1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
52 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
54 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
55 
56 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
57 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
58 
59 #define WREG32_SDMA(instance, offset, value) \
60 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
61 #define RREG32_SDMA(instance, offset) \
62 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
63 
64 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
66 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
67 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
68 
69 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
75 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
77 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
80 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
81 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
82 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
87 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
89 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
94 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
95 };
96 
97 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
103 };
104 
105 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
111 };
112 
113 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
119 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
129 };
130 
131 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
132 {
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
159 };
160 
161 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
162 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
163 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
164 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
165 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
166 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
188 };
189 
190 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
191 {
192 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
193 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
194 };
195 
196 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
197 {
198 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
200 };
201 
202 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
203 		u32 instance, u32 offset)
204 {
205 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
206 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
207 }
208 
209 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
210 {
211 	switch (adev->asic_type) {
212 	case CHIP_VEGA10:
213 		if (!amdgpu_virt_support_skip_setting(adev)) {
214 			soc15_program_register_sequence(adev,
215 							 golden_settings_sdma_4,
216 							 ARRAY_SIZE(golden_settings_sdma_4));
217 			soc15_program_register_sequence(adev,
218 							 golden_settings_sdma_vg10,
219 							 ARRAY_SIZE(golden_settings_sdma_vg10));
220 		}
221 		break;
222 	case CHIP_VEGA12:
223 		soc15_program_register_sequence(adev,
224 						golden_settings_sdma_4,
225 						ARRAY_SIZE(golden_settings_sdma_4));
226 		soc15_program_register_sequence(adev,
227 						golden_settings_sdma_vg12,
228 						ARRAY_SIZE(golden_settings_sdma_vg12));
229 		break;
230 	case CHIP_VEGA20:
231 		soc15_program_register_sequence(adev,
232 						golden_settings_sdma0_4_2_init,
233 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
234 		soc15_program_register_sequence(adev,
235 						golden_settings_sdma0_4_2,
236 						ARRAY_SIZE(golden_settings_sdma0_4_2));
237 		soc15_program_register_sequence(adev,
238 						golden_settings_sdma1_4_2,
239 						ARRAY_SIZE(golden_settings_sdma1_4_2));
240 		break;
241 	case CHIP_RAVEN:
242 		soc15_program_register_sequence(adev,
243 						golden_settings_sdma_4_1,
244 						ARRAY_SIZE(golden_settings_sdma_4_1));
245 		if (adev->rev_id >= 8)
246 			soc15_program_register_sequence(adev,
247 							golden_settings_sdma_rv2,
248 							ARRAY_SIZE(golden_settings_sdma_rv2));
249 		else
250 			soc15_program_register_sequence(adev,
251 							golden_settings_sdma_rv1,
252 							ARRAY_SIZE(golden_settings_sdma_rv1));
253 		break;
254 	default:
255 		break;
256 	}
257 }
258 
259 /**
260  * sdma_v4_0_init_microcode - load ucode images from disk
261  *
262  * @adev: amdgpu_device pointer
263  *
264  * Use the firmware interface to load the ucode images into
265  * the driver (not loaded into hw).
266  * Returns 0 on success, error on failure.
267  */
268 
269 // emulation only, won't work on real chip
270 // vega10 real chip need to use PSP to load firmware
271 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
272 {
273 	const char *chip_name;
274 	char fw_name[30];
275 	int err = 0, i;
276 	struct amdgpu_firmware_info *info = NULL;
277 	const struct common_firmware_header *header = NULL;
278 	const struct sdma_firmware_header_v1_0 *hdr;
279 
280 	DRM_DEBUG("\n");
281 
282 	switch (adev->asic_type) {
283 	case CHIP_VEGA10:
284 		chip_name = "vega10";
285 		break;
286 	case CHIP_VEGA12:
287 		chip_name = "vega12";
288 		break;
289 	case CHIP_VEGA20:
290 		chip_name = "vega20";
291 		break;
292 	case CHIP_RAVEN:
293 		if (adev->rev_id >= 8)
294 			chip_name = "raven2";
295 		else if (adev->pdev->device == 0x15d8)
296 			chip_name = "picasso";
297 		else
298 			chip_name = "raven";
299 		break;
300 	default:
301 		BUG();
302 	}
303 
304 	for (i = 0; i < adev->sdma.num_instances; i++) {
305 		if (i == 0)
306 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
307 		else
308 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
309 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
310 		if (err)
311 			goto out;
312 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
313 		if (err)
314 			goto out;
315 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
316 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
317 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
318 		if (adev->sdma.instance[i].feature_version >= 20)
319 			adev->sdma.instance[i].burst_nop = true;
320 		DRM_DEBUG("psp_load == '%s'\n",
321 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
322 
323 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
324 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
325 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
326 			info->fw = adev->sdma.instance[i].fw;
327 			header = (const struct common_firmware_header *)info->fw->data;
328 			adev->firmware.fw_size +=
329 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
330 		}
331 	}
332 out:
333 	if (err) {
334 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
335 		for (i = 0; i < adev->sdma.num_instances; i++) {
336 			release_firmware(adev->sdma.instance[i].fw);
337 			adev->sdma.instance[i].fw = NULL;
338 		}
339 	}
340 	return err;
341 }
342 
343 /**
344  * sdma_v4_0_ring_get_rptr - get the current read pointer
345  *
346  * @ring: amdgpu ring pointer
347  *
348  * Get the current rptr from the hardware (VEGA10+).
349  */
350 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
351 {
352 	u64 *rptr;
353 
354 	/* XXX check if swapping is necessary on BE */
355 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
356 
357 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
358 	return ((*rptr) >> 2);
359 }
360 
361 /**
362  * sdma_v4_0_ring_get_wptr - get the current write pointer
363  *
364  * @ring: amdgpu ring pointer
365  *
366  * Get the current wptr from the hardware (VEGA10+).
367  */
368 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
369 {
370 	struct amdgpu_device *adev = ring->adev;
371 	u64 wptr;
372 
373 	if (ring->use_doorbell) {
374 		/* XXX check if swapping is necessary on BE */
375 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
376 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
377 	} else {
378 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
379 		wptr = wptr << 32;
380 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
381 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
382 				ring->me, wptr);
383 	}
384 
385 	return wptr >> 2;
386 }
387 
388 /**
389  * sdma_v4_0_ring_set_wptr - commit the write pointer
390  *
391  * @ring: amdgpu ring pointer
392  *
393  * Write the wptr back to the hardware (VEGA10+).
394  */
395 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
396 {
397 	struct amdgpu_device *adev = ring->adev;
398 
399 	DRM_DEBUG("Setting write pointer\n");
400 	if (ring->use_doorbell) {
401 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
402 
403 		DRM_DEBUG("Using doorbell -- "
404 				"wptr_offs == 0x%08x "
405 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
406 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
407 				ring->wptr_offs,
408 				lower_32_bits(ring->wptr << 2),
409 				upper_32_bits(ring->wptr << 2));
410 		/* XXX check if swapping is necessary on BE */
411 		WRITE_ONCE(*wb, (ring->wptr << 2));
412 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
413 				ring->doorbell_index, ring->wptr << 2);
414 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
415 	} else {
416 		DRM_DEBUG("Not using doorbell -- "
417 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
418 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
419 				ring->me,
420 				lower_32_bits(ring->wptr << 2),
421 				ring->me,
422 				upper_32_bits(ring->wptr << 2));
423 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
424 			    lower_32_bits(ring->wptr << 2));
425 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
426 			    upper_32_bits(ring->wptr << 2));
427 	}
428 }
429 
430 /**
431  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
432  *
433  * @ring: amdgpu ring pointer
434  *
435  * Get the current wptr from the hardware (VEGA10+).
