1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53 
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
56 
57 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
58 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
59 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
60 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
61 
62 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
63 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
64 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
65 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
66 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
67 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
68 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
69 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
75 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
76 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
77 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
79 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
80 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
81 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
82 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
88 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
89 };
90 
91 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
94 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
95 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
96 };
97 
98 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
103 };
104 
105 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
109 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
111 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
112 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
117 };
118 
119 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
121 };
122 
123 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
124 {
125 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
129 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
154 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
155 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
156 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
157 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
159 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
161 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
163 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
165 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
167 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
180 };
181 
182 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
183 {
184 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
185 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
186 };
187 
188 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
189 {
190 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
191 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
192 };
193 
194 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
195 		u32 instance, u32 offset)
196 {
197 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
198 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
199 }
200 
201 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
202 {
203 	switch (adev->asic_type) {
204 	case CHIP_VEGA10:
205 		soc15_program_register_sequence(adev,
206 						 golden_settings_sdma_4,
207 						 ARRAY_SIZE(golden_settings_sdma_4));
208 		soc15_program_register_sequence(adev,
209 						 golden_settings_sdma_vg10,
210 						 ARRAY_SIZE(golden_settings_sdma_vg10));
211 		break;
212 	case CHIP_VEGA12:
213 		soc15_program_register_sequence(adev,
214 						golden_settings_sdma_4,
215 						ARRAY_SIZE(golden_settings_sdma_4));
216 		soc15_program_register_sequence(adev,
217 						golden_settings_sdma_vg12,
218 						ARRAY_SIZE(golden_settings_sdma_vg12));
219 		break;
220 	case CHIP_VEGA20:
221 		soc15_program_register_sequence(adev,
222 						golden_settings_sdma0_4_2_init,
223 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
224 		soc15_program_register_sequence(adev,
225 						golden_settings_sdma0_4_2,
226 						ARRAY_SIZE(golden_settings_sdma0_4_2));
227 		soc15_program_register_sequence(adev,
228 						golden_settings_sdma1_4_2,
229 						ARRAY_SIZE(golden_settings_sdma1_4_2));
230 		break;
231 	case CHIP_RAVEN:
232 		soc15_program_register_sequence(adev,
233 						golden_settings_sdma_4_1,
234 						ARRAY_SIZE(golden_settings_sdma_4_1));
235 		if (adev->rev_id >= 8)
236 			soc15_program_register_sequence(adev,
237 							golden_settings_sdma_rv2,
238 							ARRAY_SIZE(golden_settings_sdma_rv2));
239 		else
240 			soc15_program_register_sequence(adev,
241 							golden_settings_sdma_rv1,
242 							ARRAY_SIZE(golden_settings_sdma_rv1));
243 		break;
244 	default:
245 		break;
246 	}
247 }
248 
249 /**
250  * sdma_v4_0_init_microcode - load ucode images from disk
251  *
252  * @adev: amdgpu_device pointer
253  *
254  * Use the firmware interface to load the ucode images into
255  * the driver (not loaded into hw).
256  * Returns 0 on success, error on failure.
257  */
258 
259 // emulation only, won't work on real chip
260 // vega10 real chip need to use PSP to load firmware
261 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
262 {
263 	const char *chip_name;
264 	char fw_name[30];
265 	int err = 0, i;
266 	struct amdgpu_firmware_info *info = NULL;
267 	const struct common_firmware_header *header = NULL;
268 	const struct sdma_firmware_header_v1_0 *hdr;
269 
270 	DRM_DEBUG("\n");
271 
272 	switch (adev->asic_type) {
273 	case CHIP_VEGA10:
274 		chip_name = "vega10";
275 		break;
276 	case CHIP_VEGA12:
277 		chip_name = "vega12";
278 		break;
279 	case CHIP_VEGA20:
280 		chip_name = "vega20";
281 		break;
282 	case CHIP_RAVEN:
283 		if (adev->rev_id >= 8)
284 			chip_name = "raven2";
285 		else if (adev->pdev->device == 0x15d8)
286 			chip_name = "picasso";
287 		else
288 			chip_name = "raven";
289 		break;
290 	default:
291 		BUG();
292 	}
293 
294 	for (i = 0; i < adev->sdma.num_instances; i++) {
295 		if (i == 0)
296 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
297 		else
298 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
299 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
300 		if (err)
301 			goto out;
302 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
303 		if (err)
304 			goto out;
305 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
306 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
307 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
308 		if (adev->sdma.instance[i].feature_version >= 20)
309 			adev->sdma.instance[i].burst_nop = true;
310 		DRM_DEBUG("psp_load == '%s'\n",
311 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
312 
313 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
314 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
315 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
316 			info->fw = adev->sdma.instance[i].fw;
317 			header = (const struct common_firmware_header *)info->fw->data;
318 			adev->firmware.fw_size +=
319 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
320 		}
321 	}
322 out:
323 	if (err) {
324 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
325 		for (i = 0; i < adev->sdma.num_instances; i++) {
326 			release_firmware(adev->sdma.instance[i].fw);
327 			adev->sdma.instance[i].fw = NULL;
328 		}
329 	}
330 	return err;
331 }
332 
333 /**
334  * sdma_v4_0_ring_get_rptr - get the current read pointer
335  *
336  * @ring: amdgpu ring pointer
337  *
338  * Get the current rptr from the hardware (VEGA10+).
