xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v5_0.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37 
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44 
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47 
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50 
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53 
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56 
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61 
62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
68 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
80 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
81 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
89 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
92 };
93 
94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
95 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 };
116 
117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
118 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
119 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
123 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
128 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
130 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
131 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
132 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
133 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 };
135 
136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
137 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
138 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
139 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
140 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
151 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
152 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
153 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
154 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
165 };
166 
167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
168 {
169 	u32 base;
170 
171 	if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
172 	    internal_offset <= SDMA0_HYP_DEC_REG_END) {
173 		base = adev->reg_offset[GC_HWIP][0][1];
174 		if (instance == 1)
175 			internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
176 	} else {
177 		base = adev->reg_offset[GC_HWIP][0][0];
178 		if (instance == 1)
179 			internal_offset += SDMA1_REG_OFFSET;
180 	}
181 
182 	return base + internal_offset;
183 }
184 
185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
186 {
187 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
188 	case IP_VERSION(5, 0, 0):
189 		soc15_program_register_sequence(adev,
190 						golden_settings_sdma_5,
191 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
192 		soc15_program_register_sequence(adev,
193 						golden_settings_sdma_nv10,
194 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
195 		break;
196 	case IP_VERSION(5, 0, 2):
197 		soc15_program_register_sequence(adev,
198 						golden_settings_sdma_5,
199 						(const u32)ARRAY_SIZE(golden_settings_sdma_5));
200 		soc15_program_register_sequence(adev,
201 						golden_settings_sdma_nv14,
202 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
203 		break;
204 	case IP_VERSION(5, 0, 5):
205 		if (amdgpu_sriov_vf(adev))
206 			soc15_program_register_sequence(adev,
207 							golden_settings_sdma_5_sriov,
208 							(const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
209 		else
210 			soc15_program_register_sequence(adev,
211 							golden_settings_sdma_5,
212 							(const u32)ARRAY_SIZE(golden_settings_sdma_5));
213 		soc15_program_register_sequence(adev,
214 						golden_settings_sdma_nv12,
215 						(const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
216 		break;
217 	case IP_VERSION(5, 0, 1):
218 		soc15_program_register_sequence(adev,
219 						golden_settings_sdma_cyan_skillfish,
220 						(const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
221 		break;
222 	default:
223 		break;
224 	}
225 }
226 
227 /**
228  * sdma_v5_0_init_microcode - load ucode images from disk
229  *
230  * @adev: amdgpu_device pointer
231  *
232  * Use the firmware interface to load the ucode images into
233  * the driver (not loaded into hw).
234  * Returns 0 on success, error on failure.
235  */
236 
237 // emulation only, won't work on real chip
238 // navi10 real chip need to use PSP to load firmware
239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
240 {	int ret, i;
241 
242 	if (amdgpu_sriov_vf(adev) && (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(5, 0, 5)))
243 		return 0;
244 
245 	for (i = 0; i < adev->sdma.num_instances; i++) {
246 		ret = amdgpu_sdma_init_microcode(adev, i, false);
247 		if (ret)
248 			return ret;
249 	}
250 
251 	return ret;
252 }
253 
254 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
255 {
256 	unsigned ret;
257 
258 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
259 	amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
260 	amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
261 	amdgpu_ring_write(ring, 1);
262 	ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
263 	amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
264 
265 	return ret;
266 }
267 
268 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
269 					   unsigned offset)
270 {
271 	unsigned cur;
272 
273 	BUG_ON(offset > ring->buf_mask);
274 	BUG_ON(ring->ring[offset] != 0x55aa55aa);
275 
276 	cur = (ring->wptr - 1) & ring->buf_mask;
277 	if (cur > offset)
278 		ring->ring[offset] = cur - offset;
279 	else
280 		ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
281 }
282 
283 /**
284  * sdma_v5_0_ring_get_rptr - get the current read pointer
285  *
286  * @ring: amdgpu ring pointer
287  *
288  * Get the current rptr from the hardware (NAVI10+).
289  */
290 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
291 {
292 	u64 *rptr;
293 
294 	/* XXX check if swapping is necessary on BE */
295 	rptr = (u64 *)ring->rptr_cpu_addr;
296 
297 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
298 	return ((*rptr) >> 2);
299 }
300 
301 /**
302  * sdma_v5_0_ring_get_wptr - get the current write pointer
303  *
304  * @ring: amdgpu ring pointer
305  *
306  * Get the current wptr from the hardware (NAVI10+).
307  */
308 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
309 {
310 	struct amdgpu_device *adev = ring->adev;
311 	u64 wptr;
312 
313 	if (ring->use_doorbell) {
314 		/* XXX check if swapping is necessary on BE */
315 		wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
316 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
317 	} else {
318 		wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
319 		wptr = wptr << 32;
320 		wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
321 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
322 	}
323 
324 	return wptr >> 2;
325 }
326 
327 /**
328  * sdma_v5_0_ring_set_wptr - commit the write pointer
329  *
330  * @ring: amdgpu ring pointer
331  *
332  * Write the wptr back to the hardware (NAVI10+).
