1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "sdma0/sdma0_4_2_offset.h" 34 #include "sdma0/sdma0_4_2_sh_mask.h" 35 #include "sdma1/sdma1_4_2_offset.h" 36 #include "sdma1/sdma1_4_2_sh_mask.h" 37 #include "sdma2/sdma2_4_2_2_offset.h" 38 #include "sdma2/sdma2_4_2_2_sh_mask.h" 39 #include "sdma3/sdma3_4_2_2_offset.h" 40 #include "sdma3/sdma3_4_2_2_sh_mask.h" 41 #include "sdma4/sdma4_4_2_2_offset.h" 42 #include "sdma4/sdma4_4_2_2_sh_mask.h" 43 #include "sdma5/sdma5_4_2_2_offset.h" 44 #include "sdma5/sdma5_4_2_2_sh_mask.h" 45 #include "sdma6/sdma6_4_2_2_offset.h" 46 #include "sdma6/sdma6_4_2_2_sh_mask.h" 47 #include "sdma7/sdma7_4_2_2_offset.h" 48 #include "sdma7/sdma7_4_2_2_sh_mask.h" 49 #include "sdma0/sdma0_4_1_default.h" 50 51 #include "soc15_common.h" 52 #include "soc15.h" 53 #include "vega10_sdma_pkt_open.h" 54 55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 57 58 #include "amdgpu_ras.h" 59 #include "sdma_v4_4.h" 60 61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); 70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin"); 72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin"); 73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin"); 74 75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L 76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L 77 78 #define WREG32_SDMA(instance, offset, value) \ 79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) 80 #define RREG32_SDMA(instance, offset) \ 81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) 82 83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); 84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); 85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); 86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); 87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev); 88 89 static const struct soc15_reg_golden golden_settings_sdma_4[] = { 90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), 92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), 93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), 97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), 103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), 105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), 109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) 115 }; 116 117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { 118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 125 }; 126 127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { 128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 135 }; 136 137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { 138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), 141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), 143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), 144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), 146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) 149 }; 150 151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { 152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 153 }; 154 155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = 156 { 157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), 166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 184 }; 185 186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { 187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), 196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 214 }; 215 216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] = 217 { 218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) 220 }; 221 222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] = 223 { 224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), 225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) 226 }; 227 228 static const struct soc15_reg_golden golden_settings_sdma_arct[] = 229 { 230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001) 262 }; 263 264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = { 265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 280 }; 281 282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = { 283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002), 287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051), 289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe) 293 }; 294 295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = { 296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED), 298 0, 0, 299 }, 300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED), 302 0, 0, 303 }, 304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED), 306 0, 0, 307 }, 308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED), 310 0, 0, 311 }, 312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED), 314 0, 0, 315 }, 316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED), 318 0, 0, 319 }, 320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED), 322 0, 0, 323 }, 324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED), 326 0, 0, 327 }, 328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED), 330 0, 0, 331 }, 332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED), 334 0, 0, 335 }, 336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED), 338 0, 0, 339 }, 340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED), 342 0, 0, 343 }, 344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED), 346 0, 0, 347 }, 348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED), 350 0, 0, 351 }, 352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED), 354 0, 0, 355 }, 356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED), 358 0, 0, 359 }, 360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED), 362 0, 0, 363 }, 364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED), 366 0, 0, 367 }, 368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED), 370 0, 0, 371 }, 372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED), 374 0, 0, 375 }, 376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED), 378 0, 0, 379 }, 380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED), 382 0, 0, 383 }, 384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED), 386 0, 0, 387 }, 388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED), 390 0, 0, 391 }, 392 }; 393 394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, 395 u32 instance, u32 offset) 396 { 397 switch (instance) { 398 case 0: 399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset); 400 case 1: 401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset); 402 case 2: 403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset); 404 case 3: 405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset); 406 case 4: 407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset); 408 case 5: 409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset); 410 case 6: 411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset); 412 case 7: 413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset); 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num) 421 { 422 switch (seq_num) { 423 case 0: 424 return SOC15_IH_CLIENTID_SDMA0; 425 case 1: 426 return SOC15_IH_CLIENTID_SDMA1; 427 case 2: 428 return SOC15_IH_CLIENTID_SDMA2; 429 case 3: 430 return SOC15_IH_CLIENTID_SDMA3; 431 case 4: 432 return SOC15_IH_CLIENTID_SDMA4; 433 case 5: 434 return SOC15_IH_CLIENTID_SDMA5; 435 case 6: 436 return SOC15_IH_CLIENTID_SDMA6; 437 case 7: 438 return SOC15_IH_CLIENTID_SDMA7; 439 default: 440 break; 441 } 442 return -EINVAL; 443 } 444 445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id) 446 { 447 switch (client_id) { 448 case SOC15_IH_CLIENTID_SDMA0: 449 return 0; 450 case SOC15_IH_CLIENTID_SDMA1: 451 return 1; 452 case SOC15_IH_CLIENTID_SDMA2: 453 return 2; 454 case SOC15_IH_CLIENTID_SDMA3: 455 return 3; 456 case SOC15_IH_CLIENTID_SDMA4: 457 return 4; 458 case SOC15_IH_CLIENTID_SDMA5: 459 return 5; 460 case SOC15_IH_CLIENTID_SDMA6: 461 return 6; 462 case SOC15_IH_CLIENTID_SDMA7: 463 return 7; 464 default: 465 break; 466 } 467 return -EINVAL; 468 } 469 470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) 471 { 472 switch (adev->ip_versions[SDMA0_HWIP][0]) { 473 case IP_VERSION(4, 0, 0): 474 soc15_program_register_sequence(adev, 475 golden_settings_sdma_4, 476 ARRAY_SIZE(golden_settings_sdma_4)); 477 soc15_program_register_sequence(adev, 478 golden_settings_sdma_vg10, 479 ARRAY_SIZE(golden_settings_sdma_vg10)); 480 break; 481 case IP_VERSION(4, 0, 1): 482 soc15_program_register_sequence(adev, 483 golden_settings_sdma_4, 484 ARRAY_SIZE(golden_settings_sdma_4)); 485 