339  */
340 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
341 {
342 	u64 *rptr;
343 
344 	/* XXX check if swapping is necessary on BE */
345 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
346 
347 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
348 	return ((*rptr) >> 2);
349 }
350 
351 /**
352  * sdma_v4_0_ring_get_wptr - get the current write pointer
353  *
354  * @ring: amdgpu ring pointer
355  *
356  * Get the current wptr from the hardware (VEGA10+).
357  */
358 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
359 {
360 	struct amdgpu_device *adev = ring->adev;
361 	u64 wptr;
362 
363 	if (ring->use_doorbell) {
364 		/* XXX check if swapping is necessary on BE */
365 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
366 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
367 	} else {
368 		u32 lowbit, highbit;
369 
370 		lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)) >> 2;
371 		highbit = RREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
372 
373 		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
374 				ring->me, highbit, lowbit);
375 		wptr = highbit;
376 		wptr = wptr << 32;
377 		wptr |= lowbit;
378 	}
379 
380 	return wptr >> 2;
381 }
382 
383 /**
384  * sdma_v4_0_ring_set_wptr - commit the write pointer
385  *
386  * @ring: amdgpu ring pointer
387  *
388  * Write the wptr back to the hardware (VEGA10+).
389  */
390 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
391 {
392 	struct amdgpu_device *adev = ring->adev;
393 
394 	DRM_DEBUG("Setting write pointer\n");
395 	if (ring->use_doorbell) {
396 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
397 
398 		DRM_DEBUG("Using doorbell -- "
399 				"wptr_offs == 0x%08x "
400 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
401 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
402 				ring->wptr_offs,
403 				lower_32_bits(ring->wptr << 2),
404 				upper_32_bits(ring->wptr << 2));
405 		/* XXX check if swapping is necessary on BE */
406 		WRITE_ONCE(*wb, (ring->wptr << 2));
407 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
408 				ring->doorbell_index, ring->wptr << 2);
409 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
410 	} else {
411 		DRM_DEBUG("Not using doorbell -- "
412 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
413 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
414 				ring->me,
415 				lower_32_bits(ring->wptr << 2),
416 				ring->me,
417 				upper_32_bits(ring->wptr << 2));
418 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
419 		WREG32(sdma_v4_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
420 	}
421 }
422 
423 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
424 {
425 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
426 	int i;
427 
428 	for (i = 0; i < count; i++)
429 		if (sdma && sdma->burst_nop && (i == 0))
430 			amdgpu_ring_write(ring, ring->funcs->nop |
431 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
432 		else
433 			amdgpu_ring_write(ring, ring->funcs->nop);
434 }
435 
436 /**
437  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
438  *
439  * @ring: amdgpu ring pointer
440  * @ib: IB object to schedule
441  *
442  * Schedule an IB in the DMA ring (VEGA10).
443  */
444 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
445 					struct amdgpu_ib *ib,
446 					unsigned vmid, bool ctx_switch)
447 {
448 	/* IB packet must end on a 8 DW boundary */
449 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
450 
451 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
452 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
453 	/* base must be 32 byte aligned */
454 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
455 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
456 	amdgpu_ring_write(ring, ib->length_dw);
457 	amdgpu_ring_write(ring, 0);
458 	amdgpu_ring_write(ring, 0);
459 
460 }
461 
462 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
463 				   int mem_space, int hdp,
464 				   uint32_t addr0, uint32_t addr1,
465 				   uint32_t ref, uint32_t mask,
466 				   uint32_t inv)
467 {
468 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
469 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
470 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
471 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
472 	if (mem_space) {
473 		/* memory */
474 		amdgpu_ring_write(ring, addr0);
475 		amdgpu_ring_write(ring, addr1);
476 	} else {
477 		/* registers */
478 		amdgpu_ring_write(ring, addr0 << 2);
479 		amdgpu_ring_write(ring, addr1 << 2);
480 	}
481 	amdgpu_ring_write(ring, ref); /* reference */
482 	amdgpu_ring_write(ring, mask); /* mask */
483 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
484 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
485 }
486 
487 /**
488  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
489  *
490  * @ring: amdgpu ring pointer
491  *
492  * Emit an hdp flush packet on the requested DMA ring.
493  */
494 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
495 {
496 	struct amdgpu_device *adev = ring->adev;
497 	u32 ref_and_mask = 0;
498 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
499 
500 	if (ring->me == 0)
501 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
502 	else
503 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
504 
505 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
506 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
507 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
508 			       ref_and_mask, ref_and_mask, 10);
509 }
510 
511 /**
512  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
513  *
514  * @ring: amdgpu ring pointer
515  * @fence: amdgpu fence object
516  *
517  * Add a DMA fence packet to the ring to write
518  * the fence seq number and DMA trap packet to generate
519  * an interrupt if needed (VEGA10).
520  */
521 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
522 				      unsigned flags)
523 {
524 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
525 	/* write the fence */
526 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
527 	/* zero in first two bits */
528 	BUG_ON(addr & 0x3);
529 	amdgpu_ring_write(ring, lower_32_bits(addr));
530 	amdgpu_ring_write(ring, upper_32_bits(addr));
531 	amdgpu_ring_write(ring, lower_32_bits(seq));
532 
533 	/* optionally write high bits as well */
534 	if (write64bit) {
535 		addr += 4;
536 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
537 		/* zero in first two bits */
538 		BUG_ON(addr & 0x3);
539 		amdgpu_ring_write(ring, lower_32_bits(addr));
540 		amdgpu_ring_write(ring, upper_32_bits(addr));
541 		amdgpu_ring_write(ring, upper_32_bits(seq));
542 	}
543 
544 	/* generate an interrupt */
545 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
546 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
547 }
548 
549 
550 /**
551  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
552  *
553  * @adev: amdgpu_device pointer
554  *
555  * Stop the gfx async dma ring buffers (VEGA10).