333  */
334 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
335 {
336 	struct amdgpu_device *adev = ring->adev;
337 	uint32_t *wptr_saved;
338 	uint32_t *is_queue_unmap;
339 	uint64_t aggregated_db_index;
340 	uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
341 
342 	DRM_DEBUG("Setting write pointer\n");
343 	if (ring->is_mes_queue) {
344 		wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
345 		is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
346 					      sizeof(uint32_t));
347 		aggregated_db_index =
348 			amdgpu_mes_get_aggregated_doorbell_index(adev,
349 			AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
350 
351 		atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
352 			     ring->wptr << 2);
353 		*wptr_saved = ring->wptr << 2;
354 		if (*is_queue_unmap) {
355 			WDOORBELL64(aggregated_db_index, ring->wptr << 2);
356 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
357 					ring->doorbell_index, ring->wptr << 2);
358 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
359 		} else {
360 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
361 					ring->doorbell_index, ring->wptr << 2);
362 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
363 
364 			if (*is_queue_unmap)
365 				WDOORBELL64(aggregated_db_index,
366 					    ring->wptr << 2);
367 		}
368 	} else {
369 		if (ring->use_doorbell) {
370 			DRM_DEBUG("Using doorbell -- "
371 				  "wptr_offs == 0x%08x "
372 				  "lower_32_bits(ring->wptr) << 2 == 0x%08x "
373 				  "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
374 				  ring->wptr_offs,
375 				  lower_32_bits(ring->wptr << 2),
376 				  upper_32_bits(ring->wptr << 2));
377 			/* XXX check if swapping is necessary on BE */
378 			atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
379 				     ring->wptr << 2);
380 			DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
381 				  ring->doorbell_index, ring->wptr << 2);
382 			WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
383 		} else {
384 			DRM_DEBUG("Not using doorbell -- "
385 				  "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
386 				  "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
387 				  ring->me,
388 				  lower_32_bits(ring->wptr << 2),
389 				  ring->me,
390 				  upper_32_bits(ring->wptr << 2));
391 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
392 					     ring->me, mmSDMA0_GFX_RB_WPTR),
393 					lower_32_bits(ring->wptr << 2));
394 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
395 					     ring->me, mmSDMA0_GFX_RB_WPTR_HI),
396 					upper_32_bits(ring->wptr << 2));
397 		}
398 	}
399 }
400 
401 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
402 {
403 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
404 	int i;
405 
406 	for (i = 0; i < count; i++)
407 		if (sdma && sdma->burst_nop && (i == 0))
408 			amdgpu_ring_write(ring, ring->funcs->nop |
409 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
410 		else
411 			amdgpu_ring_write(ring, ring->funcs->nop);
412 }
413 
414 /**
415  * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
416  *
417  * @ring: amdgpu ring pointer
418  * @job: job to retrieve vmid from
419  * @ib: IB object to schedule
420  * @flags: unused
421  *
422  * Schedule an IB in the DMA ring (NAVI10).
423  */
424 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
425 				   struct amdgpu_job *job,
426 				   struct amdgpu_ib *ib,
427 				   uint32_t flags)
428 {
429 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
430 	uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
431 
432 	/* An IB packet must end on a 8 DW boundary--the next dword
433 	 * must be on a 8-dword boundary. Our IB packet below is 6
434 	 * dwords long, thus add x number of NOPs, such that, in
435 	 * modular arithmetic,
436 	 * wptr + 6 + x = 8k, k >= 0, which in C is,
437 	 * (wptr + 6 + x) % 8 = 0.
438 	 * The expression below, is a solution of x.
439 	 */
440 	sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
441 
442 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
443 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
444 	/* base must be 32 byte aligned */
445 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
446 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
447 	amdgpu_ring_write(ring, ib->length_dw);
448 	amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
449 	amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
450 }
451 
452 /**
453  * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
454  *
455  * @ring: amdgpu ring pointer
456  *
457  * flush the IB by graphics cache rinse.
458  */
459 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
460 {
461 	uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
462 			    SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
463 			    SDMA_GCR_GLI_INV(1);
464 
465 	/* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
466 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
467 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
468 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
469 			  SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
470 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
471 			  SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
472 	amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
473 			  SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
474 }
475 
476 /**
477  * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
478  *
479  * @ring: amdgpu ring pointer
480  *
481  * Emit an hdp flush packet on the requested DMA ring.
482  */
483 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
484 {
485 	struct amdgpu_device *adev = ring->adev;
486 	u32 ref_and_mask = 0;
487 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
488 
489 	if (ring->me == 0)
490 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
491 	else
492 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
493 
494 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
495 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
496 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
497 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
498 	amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
499 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
500 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
501 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
502 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
503 }
504 
505 /**
506  * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
507  *
508  * @ring: amdgpu ring pointer
509  * @addr: address
510  * @seq: sequence number
511  * @flags: fence related flags
512  *
513  * Add a DMA fence packet to the ring to write
514  * the fence seq number and DMA trap packet to generate
515  * an interrupt if needed (NAVI10).
516  */
517 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
518 				      unsigned flags)
519 {
520 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
521 	/* write the fence */
522 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
523 			  SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
524 	/* zero in first two bits */
525 	BUG_ON(addr & 0x3);
526 	amdgpu_ring_write(ring, lower_32_bits(addr));
527 	amdgpu_ring_write(ring, upper_32_bits(addr));
528 	amdgpu_ring_write(ring, lower_32_bits(seq));
529 
530 	/* optionally write high bits as well */
531 	if (write64bit) {
532 		addr += 4;
533 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
534 				  SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
535 		/* zero in first two bits */
536 		BUG_ON(addr & 0x3);
537 		amdgpu_ring_write(ring, lower_32_bits(addr));
538 		amdgpu_ring_write(ring, upper_32_bits(addr));
539 		amdgpu_ring_write(ring, upper_32_bits(seq));
540 	}
541 
542 	if (flags & AMDGPU_FENCE_FLAG_INT) {
543 		uint32_t ctx = ring->is_mes_queue ?
544 			(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
545 		/* generate an interrupt */
546 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
547 		amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
548 	}
549 }
550 
551 
552 /**
553  * sdma_v5_0_gfx_stop - stop the gfx async dma engines
554  *
555  * @adev: amdgpu_device pointer
556  *
557  * Stop the gfx async dma ring buffers (NAVI10).
558  */
559 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
560 {
561 	u32 rb_cntl, ib_cntl;
562 	int i;
563 
564 	amdgpu_sdma_unset_buffer_funcs_helper(adev);
565 
566 	for (i = 0; i < adev->sdma.num_instances; i++) {
567 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
568 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
569 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
570 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
571 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
572 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
573 	}
574 }
575 
576 /**
577  * sdma_v5_0_rlc_stop - stop the compute async dma engines
578  *
579  * @adev: amdgpu_device pointer
580  *
581  * Stop the compute async dma queues (NAVI10).
582  */
583 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
584 {
585 	/* XXX todo */
586 }
587 
588 /**
589  * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
590  *
591  * @adev: amdgpu_device pointer
592  * @enable: enable/disable the DMA MEs context switch.