soc15_program_register_sequence(adev, 486 golden_settings_sdma_vg12, 487 ARRAY_SIZE(golden_settings_sdma_vg12)); 488 break; 489 case IP_VERSION(4, 2, 0): 490 soc15_program_register_sequence(adev, 491 golden_settings_sdma0_4_2_init, 492 ARRAY_SIZE(golden_settings_sdma0_4_2_init)); 493 soc15_program_register_sequence(adev, 494 golden_settings_sdma0_4_2, 495 ARRAY_SIZE(golden_settings_sdma0_4_2)); 496 soc15_program_register_sequence(adev, 497 golden_settings_sdma1_4_2, 498 ARRAY_SIZE(golden_settings_sdma1_4_2)); 499 break; 500 case IP_VERSION(4, 2, 2): 501 soc15_program_register_sequence(adev, 502 golden_settings_sdma_arct, 503 ARRAY_SIZE(golden_settings_sdma_arct)); 504 break; 505 case IP_VERSION(4, 4, 0): 506 soc15_program_register_sequence(adev, 507 golden_settings_sdma_aldebaran, 508 ARRAY_SIZE(golden_settings_sdma_aldebaran)); 509 break; 510 case IP_VERSION(4, 1, 0): 511 case IP_VERSION(4, 1, 1): 512 soc15_program_register_sequence(adev, 513 golden_settings_sdma_4_1, 514 ARRAY_SIZE(golden_settings_sdma_4_1)); 515 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 516 soc15_program_register_sequence(adev, 517 golden_settings_sdma_rv2, 518 ARRAY_SIZE(golden_settings_sdma_rv2)); 519 else 520 soc15_program_register_sequence(adev, 521 golden_settings_sdma_rv1, 522 ARRAY_SIZE(golden_settings_sdma_rv1)); 523 break; 524 case IP_VERSION(4, 1, 2): 525 soc15_program_register_sequence(adev, 526 golden_settings_sdma_4_3, 527 ARRAY_SIZE(golden_settings_sdma_4_3)); 528 break; 529 default: 530 break; 531 } 532 } 533 534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev) 535 { 536 int i; 537 538 /* 539 * The only chips with SDMAv4 and ULV are VG10 and VG20. 540 * Server SKUs take a different hysteresis setting from other SKUs. 541 */ 542 switch (adev->ip_versions[SDMA0_HWIP][0]) { 543 case IP_VERSION(4, 0, 0): 544 if (adev->pdev->device == 0x6860) 545 break; 546 return; 547 case IP_VERSION(4, 2, 0): 548 if (adev->pdev->device == 0x66a1) 549 break; 550 return; 551 default: 552 return; 553 } 554 555 for (i = 0; i < adev->sdma.num_instances; i++) { 556 uint32_t temp; 557 558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL); 559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0); 560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp); 561 } 562 } 563 564 /** 565 * sdma_v4_0_init_microcode - load ucode images from disk 566 * 567 * @adev: amdgpu_device pointer 568 * 569 * Use the firmware interface to load the ucode images into 570 * the driver (not loaded into hw). 571 * Returns 0 on success, error on failure. 572 */ 573 574 // emulation only, won't work on real chip 575 // vega10 real chip need to use PSP to load firmware 576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) 577 { 578 const char *chip_name; 579 char fw_name[30]; 580 int ret, i; 581 582 DRM_DEBUG("\n"); 583 584 switch (adev->ip_versions[SDMA0_HWIP][0]) { 585 case IP_VERSION(4, 0, 0): 586 chip_name = "vega10"; 587 break; 588 case IP_VERSION(4, 0, 1): 589 chip_name = "vega12"; 590 break; 591 case IP_VERSION(4, 2, 0): 592 chip_name = "vega20"; 593 break; 594 case IP_VERSION(4, 1, 0): 595 case IP_VERSION(4, 1, 1): 596 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 597 chip_name = "raven2"; 598 else if (adev->apu_flags & AMD_APU_IS_PICASSO) 599 chip_name = "picasso"; 600 else 601 chip_name = "raven"; 602 break; 603 case IP_VERSION(4, 2, 2): 604 chip_name = "arcturus"; 605 break; 606 case IP_VERSION(4, 1, 2): 607 if (adev->apu_flags & AMD_APU_IS_RENOIR) 608 chip_name = "renoir"; 609 else 610 chip_name = "green_sardine"; 611 break; 612 case IP_VERSION(4, 4, 0): 613 chip_name = "aldebaran"; 614 break; 615 default: 616 BUG(); 617 } 618 619 for (i = 0; i < adev->sdma.num_instances; i++) { 620 if (i == 0) 621 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 622 else 623 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i); 624 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) || 625 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) { 626 /* Acturus & Aldebaran will leverage the same FW memory 627 for every SDMA instance */ 628 ret = amdgpu_sdma_init_microcode(adev, fw_name, 0, true); 629 break; 630 } else { 631 ret = amdgpu_sdma_init_microcode(adev, fw_name, i, false); 632 if (ret) 633 return ret; 634 } 635 } 636 637 return ret; 638 } 639 640 /** 641 * sdma_v4_0_ring_get_rptr - get the current read pointer 642 * 643 * @ring: amdgpu ring pointer 644 * 645 * Get the current rptr from the hardware (VEGA10+). 646 */ 647 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) 648 { 649 u64 *rptr; 650 651 /* XXX check if swapping is necessary on BE */ 652 rptr = ((u64 *)ring->rptr_cpu_addr); 653 654 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 655 return ((*rptr) >> 2); 656 } 657 658 /** 659 * sdma_v4_0_ring_get_wptr - get the current write pointer 660 * 661 * @ring: amdgpu ring pointer 662 * 663 * Get the current wptr from the hardware (VEGA10+). 664 */ 665 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) 666 { 667 struct amdgpu_device *adev = ring->adev; 668 u64 wptr; 669 670 if (ring->use_doorbell) { 671 /* XXX check if swapping is necessary on BE */ 672 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 673 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 674 } else { 675 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); 676 wptr = wptr << 32; 677 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); 678 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 679 ring->me, wptr); 680 } 681 682 return wptr >> 2; 683 } 684 685 /** 686 * sdma_v4_0_ring_set_wptr - commit the write pointer 687 * 688 * @ring: amdgpu ring pointer 689 * 690 * Write the wptr back to the hardware (VEGA10+). 691 */ 692 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) 693 { 694 struct amdgpu_device *adev = ring->adev; 695 696 DRM_DEBUG("Setting write pointer\n"); 697 if (ring->use_doorbell) { 698 u64 *wb = (u64 *)ring->wptr_cpu_addr; 699 700 DRM_DEBUG("Using doorbell -- " 701 "wptr_offs == 0x%08x " 702 "lower_32_bits(ring->wptr << 2) == 0x%08x " 703 "upper_32_bits(ring->wptr << 2) == 0x%08x\n", 704 ring->wptr_offs, 705 lower_32_bits(ring->wptr << 2), 706 upper_32_bits(ring->wptr << 2)); 707 /* XXX check if swapping is necessary on BE */ 708 WRITE_ONCE(*wb, (ring->wptr << 2)); 709 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 710 ring->doorbell_index, ring->wptr << 2); 711 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 712 } else { 713 DRM_DEBUG("Not using doorbell -- " 714 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 715 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 716 ring->me, 717 lower_32_bits(ring->wptr << 2), 718 ring->me, 719 upper_32_bits(ring->wptr << 2)); 720 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, 721 lower_32_bits(ring->wptr << 2)); 722 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, 723 upper_32_bits(ring->wptr << 2)); 724 } 725 } 726 727 /** 728 * sdma_v4_0_page_ring_get_wptr - get the current write pointer 729 * 730 * @ring: amdgpu ring pointer 731 * 732 * Get the current wptr from the hardware (VEGA10+). 733 */ 734 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) 735 { 736 struct amdgpu_device *adev = ring->adev; 737 u64 wptr; 738 739 if (ring->use_doorbell) { 740 /* XXX check if swapping is necessary on BE */ 741 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 742 } else { 743 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); 744 wptr = wptr << 32; 745 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); 746 } 747 748 return wptr >> 2; 749 } 750 751 /** 752 * sdma_v4_0_page_ring_set_wptr - commit the write pointer 753 * 754 * @ring: amdgpu ring pointer 755 * 756 * Write the wptr back to the hardware (VEGA10+). 757 */ 758 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) 759 { 760 struct amdgpu_device *adev = ring->adev; 761 762 if (ring->use_doorbell) { 763 u64 *wb = (u64 *)ring->wptr_cpu_addr; 764 765 /* XXX check if swapping is necessary on BE */ 766 WRITE_ONCE(*wb, (ring->wptr << 2)); 767 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 768 } else { 769 uint64_t wptr = ring->wptr << 2; 770 771 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, 772 lower_32_bits(wptr)); 773 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, 774 upper_32_bits(wptr)); 775 } 776 } 777 778 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 779 { 780 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 781 int i; 782 783 for (i = 0; i < count; i++) 784 if (sdma && sdma->burst_nop && (i == 0)) 785 amdgpu_ring_write(ring, ring->funcs->nop | 786 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 787 else 788 amdgpu_ring_write(ring, ring->funcs->nop); 789 } 790 791 /** 792 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine 793 * 794 * @ring: amdgpu ring pointer 795 * @job: job to retrieve vmid from 796 * @ib: IB object to schedule 797 * @flags: unused 798 * 799 * Schedule an IB in the DMA ring (VEGA10). 