436  */
437 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
438 {
439 	struct amdgpu_device *adev = ring->adev;
440 	u64 wptr;
441 
442 	if (ring->use_doorbell) {
443 		/* XXX check if swapping is necessary on BE */
444 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
445 	} else {
446 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
447 		wptr = wptr << 32;
448 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
449 	}
450 
451 	return wptr >> 2;
452 }
453 
454 /**
455  * sdma_v4_0_ring_set_wptr - commit the write pointer
456  *
457  * @ring: amdgpu ring pointer
458  *
459  * Write the wptr back to the hardware (VEGA10+).
460  */
461 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
462 {
463 	struct amdgpu_device *adev = ring->adev;
464 
465 	if (ring->use_doorbell) {
466 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
467 
468 		/* XXX check if swapping is necessary on BE */
469 		WRITE_ONCE(*wb, (ring->wptr << 2));
470 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
471 	} else {
472 		uint64_t wptr = ring->wptr << 2;
473 
474 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
475 			    lower_32_bits(wptr));
476 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
477 			    upper_32_bits(wptr));
478 	}
479 }
480 
481 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
482 {
483 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
484 	int i;
485 
486 	for (i = 0; i < count; i++)
487 		if (sdma && sdma->burst_nop && (i == 0))
488 			amdgpu_ring_write(ring, ring->funcs->nop |
489 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
490 		else
491 			amdgpu_ring_write(ring, ring->funcs->nop);
492 }
493 
494 /**
495  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
496  *
497  * @ring: amdgpu ring pointer
498  * @ib: IB object to schedule
499  *
500  * Schedule an IB in the DMA ring (VEGA10).
501  */
502 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
503 				   struct amdgpu_job *job,
504 				   struct amdgpu_ib *ib,
505 				   uint32_t flags)
506 {
507 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
508 
509 	/* IB packet must end on a 8 DW boundary */
510 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
511 
512 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
513 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
514 	/* base must be 32 byte aligned */
515 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
516 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
517 	amdgpu_ring_write(ring, ib->length_dw);
518 	amdgpu_ring_write(ring, 0);
519 	amdgpu_ring_write(ring, 0);
520 
521 }
522 
523 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
524 				   int mem_space, int hdp,
525 				   uint32_t addr0, uint32_t addr1,
526 				   uint32_t ref, uint32_t mask,
527 				   uint32_t inv)
528 {
529 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
530 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
531 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
532 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
533 	if (mem_space) {
534 		/* memory */
535 		amdgpu_ring_write(ring, addr0);
536 		amdgpu_ring_write(ring, addr1);
537 	} else {
538 		/* registers */
539 		amdgpu_ring_write(ring, addr0 << 2);
540 		amdgpu_ring_write(ring, addr1 << 2);
541 	}
542 	amdgpu_ring_write(ring, ref); /* reference */
543 	amdgpu_ring_write(ring, mask); /* mask */
544 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
545 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
546 }
547 
548 /**
549  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
550  *
551  * @ring: amdgpu ring pointer
552  *
553  * Emit an hdp flush packet on the requested DMA ring.
554  */
555 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
556 {
557 	struct amdgpu_device *adev = ring->adev;
558 	u32 ref_and_mask = 0;
559 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
560 
561 	if (ring->me == 0)
562 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
563 	else
564 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
565 
566 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
567 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
568 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
569 			       ref_and_mask, ref_and_mask, 10);
570 }
571 
572 /**
573  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
574  *
575  * @ring: amdgpu ring pointer
576  * @fence: amdgpu fence object
577  *
578  * Add a DMA fence packet to the ring to write
579  * the fence seq number and DMA trap packet to generate
580  * an interrupt if needed (VEGA10).
581  */
582 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
583 				      unsigned flags)
584 {
585 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
586 	/* write the fence */
587 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
588 	/* zero in first two bits */
589 	BUG_ON(addr & 0x3);
590 	amdgpu_ring_write(ring, lower_32_bits(addr));
591 	amdgpu_ring_write(ring, upper_32_bits(addr));
592 	amdgpu_ring_write(ring, lower_32_bits(seq));
593 
594 	/* optionally write high bits as well */
595 	if (write64bit) {
596 		addr += 4;
597 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
598 		/* zero in first two bits */
599 		BUG_ON(addr & 0x3);
600 		amdgpu_ring_write(ring, lower_32_bits(addr));
601 		amdgpu_ring_write(ring, upper_32_bits(addr));
602 		amdgpu_ring_write(ring, upper_32_bits(seq));
603 	}
604 
605 	/* generate an interrupt */
606 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
607 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
608 }
609 
610 
611 /**
612  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
613  *
614  * @adev: amdgpu_device pointer
615  *
616  * Stop the gfx async dma ring buffers (VEGA10).
617  */
618 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
619 {
620 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
621 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
622 	u32 rb_cntl, ib_cntl;
623 	int i;
624 
625 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
626 	    (adev->mman.buffer_funcs_ring == sdma1))
627 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
628 
629 	for (i = 0; i < adev->sdma.num_instances; i++) {
630 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
631 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
632 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
633 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
634 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
635 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
636 	}
637 
638 	sdma0->sched.ready = false;
639 	sdma1->sched.ready = false;
640 }
641 
642 /**
643  * sdma_v4_0_rlc_stop - stop the compute async dma engines
644  *
645  * @adev: amdgpu_device pointer
646  *
647  * Stop the compute async dma queues (VEGA10).
648  */
649 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
650 {
651 	/* XXX todo */
652 }
653 
654 /**
655  * sdma_v4_0_page_stop - stop the page async dma engines
656  *
657  * @adev: amdgpu_device pointer
658  *
659  * Stop the page async dma ring buffers (VEGA10).
660  */
661 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
662 {
663 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
664 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
665 	u32 rb_cntl, ib_cntl;
666 	int i;
667 
668 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
669 	    (adev->mman.buffer_funcs_ring == sdma1))
670 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
671 
672 	for (i = 0; i < adev->sdma.num_instances; i++) {
673 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
674 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
675 					RB_ENABLE, 0);
676 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
677 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
678 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
679 					IB_ENABLE, 0);
680 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
681 	}
682 
683 	sdma0->sched.ready = false;
684 	sdma1->sched.ready = false;
685 }
686 
687 /**
688  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
689  *
690  * @adev: amdgpu_device pointer
691  * @enable: enable/disable the DMA MEs context switch.
692  *
693  * Halt or unhalt the async dma engines context switch (VEGA10).