593  *
594  * Halt or unhalt the async dma engines context switch (NAVI10).
595  */
596 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
597 {
598 	u32 f32_cntl = 0, phase_quantum = 0;
599 	int i;
600 
601 	if (amdgpu_sdma_phase_quantum) {
602 		unsigned value = amdgpu_sdma_phase_quantum;
603 		unsigned unit = 0;
604 
605 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
606 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
607 			value = (value + 1) >> 1;
608 			unit++;
609 		}
610 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
611 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
612 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
613 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
614 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
615 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
616 			WARN_ONCE(1,
617 			"clamping sdma_phase_quantum to %uK clock cycles\n",
618 				  value << unit);
619 		}
620 		phase_quantum =
621 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
622 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
623 	}
624 
625 	for (i = 0; i < adev->sdma.num_instances; i++) {
626 		if (!amdgpu_sriov_vf(adev)) {
627 			f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
628 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
629 						 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
630 		}
631 
632 		if (enable && amdgpu_sdma_phase_quantum) {
633 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
634 			       phase_quantum);
635 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
636 			       phase_quantum);
637 			WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
638 			       phase_quantum);
639 		}
640 		if (!amdgpu_sriov_vf(adev))
641 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
642 	}
643 
644 }
645 
646 /**
647  * sdma_v5_0_enable - stop the async dma engines
648  *
649  * @adev: amdgpu_device pointer
650  * @enable: enable/disable the DMA MEs.
651  *
652  * Halt or unhalt the async dma engines (NAVI10).
653  */
654 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
655 {
656 	u32 f32_cntl;
657 	int i;
658 
659 	if (!enable) {
660 		sdma_v5_0_gfx_stop(adev);
661 		sdma_v5_0_rlc_stop(adev);
662 	}
663 
664 	if (amdgpu_sriov_vf(adev))
665 		return;
666 
667 	for (i = 0; i < adev->sdma.num_instances; i++) {
668 		f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
669 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
670 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
671 	}
672 }
673 
674 /**
675  * sdma_v5_0_gfx_resume - setup and start the async dma engines
676  *
677  * @adev: amdgpu_device pointer
678  *
679  * Set up the gfx DMA ring buffers and enable them (NAVI10).
680  * Returns 0 for success, error for failure.
681  */
682 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
683 {
684 	struct amdgpu_ring *ring;
685 	u32 rb_cntl, ib_cntl;
686 	u32 rb_bufsz;
687 	u32 doorbell;
688 	u32 doorbell_offset;
689 	u32 temp;
690 	u32 wptr_poll_cntl;
691 	u64 wptr_gpu_addr;
692 	int i, r;
693 
694 	for (i = 0; i < adev->sdma.num_instances; i++) {
695 		ring = &adev->sdma.instance[i].ring;
696 
697 		if (!amdgpu_sriov_vf(adev))
698 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
699 
700 		/* Set ring buffer size in dwords */
701 		rb_bufsz = order_base_2(ring->ring_size / 4);
702 		rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
703 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
704 #ifdef __BIG_ENDIAN
705 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
706 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
707 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
708 #endif
709 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
710 
711 		/* Initialize the ring buffer's read and write pointers */
712 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
713 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
714 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
715 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
716 
717 		/* setup the wptr shadow polling */
718 		wptr_gpu_addr = ring->wptr_gpu_addr;
719 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
720 		       lower_32_bits(wptr_gpu_addr));
721 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
722 		       upper_32_bits(wptr_gpu_addr));
723 		wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
724 							 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
725 		wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
726 					       SDMA0_GFX_RB_WPTR_POLL_CNTL,
727 					       F32_POLL_ENABLE, 1);
728 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
729 		       wptr_poll_cntl);
730 
731 		/* set the wb address whether it's enabled or not */
732 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
733 		       upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
734 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
735 		       lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
736 
737 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
738 
739 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
740 		       ring->gpu_addr >> 8);
741 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
742 		       ring->gpu_addr >> 40);
743 
744 		ring->wptr = 0;
745 
746 		/* before programing wptr to a less value, need set minor_ptr_update first */
747 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
748 
749 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
750 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
751 			       lower_32_bits(ring->wptr << 2));
752 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
753 			       upper_32_bits(ring->wptr << 2));
754 		}
755 
756 		doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
757 		doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
758 						mmSDMA0_GFX_DOORBELL_OFFSET));
759 
760 		if (ring->use_doorbell) {
761 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
762 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
763 					OFFSET, ring->doorbell_index);
764 		} else {
765 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
766 		}
767 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
768 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
769 		       doorbell_offset);
770 
771 		adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
772 						      ring->doorbell_index, 20);
773 
774 		if (amdgpu_sriov_vf(adev))
775 			sdma_v5_0_ring_set_wptr(ring);
776 
777 		/* set minor_ptr_update to 0 after wptr programed */
778 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
779 
780 		if (!amdgpu_sriov_vf(adev)) {
781 			/* set utc l1 enable flag always to 1 */
782 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
783 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
784 
785 			/* enable MCBP */
786 			temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
787 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
788 
789 			/* Set up RESP_MODE to non-copy addresses */
790 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
791 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
792 			temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
793 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
794 
795 			/* program default cache read and write policy */
796 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
797 			/* clean read policy and write policy bits */
798 			temp &= 0xFF0FFF;
799 			temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
800 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
801 		}
802 
803 		if (!amdgpu_sriov_vf(adev)) {
804 			/* unhalt engine */
805 			temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
806 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
807 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
808 		}
809 
810 		/* enable DMA RB */
811 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
812 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
813 
814 		ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
815 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
816 #ifdef __BIG_ENDIAN
817 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
818 #endif
819 		/* enable DMA IBs */
820 		WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
821 
822 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
823 			sdma_v5_0_ctx_switch_enable(adev, true);
824 			sdma_v5_0_enable(adev, true);
825 		}
826 
827 		r = amdgpu_ring_test_helper(ring);
828 		if (r)
829 			return r;
830 
831 		if (adev->mman.buffer_funcs_ring == ring)
832 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  * sdma_v5_0_rlc_resume - setup and start the async dma engines
840  *
841  * @adev: amdgpu_device pointer
842  *
843  * Set up the compute DMA queues and enable them (NAVI10).