556  */
557 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
558 {
559 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
560 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
561 	u32 rb_cntl, ib_cntl;
562 	int i;
563 
564 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
565 	    (adev->mman.buffer_funcs_ring == sdma1))
566 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
567 
568 	for (i = 0; i < adev->sdma.num_instances; i++) {
569 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
570 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
571 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
572 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
573 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
574 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
575 	}
576 
577 	sdma0->ready = false;
578 	sdma1->ready = false;
579 }
580 
581 /**
582  * sdma_v4_0_rlc_stop - stop the compute async dma engines
583  *
584  * @adev: amdgpu_device pointer
585  *
586  * Stop the compute async dma queues (VEGA10).
587  */
588 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
589 {
590 	/* XXX todo */
591 }
592 
593 /**
594  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
595  *
596  * @adev: amdgpu_device pointer
597  * @enable: enable/disable the DMA MEs context switch.
598  *
599  * Halt or unhalt the async dma engines context switch (VEGA10).
600  */
601 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
602 {
603 	u32 f32_cntl, phase_quantum = 0;
604 	int i;
605 
606 	if (amdgpu_sdma_phase_quantum) {
607 		unsigned value = amdgpu_sdma_phase_quantum;
608 		unsigned unit = 0;
609 
610 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
611 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
612 			value = (value + 1) >> 1;
613 			unit++;
614 		}
615 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
616 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
617 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
618 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
619 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
620 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
621 			WARN_ONCE(1,
622 			"clamping sdma_phase_quantum to %uK clock cycles\n",
623 				  value << unit);
624 		}
625 		phase_quantum =
626 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
627 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
628 	}
629 
630 	for (i = 0; i < adev->sdma.num_instances; i++) {
631 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
632 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
633 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
634 		if (enable && amdgpu_sdma_phase_quantum) {
635 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
636 			       phase_quantum);
637 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
638 			       phase_quantum);
639 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
640 			       phase_quantum);
641 		}
642 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
643 	}
644 
645 }
646 
647 /**
648  * sdma_v4_0_enable - stop the async dma engines
649  *
650  * @adev: amdgpu_device pointer
651  * @enable: enable/disable the DMA MEs.
652  *
653  * Halt or unhalt the async dma engines (VEGA10).
654  */
655 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
656 {
657 	u32 f32_cntl;
658 	int i;
659 
660 	if (enable == false) {
661 		sdma_v4_0_gfx_stop(adev);
662 		sdma_v4_0_rlc_stop(adev);
663 	}
664 
665 	for (i = 0; i < adev->sdma.num_instances; i++) {
666 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
667 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
668 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
669 	}
670 }
671 
672 /**
673  * sdma_v4_0_gfx_resume - setup and start the async dma engines
674  *
675  * @adev: amdgpu_device pointer
676  *
677  * Set up the gfx DMA ring buffers and enable them (VEGA10).
678  * Returns 0 for success, error for failure.
679  */
680 static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
681 {
682 	struct amdgpu_ring *ring;
683 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
684 	u32 rb_bufsz;
685 	u32 wb_offset;
686 	u32 doorbell;
687 	u32 doorbell_offset;
688 	u32 temp;
689 	u64 wptr_gpu_addr;
690 	int i, r;
691 
692 	for (i = 0; i < adev->sdma.num_instances; i++) {
693 		ring = &adev->sdma.instance[i].ring;
694 		wb_offset = (ring->rptr_offs * 4);
695 
696 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
697 
698 		/* Set ring buffer size in dwords */
699 		rb_bufsz = order_base_2(ring->ring_size / 4);
700 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
701 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
702 #ifdef __BIG_ENDIAN
703 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
704 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
705 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
706 #endif
707 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
708 
709 		/* Initialize the ring buffer's read and write pointers */
710 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
711 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
712 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
713 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
714 
715 		/* set the wb address whether it's enabled or not */
716 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
717 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
718 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
719 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
720 
721 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
722 
723 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
724 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
725 
726 		ring->wptr = 0;
727 
728 		/* before programing wptr to a less value, need set minor_ptr_update first */
729 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
730 
731 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
732 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
733 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
734 		}
735 
736 		doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
737 		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
738 
739 		if (ring->use_doorbell) {
740 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
741 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
742 					OFFSET, ring->doorbell_index);
743 		} else {
744 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
745 		}
746 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
747 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
748 		adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
749 						      ring->doorbell_index);
750 
751 		if (amdgpu_sriov_vf(adev))
752 			sdma_v4_0_ring_set_wptr(ring);
753 
754 		/* set minor_ptr_update to 0 after wptr programed */
