1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "gc/gc_10_1_0_offset.h" 34 #include "gc/gc_10_1_0_sh_mask.h" 35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h" 36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h" 37 38 #include "soc15_common.h" 39 #include "soc15.h" 40 #include "navi10_sdma_pkt_open.h" 41 #include "nbio_v2_3.h" 42 #include "sdma_common.h" 43 #include "sdma_v5_0.h" 44 45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin"); 46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin"); 47 48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin"); 49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin"); 50 51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin"); 52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin"); 53 54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin"); 55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin"); 56 57 #define SDMA1_REG_OFFSET 0x600 58 #define SDMA0_HYP_DEC_REG_START 0x5880 59 #define SDMA0_HYP_DEC_REG_END 0x5893 60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 61 62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev); 63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev); 64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev); 65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev); 66 67 static const struct soc15_reg_golden golden_settings_sdma_5[] = { 68 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 69 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 70 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 71 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 72 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 73 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 74 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 75 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 76 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 77 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 78 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 79 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00), 80 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 81 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 82 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 83 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 84 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 85 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 86 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 87 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 88 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 89 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 90 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 91 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00) 92 }; 93 94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = { 95 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 97 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 98 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 100 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 102 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 103 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 104 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 105 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 107 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 109 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 110 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 112 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 113 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 114 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 115 }; 116 117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = { 118 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 119 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 120 }; 121 122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = { 123 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 124 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 125 }; 126 127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = { 128 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 129 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044), 130 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044), 131 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044), 132 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044), 133 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 134 }; 135 136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = { 137 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 138 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044), 139 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044), 140 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 141 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 142 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 143 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 144 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 145 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 146 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 147 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 148 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 149 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 150 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00), 151 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107), 152 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044), 153 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044), 154 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 155 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 156 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 157 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 158 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 159 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 160 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 161 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 162 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 163 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 164 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00) 165 }; 166 167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) 168 { 169 u32 base; 170 171 if (internal_offset >= SDMA0_HYP_DEC_REG_START && 172 internal_offset <= SDMA0_HYP_DEC_REG_END) { 173 base = adev->reg_offset[GC_HWIP][0][1]; 174 if (instance == 1) 175 internal_offset += SDMA1_HYP_DEC_REG_OFFSET; 176 } else { 177 base = adev->reg_offset[GC_HWIP][0][0]; 178 if (instance == 1) 179 internal_offset += SDMA1_REG_OFFSET; 180 } 181 182 return base + internal_offset; 183 } 184 185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev) 186 { 187 switch (adev->ip_versions[SDMA0_HWIP][0]) { 188 case IP_VERSION(5, 0, 0): 189 soc15_program_register_sequence(adev, 190 golden_settings_sdma_5, 191 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 192 soc15_program_register_sequence(adev, 193 golden_settings_sdma_nv10, 194 (const u32)ARRAY_SIZE(golden_settings_sdma_nv10)); 195 break; 196 case IP_VERSION(5, 0, 2): 197 soc15_program_register_sequence(adev, 198 golden_settings_sdma_5, 199 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 200 soc15_program_register_sequence(adev, 201 golden_settings_sdma_nv14, 202 (const u32)ARRAY_SIZE(golden_settings_sdma_nv14)); 203 break; 204 case IP_VERSION(5, 0, 5): 205 if (amdgpu_sriov_vf(adev)) 206 soc15_program_register_sequence(adev, 207 golden_settings_sdma_5_sriov, 208 (const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov)); 209 else 210 soc15_program_register_sequence(adev, 211 golden_settings_sdma_5, 212 (const u32)ARRAY_SIZE(golden_settings_sdma_5)); 213 soc15_program_register_sequence(adev, 214 golden_settings_sdma_nv12, 215 (const u32)ARRAY_SIZE(golden_settings_sdma_nv12)); 216 break; 217 case IP_VERSION(5, 0, 1): 218 soc15_program_register_sequence(adev, 219 golden_settings_sdma_cyan_skillfish, 220 (const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish)); 221 break; 222 default: 223 break; 224 } 225 } 226 227 /** 228 * sdma_v5_0_init_microcode - load ucode images from disk 229 * 230 * @adev: amdgpu_device pointer 231 * 232 * Use the firmware interface to load the ucode images into 233 * the driver (not loaded into hw). 