844  * Returns 0 for success, error for failure.
845  */
846 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
847 {
848 	return 0;
849 }
850 
851 /**
852  * sdma_v5_0_load_microcode - load the sDMA ME ucode
853  *
854  * @adev: amdgpu_device pointer
855  *
856  * Loads the sDMA0/1 ucode.
857  * Returns 0 for success, -EINVAL if the ucode is not available.
858  */
859 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
860 {
861 	const struct sdma_firmware_header_v1_0 *hdr;
862 	const __le32 *fw_data;
863 	u32 fw_size;
864 	int i, j;
865 
866 	/* halt the MEs */
867 	sdma_v5_0_enable(adev, false);
868 
869 	for (i = 0; i < adev->sdma.num_instances; i++) {
870 		if (!adev->sdma.instance[i].fw)
871 			return -EINVAL;
872 
873 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
874 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
875 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
876 
877 		fw_data = (const __le32 *)
878 			(adev->sdma.instance[i].fw->data +
879 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
880 
881 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
882 
883 		for (j = 0; j < fw_size; j++) {
884 			if (amdgpu_emu_mode == 1 && j % 500 == 0)
885 				msleep(1);
886 			WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
887 		}
888 
889 		WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
890 	}
891 
892 	return 0;
893 }
894 
895 /**
896  * sdma_v5_0_start - setup and start the async dma engines
897  *
898  * @adev: amdgpu_device pointer
899  *
900  * Set up the DMA engines and enable them (NAVI10).
901  * Returns 0 for success, error for failure.
902  */
903 static int sdma_v5_0_start(struct amdgpu_device *adev)
904 {
905 	int r = 0;
906 
907 	if (amdgpu_sriov_vf(adev)) {
908 		sdma_v5_0_ctx_switch_enable(adev, false);
909 		sdma_v5_0_enable(adev, false);
910 
911 		/* set RB registers */
912 		r = sdma_v5_0_gfx_resume(adev);
913 		return r;
914 	}
915 
916 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
917 		r = sdma_v5_0_load_microcode(adev);
918 		if (r)
919 			return r;
920 	}
921 
922 	/* unhalt the MEs */
923 	sdma_v5_0_enable(adev, true);
924 	/* enable sdma ring preemption */
925 	sdma_v5_0_ctx_switch_enable(adev, true);
926 
927 	/* start the gfx rings and rlc compute queues */
928 	r = sdma_v5_0_gfx_resume(adev);
929 	if (r)
930 		return r;
931 	r = sdma_v5_0_rlc_resume(adev);
932 
933 	return r;
934 }
935 
936 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
937 			      struct amdgpu_mqd_prop *prop)
938 {
939 	struct v10_sdma_mqd *m = mqd;
940 	uint64_t wb_gpu_addr;
941 
942 	m->sdmax_rlcx_rb_cntl =
943 		order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
944 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
945 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
946 		1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
947 
948 	m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
949 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
950 
951 	m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
952 						  mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
953 
954 	wb_gpu_addr = prop->wptr_gpu_addr;
955 	m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
956 	m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
957 
958 	wb_gpu_addr = prop->rptr_gpu_addr;
959 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
960 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
961 
962 	m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
963 							mmSDMA0_GFX_IB_CNTL));
964 
965 	m->sdmax_rlcx_doorbell_offset =
966 		prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
967 
968 	m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
969 
970 	return 0;
971 }
972 
973 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
974 {
975 	adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
976 	adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
977 }
978 
979 /**
980  * sdma_v5_0_ring_test_ring - simple async dma engine test
981  *
982  * @ring: amdgpu_ring structure holding ring information
983  *
984  * Test the DMA engine by writing using it to write an
985  * value to memory. (NAVI10).
986  * Returns 0 for success, error for failure.
987  */
988 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
989 {
990 	struct amdgpu_device *adev = ring->adev;
991 	unsigned i;
992 	unsigned index;
993 	int r;
994 	u32 tmp;
995 	u64 gpu_addr;
996 	volatile uint32_t *cpu_ptr = NULL;
997 
998 	tmp = 0xCAFEDEAD;
999 
1000 	if (ring->is_mes_queue) {
1001 		uint32_t offset = 0;
1002 		offset = amdgpu_mes_ctx_get_offs(ring,
1003 					 AMDGPU_MES_CTX_PADDING_OFFS);
1004 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1005 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1006 		*cpu_ptr = tmp;
1007 	} else {
1008 		r = amdgpu_device_wb_get(adev, &index);
1009 		if (r) {
1010 			dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1011 			return r;
1012 		}
1013 
1014 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1015 		adev->wb.wb[index] = cpu_to_le32(tmp);
1016 	}
1017 
1018 	r = amdgpu_ring_alloc(ring, 20);
1019 	if (r) {
1020 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1021 		amdgpu_device_wb_free(adev, index);
1022 		return r;
1023 	}
1024 
1025 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1026 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1027 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1028 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1029 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1030 	amdgpu_ring_write(ring, 0xDEADBEEF);
1031 	amdgpu_ring_commit(ring);
1032 
1033 	for (i = 0; i < adev->usec_timeout; i++) {
1034 		if (ring->is_mes_queue)
1035 			tmp = le32_to_cpu(*cpu_ptr);
1036 		else
1037 			tmp = le32_to_cpu(adev->wb.wb[index]);
1038 		if (tmp == 0xDEADBEEF)
1039 			break;
1040 		if (amdgpu_emu_mode == 1)
1041 			msleep(1);
1042 		else
1043 			udelay(1);
1044 	}
1045 
1046 	if (i >= adev->usec_timeout)
1047 		r = -ETIMEDOUT;
1048 
1049 	if (!ring->is_mes_queue)
1050 		amdgpu_device_wb_free(adev, index);
1051 
1052 	return r;
1053 }
1054 
1055 /**
1056  * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1057  *
1058  * @ring: amdgpu_ring structure holding ring information
1059  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1060  *
1061  * Test a simple IB in the DMA ring (NAVI10).