800 */ 801 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, 802 struct amdgpu_job *job, 803 struct amdgpu_ib *ib, 804 uint32_t flags) 805 { 806 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 807 808 /* IB packet must end on a 8 DW boundary */ 809 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 810 811 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 812 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 813 /* base must be 32 byte aligned */ 814 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 815 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 816 amdgpu_ring_write(ring, ib->length_dw); 817 amdgpu_ring_write(ring, 0); 818 amdgpu_ring_write(ring, 0); 819 820 } 821 822 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, 823 int mem_space, int hdp, 824 uint32_t addr0, uint32_t addr1, 825 uint32_t ref, uint32_t mask, 826 uint32_t inv) 827 { 828 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 829 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 830 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 831 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 832 if (mem_space) { 833 /* memory */ 834 amdgpu_ring_write(ring, addr0); 835 amdgpu_ring_write(ring, addr1); 836 } else { 837 /* registers */ 838 amdgpu_ring_write(ring, addr0 << 2); 839 amdgpu_ring_write(ring, addr1 << 2); 840 } 841 amdgpu_ring_write(ring, ref); /* reference */ 842 amdgpu_ring_write(ring, mask); /* mask */ 843 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 844 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 845 } 846 847 /** 848 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 849 * 850 * @ring: amdgpu ring pointer 851 * 852 * Emit an hdp flush packet on the requested DMA ring. 853 */ 854 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 855 { 856 struct amdgpu_device *adev = ring->adev; 857 u32 ref_and_mask = 0; 858 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 859 860 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 861 862 sdma_v4_0_wait_reg_mem(ring, 0, 1, 863 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 864 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 865 ref_and_mask, ref_and_mask, 10); 866 } 867 868 /** 869 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring 870 * 871 * @ring: amdgpu ring pointer 872 * @addr: address 873 * @seq: sequence number 874 * @flags: fence related flags 875 * 876 * Add a DMA fence packet to the ring to write 877 * the fence seq number and DMA trap packet to generate 878 * an interrupt if needed (VEGA10). 879 */ 880 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 881 unsigned flags) 882 { 883 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 884 /* write the fence */ 885 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 886 /* zero in first two bits */ 887 BUG_ON(addr & 0x3); 888 amdgpu_ring_write(ring, lower_32_bits(addr)); 889 amdgpu_ring_write(ring, upper_32_bits(addr)); 890 amdgpu_ring_write(ring, lower_32_bits(seq)); 891 892 /* optionally write high bits as well */ 893 if (write64bit) { 894 addr += 4; 895 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 896 /* zero in first two bits */ 897 BUG_ON(addr & 0x3); 898 amdgpu_ring_write(ring, lower_32_bits(addr)); 899 amdgpu_ring_write(ring, upper_32_bits(addr)); 900 amdgpu_ring_write(ring, upper_32_bits(seq)); 901 } 902 903 /* generate an interrupt */ 904 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 905 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 906 } 907 908 909 /** 910 * sdma_v4_0_gfx_enable - enable the gfx async dma engines 911 * 912 * @adev: amdgpu_device pointer 913 * @enable: enable SDMA RB/IB 914 * control the gfx async dma ring buffers (VEGA10). 915 */ 916 static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable) 917 { 918 u32 rb_cntl, ib_cntl; 919 int i; 920 921 amdgpu_sdma_unset_buffer_funcs_helper(adev); 922 923 for (i = 0; i < adev->sdma.num_instances; i++) { 924 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 925 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0); 926 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 927 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 928 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0); 929 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 930 } 931 } 932 933 /** 934 * sdma_v4_0_rlc_stop - stop the compute async dma engines 935 * 936 * @adev: amdgpu_device pointer 937 * 938 * Stop the compute async dma queues (VEGA10). 939 */ 940 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) 941 { 942 /* XXX todo */ 943 } 944 945 /** 946 * sdma_v4_0_page_stop - stop the page async dma engines 947 * 948 * @adev: amdgpu_device pointer 949 * 950 * Stop the page async dma ring buffers (VEGA10). 951 */ 952 static void sdma_v4_0_page_stop(struct amdgpu_device *adev) 953 { 954 u32 rb_cntl, ib_cntl; 955 int i; 956 957 amdgpu_sdma_unset_buffer_funcs_helper(adev); 958 959 for (i = 0; i < adev->sdma.num_instances; i++) { 960 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 961 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 962 RB_ENABLE, 0); 963 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 964 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 965 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, 966 IB_ENABLE, 0); 967 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 968 } 969 } 970 971 /** 972 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch 973 * 974 * @adev: amdgpu_device pointer 975 * @enable: enable/disable the DMA MEs context switch. 976 * 977 * Halt or unhalt the async dma engines context switch (VEGA10). 978 */ 979 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 980 { 981 u32 f32_cntl, phase_quantum = 0; 982 int i; 983 984 if (amdgpu_sdma_phase_quantum) { 985 unsigned value = amdgpu_sdma_phase_quantum; 986 unsigned unit = 0; 987 988 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 989 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 990 value = (value + 1) >> 1; 991 unit++; 992 } 993 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 994 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 995 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 996 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 997 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 998 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 999 WARN_ONCE(1, 1000 "clamping sdma_phase_quantum to %uK clock cycles\n", 1001 value << unit); 1002 } 1003 phase_quantum = 1004 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 1005 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 1006 } 1007 1008 for (i = 0; i < adev->sdma.num_instances; i++) { 1009 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); 1010 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 1011 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 1012 if (enable && amdgpu_sdma_phase_quantum) { 1013 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); 1014 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); 1015 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); 1016 } 1017 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); 1018 1019 /* 1020 * Enable SDMA utilization. Its only supported on 1021 * Arcturus for the moment and firmware version 14 1022 * and above. 1023 */ 1024 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && 1025 adev->sdma.instance[i].fw_version >= 14) 1026 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable); 1027 /* Extend page fault timeout to avoid interrupt storm */ 1028 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080); 1029 } 1030 1031 } 1032 1033 /** 1034 * sdma_v4_0_enable - stop the async dma engines 1035 * 1036 * @adev: amdgpu_device pointer 1037 * @enable: enable/disable the DMA MEs. 1038 * 1039 * Halt or unhalt the async dma engines (VEGA10). 