234 * Returns 0 on success, error on failure. 235 */ 236 237 // emulation only, won't work on real chip 238 // navi10 real chip need to use PSP to load firmware 239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev) 240 { 241 const char *chip_name; 242 char fw_name[40]; 243 int err = 0, i; 244 struct amdgpu_firmware_info *info = NULL; 245 const struct common_firmware_header *header = NULL; 246 const struct sdma_firmware_header_v1_0 *hdr; 247 248 if (amdgpu_sriov_vf(adev) && (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(5, 0, 5))) 249 return 0; 250 251 DRM_DEBUG("\n"); 252 253 switch (adev->ip_versions[SDMA0_HWIP][0]) { 254 case IP_VERSION(5, 0, 0): 255 chip_name = "navi10"; 256 break; 257 case IP_VERSION(5, 0, 2): 258 chip_name = "navi14"; 259 break; 260 case IP_VERSION(5, 0, 5): 261 chip_name = "navi12"; 262 break; 263 case IP_VERSION(5, 0, 1): 264 chip_name = "cyan_skillfish2"; 265 break; 266 default: 267 BUG(); 268 } 269 270 for (i = 0; i < adev->sdma.num_instances; i++) { 271 if (i == 0) 272 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 273 else 274 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); 275 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 276 if (err) 277 goto out; 278 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); 279 if (err) 280 goto out; 281 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 282 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); 283 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); 284 if (adev->sdma.instance[i].feature_version >= 20) 285 adev->sdma.instance[i].burst_nop = true; 286 DRM_DEBUG("psp_load == '%s'\n", 287 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); 288 289 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 290 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 291 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 292 info->fw = adev->sdma.instance[i].fw; 293 header = (const struct common_firmware_header *)info->fw->data; 294 adev->firmware.fw_size += 295 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 296 } 297 } 298 out: 299 if (err) { 300 DRM_ERROR("sdma_v5_0: Failed to load firmware \"%s\"\n", fw_name); 301 for (i = 0; i < adev->sdma.num_instances; i++) { 302 release_firmware(adev->sdma.instance[i].fw); 303 adev->sdma.instance[i].fw = NULL; 304 } 305 } 306 return err; 307 } 308 309 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring) 310 { 311 unsigned ret; 312 313 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE)); 314 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); 315 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); 316 amdgpu_ring_write(ring, 1); 317 ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */ 318 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */ 319 320 return ret; 321 } 322 323 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring, 324 unsigned offset) 325 { 326 unsigned cur; 327 328 BUG_ON(offset > ring->buf_mask); 329 BUG_ON(ring->ring[offset] != 0x55aa55aa); 330 331 cur = (ring->wptr - 1) & ring->buf_mask; 332 if (cur > offset) 333 ring->ring[offset] = cur - offset; 334 else 335 ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; 336 } 337 338 /** 339 * sdma_v5_0_ring_get_rptr - get the current read pointer 340 * 341 * @ring: amdgpu ring pointer 342 * 343 * Get the current rptr from the hardware (NAVI10+). 344 */ 345 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring) 346 { 347 u64 *rptr; 348 349 /* XXX check if swapping is necessary on BE */ 350 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 351 352 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 353 return ((*rptr) >> 2); 354 } 355 356 /** 357 * sdma_v5_0_ring_get_wptr - get the current write pointer 358 * 359 * @ring: amdgpu ring pointer 360 * 361 * Get the current wptr from the hardware (NAVI10+). 362 */ 363 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring) 364 { 365 struct amdgpu_device *adev = ring->adev; 366 u64 wptr; 367 368 if (ring->use_doorbell) { 369 /* XXX check if swapping is necessary on BE */ 370 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 371 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 372 } else { 373 wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)); 374 wptr = wptr << 32; 375 wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)); 376 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr); 377 } 378 379 return wptr >> 2; 380 } 381 382 /** 383 * sdma_v5_0_ring_set_wptr - commit the write pointer 384 * 385 * @ring: amdgpu ring pointer 386 * 387 * Write the wptr back to the hardware (NAVI10+). 388 */ 389 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring) 390 { 391 struct amdgpu_device *adev = ring->adev; 392 393 DRM_DEBUG("Setting write pointer\n"); 394 if (ring->use_doorbell) { 395 DRM_DEBUG("Using doorbell -- " 396 "wptr_offs == 0x%08x " 397 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 398 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 399 ring->wptr_offs, 400 lower_32_bits(ring->wptr << 2), 401 upper_32_bits(ring->wptr << 2)); 402 /* XXX check if swapping is necessary on BE */ 403 adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2); 404 adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2); 405 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 406 ring->doorbell_index, ring->wptr << 2); 407 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 408 } else { 409 DRM_DEBUG("Not using doorbell -- " 410 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 411 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 412 ring->me, 413 lower_32_bits(ring->wptr << 2), 414 ring->me, 415 upper_32_bits(ring->wptr << 2)); 416 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), 417 lower_32_bits(ring->wptr << 2)); 418 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), 419 upper_32_bits(ring->wptr << 2)); 420 } 421 } 422 423 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 424 { 425 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 426 int i; 427 428 for (i = 0; i < count; i++) 429 if (sdma && sdma->burst_nop && (i == 0)) 430 amdgpu_ring_write(ring, ring->funcs->nop | 431 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 432 else 433 amdgpu_ring_write(ring, ring->funcs->nop); 434 } 435 436 /** 437 * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine 438 * 439 * @ring: amdgpu ring pointer 440 * @job: job to retrieve vmid from 441 * @ib: IB object to schedule 442 * @flags: unused 443 * 444 * Schedule an IB in the DMA ring (NAVI10). 