1062  * Returns 0 on success, error on failure.
1063  */
1064 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1065 {
1066 	struct amdgpu_device *adev = ring->adev;
1067 	struct amdgpu_ib ib;
1068 	struct dma_fence *f = NULL;
1069 	unsigned index;
1070 	long r;
1071 	u32 tmp = 0;
1072 	u64 gpu_addr;
1073 	volatile uint32_t *cpu_ptr = NULL;
1074 
1075 	tmp = 0xCAFEDEAD;
1076 	memset(&ib, 0, sizeof(ib));
1077 
1078 	if (ring->is_mes_queue) {
1079 		uint32_t offset = 0;
1080 		offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1081 		ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1082 		ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1083 
1084 		offset = amdgpu_mes_ctx_get_offs(ring,
1085 					 AMDGPU_MES_CTX_PADDING_OFFS);
1086 		gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1087 		cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1088 		*cpu_ptr = tmp;
1089 	} else {
1090 		r = amdgpu_device_wb_get(adev, &index);
1091 		if (r) {
1092 			dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1093 			return r;
1094 		}
1095 
1096 		gpu_addr = adev->wb.gpu_addr + (index * 4);
1097 		adev->wb.wb[index] = cpu_to_le32(tmp);
1098 
1099 		r = amdgpu_ib_get(adev, NULL, 256,
1100 					AMDGPU_IB_POOL_DIRECT, &ib);
1101 		if (r) {
1102 			DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1103 			goto err0;
1104 		}
1105 	}
1106 
1107 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1108 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1109 	ib.ptr[1] = lower_32_bits(gpu_addr);
1110 	ib.ptr[2] = upper_32_bits(gpu_addr);
1111 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1112 	ib.ptr[4] = 0xDEADBEEF;
1113 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1114 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1115 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1116 	ib.length_dw = 8;
1117 
1118 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1119 	if (r)
1120 		goto err1;
1121 
1122 	r = dma_fence_wait_timeout(f, false, timeout);
1123 	if (r == 0) {
1124 		DRM_ERROR("amdgpu: IB test timed out\n");
1125 		r = -ETIMEDOUT;
1126 		goto err1;
1127 	} else if (r < 0) {
1128 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1129 		goto err1;
1130 	}
1131 
1132 	if (ring->is_mes_queue)
1133 		tmp = le32_to_cpu(*cpu_ptr);
1134 	else
1135 		tmp = le32_to_cpu(adev->wb.wb[index]);
1136 
1137 	if (tmp == 0xDEADBEEF)
1138 		r = 0;
1139 	else
1140 		r = -EINVAL;
1141 
1142 err1:
1143 	amdgpu_ib_free(adev, &ib, NULL);
1144 	dma_fence_put(f);
1145 err0:
1146 	if (!ring->is_mes_queue)
1147 		amdgpu_device_wb_free(adev, index);
1148 	return r;
1149 }
1150 
1151 
1152 /**
1153  * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1154  *
1155  * @ib: indirect buffer to fill with commands
1156  * @pe: addr of the page entry
1157  * @src: src addr to copy from
1158  * @count: number of page entries to update
1159  *
1160  * Update PTEs by copying them from the GART using sDMA (NAVI10).
1161  */
1162 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1163 				  uint64_t pe, uint64_t src,
1164 				  unsigned count)
1165 {
1166 	unsigned bytes = count * 8;
1167 
1168 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1169 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1170 	ib->ptr[ib->length_dw++] = bytes - 1;
1171 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1172 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1173 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1174 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1175 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1176 
1177 }
1178 
1179 /**
1180  * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1181  *
1182  * @ib: indirect buffer to fill with commands
1183  * @pe: addr of the page entry
1184  * @value: dst addr to write into pe
1185  * @count: number of page entries to update
1186  * @incr: increase next addr by incr bytes
1187  *
1188  * Update PTEs by writing them manually using sDMA (NAVI10).
1189  */
1190 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1191 				   uint64_t value, unsigned count,
1192 				   uint32_t incr)
1193 {
1194 	unsigned ndw = count * 2;
1195 
1196 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1197 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1198 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1199 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1200 	ib->ptr[ib->length_dw++] = ndw - 1;
1201 	for (; ndw > 0; ndw -= 2) {
1202 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1203 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1204 		value += incr;
1205 	}
1206 }
1207 
1208 /**
1209  * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1210  *
1211  * @ib: indirect buffer to fill with commands
1212  * @pe: addr of the page entry
1213  * @addr: dst addr to write into pe
1214  * @count: number of page entries to update
1215  * @incr: increase next addr by incr bytes
1216  * @flags: access flags
1217  *
1218  * Update the page tables using sDMA (NAVI10).
1219  */
1220 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1221 				     uint64_t pe,
1222 				     uint64_t addr, unsigned count,
1223 				     uint32_t incr, uint64_t flags)
1224 {
1225 	/* for physically contiguous pages (vram) */
1226 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1227 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1228 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1229 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1230 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1231 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1232 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1233 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1234 	ib->ptr[ib->length_dw++] = 0;
1235 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1236 }
1237 
1238 /**
1239  * sdma_v5_0_ring_pad_ib - pad the IB
1240  * @ring: amdgpu_ring structure holding ring information
1241  * @ib: indirect buffer to fill with padding
1242  *
1243  * Pad the IB with NOPs to a boundary multiple of 8.
1244  */
1245 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1246 {
1247 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1248 	u32 pad_count;
1249 	int i;
1250 
1251 	pad_count = (-ib->length_dw) & 0x7;
1252 	for (i = 0; i < pad_count; i++)
1253 		if (sdma && sdma->burst_nop && (i == 0))
1254 			ib->ptr[ib->length_dw++] =
1255 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1256 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1257 		else
1258 			ib->ptr[ib->length_dw++] =
1259 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1260 }
1261 
1262 
1263 /**
1264  * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1265  *
1266  * @ring: amdgpu_ring pointer
1267  *
1268  * Make sure all previous operations are completed (CIK).