1040 */ 1041 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) 1042 { 1043 u32 f32_cntl; 1044 int i; 1045 1046 if (!enable) { 1047 sdma_v4_0_gfx_enable(adev, enable); 1048 sdma_v4_0_rlc_stop(adev); 1049 if (adev->sdma.has_page_queue) 1050 sdma_v4_0_page_stop(adev); 1051 } 1052 1053 for (i = 0; i < adev->sdma.num_instances; i++) { 1054 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1055 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 1056 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); 1057 } 1058 } 1059 1060 /* 1061 * sdma_v4_0_rb_cntl - get parameters for rb_cntl 1062 */ 1063 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 1064 { 1065 /* Set ring buffer size in dwords */ 1066 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 1067 1068 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 1069 #ifdef __BIG_ENDIAN 1070 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 1071 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1072 RPTR_WRITEBACK_SWAP_ENABLE, 1); 1073 #endif 1074 return rb_cntl; 1075 } 1076 1077 /** 1078 * sdma_v4_0_gfx_resume - setup and start the async dma engines 1079 * 1080 * @adev: amdgpu_device pointer 1081 * @i: instance to resume 1082 * 1083 * Set up the gfx DMA ring buffers and enable them (VEGA10). 1084 * Returns 0 for success, error for failure. 1085 */ 1086 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) 1087 { 1088 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 1089 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1090 u32 doorbell; 1091 u32 doorbell_offset; 1092 u64 wptr_gpu_addr; 1093 1094 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1095 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1096 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1097 1098 /* Initialize the ring buffer's read and write pointers */ 1099 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); 1100 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); 1101 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); 1102 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); 1103 1104 /* set the wb address whether it's enabled or not */ 1105 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, 1106 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 1107 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 1108 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 1109 1110 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1111 RPTR_WRITEBACK_ENABLE, 1); 1112 1113 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); 1114 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 1115 1116 ring->wptr = 0; 1117 1118 /* before programing wptr to a less value, need set minor_ptr_update first */ 1119 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); 1120 1121 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); 1122 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); 1123 1124 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1125 ring->use_doorbell); 1126 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1127 SDMA0_GFX_DOORBELL_OFFSET, 1128 OFFSET, ring->doorbell_index); 1129 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); 1130 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); 1131 1132 sdma_v4_0_ring_set_wptr(ring); 1133 1134 /* set minor_ptr_update to 0 after wptr programed */ 1135 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); 1136 1137 /* setup the wptr shadow polling */ 1138 wptr_gpu_addr = ring->wptr_gpu_addr; 1139 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, 1140 lower_32_bits(wptr_gpu_addr)); 1141 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, 1142 upper_32_bits(wptr_gpu_addr)); 1143 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); 1144 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1145 SDMA0_GFX_RB_WPTR_POLL_CNTL, 1146 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1147 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1148 1149 /* enable DMA RB */ 1150 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 1151 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1152 1153 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1154 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 1155 #ifdef __BIG_ENDIAN 1156 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 1157 #endif 1158 /* enable DMA IBs */ 1159 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1160 1161 ring->sched.ready = true; 1162 } 1163 1164 /** 1165 * sdma_v4_0_page_resume - setup and start the async dma engines 1166 * 1167 * @adev: amdgpu_device pointer 1168 * @i: instance to resume 1169 * 1170 * Set up the page DMA ring buffers and enable them (VEGA10). 1171 * Returns 0 for success, error for failure. 1172 */ 1173 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) 1174 { 1175 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 1176 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1177 u32 doorbell; 1178 u32 doorbell_offset; 1179 u64 wptr_gpu_addr; 1180 1181 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1182 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1183 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1184 1185 /* Initialize the ring buffer's read and write pointers */ 1186 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); 1187 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); 1188 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); 1189 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); 1190 1191 /* set the wb address whether it's enabled or not */ 1192 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, 1193 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 1194 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 1195 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 1196 1197 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1198 RPTR_WRITEBACK_ENABLE, 1); 1199 1200 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); 1201 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 1202 1203 ring->wptr = 0; 1204 1205 /* before programing wptr to a less value, need set minor_ptr_update first */ 1206 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); 1207 1208 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); 1209 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); 1210 1211 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, 1212 ring->use_doorbell); 1213 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1214 SDMA0_PAGE_DOORBELL_OFFSET, 1215 OFFSET, ring->doorbell_index); 1216 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); 1217 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); 1218 1219 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ 1220 sdma_v4_0_page_ring_set_wptr(ring); 1221 1222 /* set minor_ptr_update to 0 after wptr programed */ 1223 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); 1224 1225 /* setup the wptr shadow polling */ 1226 wptr_gpu_addr = ring->wptr_gpu_addr; 1227 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, 1228 lower_32_bits(wptr_gpu_addr)); 1229 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, 1230 upper_32_bits(wptr_gpu_addr)); 1231 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); 1232 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1233 SDMA0_PAGE_RB_WPTR_POLL_CNTL, 1234 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1235 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1236 1237 /* enable DMA RB */ 1238 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); 1239 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1240 1241 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1242 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); 1243 #ifdef __BIG_ENDIAN 1244 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 1245 #endif 1246 /* enable DMA IBs */ 1247 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1248 1249 ring->sched.ready = true; 1250 } 1251 1252 static void 1253 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) 1254 { 1255 uint32_t def, data; 1256 1257 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { 1258 /* enable idle interrupt */ 1259 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1260 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1261 1262 if (data != def) 1263 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1264 } else { 1265 /* disable idle interrupt */ 1266 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1267 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1268 if (data != def) 1269 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1270 } 1271 } 1272 1273 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) 1274 { 1275 uint32_t def, data; 1276 1277 /* Enable HW based PG. */ 1278 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1279 