 sdma_cntl = RREG32(reg_offset); 1449 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1450 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1451 WREG32(reg_offset, sdma_cntl); 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev, 1458 struct amdgpu_irq_src *source, 1459 struct amdgpu_iv_entry *entry) 1460 { 1461 DRM_DEBUG("IH: SDMA trap\n"); 1462 switch (entry->client_id) { 1463 case SOC15_IH_CLIENTID_SDMA0: 1464 switch (entry->ring_id) { 1465 case 0: 1466 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1467 break; 1468 case 1: 1469 /* XXX compute */ 1470 break; 1471 case 2: 1472 /* XXX compute */ 1473 break; 1474 case 3: 1475 /* XXX page queue*/ 1476 break; 1477 } 1478 break; 1479 case SOC15_IH_CLIENTID_SDMA1: 1480 switch (entry->ring_id) { 1481 case 0: 1482 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1483 break; 1484 case 1: 1485 /* XXX compute */ 1486 break; 1487 case 2: 1488 /* XXX compute */ 1489 break; 1490 case 3: 1491 /* XXX page queue*/ 1492 break; 1493 } 1494 break; 1495 } 1496 return 0; 1497 } 1498 1499 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1500 struct amdgpu_irq_src *source, 1501 struct amdgpu_iv_entry *entry) 1502 { 1503 return 0; 1504 } 1505 1506 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, 1507 bool enable) 1508 { 1509 uint32_t data, def; 1510 int i; 1511 1512 for (i = 0; i < adev->sdma.num_instances; i++) { 1513 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1514 /* Enable sdma clock gating */ 1515 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1516 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1517 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1518 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1519 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1520 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1521 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1522 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1523 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1524 if (def != data) 1525 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1526 } else { 1527 /* Disable sdma clock gating */ 1528 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1529 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1530 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1531 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1532 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1533 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1534 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1535 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1536 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1537 if (def != data) 1538 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1539 } 1540 } 1541 } 1542 1543 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev, 1544 bool enable) 1545 { 1546 uint32_t data, def; 1547 int i; 1548 1549 for (i = 0; i < adev->sdma.num_instances; i++) { 1550 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1551 /* Enable sdma mem light sleep */ 1552 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1553 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1554 if (def != data) 1555 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1556 1557 } else { 1558 /* Disable sdma mem light sleep */ 1559 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1560 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1561 if (def != data) 1562 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1563 1564 } 1565 } 1566 } 1567 1568 static int sdma_v5_0_set_clockgating_state(void *handle, 1569 enum amd_clockgating_state state) 1570 { 1571 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1572 1573 if (amdgpu_sriov_vf(adev)) 1574 return 0; 1575 1576 switch (adev->asic_type) { 1577 case CHIP_NAVI10: 1578 case CHIP_NAVI14: 1579 case CHIP_NAVI12: 1580 sdma_v5_0_update_medium_grain_clock_gating(adev, 1581 state == AMD_CG_STATE_GATE); 1582 sdma_v5_0_update_medium_grain_light_sleep(adev, 1583 state == AMD_CG_STATE_GATE); 1584 break; 1585 default: 1586 break; 1587 } 1588 1589 return 0; 1590 } 1591 1592 static int sdma_v5_0_set_powergating_state(void *handle, 1593 enum amd_powergating_state state) 1594 { 1595 return 0; 1596 } 1597 1598 static void sdma_v5_0_get_clockgating_state(void *handle, u32 *flags) 1599 { 1600 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1601 int data; 1602 1603 if (amdgpu_sriov_vf(adev)) 1604 *flags = 0; 1605 1606 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1607 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL)); 1608 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 1609 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1610 1611 /* AMD_CG_SUPPORT_SDMA_LS */ 1612 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL)); 1613 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1614 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1615 } 1616 1617 const struct amd_ip_funcs sdma_v5_0_ip_funcs = { 1618 .name = "sdma_v5_0", 1619 .early_init = sdma_v5_0_early_init, 1620 .late_init = NULL, 1621 .sw_init = sdma_v5_0_sw_init, 1622 .sw_fini = sdma_v5_0_sw_fini, 1623 .hw_init = sdma_v5_0_hw_init, 1624 .hw_fini = sdma_v5_0_hw_fini, 1625 .suspend = sdma_v5_0_suspend, 1626 .resume = sdma_v5_0_resume, 1627 .is_idle = sdma_v5_0_is_idle, 1628 .wait_for_idle = sdma_v5_0_wait_for_idle, 1629 .soft_reset = sdma_v5_0_soft_reset, 1630 .set_clockgating_state = sdma_v5_0_set_clockgating_state, 1631 .set_powergating_state = sdma_v5_0_set_powergating_state, 1632 .get_clockgating_state = sdma_v5_0_get_clockgating_state, 1633 }; 1634 1635 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = { 1636 .type = AMDGPU_RING_TYPE_SDMA, 1637 .align_mask = 0xf, 1638 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1639 .support_64bit_ptrs = true, 1640 .vmhub = AMDGPU_GFXHUB_0, 1641 .get_rptr = sdma_v5_0_ring_get_rptr, 1642 .get_wptr = sdma_v5_0_ring_get_wptr, 1643 .set_wptr = sdma_v5_0_ring_set_wptr, 1644 .emit_frame_size = 1645 5 + /* sdma_v5_0_ring_init_cond_exec */ 1646 6 + /* sdma_v5_0_ring_emit_hdp_flush */ 1647 3 + /* hdp_invalidate */ 1648 6 + /* sdma_v5_0_ring_emit_pipeline_sync */ 1649 /* sdma_v5_0_ring_emit_vm_flush */ 1650 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1651 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 + 1652 10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */ 1653 .emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */ 1654 .emit_ib = sdma_v5_0_ring_emit_ib, 1655 .emit_fence = sdma_v5_0_ring_emit_fence, 1656 .emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync, 1657 .emit_vm_flush = sdma_v5_0_ring_emit_vm_flush, 1658 .emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush, 1659 .test_ring = sdma_v5_0_ring_test_ring, 1660 .test_ib = sdma_v5_0_ring_test_ib, 1661 .insert_nop = sdma_v5_0_ring_insert_nop, 1662 .pad_ib = sdma_v5_0_ring_pad_ib, 1663 .emit_wreg = sdma_v5_0_ring_emit_wreg, 1664 .emit_reg_wait = sdma_v5_0_ring_emit_reg_wait, 1665 .emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait, 1666 .init_cond_exec = sdma_v5_0_ring_init_cond_exec, 1667 .patch_cond_exec = sdma_v5_0_ring_patch_cond_exec, 1668 .preempt_ib = sdma_v5_0_ring_preempt_ib, 1669 }; 1670 1671 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev) 1672 { 1673 int i; 1674 1675 for (i = 0; i < adev->sdma.num_instances; i++) { 1676 adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs; 1677 adev->sdma.instance[i].ring.me = i; 1678 } 1679 } 1680 1681 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = { 1682 .set = sdma_v5_0_set_trap_irq_state, 1683 .process = sdma_v5_0_process_trap_irq, 1684 }; 1685 1686 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = { 1687 .process = sdma_v5_0_process_illegal_inst_irq, 1688 }; 1689 1690 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev) 1691 { 1692 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + 1693 adev->sdma.num_instances; 1694 adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs; 1695 adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs; 1696 } 1697 1698 /** 1699 * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine 1700 * 1701 * @ring: amdgpu_ring structure holding ring information 1702 * @src_offset: src GPU address 1703 * @dst_offset: dst GPU address 1704 * @byte_count: number of bytes to xfer 1705 * 1706 * Copy GPU buffers using the DMA engine (NAVI10). 1707 * Used by the amdgpu ttm implementation to move pages if 1708 * registered as the asic copy callback. 1709 */ 1710 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib, 1711 uint64_t src_offset, 1712 uint64_t dst_offset, 1713 uint32_t byte_count, 1714 bool tmz) 1715 { 1716 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1717 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1718 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 1719 ib->ptr[ib->length_dw++] = byte_count - 1; 1720 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1721 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1722 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1723 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1724 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1725 } 1726 1727 /** 1728 * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine 1729 * 1730 * @ring: amdgpu_ring structure holding ring information 1731 * @src_data: value to write to buffer 1732 * @dst_offset: dst GPU address 1733 * @byte_count: number of bytes to xfer 1734 * 1735 * Fill GPU buffers using the DMA engine (NAVI10). 1736 */ 1737 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib, 1738 uint32_t src_data, 1739 uint64_t dst_offset, 1740 uint32_t byte_count) 1741 { 1742 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1743 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1744 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1745 ib->ptr[ib->length_dw++] = src_data; 1746 ib->ptr[ib->length_dw++] = byte_count - 1; 1747 } 1748 1749 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = { 1750 .copy_max_bytes = 0x400000, 1751 .copy_num_dw = 7, 1752 .emit_copy_buffer = sdma_v5_0_emit_copy_buffer, 1753 1754 .fill_max_bytes = 0x400000, 1755 .fill_num_dw = 5, 1756 .emit_fill_buffer = sdma_v5_0_emit_fill_buffer, 1757 }; 1758 1759 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev) 1760 { 1761 if (adev->mman.buffer_funcs == NULL) { 1762 adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs; 1763 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1764 } 1765 } 1766 1767 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = { 1768 .copy_pte_num_dw = 7, 1769 .copy_pte = sdma_v5_0_vm_copy_pte, 1770 .write_pte = sdma_v5_0_vm_write_pte, 1771 .set_pte_pde = sdma_v5_0_vm_set_pte_pde, 1772 }; 1773 1774 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1775 { 1776 unsigned i; 1777 1778 if (adev->vm_manager.vm_pte_funcs == NULL) { 1779 adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs; 1780 for (i = 0; i < adev->sdma.num_instances; i++) { 1781 adev->vm_manager.vm_pte_scheds[i] = 1782 &adev->sdma.instance[i].ring.sched; 1783 } 1784 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1785 } 1786 } 1787 1788 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = { 1789 .type = AMD_IP_BLOCK_TYPE_SDMA, 1790 .major = 5, 1791 .minor = 0, 1792 .rev = 0, 1793 .funcs = &sdma_v5_0_ip_funcs, 1794 }; 1795