1269  */
1270 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1271 {
1272 	uint32_t seq = ring->fence_drv.sync_seq;
1273 	uint64_t addr = ring->fence_drv.gpu_addr;
1274 
1275 	/* wait for idle */
1276 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1277 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1278 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1279 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1280 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1281 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1282 	amdgpu_ring_write(ring, seq); /* reference */
1283 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1284 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1285 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1286 }
1287 
1288 
1289 /**
1290  * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1291  *
1292  * @ring: amdgpu_ring pointer
1293  * @vmid: vmid number to use
1294  * @pd_addr: address
1295  *
1296  * Update the page table base and flush the VM TLB
1297  * using sDMA (NAVI10).
1298  */
1299 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1300 					 unsigned vmid, uint64_t pd_addr)
1301 {
1302 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1303 }
1304 
1305 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1306 				     uint32_t reg, uint32_t val)
1307 {
1308 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1309 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1310 	amdgpu_ring_write(ring, reg);
1311 	amdgpu_ring_write(ring, val);
1312 }
1313 
1314 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1315 					 uint32_t val, uint32_t mask)
1316 {
1317 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1318 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1319 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1320 	amdgpu_ring_write(ring, reg << 2);
1321 	amdgpu_ring_write(ring, 0);
1322 	amdgpu_ring_write(ring, val); /* reference */
1323 	amdgpu_ring_write(ring, mask); /* mask */
1324 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1325 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1326 }
1327 
1328 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1329 						   uint32_t reg0, uint32_t reg1,
1330 						   uint32_t ref, uint32_t mask)
1331 {
1332 	amdgpu_ring_emit_wreg(ring, reg0, ref);
1333 	/* wait for a cycle to reset vm_inv_eng*_ack */
1334 	amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1335 	amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1336 }
1337 
1338 static int sdma_v5_0_early_init(void *handle)
1339 {
1340 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1341 
1342 	sdma_v5_0_set_ring_funcs(adev);
1343 	sdma_v5_0_set_buffer_funcs(adev);
1344 	sdma_v5_0_set_vm_pte_funcs(adev);
1345 	sdma_v5_0_set_irq_funcs(adev);
1346 	sdma_v5_0_set_mqd_funcs(adev);
1347 
1348 	return 0;
1349 }
1350 
1351 
1352 static int sdma_v5_0_sw_init(void *handle)
1353 {
1354 	struct amdgpu_ring *ring;
1355 	int r, i;
1356 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1357 
1358 	/* SDMA trap event */
1359 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1360 			      SDMA0_5_0__SRCID__SDMA_TRAP,
1361 			      &adev->sdma.trap_irq);
1362 	if (r)
1363 		return r;
1364 
1365 	/* SDMA trap event */
1366 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1367 			      SDMA1_5_0__SRCID__SDMA_TRAP,
1368 			      &adev->sdma.trap_irq);
1369 	if (r)
1370 		return r;
1371 
1372 	r = sdma_v5_0_init_microcode(adev);
1373 	if (r) {
1374 		DRM_ERROR("Failed to load sdma firmware!\n");
1375 		return r;
1376 	}
1377 
1378 	for (i = 0; i < adev->sdma.num_instances; i++) {
1379 		ring = &adev->sdma.instance[i].ring;
1380 		ring->ring_obj = NULL;
1381 		ring->use_doorbell = true;
1382 
1383 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1384 				ring->use_doorbell?"true":"false");
1385 
1386 		ring->doorbell_index = (i == 0) ?
1387 			(adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1388 			: (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1389 
1390 		ring->vm_hub = AMDGPU_GFXHUB(0);
1391 		sprintf(ring->name, "sdma%d", i);
1392 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1393 				     (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1394 				     AMDGPU_SDMA_IRQ_INSTANCE1,
1395 				     AMDGPU_RING_PRIO_DEFAULT, NULL);
1396 		if (r)
1397 			return r;
1398 	}
1399 
1400 	return r;
1401 }
1402 
1403 static int sdma_v5_0_sw_fini(void *handle)
1404 {
1405 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1406 	int i;
1407 
1408 	for (i = 0; i < adev->sdma.num_instances; i++)
1409 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1410 
1411 	amdgpu_sdma_destroy_inst_ctx(adev, false);
1412 
1413 	return 0;
1414 }
1415 
1416 static int sdma_v5_0_hw_init(void *handle)
1417 {
1418 	int r;
1419 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1420 
1421 	sdma_v5_0_init_golden_registers(adev);
1422 
1423 	r = sdma_v5_0_start(adev);
1424 
1425 	return r;
1426 }
1427 
1428 static int sdma_v5_0_hw_fini(void *handle)
1429 {
1430 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1431 
1432 	if (amdgpu_sriov_vf(adev)) {
1433 		/* disable the scheduler for SDMA */
1434 		amdgpu_sdma_unset_buffer_funcs_helper(adev);
1435 		return 0;
1436 	}
1437 
1438 	sdma_v5_0_ctx_switch_enable(adev, false);
1439 	sdma_v5_0_enable(adev, false);
1440 
1441 	return 0;
1442 }
1443 
1444 static int sdma_v5_0_suspend(void *handle)
1445 {
1446 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1447 
1448 	return sdma_v5_0_hw_fini(adev);
1449 }
1450 
1451 static int sdma_v5_0_resume(void *handle)
1452 {
1453 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1454 
1455 	return sdma_v5_0_hw_init(adev);
1456 }
1457 
1458 static bool sdma_v5_0_is_idle(void *handle)
1459 {
1460 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1461 	u32 i;
1462 
1463 	for (i = 0; i < adev->sdma.num_instances; i++) {
1464 		u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1465 
1466 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1467 			return false;
1468 	}
1469 
1470 	return true;
1471 }
1472 
1473 static int sdma_v5_0_wait_for_idle(void *handle)
1474 {
1475 	unsigned i;
1476 	u32 sdma0, sdma1;
1477 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1478 
1479 	for (i = 0; i < adev->usec_timeout; i++) {
1480 		sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1481 		sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1482 
1483 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1484 			return 0;
1485 		udelay(1);
1486 	}
1487 	return -ETIMEDOUT;
1488 }
1489 
1490 static int sdma_v5_0_soft_reset(void *handle)
1491 {
1492 	/* todo */
1493 
1494 	return 0;
1495 }
1496 
1497 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1498 {
1499 	int i, r = 0;
1500 	struct amdgpu_device *adev = ring->adev;
1501 	u32 index = 0;
1502 	u64 sdma_gfx_preempt;
1503 
1504 	amdgpu_sdma_get_index_from_ring(ring, &index);
1505 	if (index == 0)