755 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
756 
757 		/* set utc l1 enable flag always to 1 */
758 		temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
759 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
760 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
761 
762 		if (!amdgpu_sriov_vf(adev)) {
763 			/* unhalt engine */
764 			temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
765 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
766 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
767 		}
768 
769 		/* setup the wptr shadow polling */
770 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
771 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
772 		       lower_32_bits(wptr_gpu_addr));
773 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
774 		       upper_32_bits(wptr_gpu_addr));
775 		wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
776 		if (amdgpu_sriov_vf(adev))
777 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
778 		else
779 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
780 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
781 
782 		/* enable DMA RB */
783 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
784 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
785 
786 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
787 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
788 #ifdef __BIG_ENDIAN
789 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
790 #endif
791 		/* enable DMA IBs */
792 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
793 
794 		ring->ready = true;
795 
796 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
797 			sdma_v4_0_ctx_switch_enable(adev, true);
798 			sdma_v4_0_enable(adev, true);
799 		}
800 
801 		r = amdgpu_ring_test_ring(ring);
802 		if (r) {
803 			ring->ready = false;
804 			return r;
805 		}
806 
807 		if (adev->mman.buffer_funcs_ring == ring)
808 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
809 
810 	}
811 
812 	return 0;
813 }
814 
815 static void
816 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
817 {
818 	uint32_t def, data;
819 
820 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
821 		/* disable idle interrupt */
822 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
823 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
824 
825 		if (data != def)
826 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
827 	} else {
828 		/* disable idle interrupt */
829 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
830 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
831 		if (data != def)
832 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
833 	}
834 }
835 
836 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
837 {
838 	uint32_t def, data;
839 
840 	/* Enable HW based PG. */
841 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
842 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
843 	if (data != def)
844 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
845 
846 	/* enable interrupt */
847 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
848 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
849 	if (data != def)
850 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
851 
852 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
853 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
854 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
855 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
856 	/* Configure switch time for hysteresis purpose. Use default right now */
857 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
858 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
859 	if(data != def)
860 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
861 }
862 
863 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
864 {
865 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
866 		return;
867 
868 	switch (adev->asic_type) {
869 	case CHIP_RAVEN:
870 		sdma_v4_1_init_power_gating(adev);
871 		sdma_v4_1_update_power_gating(adev, true);
872 		break;
873 	default:
874 		break;
875 	}
876 }
877 
878 /**
879  * sdma_v4_0_rlc_resume - setup and start the async dma engines
880  *
881  * @adev: amdgpu_device pointer
882  *
883  * Set up the compute DMA queues and enable them (VEGA10).
884  * Returns 0 for success, error for failure.
885  */
886 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
887 {
888 	sdma_v4_0_init_pg(adev);
889 
890 	return 0;
891 }
892 
893 /**
894  * sdma_v4_0_load_microcode - load the sDMA ME ucode
895  *
896  * @adev: amdgpu_device pointer
897  *
898  * Loads the sDMA0/1 ucode.
899  * Returns 0 for success, -EINVAL if the ucode is not available.
900  */
901 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
902 {
903 	const struct sdma_firmware_header_v1_0 *hdr;
904 	const __le32 *fw_data;
905 	u32 fw_size;
906 	int i, j;
907 
908 	/* halt the MEs */
909 	sdma_v4_0_enable(adev, false);
910 
911 	for (i = 0; i < adev->sdma.num_instances; i++) {
912 		if (!adev->sdma.instance[i].fw)
913 			return -EINVAL;
914 
915 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
916 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
917 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
918 
919 		fw_data = (const __le32 *)
920 			(adev->sdma.instance[i].fw->data +
921 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
922 
923 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
924 
925 		for (j = 0; j < fw_size; j++)
926 			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
927 
928 		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  * sdma_v4_0_start - setup and start the async dma engines
936  *
937  * @adev: amdgpu_device pointer
938  *
939  * Set up the DMA engines and enable them (VEGA10).
940  * Returns 0 for success, error for failure.
941  */
942 static int sdma_v4_0_start(struct amdgpu_device *adev)
943 {
944 	int r = 0;
945 
946 	if (amdgpu_sriov_vf(adev)) {
947 		sdma_v4_0_ctx_switch_enable(adev, false);
948 		sdma_v4_0_enable(adev, false);
949 
950 		/* set RB registers */
951 		r = sdma_v4_0_gfx_resume(adev);
952 		return r;
953 	}
954 
955 	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
956 		r = sdma_v4_0_load_microcode(adev);
957 		if (r)
958 			return r;
959 	}
960 
961 	/* unhalt the MEs */
962 	sdma_v4_0_enable(adev, true);
963 	/* enable sdma ring preemption */
964 	sdma_v4_0_ctx_switch_enable(adev, true);
965 
966 	/* start the gfx rings and rlc compute queues */
967 	r = sdma_v4_0_gfx_resume(adev);
968 	if (r)
969 		return r;
970 	r = sdma_v4_0_rlc_resume(adev);
971 
972 	return r;
973 }
974 
975 /**
976  * sdma_v4_0_ring_test_ring - simple async dma engine test
977  *
978  * @ring: amdgpu_ring structure holding ring information
979  *
980  * Test the DMA engine by writing using it to write an
981  * value to memory. (VEGA10).
982  * Returns 0 for success, error for failure.