694  */
695 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
696 {
697 	u32 f32_cntl, phase_quantum = 0;
698 	int i;
699 
700 	if (amdgpu_sdma_phase_quantum) {
701 		unsigned value = amdgpu_sdma_phase_quantum;
702 		unsigned unit = 0;
703 
704 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
705 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
706 			value = (value + 1) >> 1;
707 			unit++;
708 		}
709 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
710 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
711 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
712 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
713 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
714 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
715 			WARN_ONCE(1,
716 			"clamping sdma_phase_quantum to %uK clock cycles\n",
717 				  value << unit);
718 		}
719 		phase_quantum =
720 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
721 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
722 	}
723 
724 	for (i = 0; i < adev->sdma.num_instances; i++) {
725 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
726 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
727 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
728 		if (enable && amdgpu_sdma_phase_quantum) {
729 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
730 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
731 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
732 		}
733 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
734 	}
735 
736 }
737 
738 /**
739  * sdma_v4_0_enable - stop the async dma engines
740  *
741  * @adev: amdgpu_device pointer
742  * @enable: enable/disable the DMA MEs.
743  *
744  * Halt or unhalt the async dma engines (VEGA10).
745  */
746 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
747 {
748 	u32 f32_cntl;
749 	int i;
750 
751 	if (enable == false) {
752 		sdma_v4_0_gfx_stop(adev);
753 		sdma_v4_0_rlc_stop(adev);
754 		if (adev->sdma.has_page_queue)
755 			sdma_v4_0_page_stop(adev);
756 	}
757 
758 	for (i = 0; i < adev->sdma.num_instances; i++) {
759 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
760 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
761 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
762 	}
763 }
764 
765 /**
766  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
767  */
768 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
769 {
770 	/* Set ring buffer size in dwords */
771 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
772 
773 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
774 #ifdef __BIG_ENDIAN
775 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
776 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
777 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
778 #endif
779 	return rb_cntl;
780 }
781 
782 /**
783  * sdma_v4_0_gfx_resume - setup and start the async dma engines
784  *
785  * @adev: amdgpu_device pointer
786  * @i: instance to resume
787  *
788  * Set up the gfx DMA ring buffers and enable them (VEGA10).
789  * Returns 0 for success, error for failure.
790  */
791 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
792 {
793 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
794 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
795 	u32 wb_offset;
796 	u32 doorbell;
797 	u32 doorbell_offset;
798 	u64 wptr_gpu_addr;
799 
800 	wb_offset = (ring->rptr_offs * 4);
801 
802 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
803 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
804 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
805 
806 	/* Initialize the ring buffer's read and write pointers */
807 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
808 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
809 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
810 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
811 
812 	/* set the wb address whether it's enabled or not */
813 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
814 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
815 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
816 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
817 
818 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
819 				RPTR_WRITEBACK_ENABLE, 1);
820 
821 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
822 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
823 
824 	ring->wptr = 0;
825 
826 	/* before programing wptr to a less value, need set minor_ptr_update first */
827 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
828 
829 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
830 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
831 
832 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
833 				 ring->use_doorbell);
834 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
835 					SDMA0_GFX_DOORBELL_OFFSET,
836 					OFFSET, ring->doorbell_index);
837 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
838 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
839 
840 	sdma_v4_0_ring_set_wptr(ring);
841 
842 	/* set minor_ptr_update to 0 after wptr programed */
843 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
844 
845 	/* setup the wptr shadow polling */
846 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
847 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
848 		    lower_32_bits(wptr_gpu_addr));
849 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
850 		    upper_32_bits(wptr_gpu_addr));
851 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
852 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
853 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
854 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
855 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
856 
857 	/* enable DMA RB */
858 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
859 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
860 
861 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
862 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
863 #ifdef __BIG_ENDIAN
864 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
865 #endif
866 	/* enable DMA IBs */
867 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
868 
869 	ring->sched.ready = true;
870 }
871 
872 /**
873  * sdma_v4_0_page_resume - setup and start the async dma engines
874  *
875  * @adev: amdgpu_device pointer
876  * @i: instance to resume
877  *
878  * Set up the page DMA ring buffers and enable them (VEGA10).
879  * Returns 0 for success, error for failure.
880  */
881 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
882 {
883 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
884 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
885 	u32 wb_offset;
886 	u32 doorbell;
887 	u32 doorbell_offset;
888 	u64 wptr_gpu_addr;
889 
890 	wb_offset = (ring->rptr_offs * 4);
891 
892 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
893 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
894 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
895 
896 	/* Initialize the ring buffer's read and write pointers */
897 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
898 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
899 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
900 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
901 
902 	/* set the wb address whether it's enabled or not */
903 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
904 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
905 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
906 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
907 
908 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
909 				RPTR_WRITEBACK_ENABLE, 1);
910 
911 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
912 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
913 
914 	ring->wptr = 0;
915 
916 	/* before programing wptr to a less value, need set minor_ptr_update first */
917 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
918 
919 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
920 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
921 
922 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
923 				 ring->use_doorbell);
924 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
925 					SDMA0_PAGE_DOORBELL_OFFSET,
926 					OFFSET, ring->doorbell_index);
927 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
928 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
929 
930 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
931 	sdma_v4_0_page_ring_set_wptr(ring);
932 
933 	/* set minor_ptr_update to 0 after wptr programed */
934 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
935 
936 	/* setup the wptr shadow polling */
937 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
938 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
939 		    lower_32_bits(wptr_gpu_addr));
940 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
941 		    upper_32_bits(wptr_gpu_addr));
942 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
943 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
944 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
945 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
946 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
947 
948 	/* enable DMA RB */
949 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
950 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
951 
952 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
953 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
954 #ifdef __BIG_ENDIAN
955 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
956 #endif
957 	/* enable DMA IBs */
958 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
959 
960 	ring->sched.ready = true;
961 }
962 
963 static void
964 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
965 {
966 	uint32_t def, data;
967 
968 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
969 		/* enable idle interrupt */
970 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
971 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
972 
973 		if (data != def)
974 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
975 	} else {
976 		/* disable idle interrupt */
977 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
978 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
979 		if (data != def)
980 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
981 	}
982 }
983 
984 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
985 {
986 	uint32_t def, data;
987 
988 	/* Enable HW based PG. */
989 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
990 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
991 	if (data != def)
992 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
993 
994 	/* enable interrupt */
995 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
996 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
997 	if (data != def)
998 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
999 
1000 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1001 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1002 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1003 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1004 	/* Configure switch time for hysteresis purpose. Use default right now */
1005 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1006 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1007 	if(data != def)
1008 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1009 }
1010 
1011 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1012 {
1013 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1014 		return;
1015 
1016 	switch (adev->asic_type) {
1017 	case CHIP_RAVEN:
1018 		sdma_v4_1_init_power_gating(adev);
1019 		sdma_v4_1_update_power_gating(adev, true);
1020 		break;
1021 	default:
1022 		break;
1023 	}
1024 }
1025 
1026 /**
1027  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1028  *
1029  * @adev: amdgpu_device pointer
1030  *
1031  * Set up the compute DMA queues and enable them (VEGA10).
1032  * Returns 0 for success, error for failure.