445 */ 446 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring, 447 struct amdgpu_job *job, 448 struct amdgpu_ib *ib, 449 uint32_t flags) 450 { 451 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 452 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); 453 454 /* An IB packet must end on a 8 DW boundary--the next dword 455 * must be on a 8-dword boundary. Our IB packet below is 6 456 * dwords long, thus add x number of NOPs, such that, in 457 * modular arithmetic, 458 * wptr + 6 + x = 8k, k >= 0, which in C is, 459 * (wptr + 6 + x) % 8 = 0. 460 * The expression below, is a solution of x. 461 */ 462 sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 463 464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 465 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 466 /* base must be 32 byte aligned */ 467 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 468 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 469 amdgpu_ring_write(ring, ib->length_dw); 470 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); 471 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); 472 } 473 474 /** 475 * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse 476 * 477 * @ring: amdgpu ring pointer 478 * 479 * flush the IB by graphics cache rinse. 480 */ 481 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring) 482 { 483 uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV | 484 SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | 485 SDMA_GCR_GLI_INV(1); 486 487 /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ 488 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ)); 489 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); 490 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | 491 SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); 492 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | 493 SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); 494 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | 495 SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); 496 } 497 498 /** 499 * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 500 * 501 * @ring: amdgpu ring pointer 502 * 503 * Emit an hdp flush packet on the requested DMA ring. 504 */ 505 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 506 { 507 struct amdgpu_device *adev = ring->adev; 508 u32 ref_and_mask = 0; 509 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 510 511 if (ring->me == 0) 512 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0; 513 else 514 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1; 515 516 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 517 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | 518 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 519 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); 520 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); 521 amdgpu_ring_write(ring, ref_and_mask); /* reference */ 522 amdgpu_ring_write(ring, ref_and_mask); /* mask */ 523 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 524 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ 525 } 526 527 /** 528 * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring 529 * 530 * @ring: amdgpu ring pointer 531 * @addr: address 532 * @seq: sequence number 533 * @flags: fence related flags 534 * 535 * Add a DMA fence packet to the ring to write 536 * the fence seq number and DMA trap packet to generate 537 * an interrupt if needed (NAVI10). 538 */ 539 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 540 unsigned flags) 541 { 542 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 543 /* write the fence */ 544 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 545 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ 546 /* zero in first two bits */ 547 BUG_ON(addr & 0x3); 548 amdgpu_ring_write(ring, lower_32_bits(addr)); 549 amdgpu_ring_write(ring, upper_32_bits(addr)); 550 amdgpu_ring_write(ring, lower_32_bits(seq)); 551 552 /* optionally write high bits as well */ 553 if (write64bit) { 554 addr += 4; 555 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | 556 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); 557 /* zero in first two bits */ 558 BUG_ON(addr & 0x3); 559 amdgpu_ring_write(ring, lower_32_bits(addr)); 560 amdgpu_ring_write(ring, upper_32_bits(addr)); 561 amdgpu_ring_write(ring, upper_32_bits(seq)); 562 } 563 564 if (flags & AMDGPU_FENCE_FLAG_INT) { 565 /* generate an interrupt */ 566 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 567 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 568 } 569 } 570 571 572 /** 573 * sdma_v5_0_gfx_stop - stop the gfx async dma engines 574 * 575 * @adev: amdgpu_device pointer 576 * 577 * Stop the gfx async dma ring buffers (NAVI10). 578 */ 579 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev) 580 { 581 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; 582 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; 583 u32 rb_cntl, ib_cntl; 584 int i; 585 586 if ((adev->mman.buffer_funcs_ring == sdma0) || 587 (adev->mman.buffer_funcs_ring == sdma1)) 588 amdgpu_ttm_set_buffer_funcs_status(adev, false); 589 590 for (i = 0; i < adev->sdma.num_instances; i++) { 591 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 592 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 593 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 594 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 595 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 596 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 597 } 598 } 599 600 /** 601 * sdma_v5_0_rlc_stop - stop the compute async dma engines 602 * 603 * @adev: amdgpu_device pointer 604 * 605 * Stop the compute async dma queues (NAVI10). 606 */ 607 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev) 608 { 609 /* XXX todo */ 610 } 611 612 /** 613 * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch 614 * 615 * @adev: amdgpu_device pointer 616 * @enable: enable/disable the DMA MEs context switch. 617 * 618 * Halt or unhalt the async dma engines context switch (NAVI10). 619 */ 620 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 621 { 622 u32 f32_cntl = 0, phase_quantum = 0; 623 int i; 624 625 if (amdgpu_sdma_phase_quantum) { 626 unsigned value = amdgpu_sdma_phase_quantum; 627 unsigned unit = 0; 628 629 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 630 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 631 value = (value + 1) >> 1; 632 unit++; 633 } 634 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 635 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 636 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 637 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 638 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 639 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 640 WARN_ONCE(1, 641 "clamping sdma_phase_quantum to %uK clock cycles\n", 642 value << unit); 643 } 644 phase_quantum = 645 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 646 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 647 } 648 649 for (i = 0; i < adev->sdma.num_instances; i++) { 650 if (!amdgpu_sriov_vf(adev)) { 651 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL)); 652 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 653 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 654 } 655 656 if (enable && amdgpu_sdma_phase_quantum) { 657 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM), 658 phase_quantum); 659 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM), 660 phase_quantum); 661 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM), 662 phase_quantum); 663 } 664 if (!amdgpu_sriov_vf(adev)) 665 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl); 666 } 667 668 } 669 670 /** 671 * sdma_v5_0_enable - stop the async dma engines 672 * 673 * @adev: amdgpu_device pointer 674 * @enable: enable/disable the DMA MEs. 675 * 676 * Halt or unhalt the async dma engines (NAVI10). 