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; 1280 if (data != def) 1281 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1282 1283 /* enable interrupt */ 1284 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1285 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1286 if (data != def) 1287 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1288 1289 /* Configure hold time to filter in-valid power on/off request. Use default right now */ 1290 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1291 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; 1292 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); 1293 /* Configure switch time for hysteresis purpose. Use default right now */ 1294 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; 1295 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); 1296 if(data != def) 1297 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1298 } 1299 1300 static void sdma_v4_0_init_pg(struct amdgpu_device *adev) 1301 { 1302 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) 1303 return; 1304 1305 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1306 case IP_VERSION(4, 1, 0): 1307 case IP_VERSION(4, 1, 1): 1308 case IP_VERSION(4, 1, 2): 1309 sdma_v4_1_init_power_gating(adev); 1310 sdma_v4_1_update_power_gating(adev, true); 1311 break; 1312 default: 1313 break; 1314 } 1315 } 1316 1317 /** 1318 * sdma_v4_0_rlc_resume - setup and start the async dma engines 1319 * 1320 * @adev: amdgpu_device pointer 1321 * 1322 * Set up the compute DMA queues and enable them (VEGA10). 1323 * Returns 0 for success, error for failure. 1324 */ 1325 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) 1326 { 1327 sdma_v4_0_init_pg(adev); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * sdma_v4_0_load_microcode - load the sDMA ME ucode 1334 * 1335 * @adev: amdgpu_device pointer 1336 * 1337 * Loads the sDMA0/1 ucode. 1338 * Returns 0 for success, -EINVAL if the ucode is not available. 1339 */ 1340 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) 1341 { 1342 const struct sdma_firmware_header_v1_0 *hdr; 1343 const __le32 *fw_data; 1344 u32 fw_size; 1345 int i, j; 1346 1347 /* halt the MEs */ 1348 sdma_v4_0_enable(adev, false); 1349 1350 for (i = 0; i < adev->sdma.num_instances; i++) { 1351 if (!adev->sdma.instance[i].fw) 1352 return -EINVAL; 1353 1354 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 1355 amdgpu_ucode_print_sdma_hdr(&hdr->header); 1356 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 1357 1358 fw_data = (const __le32 *) 1359 (adev->sdma.instance[i].fw->data + 1360 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 1361 1362 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); 1363 1364 for (j = 0; j < fw_size; j++) 1365 WREG32_SDMA(i, mmSDMA0_UCODE_DATA, 1366 le32_to_cpup(fw_data++)); 1367 1368 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 1369 adev->sdma.instance[i].fw_version); 1370 } 1371 1372 return 0; 1373 } 1374 1375 /** 1376 * sdma_v4_0_start - setup and start the async dma engines 1377 * 1378 * @adev: amdgpu_device pointer 1379 * 1380 * Set up the DMA engines and enable them (VEGA10). 1381 * Returns 0 for success, error for failure. 1382 */ 1383 static int sdma_v4_0_start(struct amdgpu_device *adev) 1384 { 1385 struct amdgpu_ring *ring; 1386 int i, r = 0; 1387 1388 if (amdgpu_sriov_vf(adev)) { 1389 sdma_v4_0_ctx_switch_enable(adev, false); 1390 sdma_v4_0_enable(adev, false); 1391 } else { 1392 1393 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1394 r = sdma_v4_0_load_microcode(adev); 1395 if (r) 1396 return r; 1397 } 1398 1399 /* unhalt the MEs */ 1400 sdma_v4_0_enable(adev, true); 1401 /* enable sdma ring preemption */ 1402 sdma_v4_0_ctx_switch_enable(adev, true); 1403 } 1404 1405 /* start the gfx rings and rlc compute queues */ 1406 for (i = 0; i < adev->sdma.num_instances; i++) { 1407 uint32_t temp; 1408 1409 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); 1410 sdma_v4_0_gfx_resume(adev, i); 1411 if (adev->sdma.has_page_queue) 1412 sdma_v4_0_page_resume(adev, i); 1413 1414 /* set utc l1 enable flag always to 1 */ 1415 temp = RREG32_SDMA(i, mmSDMA0_CNTL); 1416 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 1417 WREG32_SDMA(i, mmSDMA0_CNTL, temp); 1418 1419 if (!amdgpu_sriov_vf(adev)) { 1420 /* unhalt engine */ 1421 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1422 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 1423 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); 1424 } 1425 } 1426 1427 if (amdgpu_sriov_vf(adev)) { 1428 sdma_v4_0_ctx_switch_enable(adev, true); 1429 sdma_v4_0_enable(adev, true); 1430 } else { 1431 r = sdma_v4_0_rlc_resume(adev); 1432 if (r) 1433 return r; 1434 } 1435 1436 for (i = 0; i < adev->sdma.num_instances; i++) { 1437 ring = &adev->sdma.instance[i].ring; 1438 1439 r = amdgpu_ring_test_helper(ring); 1440 if (r) 1441 return r; 1442 1443 if (adev->sdma.has_page_queue) { 1444 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1445 1446 r = amdgpu_ring_test_helper(page); 1447 if (r) 1448 return r; 1449 1450 if (adev->mman.buffer_funcs_ring == page) 1451 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1452 } 1453 1454 if (adev->mman.buffer_funcs_ring == ring) 1455 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1456 } 1457 1458 return r; 1459 } 1460 1461 /** 1462 * sdma_v4_0_ring_test_ring - simple async dma engine test 1463 * 1464 * @ring: amdgpu_ring structure holding ring information 1465 * 1466 * Test the DMA engine by writing using it to write an 1467 * value to memory. (VEGA10). 1468 * Returns 0 for success, error for failure. 1469 */ 1470 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) 1471 { 1472 struct amdgpu_device *adev = ring->adev; 1473 unsigned i; 1474 unsigned index; 1475 int r; 1476 u32 tmp; 1477 u64 gpu_addr; 1478 1479 r = amdgpu_device_wb_get(adev, &index); 1480 if (r) 1481 return r; 1482 1483 gpu_addr = adev->wb.gpu_addr + (index * 4); 1484 tmp = 0xCAFEDEAD; 1485 adev->wb.wb[index] = cpu_to_le32(tmp); 1486 1487 r = amdgpu_ring_alloc(ring, 5); 1488 if (r) 1489 goto error_free_wb; 1490 1491 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1492 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1493 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1494 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1495 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1496 amdgpu_ring_write(ring, 0xDEADBEEF); 1497 amdgpu_ring_commit(ring); 1498 1499 for (i = 0; i < adev->usec_timeout; i++) { 1500 tmp = le32_to_cpu(adev->wb.wb[index]); 1501 if (tmp == 0xDEADBEEF) 1502 break; 1503 udelay(1); 1504 } 1505 1506 if (i >= adev->usec_timeout) 1507 r = -ETIMEDOUT; 1508 1509 error_free_wb: 1510 amdgpu_device_wb_free(adev, index); 1511 return r; 1512 } 1513 1514 /** 1515 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine 1516 * 1517 * @ring: amdgpu_ring structure holding ring information 1518 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1519 * 1520 * Test a simple IB in the DMA ring (VEGA10). 1521 * Returns 0 on success, error on failure. 1522 */ 1523 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1524 { 1525 struct amdgpu_device *adev = ring->adev; 1526 struct amdgpu_ib ib; 1527 struct dma_fence *f = NULL; 1528 unsigned index; 1529 long r; 1530 u32 tmp = 0; 1531 u64 gpu_addr; 1532 1533 r = amdgpu_device_wb_get(adev, &index); 1534 if (r) 1535 return r; 1536 1537 gpu_addr = adev->wb.gpu_addr + (index * 4); 1538 tmp = 0xCAFEDEAD; 1539 adev->wb.wb[index] = cpu_to_le32(tmp); 1540 memset(&ib, 0, sizeof(ib)); 1541 r = amdgpu_ib_get(adev, NULL, 256, 1542 AMDGPU_IB_POOL_DIRECT, &ib); 1543 if (r) 1544 goto err0; 1545 1546 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1547 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1548 ib.ptr[1] = lower_32_bits(gpu_addr); 1549 ib.ptr[2] = upper_32_bits(gpu_addr); 1550 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1551 ib.ptr[4] = 0xDEADBEEF; 1552 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1553 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1554 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1555 ib.length_dw = 8; 1556 1557 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1558 if (r) 1559 goto err1; 1560 1561 r = dma_fence_wait_timeout(f, false, timeout); 1562 if (r == 0) { 1563 r = -ETIMEDOUT; 1564 goto err1; 1565 } else if (r < 0) { 1566 goto err1; 1567 } 1568 tmp = le32_to_cpu(adev->wb.wb[index]); 1569 if (tmp == 0xDEADBEEF) 1570 r = 0; 1571 else 1572 r = -EINVAL; 1573 1574 err1: 1575 amdgpu_ib_free(adev, &ib, NULL); 1576 dma_fence_put(f); 1577 err0: 1578 amdgpu_device_wb_free(adev, index); 1579 return r; 1580 } 1581 1582 1583 /** 1584 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART 1585 * 1586 * @ib: indirect buffer to fill with commands 1587 * @pe: addr of the page entry 1588 * @src: src addr to copy from 1589 * @count: number of page entries to update 1590 * 1591 * Update PTEs by copying them from the GART using sDMA (VEGA10). 