1506 		sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1507 	else
1508 		sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1509 
1510 	/* assert preemption condition */
1511 	amdgpu_ring_set_preempt_cond_exec(ring, false);
1512 
1513 	/* emit the trailing fence */
1514 	ring->trail_seq += 1;
1515 	amdgpu_ring_alloc(ring, 10);
1516 	sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1517 				  ring->trail_seq, 0);
1518 	amdgpu_ring_commit(ring);
1519 
1520 	/* assert IB preemption */
1521 	WREG32(sdma_gfx_preempt, 1);
1522 
1523 	/* poll the trailing fence */
1524 	for (i = 0; i < adev->usec_timeout; i++) {
1525 		if (ring->trail_seq ==
1526 		    le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1527 			break;
1528 		udelay(1);
1529 	}
1530 
1531 	if (i >= adev->usec_timeout) {
1532 		r = -EINVAL;
1533 		DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1534 	}
1535 
1536 	/* deassert IB preemption */
1537 	WREG32(sdma_gfx_preempt, 0);
1538 
1539 	/* deassert the preemption condition */
1540 	amdgpu_ring_set_preempt_cond_exec(ring, true);
1541 	return r;
1542 }
1543 
1544 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1545 					struct amdgpu_irq_src *source,
1546 					unsigned type,
1547 					enum amdgpu_interrupt_state state)
1548 {
1549 	u32 sdma_cntl;
1550 
1551 	if (!amdgpu_sriov_vf(adev)) {
1552 		u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1553 			sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1554 			sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1555 
1556 		sdma_cntl = RREG32(reg_offset);
1557 		sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1558 					  state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1559 		WREG32(reg_offset, sdma_cntl);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1566 				      struct amdgpu_irq_src *source,
1567 				      struct amdgpu_iv_entry *entry)
1568 {
1569 	uint32_t mes_queue_id = entry->src_data[0];
1570 
1571 	DRM_DEBUG("IH: SDMA trap\n");
1572 
1573 	if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1574 		struct amdgpu_mes_queue *queue;
1575 
1576 		mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1577 
1578 		spin_lock(&adev->mes.queue_id_lock);
1579 		queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1580 		if (queue) {
1581 			DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1582 			amdgpu_fence_process(queue->ring);
1583 		}
1584 		spin_unlock(&adev->mes.queue_id_lock);
1585 		return 0;
1586 	}
1587 
1588 	switch (entry->client_id) {
1589 	case SOC15_IH_CLIENTID_SDMA0:
1590 		switch (entry->ring_id) {
1591 		case 0:
1592 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1593 			break;
1594 		case 1:
1595 			/* XXX compute */
1596 			break;
1597 		case 2:
1598 			/* XXX compute */
1599 			break;
1600 		case 3:
1601 			/* XXX page queue*/
1602 			break;
1603 		}
1604 		break;
1605 	case SOC15_IH_CLIENTID_SDMA1:
1606 		switch (entry->ring_id) {
1607 		case 0:
1608 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1609 			break;
1610 		case 1:
1611 			/* XXX compute */
1612 			break;
1613 		case 2:
1614 			/* XXX compute */
1615 			break;
1616 		case 3:
1617 			/* XXX page queue*/
1618 			break;
1619 		}
1620 		break;
1621 	}
1622 	return 0;
1623 }
1624 
1625 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1626 					      struct amdgpu_irq_src *source,
1627 					      struct amdgpu_iv_entry *entry)
1628 {
1629 	return 0;
1630 }
1631 
1632 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1633 						       bool enable)
1634 {
1635 	uint32_t data, def;
1636 	int i;
1637 
1638 	for (i = 0; i < adev->sdma.num_instances; i++) {
1639 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1640 			/* Enable sdma clock gating */
1641 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1642 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1643 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1644 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1645 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1646 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1647 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1648 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1649 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1650 			if (def != data)
1651 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1652 		} else {
1653 			/* Disable sdma clock gating */
1654 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1655 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1656 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1657 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1658 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1659 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1660 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1661 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1662 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1663 			if (def != data)
1664 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1665 		}
1666 	}
1667 }
1668 
1669 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1670 						      bool enable)
1671 {
1672 	uint32_t data, def;
1673 	int i;
1674 
1675 	for (i = 0; i < adev->sdma.num_instances; i++) {
1676 		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1677 			/* Enable sdma mem light sleep */
1678 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1679 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1680 			if (def != data)
1681 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1682 
1683 		} else {
1684 			/* Disable sdma mem light sleep */
1685 			def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1686 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1687 			if (def != data)
1688 				WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1689 
1690 		}
1691 	}
1692 }
1693 
1694 static int sdma_v5_0_set_clockgating_state(void *handle,
1695 					   enum amd_clockgating_state state)
1696 {
1697 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1698 
1699 	if (amdgpu_sriov_vf(adev))
1700 		return 0;
1701 
1702 	switch (adev->ip_versions[SDMA0_HWIP][0]) {
1703 	case IP_VERSION(5, 0, 0):
1704 	case IP_VERSION(5, 0, 2):
1705 	case IP_VERSION(5, 0, 5):
1706 		sdma_v5_0_update_medium_grain_clock_gating(adev,
1707 				state == AMD_CG_STATE_GATE);
1708 		sdma_v5_0_update_medium_grain_light_sleep(adev,
1709 				state == AMD_CG_STATE_GATE);
1710 		break;
1711 	default:
1712 		break;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static int sdma_v5_0_set_powergating_state(void *handle,
1719 					  enum amd_powergating_state state)
1720 {
1721 	return 0;
1722 }
1723 
1724 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1725 {
1726 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1727 	int data;
1728 
1729 	if (amdgpu_sriov_vf(adev))
1730 		*flags = 0;
1731 
1732 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1733 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1734 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1735 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1736 