1033  */
1034 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1035 {
1036 	sdma_v4_0_init_pg(adev);
1037 
1038 	return 0;
1039 }
1040 
1041 /**
1042  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1043  *
1044  * @adev: amdgpu_device pointer
1045  *
1046  * Loads the sDMA0/1 ucode.
1047  * Returns 0 for success, -EINVAL if the ucode is not available.
1048  */
1049 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1050 {
1051 	const struct sdma_firmware_header_v1_0 *hdr;
1052 	const __le32 *fw_data;
1053 	u32 fw_size;
1054 	int i, j;
1055 
1056 	/* halt the MEs */
1057 	sdma_v4_0_enable(adev, false);
1058 
1059 	for (i = 0; i < adev->sdma.num_instances; i++) {
1060 		if (!adev->sdma.instance[i].fw)
1061 			return -EINVAL;
1062 
1063 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1064 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1065 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1066 
1067 		fw_data = (const __le32 *)
1068 			(adev->sdma.instance[i].fw->data +
1069 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1070 
1071 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1072 
1073 		for (j = 0; j < fw_size; j++)
1074 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1075 				    le32_to_cpup(fw_data++));
1076 
1077 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1078 			    adev->sdma.instance[i].fw_version);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  * sdma_v4_0_start - setup and start the async dma engines
1086  *
1087  * @adev: amdgpu_device pointer
1088  *
1089  * Set up the DMA engines and enable them (VEGA10).
1090  * Returns 0 for success, error for failure.
1091  */
1092 static int sdma_v4_0_start(struct amdgpu_device *adev)
1093 {
1094 	struct amdgpu_ring *ring;
1095 	int i, r;
1096 
1097 	if (amdgpu_sriov_vf(adev)) {
1098 		sdma_v4_0_ctx_switch_enable(adev, false);
1099 		sdma_v4_0_enable(adev, false);
1100 	} else {
1101 
1102 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1103 			r = sdma_v4_0_load_microcode(adev);
1104 			if (r)
1105 				return r;
1106 		}
1107 
1108 		/* unhalt the MEs */
1109 		sdma_v4_0_enable(adev, true);
1110 		/* enable sdma ring preemption */
1111 		sdma_v4_0_ctx_switch_enable(adev, true);
1112 	}
1113 
1114 	/* start the gfx rings and rlc compute queues */
1115 	for (i = 0; i < adev->sdma.num_instances; i++) {
1116 		uint32_t temp;
1117 
1118 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1119 		sdma_v4_0_gfx_resume(adev, i);
1120 		if (adev->sdma.has_page_queue)
1121 			sdma_v4_0_page_resume(adev, i);
1122 
1123 		/* set utc l1 enable flag always to 1 */
1124 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1125 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1126 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1127 
1128 		if (!amdgpu_sriov_vf(adev)) {
1129 			/* unhalt engine */
1130 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1131 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1132 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1133 		}
1134 	}
1135 
1136 	if (amdgpu_sriov_vf(adev)) {
1137 		sdma_v4_0_ctx_switch_enable(adev, true);
1138 		sdma_v4_0_enable(adev, true);
1139 	} else {
1140 		r = sdma_v4_0_rlc_resume(adev);
1141 		if (r)
1142 			return r;
1143 	}
1144 
1145 	for (i = 0; i < adev->sdma.num_instances; i++) {
1146 		ring = &adev->sdma.instance[i].ring;
1147 
1148 		r = amdgpu_ring_test_helper(ring);
1149 		if (r)
1150 			return r;
1151 
1152 		if (adev->sdma.has_page_queue) {
1153 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1154 
1155 			r = amdgpu_ring_test_helper(page);
1156 			if (r)
1157 				return r;
1158 
1159 			if (adev->mman.buffer_funcs_ring == page)
1160 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1161 		}
1162 
1163 		if (adev->mman.buffer_funcs_ring == ring)
1164 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1165 	}
1166 
1167 	return r;
1168 }
1169 
1170 /**
1171  * sdma_v4_0_ring_test_ring - simple async dma engine test
1172  *
1173  * @ring: amdgpu_ring structure holding ring information
1174  *
1175  * Test the DMA engine by writing using it to write an
1176  * value to memory. (VEGA10).
1177  * Returns 0 for success, error for failure.
1178  */
1179 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1180 {
1181 	struct amdgpu_device *adev = ring->adev;
1182 	unsigned i;
1183 	unsigned index;
1184 	int r;
1185 	u32 tmp;
1186 	u64 gpu_addr;
1187 
1188 	r = amdgpu_device_wb_get(adev, &index);
1189 	if (r)
1190 		return r;
1191 
1192 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1193 	tmp = 0xCAFEDEAD;
1194 	adev->wb.wb[index] = cpu_to_le32(tmp);
1195 
1196 	r = amdgpu_ring_alloc(ring, 5);
1197 	if (r)
1198 		goto error_free_wb;
1199 
1200 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1201 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1202 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1203 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1204 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1205 	amdgpu_ring_write(ring, 0xDEADBEEF);
1206 	amdgpu_ring_commit(ring);
1207 
1208 	for (i = 0; i < adev->usec_timeout; i++) {
1209 		tmp = le32_to_cpu(adev->wb.wb[index]);
1210 		if (tmp == 0xDEADBEEF)
1211 			break;
1212 		DRM_UDELAY(1);
1213 	}
1214 
1215 	if (i >= adev->usec_timeout)
1216 		r = -ETIMEDOUT;
1217 
1218 error_free_wb:
1219 	amdgpu_device_wb_free(adev, index);
1220 	return r;
1221 }
1222 
1223 /**
1224  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1225  *
1226  * @ring: amdgpu_ring structure holding ring information
1227  *
1228  * Test a simple IB in the DMA ring (VEGA10).
1229  * Returns 0 on success, error on failure.
1230  */
1231 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1232 {
1233 	struct amdgpu_device *adev = ring->adev;
1234 	struct amdgpu_ib ib;
1235 	struct dma_fence *f = NULL;
1236 	unsigned index;
1237 	long r;
1238 	u32 tmp = 0;
1239 	u64 gpu_addr;
1240 
1241 	r = amdgpu_device_wb_get(adev, &index);
1242 	if (r)
1243 		return r;
1244 
1245 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1246 	tmp = 0xCAFEDEAD;
1247 	adev->wb.wb[index] = cpu_to_le32(tmp);
1248 	memset(&ib, 0, sizeof(ib));
1249 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1250 	if (r)
1251 		goto err0;
1252 
1253 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1254 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1255 	ib.ptr[1] = lower_32_bits(gpu_addr);
1256 	ib.ptr[2] = upper_32_bits(gpu_addr);
1257 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1258 	ib.ptr[4] = 0xDEADBEEF;
1259 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1261 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1262 	ib.length_dw = 8;
1263 
1264 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1265 	if (r)
1266 		goto err1;
1267 
1268 	r = dma_fence_wait_timeout(f, false, timeout);
1269 	if (r == 0) {
1270 		r = -ETIMEDOUT;
1271 		goto err1;
1272 	} else if (r < 0) {
1273 		goto err1;
1274 	}
1275 	tmp = le32_to_cpu(adev->wb.wb[index]);
1276 	if (tmp == 0xDEADBEEF)
1277 		r = 0;
1278 	else
1279 		r = -EINVAL;
1280 
1281 err1:
1282 	amdgpu_ib_free(adev, &ib, NULL);
1283 	dma_fence_put(f);
1284 err0:
1285 	amdgpu_device_wb_free(adev, index);
1286 	return r;
1287 }
1288 
1289 
1290 /**
1291  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1292  *
1293  * @ib: indirect buffer to fill with commands
1294  * @pe: addr of the page entry
1295  * @src: src addr to copy from
1296  * @count: number of page entries to update
1297  *
1298  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1299  */
1300 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1301 				  uint64_t pe, uint64_t src,
1302 				  unsigned count)
1303 {
1304 	unsigned bytes = count * 8;
1305 
1306 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1307 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1308 	ib->ptr[ib->length_dw++] = bytes - 1;
1309 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1310 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1311 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1312 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1313 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1314 
1315 }
1316 
1317 /**
1318  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1319  *
1320  * @ib: indirect buffer to fill with commands
1321  * @pe: addr of the page entry
1322  * @addr: dst addr to write into pe
1323  * @count: number of page entries to update
1324  * @incr: increase next addr by incr bytes
1325  * @flags: access flags
1326  *
1327  * Update PTEs by writing them manually using sDMA (VEGA10).