1592 */ 1593 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, 1594 uint64_t pe, uint64_t src, 1595 unsigned count) 1596 { 1597 unsigned bytes = count * 8; 1598 1599 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1600 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1601 ib->ptr[ib->length_dw++] = bytes - 1; 1602 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1603 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1604 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1605 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1606 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1607 1608 } 1609 1610 /** 1611 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually 1612 * 1613 * @ib: indirect buffer to fill with commands 1614 * @pe: addr of the page entry 1615 * @value: dst addr to write into pe 1616 * @count: number of page entries to update 1617 * @incr: increase next addr by incr bytes 1618 * 1619 * Update PTEs by writing them manually using sDMA (VEGA10). 1620 */ 1621 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1622 uint64_t value, unsigned count, 1623 uint32_t incr) 1624 { 1625 unsigned ndw = count * 2; 1626 1627 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1628 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1629 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1630 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1631 ib->ptr[ib->length_dw++] = ndw - 1; 1632 for (; ndw > 0; ndw -= 2) { 1633 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1634 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1635 value += incr; 1636 } 1637 } 1638 1639 /** 1640 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA 1641 * 1642 * @ib: indirect buffer to fill with commands 1643 * @pe: addr of the page entry 1644 * @addr: dst addr to write into pe 1645 * @count: number of page entries to update 1646 * @incr: increase next addr by incr bytes 1647 * @flags: access flags 1648 * 1649 * Update the page tables using sDMA (VEGA10). 1650 */ 1651 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1652 uint64_t pe, 1653 uint64_t addr, unsigned count, 1654 uint32_t incr, uint64_t flags) 1655 { 1656 /* for physically contiguous pages (vram) */ 1657 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1658 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1659 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1660 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1661 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1662 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1663 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1664 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1665 ib->ptr[ib->length_dw++] = 0; 1666 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1667 } 1668 1669 /** 1670 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw 1671 * 1672 * @ring: amdgpu_ring structure holding ring information 1673 * @ib: indirect buffer to fill with padding 1674 */ 1675 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1676 { 1677 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1678 u32 pad_count; 1679 int i; 1680 1681 pad_count = (-ib->length_dw) & 7; 1682 for (i = 0; i < pad_count; i++) 1683 if (sdma && sdma->burst_nop && (i == 0)) 1684 ib->ptr[ib->length_dw++] = 1685 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1686 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1687 else 1688 ib->ptr[ib->length_dw++] = 1689 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1690 } 1691 1692 1693 /** 1694 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline 1695 * 1696 * @ring: amdgpu_ring pointer 1697 * 1698 * Make sure all previous operations are completed (CIK). 1699 */ 1700 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1701 { 1702 uint32_t seq = ring->fence_drv.sync_seq; 1703 uint64_t addr = ring->fence_drv.gpu_addr; 1704 1705 /* wait for idle */ 1706 sdma_v4_0_wait_reg_mem(ring, 1, 0, 1707 addr & 0xfffffffc, 1708 upper_32_bits(addr) & 0xffffffff, 1709 seq, 0xffffffff, 4); 1710 } 1711 1712 1713 /** 1714 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA 1715 * 1716 * @ring: amdgpu_ring pointer 1717 * @vmid: vmid number to use 1718 * @pd_addr: address 1719 * 1720 * Update the page table base and flush the VM TLB 1721 * using sDMA (VEGA10). 1722 */ 1723 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1724 unsigned vmid, uint64_t pd_addr) 1725 { 1726 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1727 } 1728 1729 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, 1730 uint32_t reg, uint32_t val) 1731 { 1732 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1733 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1734 amdgpu_ring_write(ring, reg); 1735 amdgpu_ring_write(ring, val); 1736 } 1737 1738 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1739 uint32_t val, uint32_t mask) 1740 { 1741 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1742 } 1743 1744 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) 1745 { 1746 uint fw_version = adev->sdma.instance[0].fw_version; 1747 1748 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1749 case IP_VERSION(4, 0, 0): 1750 return fw_version >= 430; 1751 case IP_VERSION(4, 0, 1): 1752 /*return fw_version >= 31;*/ 1753 return false; 1754 case IP_VERSION(4, 2, 0): 1755 return fw_version >= 123; 1756 default: 1757 return false; 1758 } 1759 } 1760 1761 static int sdma_v4_0_early_init(void *handle) 1762 { 1763 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1764 int r; 1765 1766 r = sdma_v4_0_init_microcode(adev); 1767 if (r) { 1768 DRM_ERROR("Failed to load sdma firmware!\n"); 1769 return r; 1770 } 1771 1772 /* TODO: Page queue breaks driver reload under SRIOV */ 1773 if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) && 1774 amdgpu_sriov_vf((adev))) 1775 adev->sdma.has_page_queue = false; 1776 else if (sdma_v4_0_fw_support_paging_queue(adev)) 1777 adev->sdma.has_page_queue = true; 1778 1779 sdma_v4_0_set_ring_funcs(adev); 1780 sdma_v4_0_set_buffer_funcs(adev); 1781 sdma_v4_0_set_vm_pte_funcs(adev); 1782 sdma_v4_0_set_irq_funcs(adev); 1783 sdma_v4_0_set_ras_funcs(adev); 1784 1785 return 0; 1786 } 1787 1788 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 1789 void *err_data, 1790 struct amdgpu_iv_entry *entry); 1791 1792 static int sdma_v4_0_late_init(void *handle) 1793 { 1794 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1795 1796 sdma_v4_0_setup_ulv(adev); 1797 1798 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 1799 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops && 1800 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count) 1801 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev); 1802 } 1803 1804 return 0; 1805 } 1806 1807 static int sdma_v4_0_sw_init(void *handle) 1808 { 1809 struct amdgpu_ring *ring; 1810 int r, i; 1811 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1812 1813 /* SDMA trap event */ 1814 for (i = 0; i < adev->sdma.num_instances; i++) { 1815 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1816 SDMA0_4_0__SRCID__SDMA_TRAP, 1817 &adev->sdma.trap_irq); 1818 if (r) 1819 return r; 1820 } 1821 1822 /* SDMA SRAM ECC event */ 1823 for (i = 0; i < adev->sdma.num_instances; i++) { 1824 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1825 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1826 &adev->sdma.ecc_irq); 1827 if (r) 1828 return r; 1829 } 1830 1831 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1832 for (i = 0; i < adev->sdma.num_instances; i++) { 1833 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1834 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1835 &adev->sdma.vm_hole_irq); 1836 if (r) 1837 return r; 1838 1839 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1840 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1841 &adev->sdma.doorbell_invalid_irq); 1842 if (r) 1843 return r; 1844 1845 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1846 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1847 &adev->sdma.pool_timeout_irq); 1848 if (r) 1849 return r; 1850 1851 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1852 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1853 &adev->sdma.srbm_write_irq); 1854 if (r) 1855 return r; 1856 } 1857 1858 for (i = 0; i < adev->sdma.num_instances; i++) { 1859 ring = &adev->sdma.instance[i].ring; 1860 ring->ring_obj = NULL; 1861 ring->use_doorbell = true; 1862 1863 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1864 ring->use_doorbell?"true":"false"); 1865 1866 /* doorbell size is 2 dwords, get DWORD offset */ 1867 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1868 1869 sprintf(ring->name, "sdma%d", i); 1870 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1871 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1872 AMDGPU_RING_PRIO_DEFAULT, NULL); 1873 if (r) 1874 return r; 1875 1876 if (adev->sdma.has_page_queue) { 1877 ring = &adev->sdma.instance[i].page; 1878 ring->ring_obj = NULL; 1879 ring->use_doorbell = true; 1880 1881 /* paging queue use same doorbell index/routing as gfx queue 1882 * with 0x400 (4096 dwords) offset on second doorbell page 1883 */ 1884 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1885 ring->doorbell_index += 0x400; 1886 1887 sprintf(ring->name, "page%d", i); 1888 r = amdgpu_ring_init(adev, ring, 1024, 1889 &adev->sdma.trap_irq, 1890 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1891 AMDGPU_RING_PRIO_DEFAULT, NULL); 1892 if (r) 1893 return r; 1894 } 1895 } 1896 1897 return r; 1898 } 1899 1900 static int sdma_v4_0_sw_fini(void *handle) 1901 { 1902 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1903 int i; 1904 1905 for (i = 0; i < adev->sdma.num_instances; i++) { 1906 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1907 if (adev->sdma.has_page_queue) 1908 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1909 } 1910 1911 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0) || 1912 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) 1913 amdgpu_sdma_destroy_inst_ctx(adev, true); 1914 else 1915 amdgpu_sdma_destroy_inst_ctx(adev, false); 1916 1917 return 0; 1918 } 1919 1920 static int sdma_v4_0_hw_init(void *handle) 1921 { 1922 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1923 1924 if (adev->flags & AMD_IS_APU) 1925 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); 1926 1927 if (!amdgpu_sriov_vf(adev)) 1928 sdma_v4_0_init_golden_registers(adev); 1929 1930 return sdma_v4_0_start(adev); 1931 } 1932 1933 static int sdma_v4_0_hw_fini(void *handle) 1934 { 1935 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1936 int i; 1937 1938 if (amdgpu_sriov_vf(adev)) { 1939 /* disable the scheduler for SDMA */ 1940 amdgpu_sdma_unset_buffer_funcs_helper(adev); 1941 return 0; 1942 } 1943 1944 for (i = 0; i < adev->sdma.num_instances; i++) { 1945 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1946 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1947 } 1948 1949 sdma_v4_0_ctx_switch_enable(adev, false); 1950 sdma_v4_0_enable(adev, false); 1951 1952 if (adev->flags & AMD_IS_APU) 1953 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); 1954 1955 return 0; 1956 } 1957 1958 static int sdma_v4_0_suspend(void *handle) 1959 { 1960 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1961 1962 /* SMU saves SDMA state for us */ 1963 if (adev->in_s0ix) { 1964 sdma_v4_0_gfx_enable(adev, false); 1965 return 0; 1966 } 1967 1968 return sdma_v4_0_hw_fini(adev); 1969 } 1970 1971 static int sdma_v4_0_resume(void *handle) 1972 { 1973 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1974 1975 /* SMU restores SDMA state for us */ 1976 if (adev->in_s0ix) { 1977 sdma_v4_0_enable(adev, true); 1978 sdma_v4_0_gfx_enable(adev, true); 1979 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1980 return 0; 1981 } 1982 1983 return sdma_v4_0_hw_init(adev); 1984 } 1985 1986 static bool sdma_v4_0_is_idle(void *handle) 1987 { 1988 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1989 u32 i; 1990 1991 for (i = 0; i < adev->sdma.num_instances; i++) { 1992 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); 1993 1994 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1995 return false; 1996 } 1997 1998 return true; 1999 } 2000 2001 static int sdma_v4_0_wait_for_idle(void *handle) 2002 { 2003 unsigned i, j; 2004 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 2005 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2006 2007 for (i = 0; i < adev->usec_timeout; i++) { 2008 for (j = 0; j < adev->sdma.num_instances; j++) { 2009 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG); 2010 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK)) 2011 break; 2012 } 2013 if (j == adev->sdma.num_instances) 2014 return 0; 2015 udelay(1); 2016 } 2017 return -ETIMEDOUT; 2018 } 2019 2020 static int sdma_v4_0_soft_reset(void *handle) 2021 { 2022 /* todo */ 2023 2024 return 0; 2025 } 2026 2027 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, 2028 struct amdgpu_irq_src *source, 2029 unsigned type, 2030 enum amdgpu_interrupt_state state) 2031 { 2032 u32 sdma_cntl; 2033 2034 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL); 2035 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 2036 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2037 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl); 2038 2039 return 0; 2040 } 2041 2042 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, 2043 struct amdgpu_irq_src *source, 2044 struct amdgpu_iv_entry *entry) 2045 { 2046 uint32_t instance; 2047 2048 DRM_DEBUG("IH: SDMA trap\n"); 2049 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2050 switch (entry->ring_id) { 2051 case 0: 2052 amdgpu_fence_process(&adev->sdma.instance[instance].ring); 2053 break; 2054 case 1: 2055 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0)) 2056 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2057 break; 2058 case 2: 2059 /* XXX compute */ 2060 break; 2061 case 3: 2062 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0)) 2063 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2064 break; 2065 } 2066 return 0; 2067 } 2068 2069 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 2070 void *err_data, 2071 struct amdgpu_iv_entry *entry) 2072 { 2073 int instance; 2074 2075 /* When “Full RAS” is enabled, the per-IP interrupt sources should 2076 * be disabled and the driver should only look for the aggregated 2077 * interrupt via sync flood 2078 */ 2079 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) 2080 goto out; 2081 2082 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2083 if (instance < 0) 2084 goto out; 2085 2086 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 2087 2088 out: 2089 return AMDGPU_RAS_SUCCESS; 2090 } 2091 2092 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, 2093 struct amdgpu_irq_src *source, 2094 struct amdgpu_iv_entry *entry) 2095 { 2096 int instance; 2097 2098 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 2099 2100 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2101 if (instance < 0) 2102 return 0; 2103 2104 switch (entry->ring_id) { 2105 case 0: 2106 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 2107 break; 2108 } 2109 return 0; 2110 } 2111 2112 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev, 2113 struct amdgpu_irq_src *source, 2114 unsigned type, 2115 enum amdgpu_interrupt_state state) 2116 { 2117 u32 sdma_edc_config; 2118 2119 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG); 2120 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE, 2121 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2122 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config); 2123 2124 return 0; 2125 } 2126 2127 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev, 2128 struct amdgpu_iv_entry *entry) 2129 { 2130 int instance; 2131 struct amdgpu_task_info task_info; 2132 u64 addr; 2133 2134 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2135 if (instance < 0 || instance >= adev->sdma.num_instances) { 2136 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 2137 return -EINVAL; 2138 } 2139 2140 addr = (u64)entry->src_data[0] << 12; 2141 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 2142 2143 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 2144 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 2145 2146 dev_dbg_ratelimited(adev->dev, 2147 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 2148 "pasid:%u, for process %s pid %d thread %s pid %d\n", 2149 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 2150 