677 */ 678 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable) 679 { 680 u32 f32_cntl; 681 int i; 682 683 if (!enable) { 684 sdma_v5_0_gfx_stop(adev); 685 sdma_v5_0_rlc_stop(adev); 686 } 687 688 if (amdgpu_sriov_vf(adev)) 689 return; 690 691 for (i = 0; i < adev->sdma.num_instances; i++) { 692 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 693 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 694 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl); 695 } 696 } 697 698 /** 699 * sdma_v5_0_gfx_resume - setup and start the async dma engines 700 * 701 * @adev: amdgpu_device pointer 702 * 703 * Set up the gfx DMA ring buffers and enable them (NAVI10). 704 * Returns 0 for success, error for failure. 705 */ 706 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev) 707 { 708 struct amdgpu_ring *ring; 709 u32 rb_cntl, ib_cntl; 710 u32 rb_bufsz; 711 u32 wb_offset; 712 u32 doorbell; 713 u32 doorbell_offset; 714 u32 temp; 715 u32 wptr_poll_cntl; 716 u64 wptr_gpu_addr; 717 int i, r; 718 719 for (i = 0; i < adev->sdma.num_instances; i++) { 720 ring = &adev->sdma.instance[i].ring; 721 wb_offset = (ring->rptr_offs * 4); 722 723 if (!amdgpu_sriov_vf(adev)) 724 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); 725 726 /* Set ring buffer size in dwords */ 727 rb_bufsz = order_base_2(ring->ring_size / 4); 728 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); 729 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 730 #ifdef __BIG_ENDIAN 731 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 732 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 733 RPTR_WRITEBACK_SWAP_ENABLE, 1); 734 #endif 735 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 736 737 /* Initialize the ring buffer's read and write pointers */ 738 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0); 739 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0); 740 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0); 741 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0); 742 743 /* setup the wptr shadow polling */ 744 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 745 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO), 746 lower_32_bits(wptr_gpu_addr)); 747 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI), 748 upper_32_bits(wptr_gpu_addr)); 749 wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, 750 mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); 751 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 752 SDMA0_GFX_RB_WPTR_POLL_CNTL, 753 F32_POLL_ENABLE, 1); 754 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 755 wptr_poll_cntl); 756 757 /* set the wb address whether it's enabled or not */ 758 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI), 759 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 760 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO), 761 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 762 763 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); 764 765 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), 766 ring->gpu_addr >> 8); 767 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), 768 ring->gpu_addr >> 40); 769 770 ring->wptr = 0; 771 772 /* before programing wptr to a less value, need set minor_ptr_update first */ 773 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1); 774 775 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ 776 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 777 lower_32_bits(ring->wptr) << 2); 778 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 779 upper_32_bits(ring->wptr) << 2); 780 } 781 782 doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL)); 783 doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, 784 mmSDMA0_GFX_DOORBELL_OFFSET)); 785 786 if (ring->use_doorbell) { 787 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); 788 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET, 789 OFFSET, ring->doorbell_index); 790 } else { 791 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); 792 } 793 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell); 794 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), 795 doorbell_offset); 796 797 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, 798 ring->doorbell_index, 20); 799 800 if (amdgpu_sriov_vf(adev)) 801 sdma_v5_0_ring_set_wptr(ring); 802 803 /* set minor_ptr_update to 0 after wptr programed */ 804 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0); 805 806 if (!amdgpu_sriov_vf(adev)) { 807 /* set utc l1 enable flag always to 1 */ 808 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL)); 809 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 810 811 /* enable MCBP */ 812 temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1); 813 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp); 814 815 /* Set up RESP_MODE to non-copy addresses */ 816 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL)); 817 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); 818 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); 819 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp); 820 821 /* program default cache read and write policy */ 822 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE)); 823 /* clean read policy and write policy bits */ 824 temp &= 0xFF0FFF; 825 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14)); 826 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp); 827 } 828 829 if (!amdgpu_sriov_vf(adev)) { 830 /* unhalt engine */ 831 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); 832 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 833 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp); 834 } 835 836 /* enable DMA RB */ 837 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 838 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); 839 840 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); 841 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 842 #ifdef __BIG_ENDIAN 843 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 844 #endif 845 /* enable DMA IBs */ 846 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); 847 848 ring->sched.ready = true; 849 850 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */ 851 sdma_v5_0_ctx_switch_enable(adev, true); 852 sdma_v5_0_enable(adev, true); 853 } 854 855 r = amdgpu_ring_test_helper(ring); 856 if (r) 857 return r; 858 859 if (adev->mman.buffer_funcs_ring == ring) 860 amdgpu_ttm_set_buffer_funcs_status(adev, true); 861 } 862 863 return 0; 864 } 865 866 /** 867 * sdma_v5_0_rlc_resume - setup and start the async dma engines 868 * 869 * @adev: amdgpu_device pointer 870 * 871 * Set up the compute DMA queues and enable them (NAVI10). 872 * Returns 0 for success, error for failure. 