1737 	/* AMD_CG_SUPPORT_SDMA_LS */
1738 	data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1739 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1740 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1741 }
1742 
1743 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1744 	.name = "sdma_v5_0",
1745 	.early_init = sdma_v5_0_early_init,
1746 	.late_init = NULL,
1747 	.sw_init = sdma_v5_0_sw_init,
1748 	.sw_fini = sdma_v5_0_sw_fini,
1749 	.hw_init = sdma_v5_0_hw_init,
1750 	.hw_fini = sdma_v5_0_hw_fini,
1751 	.suspend = sdma_v5_0_suspend,
1752 	.resume = sdma_v5_0_resume,
1753 	.is_idle = sdma_v5_0_is_idle,
1754 	.wait_for_idle = sdma_v5_0_wait_for_idle,
1755 	.soft_reset = sdma_v5_0_soft_reset,
1756 	.set_clockgating_state = sdma_v5_0_set_clockgating_state,
1757 	.set_powergating_state = sdma_v5_0_set_powergating_state,
1758 	.get_clockgating_state = sdma_v5_0_get_clockgating_state,
1759 };
1760 
1761 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1762 	.type = AMDGPU_RING_TYPE_SDMA,
1763 	.align_mask = 0xf,
1764 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1765 	.support_64bit_ptrs = true,
1766 	.secure_submission_supported = true,
1767 	.get_rptr = sdma_v5_0_ring_get_rptr,
1768 	.get_wptr = sdma_v5_0_ring_get_wptr,
1769 	.set_wptr = sdma_v5_0_ring_set_wptr,
1770 	.emit_frame_size =
1771 		5 + /* sdma_v5_0_ring_init_cond_exec */
1772 		6 + /* sdma_v5_0_ring_emit_hdp_flush */
1773 		3 + /* hdp_invalidate */
1774 		6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1775 		/* sdma_v5_0_ring_emit_vm_flush */
1776 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1777 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1778 		10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1779 	.emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1780 	.emit_ib = sdma_v5_0_ring_emit_ib,
1781 	.emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1782 	.emit_fence = sdma_v5_0_ring_emit_fence,
1783 	.emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1784 	.emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1785 	.emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1786 	.test_ring = sdma_v5_0_ring_test_ring,
1787 	.test_ib = sdma_v5_0_ring_test_ib,
1788 	.insert_nop = sdma_v5_0_ring_insert_nop,
1789 	.pad_ib = sdma_v5_0_ring_pad_ib,
1790 	.emit_wreg = sdma_v5_0_ring_emit_wreg,
1791 	.emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1792 	.emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1793 	.init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1794 	.patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1795 	.preempt_ib = sdma_v5_0_ring_preempt_ib,
1796 };
1797 
1798 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1799 {
1800 	int i;
1801 
1802 	for (i = 0; i < adev->sdma.num_instances; i++) {
1803 		adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1804 		adev->sdma.instance[i].ring.me = i;
1805 	}
1806 }
1807 
1808 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1809 	.set = sdma_v5_0_set_trap_irq_state,
1810 	.process = sdma_v5_0_process_trap_irq,
1811 };
1812 
1813 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1814 	.process = sdma_v5_0_process_illegal_inst_irq,
1815 };
1816 
1817 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1818 {
1819 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1820 					adev->sdma.num_instances;
1821 	adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1822 	adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1823 }
1824 
1825 /**
1826  * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1827  *
1828  * @ib: indirect buffer to copy to
1829  * @src_offset: src GPU address
1830  * @dst_offset: dst GPU address
1831  * @byte_count: number of bytes to xfer
1832  * @tmz: if a secure copy should be used
1833  *
1834  * Copy GPU buffers using the DMA engine (NAVI10).
1835  * Used by the amdgpu ttm implementation to move pages if
1836  * registered as the asic copy callback.
1837  */
1838 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1839 				       uint64_t src_offset,
1840 				       uint64_t dst_offset,
1841 				       uint32_t byte_count,
1842 				       bool tmz)
1843 {
1844 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1845 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1846 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1847 	ib->ptr[ib->length_dw++] = byte_count - 1;
1848 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1849 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1850 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1851 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1852 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1853 }
1854 
1855 /**
1856  * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1857  *
1858  * @ib: indirect buffer to fill
1859  * @src_data: value to write to buffer
1860  * @dst_offset: dst GPU address
1861  * @byte_count: number of bytes to xfer
1862  *
1863  * Fill GPU buffers using the DMA engine (NAVI10).
1864  */
1865 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1866 				       uint32_t src_data,
1867 				       uint64_t dst_offset,
1868 				       uint32_t byte_count)
1869 {
1870 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1871 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1872 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1873 	ib->ptr[ib->length_dw++] = src_data;
1874 	ib->ptr[ib->length_dw++] = byte_count - 1;
1875 }
1876 
1877 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1878 	.copy_max_bytes = 0x400000,
1879 	.copy_num_dw = 7,
1880 	.emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1881 
1882 	.fill_max_bytes = 0x400000,
1883 	.fill_num_dw = 5,
1884 	.emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1885 };
1886 
1887 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1888 {
1889 	if (adev->mman.buffer_funcs == NULL) {
1890 		adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1891 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1892 	}
1893 }
1894 
1895 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1896 	.copy_pte_num_dw = 7,
1897 	.copy_pte = sdma_v5_0_vm_copy_pte,
1898 	.write_pte = sdma_v5_0_vm_write_pte,
1899 	.set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1900 };
1901 
1902 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1903 {
1904 	unsigned i;
1905 
1906 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1907 		adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1908 		for (i = 0; i < adev->sdma.num_instances; i++) {
1909 			adev->vm_manager.vm_pte_scheds[i] =
1910 				&adev->sdma.instance[i].ring.sched;
1911 		}
1912 		adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1913 	}
1914 }
1915 
1916 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1917 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1918 	.major = 5,
1919 	.minor = 0,
1920 	.rev = 0,
1921 	.funcs = &sdma_v5_0_ip_funcs,
1922 };
1923