1328  */
1329 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1330 				   uint64_t value, unsigned count,
1331 				   uint32_t incr)
1332 {
1333 	unsigned ndw = count * 2;
1334 
1335 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1336 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1337 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1338 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1339 	ib->ptr[ib->length_dw++] = ndw - 1;
1340 	for (; ndw > 0; ndw -= 2) {
1341 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1342 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1343 		value += incr;
1344 	}
1345 }
1346 
1347 /**
1348  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1349  *
1350  * @ib: indirect buffer to fill with commands
1351  * @pe: addr of the page entry
1352  * @addr: dst addr to write into pe
1353  * @count: number of page entries to update
1354  * @incr: increase next addr by incr bytes
1355  * @flags: access flags
1356  *
1357  * Update the page tables using sDMA (VEGA10).
1358  */
1359 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1360 				     uint64_t pe,
1361 				     uint64_t addr, unsigned count,
1362 				     uint32_t incr, uint64_t flags)
1363 {
1364 	/* for physically contiguous pages (vram) */
1365 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1366 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1367 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1368 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1369 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1370 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1371 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1372 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1373 	ib->ptr[ib->length_dw++] = 0;
1374 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1375 }
1376 
1377 /**
1378  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1379  *
1380  * @ib: indirect buffer to fill with padding
1381  *
1382  */
1383 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1384 {
1385 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1386 	u32 pad_count;
1387 	int i;
1388 
1389 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1390 	for (i = 0; i < pad_count; i++)
1391 		if (sdma && sdma->burst_nop && (i == 0))
1392 			ib->ptr[ib->length_dw++] =
1393 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1394 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1395 		else
1396 			ib->ptr[ib->length_dw++] =
1397 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1398 }
1399 
1400 
1401 /**
1402  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1403  *
1404  * @ring: amdgpu_ring pointer
1405  *
1406  * Make sure all previous operations are completed (CIK).
1407  */
1408 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1409 {
1410 	uint32_t seq = ring->fence_drv.sync_seq;
1411 	uint64_t addr = ring->fence_drv.gpu_addr;
1412 
1413 	/* wait for idle */
1414 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1415 			       addr & 0xfffffffc,
1416 			       upper_32_bits(addr) & 0xffffffff,
1417 			       seq, 0xffffffff, 4);
1418 }
1419 
1420 
1421 /**
1422  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1423  *
1424  * @ring: amdgpu_ring pointer
1425  * @vm: amdgpu_vm pointer
1426  *
1427  * Update the page table base and flush the VM TLB
1428  * using sDMA (VEGA10).
1429  */
1430 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1431 					 unsigned vmid, uint64_t pd_addr)
1432 {
1433 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1434 }
1435 
1436 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1437 				     uint32_t reg, uint32_t val)
1438 {
1439 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1440 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1441 	amdgpu_ring_write(ring, reg);
1442 	amdgpu_ring_write(ring, val);
1443 }
1444 
1445 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1446 					 uint32_t val, uint32_t mask)
1447 {
1448 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1449 }
1450 
1451 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1452 {
1453 	uint fw_version = adev->sdma.instance[0].fw_version;
1454 
1455 	switch (adev->asic_type) {
1456 	case CHIP_VEGA10:
1457 		return fw_version >= 430;
1458 	case CHIP_VEGA12:
1459 		/*return fw_version >= 31;*/
1460 		return false;
1461 	case CHIP_VEGA20:
1462 		return fw_version >= 123;
1463 	default:
1464 		return false;
1465 	}
1466 }
1467 
1468 static int sdma_v4_0_early_init(void *handle)
1469 {
1470 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1471 	int r;
1472 
1473 	if (adev->asic_type == CHIP_RAVEN)
1474 		adev->sdma.num_instances = 1;
1475 	else
1476 		adev->sdma.num_instances = 2;
1477 
1478 	r = sdma_v4_0_init_microcode(adev);
1479 	if (r) {
1480 		DRM_ERROR("Failed to load sdma firmware!\n");
1481 		return r;
1482 	}
1483 
1484 	/* TODO: Page queue breaks driver reload under SRIOV */
1485 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1486 		adev->sdma.has_page_queue = false;
1487 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1488 		adev->sdma.has_page_queue = true;
1489 
1490 	sdma_v4_0_set_ring_funcs(adev);
1491 	sdma_v4_0_set_buffer_funcs(adev);
1492 	sdma_v4_0_set_vm_pte_funcs(adev);
1493 	sdma_v4_0_set_irq_funcs(adev);
1494 
1495 	return 0;
1496 }
1497 
1498 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1499 		struct amdgpu_iv_entry *entry);
1500 
1501 static int sdma_v4_0_late_init(void *handle)
1502 {
1503 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1504 	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1505 	struct ras_ih_if ih_info = {
1506 		.cb = sdma_v4_0_process_ras_data_cb,
1507 	};
1508 	struct ras_fs_if fs_info = {
1509 		.sysfs_name = "sdma_err_count",
1510 		.debugfs_name = "sdma_err_inject",
1511 	};
1512 	struct ras_common_if ras_block = {
1513 		.block = AMDGPU_RAS_BLOCK__SDMA,
1514 		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1515 		.sub_block_index = 0,
1516 		.name = "sdma",
1517 	};
1518 	int r;
1519 
1520 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1521 		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1522 		return 0;
1523 	}
1524 
1525 	/* handle resume path. */
1526 	if (*ras_if) {
1527 		/* resend ras TA enable cmd during resume.
1528 		 * prepare to handle failure.