983  */
984 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
985 {
986 	struct amdgpu_device *adev = ring->adev;
987 	unsigned i;
988 	unsigned index;
989 	int r;
990 	u32 tmp;
991 	u64 gpu_addr;
992 
993 	r = amdgpu_device_wb_get(adev, &index);
994 	if (r) {
995 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
996 		return r;
997 	}
998 
999 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1000 	tmp = 0xCAFEDEAD;
1001 	adev->wb.wb[index] = cpu_to_le32(tmp);
1002 
1003 	r = amdgpu_ring_alloc(ring, 5);
1004 	if (r) {
1005 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1006 		amdgpu_device_wb_free(adev, index);
1007 		return r;
1008 	}
1009 
1010 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1011 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1012 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1013 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1014 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1015 	amdgpu_ring_write(ring, 0xDEADBEEF);
1016 	amdgpu_ring_commit(ring);
1017 
1018 	for (i = 0; i < adev->usec_timeout; i++) {
1019 		tmp = le32_to_cpu(adev->wb.wb[index]);
1020 		if (tmp == 0xDEADBEEF)
1021 			break;
1022 		DRM_UDELAY(1);
1023 	}
1024 
1025 	if (i < adev->usec_timeout) {
1026 		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
1027 	} else {
1028 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
1029 			  ring->idx, tmp);
1030 		r = -EINVAL;
1031 	}
1032 	amdgpu_device_wb_free(adev, index);
1033 
1034 	return r;
1035 }
1036 
1037 /**
1038  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1039  *
1040  * @ring: amdgpu_ring structure holding ring information
1041  *
1042  * Test a simple IB in the DMA ring (VEGA10).
1043  * Returns 0 on success, error on failure.
1044  */
1045 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1046 {
1047 	struct amdgpu_device *adev = ring->adev;
1048 	struct amdgpu_ib ib;
1049 	struct dma_fence *f = NULL;
1050 	unsigned index;
1051 	long r;
1052 	u32 tmp = 0;
1053 	u64 gpu_addr;
1054 
1055 	r = amdgpu_device_wb_get(adev, &index);
1056 	if (r) {
1057 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1058 		return r;
1059 	}
1060 
1061 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1062 	tmp = 0xCAFEDEAD;
1063 	adev->wb.wb[index] = cpu_to_le32(tmp);
1064 	memset(&ib, 0, sizeof(ib));
1065 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1066 	if (r) {
1067 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1068 		goto err0;
1069 	}
1070 
1071 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1072 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1073 	ib.ptr[1] = lower_32_bits(gpu_addr);
1074 	ib.ptr[2] = upper_32_bits(gpu_addr);
1075 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1076 	ib.ptr[4] = 0xDEADBEEF;
1077 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1078 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1079 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1080 	ib.length_dw = 8;
1081 
1082 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1083 	if (r)
1084 		goto err1;
1085 
1086 	r = dma_fence_wait_timeout(f, false, timeout);
1087 	if (r == 0) {
1088 		DRM_ERROR("amdgpu: IB test timed out\n");
1089 		r = -ETIMEDOUT;
1090 		goto err1;
1091 	} else if (r < 0) {
1092 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1093 		goto err1;
1094 	}
1095 	tmp = le32_to_cpu(adev->wb.wb[index]);
1096 	if (tmp == 0xDEADBEEF) {
1097 		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
1098 		r = 0;
1099 	} else {
1100 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
1101 		r = -EINVAL;
1102 	}
1103 err1:
1104 	amdgpu_ib_free(adev, &ib, NULL);
1105 	dma_fence_put(f);
1106 err0:
1107 	amdgpu_device_wb_free(adev, index);
1108 	return r;
1109 }
1110 
1111 
1112 /**
1113  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1114  *
1115  * @ib: indirect buffer to fill with commands
1116  * @pe: addr of the page entry
1117  * @src: src addr to copy from
1118  * @count: number of page entries to update
1119  *
1120  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1121  */
1122 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1123 				  uint64_t pe, uint64_t src,
1124 				  unsigned count)
1125 {
1126 	unsigned bytes = count * 8;
1127 
1128 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1129 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1130 	ib->ptr[ib->length_dw++] = bytes - 1;
1131 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1132 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1133 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1134 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1135 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1136 
1137 }
1138 
1139 /**
1140  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1141  *
1142  * @ib: indirect buffer to fill with commands
1143  * @pe: addr of the page entry
1144  * @addr: dst addr to write into pe
1145  * @count: number of page entries to update
1146  * @incr: increase next addr by incr bytes
1147  * @flags: access flags
1148  *
1149  * Update PTEs by writing them manually using sDMA (VEGA10).
1150  */
1151 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1152 				   uint64_t value, unsigned count,
1153 				   uint32_t incr)
1154 {
1155 	unsigned ndw = count * 2;
1156 
1157 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1158 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1159 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1160 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1161 	ib->ptr[ib->length_dw++] = ndw - 1;
1162 	for (; ndw > 0; ndw -= 2) {
1163 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1164 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1165 		value += incr;
1166 	}
1167 }
1168 
1169 /**
1170  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1171  *
1172  * @ib: indirect buffer to fill with commands
1173  * @pe: addr of the page entry
1174  * @addr: dst addr to write into pe
1175  * @count: number of page entries to update
1176  * @incr: increase next addr by incr bytes
1177  * @flags: access flags
1178  *
1179  * Update the page tables using sDMA (VEGA10).
1180  */
1181 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1182 				     uint64_t pe,
1183 				     uint64_t addr, unsigned count,
1184 				     uint32_t incr, uint64_t flags)
1185 {
1186 	/* for physically contiguous pages (vram) */
1187 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1188 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1189 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1190 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1191 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1192 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1193 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1194 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1195 	ib->ptr[ib->length_dw++] = 0;
1196 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1197 }
1198 
1199 /**
1200  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1201  *
1202  * @ib: indirect buffer to fill with padding
1203  *
1204  */
1205 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1206 {
1207 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1208 	u32 pad_count;
1209 	int i;
1210 
1211 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1212 	for (i = 0; i < pad_count; i++)
1213 		if (sdma && sdma->burst_nop && (i == 0))
1214 			ib->ptr[ib->length_dw++] =
1215 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1216 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1217 		else
1218 			ib->ptr[ib->length_dw++] =
1219 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1220 }
1221 
1222 
1223 /**
1224  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1225  *
1226  * @ring: amdgpu_ring pointer
1227  *
1228  * Make sure all previous operations are completed (CIK).