873 */ 874 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev) 875 { 876 return 0; 877 } 878 879 /** 880 * sdma_v5_0_load_microcode - load the sDMA ME ucode 881 * 882 * @adev: amdgpu_device pointer 883 * 884 * Loads the sDMA0/1 ucode. 885 * Returns 0 for success, -EINVAL if the ucode is not available. 886 */ 887 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev) 888 { 889 const struct sdma_firmware_header_v1_0 *hdr; 890 const __le32 *fw_data; 891 u32 fw_size; 892 int i, j; 893 894 /* halt the MEs */ 895 sdma_v5_0_enable(adev, false); 896 897 for (i = 0; i < adev->sdma.num_instances; i++) { 898 if (!adev->sdma.instance[i].fw) 899 return -EINVAL; 900 901 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 902 amdgpu_ucode_print_sdma_hdr(&hdr->header); 903 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 904 905 fw_data = (const __le32 *) 906 (adev->sdma.instance[i].fw->data + 907 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 908 909 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0); 910 911 for (j = 0; j < fw_size; j++) { 912 if (amdgpu_emu_mode == 1 && j % 500 == 0) 913 msleep(1); 914 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); 915 } 916 917 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version); 918 } 919 920 return 0; 921 } 922 923 /** 924 * sdma_v5_0_start - setup and start the async dma engines 925 * 926 * @adev: amdgpu_device pointer 927 * 928 * Set up the DMA engines and enable them (NAVI10). 929 * Returns 0 for success, error for failure. 930 */ 931 static int sdma_v5_0_start(struct amdgpu_device *adev) 932 { 933 int r = 0; 934 935 if (amdgpu_sriov_vf(adev)) { 936 sdma_v5_0_ctx_switch_enable(adev, false); 937 sdma_v5_0_enable(adev, false); 938 939 /* set RB registers */ 940 r = sdma_v5_0_gfx_resume(adev); 941 return r; 942 } 943 944 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { 945 r = sdma_v5_0_load_microcode(adev); 946 if (r) 947 return r; 948 } 949 950 /* unhalt the MEs */ 951 sdma_v5_0_enable(adev, true); 952 /* enable sdma ring preemption */ 953 sdma_v5_0_ctx_switch_enable(adev, true); 954 955 /* start the gfx rings and rlc compute queues */ 956 r = sdma_v5_0_gfx_resume(adev); 957 if (r) 958 return r; 959 r = sdma_v5_0_rlc_resume(adev); 960 961 return r; 962 } 963 964 /** 965 * sdma_v5_0_ring_test_ring - simple async dma engine test 966 * 967 * @ring: amdgpu_ring structure holding ring information 968 * 969 * Test the DMA engine by writing using it to write an 970 * value to memory. (NAVI10). 971 * Returns 0 for success, error for failure. 972 */ 973 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring) 974 { 975 struct amdgpu_device *adev = ring->adev; 976 unsigned i; 977 unsigned index; 978 int r; 979 u32 tmp; 980 u64 gpu_addr; 981 982 r = amdgpu_device_wb_get(adev, &index); 983 if (r) { 984 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); 985 return r; 986 } 987 988 gpu_addr = adev->wb.gpu_addr + (index * 4); 989 tmp = 0xCAFEDEAD; 990 adev->wb.wb[index] = cpu_to_le32(tmp); 991 992 r = amdgpu_ring_alloc(ring, 5); 993 if (r) { 994 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); 995 amdgpu_device_wb_free(adev, index); 996 return r; 997 } 998 999 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1000 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1001 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1002 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1003 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1004 amdgpu_ring_write(ring, 0xDEADBEEF); 1005 amdgpu_ring_commit(ring); 1006 1007 for (i = 0; i < adev->usec_timeout; i++) { 1008 tmp = le32_to_cpu(adev->wb.wb[index]); 1009 if (tmp == 0xDEADBEEF) 1010 break; 1011 if (amdgpu_emu_mode == 1) 1012 msleep(1); 1013 else 1014 udelay(1); 1015 } 1016 1017 if (i >= adev->usec_timeout) 1018 r = -ETIMEDOUT; 1019 1020 amdgpu_device_wb_free(adev, index); 1021 1022 return r; 1023 } 1024 1025 /** 1026 * sdma_v5_0_ring_test_ib - test an IB on the DMA engine 1027 * 1028 * @ring: amdgpu_ring structure holding ring information 1029 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1030 * 1031 * Test a simple IB in the DMA ring (NAVI10). 1032 * Returns 0 on success, error on failure. 1033 */ 1034 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1035 { 1036 struct amdgpu_device *adev = ring->adev; 1037 struct amdgpu_ib ib; 1038 struct dma_fence *f = NULL; 1039 unsigned index; 1040 long r; 1041 u32 tmp = 0; 1042 u64 gpu_addr; 1043 1044 r = amdgpu_device_wb_get(adev, &index); 1045 if (r) { 1046 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); 1047 return r; 1048 } 1049 1050 gpu_addr = adev->wb.gpu_addr + (index * 4); 1051 tmp = 0xCAFEDEAD; 1052 adev->wb.wb[index] = cpu_to_le32(tmp); 1053 memset(&ib, 0, sizeof(ib)); 1054 r = amdgpu_ib_get(adev, NULL, 256, 1055 AMDGPU_IB_POOL_DIRECT, &ib); 1056 if (r) { 1057 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); 1058 goto err0; 1059 } 1060 1061 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1062 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1063 ib.ptr[1] = lower_32_bits(gpu_addr); 1064 ib.ptr[2] = upper_32_bits(gpu_addr); 1065 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1066 ib.ptr[4] = 0xDEADBEEF; 1067 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1068 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1069 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1070 ib.length_dw = 8; 1071 1072 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1073 if (r) 1074 goto err1; 1075 1076 r = dma_fence_wait_timeout(f, false, timeout); 1077 if (r == 0) { 1078 DRM_ERROR("amdgpu: IB test timed out\n"); 1079 r = -ETIMEDOUT; 1080 goto err1; 1081 } else if (r < 0) { 1082 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); 1083 goto err1; 1084 } 1085 tmp = le32_to_cpu(adev->wb.wb[index]); 1086 if (tmp == 0xDEADBEEF) 1087 r = 0; 1088 else 1089 r = -EINVAL; 1090 1091 err1: 1092 amdgpu_ib_free(adev, &ib, NULL); 1093 dma_fence_put(f); 1094 err0: 1095 amdgpu_device_wb_free(adev, index); 1096 return r; 1097 } 1098 1099 1100 /** 1101 * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART 1102 * 1103 * @ib: indirect buffer to fill with commands 1104 * @pe: addr of the page entry 1105 * @src: src addr to copy from 1106 * @count: number of page entries to update 1107 * 1108 * Update PTEs by copying them from the GART using sDMA (NAVI10). 1109 */ 1110 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib, 1111 uint64_t pe, uint64_t src, 1112 unsigned count) 1113 { 1114 unsigned bytes = count * 8; 1115 1116 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1117 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1118 ib->ptr[ib->length_dw++] = bytes - 1; 1119 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1120 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1121 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1122 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1123 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1124 1125 } 1126 1127 /** 1128 * sdma_v5_0_vm_write_pte - update PTEs by writing them manually 1129 * 1130 * @ib: indirect buffer to fill with commands 1131 * @pe: addr of the page entry 1132 * @value: dst addr to write into pe 1133 * @count: number of page entries to update 1134 * @incr: increase next addr by incr bytes 1135 * 1136 * Update PTEs by writing them manually using sDMA (NAVI10). 