1529 		 */
1530 		ih_info.head = **ras_if;
1531 		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1532 		if (r) {
1533 			if (r == -EAGAIN) {
1534 				/* request a gpu reset. will run again. */
1535 				amdgpu_ras_request_reset_on_boot(adev,
1536 						AMDGPU_RAS_BLOCK__SDMA);
1537 				return 0;
1538 			}
1539 			/* fail to enable ras, cleanup all. */
1540 			goto irq;
1541 		}
1542 		/* enable successfully. continue. */
1543 		goto resume;
1544 	}
1545 
1546 	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1547 	if (!*ras_if)
1548 		return -ENOMEM;
1549 
1550 	**ras_if = ras_block;
1551 
1552 	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1553 	if (r) {
1554 		if (r == -EAGAIN) {
1555 			amdgpu_ras_request_reset_on_boot(adev,
1556 					AMDGPU_RAS_BLOCK__SDMA);
1557 			r = 0;
1558 		}
1559 		goto feature;
1560 	}
1561 
1562 	ih_info.head = **ras_if;
1563 	fs_info.head = **ras_if;
1564 
1565 	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1566 	if (r)
1567 		goto interrupt;
1568 
1569 	amdgpu_ras_debugfs_create(adev, &fs_info);
1570 
1571 	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1572 	if (r)
1573 		goto sysfs;
1574 resume:
1575 	r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1576 	if (r)
1577 		goto irq;
1578 
1579 	r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1580 	if (r) {
1581 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1582 		goto irq;
1583 	}
1584 
1585 	return 0;
1586 irq:
1587 	amdgpu_ras_sysfs_remove(adev, *ras_if);
1588 sysfs:
1589 	amdgpu_ras_debugfs_remove(adev, *ras_if);
1590 	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1591 interrupt:
1592 	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1593 feature:
1594 	kfree(*ras_if);
1595 	*ras_if = NULL;
1596 	return r;
1597 }
1598 
1599 static int sdma_v4_0_sw_init(void *handle)
1600 {
1601 	struct amdgpu_ring *ring;
1602 	int r, i;
1603 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1604 
1605 	/* SDMA trap event */
1606 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1607 			      &adev->sdma.trap_irq);
1608 	if (r)
1609 		return r;
1610 
1611 	/* SDMA trap event */
1612 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1613 			      &adev->sdma.trap_irq);
1614 	if (r)
1615 		return r;
1616 
1617 	/* SDMA SRAM ECC event */
1618 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1619 			&adev->sdma.ecc_irq);
1620 	if (r)
1621 		return r;
1622 
1623 	/* SDMA SRAM ECC event */
1624 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_SRAM_ECC,
1625 			&adev->sdma.ecc_irq);
1626 	if (r)
1627 		return r;
1628 
1629 	for (i = 0; i < adev->sdma.num_instances; i++) {
1630 		ring = &adev->sdma.instance[i].ring;
1631 		ring->ring_obj = NULL;
1632 		ring->use_doorbell = true;
1633 
1634 		DRM_INFO("use_doorbell being set to: [%s]\n",
1635 				ring->use_doorbell?"true":"false");
1636 
1637 		/* doorbell size is 2 dwords, get DWORD offset */
1638 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1639 
1640 		sprintf(ring->name, "sdma%d", i);
1641 		r = amdgpu_ring_init(adev, ring, 1024,
1642 				     &adev->sdma.trap_irq,
1643 				     (i == 0) ?
1644 				     AMDGPU_SDMA_IRQ_INSTANCE0 :
1645 				     AMDGPU_SDMA_IRQ_INSTANCE1);
1646 		if (r)
1647 			return r;
1648 
1649 		if (adev->sdma.has_page_queue) {
1650 			ring = &adev->sdma.instance[i].page;
1651 			ring->ring_obj = NULL;
1652 			ring->use_doorbell = true;
1653 
1654 			/* paging queue use same doorbell index/routing as gfx queue
1655 			 * with 0x400 (4096 dwords) offset on second doorbell page
1656 			 */
1657 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1658 			ring->doorbell_index += 0x400;
1659 
1660 			sprintf(ring->name, "page%d", i);
1661 			r = amdgpu_ring_init(adev, ring, 1024,
1662 					     &adev->sdma.trap_irq,
1663 					     (i == 0) ?
1664 					     AMDGPU_SDMA_IRQ_INSTANCE0 :
1665 					     AMDGPU_SDMA_IRQ_INSTANCE1);
1666 			if (r)
1667 				return r;
1668 		}
1669 	}
1670 
1671 	return r;
1672 }
1673 
1674 static int sdma_v4_0_sw_fini(void *handle)
1675 {
1676 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1677 	int i;
1678 
1679 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1680 			adev->sdma.ras_if) {
1681 		struct ras_common_if *ras_if = adev->sdma.ras_if;
1682 		struct ras_ih_if ih_info = {
1683 			.head = *ras_if,
1684 		};
1685 
1686 		/*remove fs first*/
1687 		amdgpu_ras_debugfs_remove(adev, ras_if);
1688 		amdgpu_ras_sysfs_remove(adev, ras_if);
1689 		/*remove the IH*/
1690 		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1691 		amdgpu_ras_feature_enable(adev, ras_if, 0);
1692 		kfree(ras_if);
1693 	}
1694 
1695 	for (i = 0; i < adev->sdma.num_instances; i++) {
1696 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1697 		if (adev->sdma.has_page_queue)
1698 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1699 	}
1700 
1701 	for (i = 0; i < adev->sdma.num_instances; i++) {
1702 		release_firmware(adev->sdma.instance[i].fw);
1703 		adev->sdma.instance[i].fw = NULL;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int sdma_v4_0_hw_init(void *handle)
1710 {
1711 	int r;
1712 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1713 
1714 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1715 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1716 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1717 
1718 	sdma_v4_0_init_golden_registers(adev);
1719 
1720 	r = sdma_v4_0_start(adev);
1721 
1722 	return r;
1723 }
1724 
1725 static int sdma_v4_0_hw_fini(void *handle)
1726 {
1727 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1728 
1729 	if (amdgpu_sriov_vf(adev))
1730 		return 0;
1731 
1732 	amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1733 	amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1734 
1735 	sdma_v4_0_ctx_switch_enable(adev, false);
1736 	sdma_v4_0_enable(adev, false);
1737 
1738 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1739 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1740 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1741 
1742 	return 0;
1743 }
1744 
1745 static int sdma_v4_0_suspend(void *handle)
1746 {
1747 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1748 
1749 	return sdma_v4_0_hw_fini(adev);
1750 }
1751 
1752 static int sdma_v4_0_resume(void *handle)
1753 {
1754 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1755 
1756 	return sdma_v4_0_hw_init(adev);
1757 }
1758 
1759 static bool sdma_v4_0_is_idle(void *handle)
1760 {
1761 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1762 	u32 i;
1763 
1764 	for (i = 0; i < adev->sdma.num_instances; i++) {
1765 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1766 
1767 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1768 			return false;
1769 	}
1770 
1771 	return true;
1772 }
1773 
1774 static int sdma_v4_0_wait_for_idle(void *handle)
1775 {
1776 	unsigned i;
1777 	u32 sdma0, sdma1;
1778 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1779 
1780 	for (i = 0; i < adev->usec_timeout; i++) {
1781 		sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1782 		sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1783 
1784 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1785 			return 0;
1786 		udelay(1);
1787 	}
1788 	return -ETIMEDOUT;
1789 }
1790 
1791 static int sdma_v4_0_soft_reset(void *handle)
1792 {
1793 	/* todo */
1794 
1795 	return 0;
1796 }
1797 
1798 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1799 					struct amdgpu_irq_src *source,
1800 					unsigned type,
1801 					enum amdgpu_interrupt_state state)
1802 {
1803 	u32 sdma_cntl;
1804 
1805 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1806 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1807 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1808 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1809 
1810 	return 0;
1811 }
1812 
1813 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1814 				      struct amdgpu_irq_src *source,
1815 				      struct amdgpu_iv_entry *entry)
1816 {
1817 	uint32_t instance;
1818 
1819 	DRM_DEBUG("IH: SDMA trap\n");
1820 	switch (entry->client_id) {
1821 	case SOC15_IH_CLIENTID_SDMA0:
1822 		instance = 0;
1823 		break;
1824 	case SOC15_IH_CLIENTID_SDMA1:
1825 		instance = 1;
1826 		break;
1827 	default:
1828 		return 0;
1829 	}
1830 
1831 	switch (entry->ring_id) {
1832 	case 0:
1833 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1834 		break;
1835 	case 1:
1836 		if (adev->asic_type == CHIP_VEGA20)
1837 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1838 		break;
1839 	case 2:
1840 		/* XXX compute */
1841 		break;
1842 	case 3:
1843 		if (adev->asic_type != CHIP_VEGA20)