1229  */
1230 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1231 {
1232 	uint32_t seq = ring->fence_drv.sync_seq;
1233 	uint64_t addr = ring->fence_drv.gpu_addr;
1234 
1235 	/* wait for idle */
1236 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1237 			       addr & 0xfffffffc,
1238 			       upper_32_bits(addr) & 0xffffffff,
1239 			       seq, 0xffffffff, 4);
1240 }
1241 
1242 
1243 /**
1244  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1245  *
1246  * @ring: amdgpu_ring pointer
1247  * @vm: amdgpu_vm pointer
1248  *
1249  * Update the page table base and flush the VM TLB
1250  * using sDMA (VEGA10).
1251  */
1252 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1253 					 unsigned vmid, uint64_t pd_addr)
1254 {
1255 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1256 }
1257 
1258 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1259 				     uint32_t reg, uint32_t val)
1260 {
1261 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1262 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1263 	amdgpu_ring_write(ring, reg);
1264 	amdgpu_ring_write(ring, val);
1265 }
1266 
1267 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1268 					 uint32_t val, uint32_t mask)
1269 {
1270 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1271 }
1272 
1273 static int sdma_v4_0_early_init(void *handle)
1274 {
1275 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 
1277 	if (adev->asic_type == CHIP_RAVEN)
1278 		adev->sdma.num_instances = 1;
1279 	else
1280 		adev->sdma.num_instances = 2;
1281 
1282 	sdma_v4_0_set_ring_funcs(adev);
1283 	sdma_v4_0_set_buffer_funcs(adev);
1284 	sdma_v4_0_set_vm_pte_funcs(adev);
1285 	sdma_v4_0_set_irq_funcs(adev);
1286 
1287 	return 0;
1288 }
1289 
1290 
1291 static int sdma_v4_0_sw_init(void *handle)
1292 {
1293 	struct amdgpu_ring *ring;
1294 	int r, i;
1295 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1296 
1297 	/* SDMA trap event */
1298 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1299 			      &adev->sdma.trap_irq);
1300 	if (r)
1301 		return r;
1302 
1303 	/* SDMA trap event */
1304 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1305 			      &adev->sdma.trap_irq);
1306 	if (r)
1307 		return r;
1308 
1309 	r = sdma_v4_0_init_microcode(adev);
1310 	if (r) {
1311 		DRM_ERROR("Failed to load sdma firmware!\n");
1312 		return r;
1313 	}
1314 
1315 	for (i = 0; i < adev->sdma.num_instances; i++) {
1316 		ring = &adev->sdma.instance[i].ring;
1317 		ring->ring_obj = NULL;
1318 		ring->use_doorbell = true;
1319 
1320 		DRM_INFO("use_doorbell being set to: [%s]\n",
1321 				ring->use_doorbell?"true":"false");
1322 
1323 		ring->doorbell_index = (i == 0) ?
1324 			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1325 			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1326 
1327 		sprintf(ring->name, "sdma%d", i);
1328 		r = amdgpu_ring_init(adev, ring, 1024,
1329 				     &adev->sdma.trap_irq,
1330 				     (i == 0) ?
1331 				     AMDGPU_SDMA_IRQ_TRAP0 :
1332 				     AMDGPU_SDMA_IRQ_TRAP1);
1333 		if (r)
1334 			return r;
1335 	}
1336 
1337 	return r;
1338 }
1339 
1340 static int sdma_v4_0_sw_fini(void *handle)
1341 {
1342 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1343 	int i;
1344 
1345 	for (i = 0; i < adev->sdma.num_instances; i++)
1346 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1347 
1348 	for (i = 0; i < adev->sdma.num_instances; i++) {
1349 		release_firmware(adev->sdma.instance[i].fw);
1350 		adev->sdma.instance[i].fw = NULL;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 static int sdma_v4_0_hw_init(void *handle)
1357 {
1358 	int r;
1359 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1360 
1361 	sdma_v4_0_init_golden_registers(adev);
1362 
1363 	r = sdma_v4_0_start(adev);
1364 
1365 	return r;
1366 }
1367 
1368 static int sdma_v4_0_hw_fini(void *handle)
1369 {
1370 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1371 
1372 	if (amdgpu_sriov_vf(adev))
1373 		return 0;
1374 
1375 	sdma_v4_0_ctx_switch_enable(adev, false);
1376 	sdma_v4_0_enable(adev, false);
1377 
1378 	return 0;
1379 }
1380 
1381 static int sdma_v4_0_suspend(void *handle)
1382 {
1383 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1384 
1385 	return sdma_v4_0_hw_fini(adev);
1386 }
1387 
1388 static int sdma_v4_0_resume(void *handle)
1389 {
1390 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1391 
1392 	return sdma_v4_0_hw_init(adev);
1393 }
1394 
1395 static bool sdma_v4_0_is_idle(void *handle)
1396 {
1397 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1398 	u32 i;
1399 
1400 	for (i = 0; i < adev->sdma.num_instances; i++) {
1401 		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1402 
1403 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1404 			return false;
1405 	}
1406 
1407 	return true;
1408 }
1409 
1410 static int sdma_v4_0_wait_for_idle(void *handle)
1411 {
1412 	unsigned i;
1413 	u32 sdma0, sdma1;
1414 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1415 
1416 	for (i = 0; i < adev->usec_timeout; i++) {
1417 		sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1418 		sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1419 
1420 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1421 			return 0;
1422 		udelay(1);
1423 	}
1424 	return -ETIMEDOUT;
1425 }
1426 
1427 static int sdma_v4_0_soft_reset(void *handle)
1428 {
1429 	/* todo */
1430 
1431 	return 0;
1432 }
1433 
1434 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1435 					struct amdgpu_irq_src *source,
1436 					unsigned type,
1437 					enum amdgpu_interrupt_state state)
1438 {
1439 	u32 sdma_cntl;
1440 
1441 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1442 		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1443 		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1444 
1445 	sdma_cntl = RREG32(reg_offset);
1446 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1447 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1448 	WREG32(reg_offset, sdma_cntl);
1449 
1450 	return 0;
1451 }
1452 
1453 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1454 				      struct amdgpu_irq_src *source,
1455 				      struct amdgpu_iv_entry *entry)
1456 {
1457 	DRM_DEBUG("IH: SDMA trap\n");
1458 	switch (entry->client_id) {
1459 	case SOC15_IH_CLIENTID_SDMA0:
1460 		switch (entry->ring_id) {
1461 		case 0:
1462 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1463 			break;
1464 		case 1:
1465 			/* XXX compute */
1466 			break;
1467 		case 2:
1468 			/* XXX compute */
1469 			break;
1470 		case 3:
1471 			/* XXX page queue*/
1472 			break;
1473 		}
1474 		break;
1475 	case SOC15_IH_CLIENTID_SDMA1:
1476 		switch (entry->ring_id) {
1477 		case 0:
1478 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1479 			break;
1480 		case 1:
1481 			/* XXX compute */
1482 			break;
1483 		case 2:
1484 			/* XXX compute */
1485 			break;
1486 		case 3:
1487 			/* XXX page queue*/
1488 			break;
1489 		}
1490 		break;
1491 	}
1492 	return 0;
1493 }
1494 
1495 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1496 					      struct amdgpu_irq_src *source,
1497 					      struct amdgpu_iv_entry *entry)
1498 {
1499 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1500 	schedule_work(&adev->reset_work);
1501 	return 0;
1502 }
1503 
1504 
1505 static void sdma_v4_0_update_medium_grain_clock_gating(
1506 		struct amdgpu_device *adev,
1507 		bool enable)
1508 {
1509 	uint32_t data, def;
1510 
1511 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1512 		/* enable sdma0 clock gating */
1513 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1514 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1515 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1516 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1517 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1518 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1519 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1520 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1521 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1522 		if (def != data)
1523 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1524 
1525 		if (adev->sdma.num_instances > 1) {
1526 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1527 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1528 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1529 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1530 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1531 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1532 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1533 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1534 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1535 			if (def != data)
1536 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1537 		}
1538 	} else {
1539 		/* disable sdma0 clock gating */
1540 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1541 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1542 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1543 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1544 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1545 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1546 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1547 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1548 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1549 
1550 		if (def != data)
1551 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1552 
1553 		if (adev->sdma.num_instances > 1) {
1554 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1555 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1556 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1557 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1558 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1559 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1560 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1561 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1562 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1563 			if (def != data)
1564 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1565 		}
1566 	}
1567 }
1568 
1569 
1570 static void sdma_v4_0_update_medium_grain_light_sleep(
1571 		struct amdgpu_device *adev,
1572 		bool enable)
1573 {
1574 	uint32_t data, def;
1575 
1576 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1577 		/* 1-not override: enable sdma0 mem light sleep */
1578 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1579 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1580 		if (def != data)
1581 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1582 
1583 		/* 1-not override: enable sdma1 mem light sleep */
1584 		if (adev->sdma.num_instances > 1) {
1585 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1586 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1587 			if (def != data)
1588 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1589 		}
1590 	} else {
1591 		/* 0-override:disable sdma0 mem light sleep */
1592 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1593 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1594 		if (def != data)
1595 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1596 
1597 		/* 0-override:disable sdma1 mem light sleep */
1598 		if (adev->sdma.num_instances > 1) {
1599 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1600 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1601 			if (def != data)
1602 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1603 		}
1604 	}
1605 }
1606 
1607 static int sdma_v4_0_set_clockgating_state(void *handle,
1608 					  enum amd_clockgating_state state)
1609 {
1610 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1611 
1612 	if (amdgpu_sriov_vf(adev))
1613 		return 0;
1614 
1615 	switch (adev->asic_type) {
1616 	case CHIP_VEGA10:
1617 	case CHIP_VEGA12:
1618 	case CHIP_VEGA20:
1619 	case CHIP_RAVEN:
1620 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1621 				state == AMD_CG_STATE_GATE ? true : false);
1622 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1623 				state == AMD_CG_STATE_GATE ? true : false);
1624 		break;
1625 	default:
1626 		break;
1627 	}
1628 	return 0;
1629 }
1630 
1631 static int sdma_v4_0_set_powergating_state(void *handle,
1632 					  enum amd_powergating_state state)
1633 {
1634 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1635 
1636 	switch (adev->asic_type) {
1637 	case CHIP_RAVEN:
1638 		sdma_v4_1_update_power_gating(adev,
1639 				state == AMD_PG_STATE_GATE ? true : false);
1640 		break;
1641 	default:
1642 		break;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1649 {
1650 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1651 	int data;
1652 
1653 	if (amdgpu_sriov_vf(adev))
1654 		*flags = 0;
1655 
1656 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1657 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1658 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1659 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1660 
1661 	/* AMD_CG_SUPPORT_SDMA_LS */