1137 */ 1138 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1139 uint64_t value, unsigned count, 1140 uint32_t incr) 1141 { 1142 unsigned ndw = count * 2; 1143 1144 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1145 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1146 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1147 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1148 ib->ptr[ib->length_dw++] = ndw - 1; 1149 for (; ndw > 0; ndw -= 2) { 1150 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1151 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1152 value += incr; 1153 } 1154 } 1155 1156 /** 1157 * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA 1158 * 1159 * @ib: indirect buffer to fill with commands 1160 * @pe: addr of the page entry 1161 * @addr: dst addr to write into pe 1162 * @count: number of page entries to update 1163 * @incr: increase next addr by incr bytes 1164 * @flags: access flags 1165 * 1166 * Update the page tables using sDMA (NAVI10). 1167 */ 1168 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1169 uint64_t pe, 1170 uint64_t addr, unsigned count, 1171 uint32_t incr, uint64_t flags) 1172 { 1173 /* for physically contiguous pages (vram) */ 1174 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1175 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1176 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1177 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1178 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1179 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1180 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1181 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1182 ib->ptr[ib->length_dw++] = 0; 1183 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1184 } 1185 1186 /** 1187 * sdma_v5_0_ring_pad_ib - pad the IB 1188 * @ring: amdgpu_ring structure holding ring information 1189 * @ib: indirect buffer to fill with padding 1190 * 1191 * Pad the IB with NOPs to a boundary multiple of 8. 1192 */ 1193 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1194 { 1195 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1196 u32 pad_count; 1197 int i; 1198 1199 pad_count = (-ib->length_dw) & 0x7; 1200 for (i = 0; i < pad_count; i++) 1201 if (sdma && sdma->burst_nop && (i == 0)) 1202 ib->ptr[ib->length_dw++] = 1203 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1204 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1205 else 1206 ib->ptr[ib->length_dw++] = 1207 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1208 } 1209 1210 1211 /** 1212 * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline 1213 * 1214 * @ring: amdgpu_ring pointer 1215 * 1216 * Make sure all previous operations are completed (CIK). 1217 */ 1218 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1219 { 1220 uint32_t seq = ring->fence_drv.sync_seq; 1221 uint64_t addr = ring->fence_drv.gpu_addr; 1222 1223 /* wait for idle */ 1224 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1225 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1226 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ 1227 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); 1228 amdgpu_ring_write(ring, addr & 0xfffffffc); 1229 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); 1230 amdgpu_ring_write(ring, seq); /* reference */ 1231 amdgpu_ring_write(ring, 0xffffffff); /* mask */ 1232 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1233 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ 1234 } 1235 1236 1237 /** 1238 * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA 1239 * 1240 * @ring: amdgpu_ring pointer 1241 * @vmid: vmid number to use 1242 * @pd_addr: address 1243 * 1244 * Update the page table base and flush the VM TLB 1245 * using sDMA (NAVI10). 1246 */ 1247 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1248 unsigned vmid, uint64_t pd_addr) 1249 { 1250 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1251 } 1252 1253 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring, 1254 uint32_t reg, uint32_t val) 1255 { 1256 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1257 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1258 amdgpu_ring_write(ring, reg); 1259 amdgpu_ring_write(ring, val); 1260 } 1261 1262 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1263 uint32_t val, uint32_t mask) 1264 { 1265 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 1266 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | 1267 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ 1268 amdgpu_ring_write(ring, reg << 2); 1269 amdgpu_ring_write(ring, 0); 1270 amdgpu_ring_write(ring, val); /* reference */ 1271 amdgpu_ring_write(ring, mask); /* mask */ 1272 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 1273 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); 1274 } 1275 1276 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, 1277 uint32_t reg0, uint32_t reg1, 1278 uint32_t ref, uint32_t mask) 1279 { 1280 amdgpu_ring_emit_wreg(ring, reg0, ref); 1281 /* wait for a cycle to reset vm_inv_eng*_ack */ 1282 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); 1283 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); 1284 } 1285 1286 static int sdma_v5_0_early_init(void *handle) 1287 { 1288 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1289 1290 sdma_v5_0_set_ring_funcs(adev); 1291 sdma_v5_0_set_buffer_funcs(adev); 1292 sdma_v5_0_set_vm_pte_funcs(adev); 1293 sdma_v5_0_set_irq_funcs(adev); 1294 1295 return 0; 1296 } 1297 1298 1299 static int sdma_v5_0_sw_init(void *handle) 1300 { 1301 struct amdgpu_ring *ring; 1302 int r, i; 1303 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1304 1305 /* SDMA trap event */ 1306 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, 1307 SDMA0_5_0__SRCID__SDMA_TRAP, 1308 &adev->sdma.trap_irq); 1309 if (r) 1310 return r; 1311 1312 /* SDMA trap event */ 1313 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, 1314 SDMA1_5_0__SRCID__SDMA_TRAP, 1315 &adev->sdma.trap_irq); 1316 if (r) 1317 return r; 1318 1319 r = sdma_v5_0_init_microcode(adev); 1320 if (r) { 1321 DRM_ERROR("Failed to load sdma firmware!\n"); 1322 return r; 1323 } 1324 1325 for (i = 0; i < adev->sdma.num_instances; i++) { 1326 ring = &adev->sdma.instance[i].ring; 1327 ring->ring_obj = NULL; 1328 ring->use_doorbell = true; 1329 1330 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1331 ring->use_doorbell?"true":"false"); 1332 1333 ring->doorbell_index = (i == 0) ? 