1844 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1845 		break;
1846 	}
1847 	return 0;
1848 }
1849 
1850 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1851 		struct amdgpu_iv_entry *entry)
1852 {
1853 	uint32_t instance, err_source;
1854 
1855 	switch (entry->client_id) {
1856 	case SOC15_IH_CLIENTID_SDMA0:
1857 		instance = 0;
1858 		break;
1859 	case SOC15_IH_CLIENTID_SDMA1:
1860 		instance = 1;
1861 		break;
1862 	default:
1863 		return 0;
1864 	}
1865 
1866 	switch (entry->src_id) {
1867 	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
1868 		err_source = 0;
1869 		break;
1870 	case SDMA0_4_0__SRCID__SDMA_ECC:
1871 		err_source = 1;
1872 		break;
1873 	default:
1874 		return 0;
1875 	}
1876 
1877 	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1878 
1879 	amdgpu_ras_reset_gpu(adev, 0);
1880 
1881 	return AMDGPU_RAS_UE;
1882 }
1883 
1884 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
1885 				      struct amdgpu_irq_src *source,
1886 				      struct amdgpu_iv_entry *entry)
1887 {
1888 	struct ras_common_if *ras_if = adev->sdma.ras_if;
1889 	struct ras_dispatch_if ih_data = {
1890 		.entry = entry,
1891 	};
1892 
1893 	if (!ras_if)
1894 		return 0;
1895 
1896 	ih_data.head = *ras_if;
1897 
1898 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1899 	return 0;
1900 }
1901 
1902 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1903 					      struct amdgpu_irq_src *source,
1904 					      struct amdgpu_iv_entry *entry)
1905 {
1906 	int instance;
1907 
1908 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1909 
1910 	switch (entry->client_id) {
1911 	case SOC15_IH_CLIENTID_SDMA0:
1912 		instance = 0;
1913 		break;
1914 	case SOC15_IH_CLIENTID_SDMA1:
1915 		instance = 1;
1916 		break;
1917 	default:
1918 		return 0;
1919 	}
1920 
1921 	switch (entry->ring_id) {
1922 	case 0:
1923 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1924 		break;
1925 	}
1926 	return 0;
1927 }
1928 
1929 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
1930 					struct amdgpu_irq_src *source,
1931 					unsigned type,
1932 					enum amdgpu_interrupt_state state)
1933 {
1934 	u32 sdma_edc_config;
1935 
1936 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1937 		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_EDC_CONFIG) :
1938 		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_EDC_CONFIG);
1939 
1940 	sdma_edc_config = RREG32(reg_offset);
1941 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
1942 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1943 	WREG32(reg_offset, sdma_edc_config);
1944 
1945 	return 0;
1946 }
1947 
1948 static void sdma_v4_0_update_medium_grain_clock_gating(
1949 		struct amdgpu_device *adev,
1950 		bool enable)
1951 {
1952 	uint32_t data, def;
1953 
1954 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1955 		/* enable sdma0 clock gating */
1956 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1957 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1958 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1959 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1960 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1961 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1962 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1963 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1964 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1965 		if (def != data)
1966 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1967 
1968 		if (adev->sdma.num_instances > 1) {
1969 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1970 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1971 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1972 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1973 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1974 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1975 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1976 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1977 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1978 			if (def != data)
1979 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1980 		}
1981 	} else {
1982 		/* disable sdma0 clock gating */
1983 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1984 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1985 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1986 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1987 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1988 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1989 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1990 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1991 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1992 
1993 		if (def != data)
1994 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1995 
1996 		if (adev->sdma.num_instances > 1) {
1997 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1998 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1999 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2000 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2001 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2002 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2003 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2004 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2005 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2006 			if (def != data)
2007 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2008 		}
2009 	}
2010 }
2011 
2012 
2013 static void sdma_v4_0_update_medium_grain_light_sleep(
2014 		struct amdgpu_device *adev,
2015 		bool enable)
2016 {
2017 	uint32_t data, def;
2018 
2019 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2020 		/* 1-not override: enable sdma0 mem light sleep */
2021 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2022 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2023 		if (def != data)
2024 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2025 
2026 		/* 1-not override: enable sdma1 mem light sleep */
2027 		if (adev->sdma.num_instances > 1) {
2028 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2029 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2030 			if (def != data)
2031 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2032 		}
2033 	} else {
2034 		/* 0-override:disable sdma0 mem light sleep */
2035 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2036 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2037 		if (def != data)
2038 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2039 
2040 		/* 0-override:disable sdma1 mem light sleep */
2041 		if (adev->sdma.num_instances > 1) {
2042 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2043 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2044 			if (def != data)
2045 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2046 		}
2047 	}
2048 }
2049 
2050 static int sdma_v4_0_set_clockgating_state(void *handle,
2051 					  enum amd_clockgating_state state)
2052 {
2053 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2054 
2055 	if (amdgpu_sriov_vf(adev))
2056 		return 0;
2057 
2058 	switch (adev->asic_type) {
2059 	case CHIP_VEGA10:
2060 	case CHIP_VEGA12:
2061 	case CHIP_VEGA20:
2062 	case CHIP_RAVEN:
2063 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2064 				state == AMD_CG_STATE_GATE ? true : false);
2065 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2066 				state == AMD_CG_STATE_GATE ? true : false);
2067 		break;
2068 	default:
2069 		break;
2070 	}
2071 	return 0;
2072 }
2073 
2074 static int sdma_v4_0_set_powergating_state(void *handle,
2075 					  enum amd_powergating_state state)
2076 {
2077 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2078 
2079 	switch (adev->asic_type) {
2080 	case CHIP_RAVEN:
2081 		sdma_v4_1_update_power_gating(adev,
2082 				state == AMD_PG_STATE_GATE ? true : false);
2083 		break;
2084 	default:
2085 		break;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2092 {
2093 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2094 	int data;
2095 
2096 	if (amdgpu_sriov_vf(adev))
2097 		*flags = 0;
2098 
2099 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2100 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2101 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2102 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2103 
2104 	/* AMD_CG_SUPPORT_SDMA_LS */
2105 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2106 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2107 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2108 }
2109 
2110 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2111 	.name = "sdma_v4_0",