1662 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1663 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1664 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1665 }
1666 
1667 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1668 	.name = "sdma_v4_0",
1669 	.early_init = sdma_v4_0_early_init,
1670 	.late_init = NULL,
1671 	.sw_init = sdma_v4_0_sw_init,
1672 	.sw_fini = sdma_v4_0_sw_fini,
1673 	.hw_init = sdma_v4_0_hw_init,
1674 	.hw_fini = sdma_v4_0_hw_fini,
1675 	.suspend = sdma_v4_0_suspend,
1676 	.resume = sdma_v4_0_resume,
1677 	.is_idle = sdma_v4_0_is_idle,
1678 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1679 	.soft_reset = sdma_v4_0_soft_reset,
1680 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1681 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1682 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1683 };
1684 
1685 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1686 	.type = AMDGPU_RING_TYPE_SDMA,
1687 	.align_mask = 0xf,
1688 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1689 	.support_64bit_ptrs = true,
1690 	.vmhub = AMDGPU_MMHUB,
1691 	.get_rptr = sdma_v4_0_ring_get_rptr,
1692 	.get_wptr = sdma_v4_0_ring_get_wptr,
1693 	.set_wptr = sdma_v4_0_ring_set_wptr,
1694 	.emit_frame_size =
1695 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1696 		3 + /* hdp invalidate */
1697 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1698 		/* sdma_v4_0_ring_emit_vm_flush */
1699 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1700 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1701 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1702 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1703 	.emit_ib = sdma_v4_0_ring_emit_ib,
1704 	.emit_fence = sdma_v4_0_ring_emit_fence,
1705 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1706 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1707 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1708 	.test_ring = sdma_v4_0_ring_test_ring,
1709 	.test_ib = sdma_v4_0_ring_test_ib,
1710 	.insert_nop = sdma_v4_0_ring_insert_nop,
1711 	.pad_ib = sdma_v4_0_ring_pad_ib,
1712 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1713 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1714 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1715 };
1716 
1717 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1718 {
1719 	int i;
1720 
1721 	for (i = 0; i < adev->sdma.num_instances; i++) {
1722 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1723 		adev->sdma.instance[i].ring.me = i;
1724 	}
1725 }
1726 
1727 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1728 	.set = sdma_v4_0_set_trap_irq_state,
1729 	.process = sdma_v4_0_process_trap_irq,
1730 };
1731 
1732 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1733 	.process = sdma_v4_0_process_illegal_inst_irq,
1734 };
1735 
1736 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1737 {
1738 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1739 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
1740 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
1741 }
1742 
1743 /**
1744  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
1745  *
1746  * @ring: amdgpu_ring structure holding ring information
1747  * @src_offset: src GPU address
1748  * @dst_offset: dst GPU address
1749  * @byte_count: number of bytes to xfer
1750  *
1751  * Copy GPU buffers using the DMA engine (VEGA10/12).
1752  * Used by the amdgpu ttm implementation to move pages if
1753  * registered as the asic copy callback.
1754  */
1755 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
1756 				       uint64_t src_offset,
1757 				       uint64_t dst_offset,
1758 				       uint32_t byte_count)
1759 {
1760 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1761 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1762 	ib->ptr[ib->length_dw++] = byte_count - 1;
1763 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1764 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1765 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1766 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1767 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1768 }
1769 
1770 /**
1771  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
1772  *
1773  * @ring: amdgpu_ring structure holding ring information
1774  * @src_data: value to write to buffer
1775  * @dst_offset: dst GPU address
1776  * @byte_count: number of bytes to xfer
1777  *
1778  * Fill GPU buffers using the DMA engine (VEGA10/12).
1779  */
1780 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
1781 				       uint32_t src_data,
1782 				       uint64_t dst_offset,
1783 				       uint32_t byte_count)
1784 {
1785 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1786 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1787 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1788 	ib->ptr[ib->length_dw++] = src_data;
1789 	ib->ptr[ib->length_dw++] = byte_count - 1;
1790 }
1791 
1792 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
1793 	.copy_max_bytes = 0x400000,
1794 	.copy_num_dw = 7,
1795 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
1796 
1797 	.fill_max_bytes = 0x400000,
1798 	.fill_num_dw = 5,
1799 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
1800 };
1801 
1802 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
1803 {
1804 	if (adev->mman.buffer_funcs == NULL) {
1805 		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
1806 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1807 	}
1808 }
1809 
1810 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1811 	.copy_pte_num_dw = 7,
1812 	.copy_pte = sdma_v4_0_vm_copy_pte,
1813 
1814 	.write_pte = sdma_v4_0_vm_write_pte,
1815 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
1816 };
1817 
1818 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1819 {
1820 	struct drm_gpu_scheduler *sched;
1821 	unsigned i;
1822 
1823 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1824 		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
1825 		for (i = 0; i < adev->sdma.num_instances; i++) {
1826 			sched = &adev->sdma.instance[i].ring.sched;
1827 			adev->vm_manager.vm_pte_rqs[i] =
1828 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1829 		}
1830 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1831 	}
1832 }
1833 
1834 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1835 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1836 	.major = 4,
1837 	.minor = 0,
1838 	.rev = 0,
1839 	.funcs = &sdma_v4_0_ip_funcs,
1840 };
1841