1334 (adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset 1335 : (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset 1336 1337 sprintf(ring->name, "sdma%d", i); 1338 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1339 (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 : 1340 AMDGPU_SDMA_IRQ_INSTANCE1, 1341 AMDGPU_RING_PRIO_DEFAULT, NULL); 1342 if (r) 1343 return r; 1344 } 1345 1346 return r; 1347 } 1348 1349 static int sdma_v5_0_sw_fini(void *handle) 1350 { 1351 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1352 int i; 1353 1354 for (i = 0; i < adev->sdma.num_instances; i++) { 1355 release_firmware(adev->sdma.instance[i].fw); 1356 adev->sdma.instance[i].fw = NULL; 1357 1358 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int sdma_v5_0_hw_init(void *handle) 1365 { 1366 int r; 1367 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1368 1369 sdma_v5_0_init_golden_registers(adev); 1370 1371 r = sdma_v5_0_start(adev); 1372 1373 return r; 1374 } 1375 1376 static int sdma_v5_0_hw_fini(void *handle) 1377 { 1378 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1379 1380 if (amdgpu_sriov_vf(adev)) 1381 return 0; 1382 1383 sdma_v5_0_ctx_switch_enable(adev, false); 1384 sdma_v5_0_enable(adev, false); 1385 1386 return 0; 1387 } 1388 1389 static int sdma_v5_0_suspend(void *handle) 1390 { 1391 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1392 1393 return sdma_v5_0_hw_fini(adev); 1394 } 1395 1396 static int sdma_v5_0_resume(void *handle) 1397 { 1398 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1399 1400 return sdma_v5_0_hw_init(adev); 1401 } 1402 1403 static bool sdma_v5_0_is_idle(void *handle) 1404 { 1405 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1406 u32 i; 1407 1408 for (i = 0; i < adev->sdma.num_instances; i++) { 1409 u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG)); 1410 1411 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1412 return false; 1413 } 1414 1415 return true; 1416 } 1417 1418 static int sdma_v5_0_wait_for_idle(void *handle) 1419 { 1420 unsigned i; 1421 u32 sdma0, sdma1; 1422 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1423 1424 for (i = 0; i < adev->usec_timeout; i++) { 1425 sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG)); 1426 sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG)); 1427 1428 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) 1429 return 0; 1430 udelay(1); 1431 } 1432 return -ETIMEDOUT; 1433 } 1434 1435 static int sdma_v5_0_soft_reset(void *handle) 1436 { 1437 /* todo */ 1438 1439 return 0; 1440 } 1441 1442 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring) 1443 { 1444 int i, r = 0; 1445 struct amdgpu_device *adev = ring->adev; 1446 u32 index = 0; 1447 u64 sdma_gfx_preempt; 1448 1449 amdgpu_sdma_get_index_from_ring(ring, &index); 1450 if (index == 0) 1451 sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT; 1452 else 1453 sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT; 1454 1455 /* assert preemption condition */ 1456 amdgpu_ring_set_preempt_cond_exec(ring, false); 1457 1458 /* emit the trailing fence */ 1459 ring->trail_seq += 1; 1460 amdgpu_ring_alloc(ring, 10); 1461 sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr, 1462 ring->trail_seq, 0); 1463 amdgpu_ring_commit(ring); 1464 1465 /* assert IB preemption */ 1466 WREG32(sdma_gfx_preempt, 1); 1467 1468 /* poll the trailing fence */ 1469 for (i = 0; i < adev->usec_timeout; i++) { 1470 if (ring->trail_seq == 1471 le32_to_cpu(*(ring->trail_fence_cpu_addr))) 1472 break; 1473 udelay(1); 1474 } 1475 1476 if (i >= adev->usec_timeout) { 1477 r = -EINVAL; 1478 DRM_ERROR("ring %d failed to be preempted\n", ring->idx); 1479 } 1480 1481 /* deassert IB preemption */ 1482 WREG32(sdma_gfx_preempt, 0); 1483 1484 /* deassert the preemption condition */ 1485 amdgpu_ring_set_preempt_cond_exec(ring, true); 1486 return r; 1487 } 1488 1489 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev, 1490 struct amdgpu_irq_src *source, 1491 unsigned type, 1492 enum amdgpu_interrupt_state state) 1493 { 1494 u32 sdma_cntl; 1495 1496 if (!amdgpu_sriov_vf(adev)) { 1497 u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ? 1498 sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) : 1499 sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL); 1500 1501 sdma_cntl = RREG32(reg_offset); 1502 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1503 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1504 WREG32(reg_offset, sdma_cntl); 1505 } 1506 1507 return 0; 1508 } 1509 1510 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev, 1511 struct amdgpu_irq_src *source, 1512 struct amdgpu_iv_entry *entry) 1513 { 1514 DRM_DEBUG("IH: SDMA trap\n"); 1515 switch (entry->client_id) { 1516 case SOC15_IH_CLIENTID_SDMA0: 1517 switch (entry->ring_id) { 1518 case 0: 1519 amdgpu_fence_process(&adev->sdma.instance[0].ring); 1520 break; 1521 case 1: 1522 /* XXX compute */ 1523 break; 1524 case 2: 1525 /* XXX compute */ 1526 break; 1527 case 3: 1528 /* XXX page queue*/ 1529 break; 1530 } 1531 break; 1532 case SOC15_IH_CLIENTID_SDMA1: 1533 switch (entry->ring_id) { 1534 case 0: 1535 amdgpu_fence_process(&adev->sdma.instance[1].ring); 1536 break; 1537 case 1: 1538 /* XXX compute */ 1539 break; 1540 case 2: 1541 /* XXX compute */ 1542 break; 1543 case 3: 1544 /* XXX page queue*/ 1545 break; 1546 } 1547 break; 1548 } 1549 return 0; 1550 } 1551 1552 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev, 1553 struct amdgpu_irq_src *source, 1554 struct amdgpu_iv_entry *entry) 1555 { 1556 return 0; 1557 } 1558 1559 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, 1560 bool enable) 1561 { 1562 uint32_t data, def; 1563 int i; 1564 1565 for (i = 0; i < adev->sdma.num_instances; i++) { 1566 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 1567 /* Enable sdma clock gating */ 1568 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1569 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1570 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1571 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1572 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1573 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1574 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1575 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1576 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1577 if (def != data) 1578 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1579 } else { 1580 /* Disable sdma clock gating */ 1581 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); 1582 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 1583 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 1584 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1585 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1586 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1587 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1588 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1589 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1590 if (def != data) 1591 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); 1592 } 1593 } 1594 } 1595 1596 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev, 1597 bool enable) 1598 { 1599 uint32_t data, def; 1600 int i; 1601 1602 for (i = 0; i < adev->sdma.num_instances; i++) { 1603 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 1604 /* Enable sdma mem light sleep */ 1605 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1606 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1607 if (def != data) 1608 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1609 1610 } else { 1611 /* Disable sdma mem light sleep */ 1612 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); 1613 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1614 if (def != data) 1615 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); 1616 1617 } 1618 } 1619 } 1620 1621 static int sdma_v5_0_set_clockgating_state(void *handle, 1622 enum amd_clockgating_state state) 1623 { 1624 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1625 1626 if (amdgpu_sriov_vf(adev)) 1627 return 0; 1628 1629 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1630 case IP_VERSION(5, 0, 0): 1631 case IP_VERSION(5, 0, 2): 1632 case IP_VERSION(5, 0, 5): 1633 sdma_v5_0_update_medium_grain_clock_gating(adev, 1634 state == AMD_CG_STATE_GATE); 1635 sdma_v5_0_update_medium_grain_light_sleep(adev, 1636 state == AMD_CG_STATE_GATE); 1637 break; 1638 default: 1639 break; 1640 } 1641 1642 return 0; 1643 } 1644 1645 static int sdma_v5_0_set_powergating_state(void *handle, 1646 enum amd_powergating_state state) 1647 { 1648 return 0; 1649 } 1650 1651 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags) 1652 { 1653 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1654 int data; 1655 1656 if (amdgpu_sriov_vf(adev)) 1657 *flags = 0; 1658 1659 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1660 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL)); 1661 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 1662 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1663 1664 /* AMD_CG_SUPPORT_SDMA_LS */ 1665 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL)); 1666 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1667 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1668 } 1669 1670 const struct amd_ip_funcs sdma_v5_0_ip_funcs = { 1671 .name = "sdma_v5_0", 1672 .early_init = sdma_v5_0_early_init, 1673 .late_init = NULL, 1674 .sw_init = sdma_v5_0_sw_init, 1675 .sw_fini = sdma_v5_0_sw_fini, 1676 .hw_init = sdma_v5_0_hw_init, 1677 .hw_fini = sdma_v5_0_hw_fini, 1678 .suspend = sdma_v5_0_suspend, 1679 .resume = sdma_v5_0_resume, 1680 .is_idle = sdma_v5_0_is_idle, 1681 .wait_for_idle = sdma_v5_0_wait_for_idle, 1682 .soft_reset = sdma_v5_0_soft_reset, 1683 .set_clockgating_state = sdma_v5_0_set_clockgating_state, 1684 .set_powergating_state = sdma_v5_0_set_powergating_state, 1685 .get_clockgating_state = sdma_v5_0_get_clockgating_state, 1686 }; 1687 1688 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = { 1689 .type = AMDGPU_RING_TYPE_SDMA, 1690 .align_mask = 0xf, 1691 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1692 .support_64bit_ptrs = true, 1693 .secure_submission_supported = true, 1694 .vmhub = AMDGPU_GFXHUB_0, 1695 .get_rptr = sdma_v5_0_ring_get_rptr, 1696 .get_wptr = sdma_v5_0_ring_get_wptr, 1697 .set_wptr = sdma_v5_0_ring_set_wptr, 1698 .emit_frame_size = 1699 5 + /* sdma_v5_0_ring_init_cond_exec */ 1700 6 + /* sdma_v5_0_ring_emit_hdp_flush */ 1701 3 + /* hdp_invalidate */ 1702 6 + /* sdma_v5_0_ring_emit_pipeline_sync */ 1703 /* sdma_v5_0_ring_emit_vm_flush */ 1704 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1705 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 + 1706 10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */ 1707 .emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */ 1708 .emit_ib = sdma_v5_0_ring_emit_ib, 1709 .emit_mem_sync = sdma_v5_0_ring_emit_mem_sync, 1710 .emit_fence = sdma_v5_0_ring_emit_fence, 1711 .emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync, 1712 .emit_vm_flush = sdma_v5_0_ring_emit_vm_flush, 1713 .emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush, 1714 .test_ring = sdma_v5_0_ring_test_ring, 1715 .test_ib = sdma_v5_0_ring_test_ib, 1716 .insert_nop = sdma_v5_0_ring_insert_nop, 1717 .pad_ib = sdma_v5_0_ring_pad_ib, 1718 .emit_wreg = sdma_v5_0_ring_emit_wreg, 1719 .emit_reg_wait = sdma_v5_0_ring_emit_reg_wait, 1720 .emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait, 1721 .init_cond_exec = sdma_v5_0_ring_init_cond_exec, 1722 .patch_cond_exec = sdma_v5_0_ring_patch_cond_exec, 1723 .preempt_ib = sdma_v5_0_ring_preempt_ib, 1724 }; 1725 1726 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev) 1727 { 1728 int i; 1729 1730 for (i = 0; i < adev->sdma.num_instances; i++) { 1731 adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs; 1732 adev->sdma.instance[i].ring.me = i; 1733 } 1734 } 1735 1736 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = { 1737 .set = sdma_v5_0_set_trap_irq_state, 1738 .process = sdma_v5_0_process_trap_irq, 1739 }; 1740 1741 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = { 1742 .process = sdma_v5_0_process_illegal_inst_irq, 1743 }; 1744 1745 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev) 1746 { 1747 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + 1748 adev->sdma.num_instances; 1749 adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs; 1750 adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs; 1751 } 1752 1753 /** 1754 * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine 1755 * 1756 * @ib: indirect buffer to copy to 1757 * @src_offset: src GPU address 1758 * @dst_offset: dst GPU address 1759 * @byte_count: number of bytes to xfer 1760 * @tmz: if a secure copy should be used 1761 * 1762 * Copy GPU buffers using the DMA engine (NAVI10). 1763 * Used by the amdgpu ttm implementation to move pages if 1764 * registered as the asic copy callback. 1765 */ 1766 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib, 1767 uint64_t src_offset, 1768 uint64_t dst_offset, 1769 uint32_t byte_count, 1770 bool tmz) 1771 { 1772 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1773 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1774 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 1775 ib->ptr[ib->length_dw++] = byte_count - 1; 1776 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1777 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1778 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1779 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1780 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1781 } 1782 1783 /** 1784 * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine 1785 * 1786 * @ib: indirect buffer to fill 1787 * @src_data: value to write to buffer 1788 * @dst_offset: dst GPU address 1789 * @byte_count: number of bytes to xfer 1790 * 1791 * Fill GPU buffers using the DMA engine (NAVI10). 1792 */ 1793 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib, 1794 uint32_t src_data, 1795 uint64_t dst_offset, 1796 uint32_t byte_count) 1797 { 1798 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 1799 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1800 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1801 ib->ptr[ib->length_dw++] = src_data; 1802 ib->ptr[ib->length_dw++] = byte_count - 1; 1803 } 1804 1805 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = { 1806 .copy_max_bytes = 0x400000, 1807 .copy_num_dw = 7, 1808 .emit_copy_buffer = sdma_v5_0_emit_copy_buffer, 1809 1810 .fill_max_bytes = 0x400000, 1811 .fill_num_dw = 5, 1812 .emit_fill_buffer = sdma_v5_0_emit_fill_buffer, 1813 }; 1814 1815 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev) 1816 { 1817 if (adev->mman.buffer_funcs == NULL) { 1818 adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs; 1819 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 1820 } 1821 } 1822 1823 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = { 1824 .copy_pte_num_dw = 7, 1825 .copy_pte = sdma_v5_0_vm_copy_pte, 1826 .write_pte = sdma_v5_0_vm_write_pte, 1827 .set_pte_pde = sdma_v5_0_vm_set_pte_pde, 1828 }; 1829 1830 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev) 1831 { 1832 unsigned i; 1833 1834 if (adev->vm_manager.vm_pte_funcs == NULL) { 1835 adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs; 1836 for (i = 0; i < adev->sdma.num_instances; i++) { 1837 adev->vm_manager.vm_pte_scheds[i] = 1838 &adev->sdma.instance[i].ring.sched; 1839 } 1840 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 1841 } 1842 } 1843 1844 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = { 1845 .type = AMD_IP_BLOCK_TYPE_SDMA, 1846 .major = 5, 1847 .minor = 0, 1848 .rev = 0, 1849 .funcs = &sdma_v5_0_ip_funcs, 1850 }; 1851