2112 	.early_init = sdma_v4_0_early_init,
2113 	.late_init = sdma_v4_0_late_init,
2114 	.sw_init = sdma_v4_0_sw_init,
2115 	.sw_fini = sdma_v4_0_sw_fini,
2116 	.hw_init = sdma_v4_0_hw_init,
2117 	.hw_fini = sdma_v4_0_hw_fini,
2118 	.suspend = sdma_v4_0_suspend,
2119 	.resume = sdma_v4_0_resume,
2120 	.is_idle = sdma_v4_0_is_idle,
2121 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2122 	.soft_reset = sdma_v4_0_soft_reset,
2123 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2124 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2125 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2126 };
2127 
2128 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2129 	.type = AMDGPU_RING_TYPE_SDMA,
2130 	.align_mask = 0xf,
2131 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2132 	.support_64bit_ptrs = true,
2133 	.vmhub = AMDGPU_MMHUB,
2134 	.get_rptr = sdma_v4_0_ring_get_rptr,
2135 	.get_wptr = sdma_v4_0_ring_get_wptr,
2136 	.set_wptr = sdma_v4_0_ring_set_wptr,
2137 	.emit_frame_size =
2138 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2139 		3 + /* hdp invalidate */
2140 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2141 		/* sdma_v4_0_ring_emit_vm_flush */
2142 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2143 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2144 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2145 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2146 	.emit_ib = sdma_v4_0_ring_emit_ib,
2147 	.emit_fence = sdma_v4_0_ring_emit_fence,
2148 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2149 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2150 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2151 	.test_ring = sdma_v4_0_ring_test_ring,
2152 	.test_ib = sdma_v4_0_ring_test_ib,
2153 	.insert_nop = sdma_v4_0_ring_insert_nop,
2154 	.pad_ib = sdma_v4_0_ring_pad_ib,
2155 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2156 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2157 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2158 };
2159 
2160 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2161 	.type = AMDGPU_RING_TYPE_SDMA,
2162 	.align_mask = 0xf,
2163 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2164 	.support_64bit_ptrs = true,
2165 	.vmhub = AMDGPU_MMHUB,
2166 	.get_rptr = sdma_v4_0_ring_get_rptr,
2167 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2168 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2169 	.emit_frame_size =
2170 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2171 		3 + /* hdp invalidate */
2172 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2173 		/* sdma_v4_0_ring_emit_vm_flush */
2174 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2175 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2176 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2177 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2178 	.emit_ib = sdma_v4_0_ring_emit_ib,
2179 	.emit_fence = sdma_v4_0_ring_emit_fence,
2180 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2181 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2182 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2183 	.test_ring = sdma_v4_0_ring_test_ring,
2184 	.test_ib = sdma_v4_0_ring_test_ib,
2185 	.insert_nop = sdma_v4_0_ring_insert_nop,
2186 	.pad_ib = sdma_v4_0_ring_pad_ib,
2187 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2188 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2189 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2190 };
2191 
2192 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2193 {
2194 	int i;
2195 
2196 	for (i = 0; i < adev->sdma.num_instances; i++) {
2197 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2198 		adev->sdma.instance[i].ring.me = i;
2199 		if (adev->sdma.has_page_queue) {
2200 			adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2201 			adev->sdma.instance[i].page.me = i;
2202 		}
2203 	}
2204 }
2205 
2206 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2207 	.set = sdma_v4_0_set_trap_irq_state,
2208 	.process = sdma_v4_0_process_trap_irq,
2209 };
2210 
2211 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2212 	.process = sdma_v4_0_process_illegal_inst_irq,
2213 };
2214 
2215 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2216 	.set = sdma_v4_0_set_ecc_irq_state,
2217 	.process = sdma_v4_0_process_ecc_irq,
2218 };
2219 
2220 
2221 
2222 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2223 {
2224 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2225 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2226 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2227 	adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2228 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2229 }
2230 
2231 /**
2232  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2233  *
2234  * @ring: amdgpu_ring structure holding ring information
2235  * @src_offset: src GPU address
2236  * @dst_offset: dst GPU address
2237  * @byte_count: number of bytes to xfer
2238  *
2239  * Copy GPU buffers using the DMA engine (VEGA10/12).
2240  * Used by the amdgpu ttm implementation to move pages if
2241  * registered as the asic copy callback.
2242  */
2243 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2244 				       uint64_t src_offset,
2245 				       uint64_t dst_offset,
2246 				       uint32_t byte_count)
2247 {
2248 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2249 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2250 	ib->ptr[ib->length_dw++] = byte_count - 1;
2251 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2252 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2253 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2254 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2255 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2256 }
2257 
2258 /**
2259  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2260  *
2261  * @ring: amdgpu_ring structure holding ring information
2262  * @src_data: value to write to buffer
2263  * @dst_offset: dst GPU address
2264  * @byte_count: number of bytes to xfer
2265  *
2266  * Fill GPU buffers using the DMA engine (VEGA10/12).
2267  */
2268 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2269 				       uint32_t src_data,
2270 				       uint64_t dst_offset,
2271 				       uint32_t byte_count)
2272 {
2273 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2274 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2275 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2276 	ib->ptr[ib->length_dw++] = src_data;
2277 	ib->ptr[ib->length_dw++] = byte_count - 1;
2278 }
2279 
2280 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2281 	.copy_max_bytes = 0x400000,
2282 	.copy_num_dw = 7,
2283 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2284 
2285 	.fill_max_bytes = 0x400000,
2286 	.fill_num_dw = 5,
2287 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2288 };
2289 
2290 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2291 {
2292 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2293 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2294 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2295 	else
2296 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2297 }
2298 
2299 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2300 	.copy_pte_num_dw = 7,
2301 	.copy_pte = sdma_v4_0_vm_copy_pte,
2302 
2303 	.write_pte = sdma_v4_0_vm_write_pte,
2304 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2305 };
2306 
2307 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2308 {
2309 	struct drm_gpu_scheduler *sched;
2310 	unsigned i;
2311 
2312 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2313 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2314 		for (i = 1; i < adev->sdma.num_instances; i++) {
2315 			sched = &adev->sdma.instance[i].page.sched;
2316 			adev->vm_manager.vm_pte_rqs[i - 1] =
2317 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2318 		}
2319 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2320 		adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2321 	} else {
2322 		for (i = 0; i < adev->sdma.num_instances; i++) {
2323 			sched = &adev->sdma.instance[i].ring.sched;
2324 			adev->vm_manager.vm_pte_rqs[i] =
2325 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2326 		}
2327 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2328 	}
2329 }
2330 
2331 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2332 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2333 	.major = 4,
2334 	.minor = 0,
2335 	.rev = 0,
2336 	.funcs = &sdma_v4_0_ip_funcs,
2337 };
2338