entry->pasid, task_info.process_name, task_info.tgid, 2151 task_info.task_name, task_info.pid); 2152 return 0; 2153 } 2154 2155 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev, 2156 struct amdgpu_irq_src *source, 2157 struct amdgpu_iv_entry *entry) 2158 { 2159 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 2160 sdma_v4_0_print_iv_entry(adev, entry); 2161 return 0; 2162 } 2163 2164 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev, 2165 struct amdgpu_irq_src *source, 2166 struct amdgpu_iv_entry *entry) 2167 { 2168 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 2169 sdma_v4_0_print_iv_entry(adev, entry); 2170 return 0; 2171 } 2172 2173 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev, 2174 struct amdgpu_irq_src *source, 2175 struct amdgpu_iv_entry *entry) 2176 { 2177 dev_dbg_ratelimited(adev->dev, 2178 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 2179 sdma_v4_0_print_iv_entry(adev, entry); 2180 return 0; 2181 } 2182 2183 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev, 2184 struct amdgpu_irq_src *source, 2185 struct amdgpu_iv_entry *entry) 2186 { 2187 dev_dbg_ratelimited(adev->dev, 2188 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 2189 sdma_v4_0_print_iv_entry(adev, entry); 2190 return 0; 2191 } 2192 2193 static void sdma_v4_0_update_medium_grain_clock_gating( 2194 struct amdgpu_device *adev, 2195 bool enable) 2196 { 2197 uint32_t data, def; 2198 int i; 2199 2200 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 2201 for (i = 0; i < adev->sdma.num_instances; i++) { 2202 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2203 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2204 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2205 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2206 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2207 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2208 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2209 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2210 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2211 if (def != data) 2212 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2213 } 2214 } else { 2215 for (i = 0; i < adev->sdma.num_instances; i++) { 2216 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2217 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2218 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2219 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2220 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2221 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2222 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2223 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2224 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2225 if (def != data) 2226 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2227 } 2228 } 2229 } 2230 2231 2232 static void sdma_v4_0_update_medium_grain_light_sleep( 2233 struct amdgpu_device *adev, 2234 bool enable) 2235 { 2236 uint32_t data, def; 2237 int i; 2238 2239 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 2240 for (i = 0; i < adev->sdma.num_instances; i++) { 2241 /* 1-not override: enable sdma mem light sleep */ 2242 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2243 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2244 if (def != data) 2245 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2246 } 2247 } else { 2248 for (i = 0; i < adev->sdma.num_instances; i++) { 2249 /* 0-override:disable sdma mem light sleep */ 2250 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2251 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2252 if (def != data) 2253 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2254 } 2255 } 2256 } 2257 2258 static int sdma_v4_0_set_clockgating_state(void *handle, 2259 enum amd_clockgating_state state) 2260 { 2261 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2262 2263 if (amdgpu_sriov_vf(adev)) 2264 return 0; 2265 2266 sdma_v4_0_update_medium_grain_clock_gating(adev, 2267 state == AMD_CG_STATE_GATE); 2268 sdma_v4_0_update_medium_grain_light_sleep(adev, 2269 state == AMD_CG_STATE_GATE); 2270 return 0; 2271 } 2272 2273 static int sdma_v4_0_set_powergating_state(void *handle, 2274 enum amd_powergating_state state) 2275 { 2276 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2277 2278 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2279 case IP_VERSION(4, 1, 0): 2280 case IP_VERSION(4, 1, 1): 2281 case IP_VERSION(4, 1, 2): 2282 sdma_v4_1_update_power_gating(adev, 2283 state == AMD_PG_STATE_GATE); 2284 break; 2285 default: 2286 break; 2287 } 2288 2289 return 0; 2290 } 2291 2292 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags) 2293 { 2294 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2295 int data; 2296 2297 if (amdgpu_sriov_vf(adev)) 2298 *flags = 0; 2299 2300 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2301 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); 2302 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 2303 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2304 2305 /* AMD_CG_SUPPORT_SDMA_LS */ 2306 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 2307 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2308 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2309 } 2310 2311 const struct amd_ip_funcs sdma_v4_0_ip_funcs = { 2312 .name = "sdma_v4_0", 2313 .early_init = sdma_v4_0_early_init, 2314 .late_init = sdma_v4_0_late_init, 2315 .sw_init = sdma_v4_0_sw_init, 2316 .sw_fini = sdma_v4_0_sw_fini, 2317 .hw_init = sdma_v4_0_hw_init, 2318 .hw_fini = sdma_v4_0_hw_fini, 2319 .suspend = sdma_v4_0_suspend, 2320 .resume = sdma_v4_0_resume, 2321 .is_idle = sdma_v4_0_is_idle, 2322 .wait_for_idle = sdma_v4_0_wait_for_idle, 2323 .soft_reset = sdma_v4_0_soft_reset, 2324 .set_clockgating_state = sdma_v4_0_set_clockgating_state, 2325 .set_powergating_state = sdma_v4_0_set_powergating_state, 2326 .get_clockgating_state = sdma_v4_0_get_clockgating_state, 2327 }; 2328 2329 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { 2330 .type = AMDGPU_RING_TYPE_SDMA, 2331 .align_mask = 0xf, 2332 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2333 .support_64bit_ptrs = true, 2334 .secure_submission_supported = true, 2335 .vmhub = AMDGPU_MMHUB_0, 2336 .get_rptr = sdma_v4_0_ring_get_rptr, 2337 .get_wptr = sdma_v4_0_ring_get_wptr, 2338 .set_wptr = sdma_v4_0_ring_set_wptr, 2339 .emit_frame_size = 2340 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2341 3 + /* hdp invalidate */ 2342 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2343 /* sdma_v4_0_ring_emit_vm_flush */ 2344 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2345 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2346 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2347 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2348 .emit_ib = sdma_v4_0_ring_emit_ib, 2349 .emit_fence = sdma_v4_0_ring_emit_fence, 2350 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2351 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2352 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2353 .test_ring = sdma_v4_0_ring_test_ring, 2354 .test_ib = sdma_v4_0_ring_test_ib, 2355 .insert_nop = sdma_v4_0_ring_insert_nop, 2356 .pad_ib = sdma_v4_0_ring_pad_ib, 2357 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2358 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2359 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2360 }; 2361 2362 /* 2363 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1). 2364 * So create a individual constant ring_funcs for those instances. 2365 */ 2366 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = { 2367 .type = AMDGPU_RING_TYPE_SDMA, 2368 .align_mask = 0xf, 2369 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2370 .support_64bit_ptrs = true, 2371 .secure_submission_supported = true, 2372 .vmhub = AMDGPU_MMHUB_1, 2373 .get_rptr = sdma_v4_0_ring_get_rptr, 2374 .get_wptr = sdma_v4_0_ring_get_wptr, 2375 .set_wptr = sdma_v4_0_ring_set_wptr, 2376 .emit_frame_size = 2377 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2378 3 + /* hdp invalidate */ 2379 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2380 /* sdma_v4_0_ring_emit_vm_flush */ 2381 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2382 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2383 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2384 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2385 .emit_ib = sdma_v4_0_ring_emit_ib, 2386 .emit_fence = sdma_v4_0_ring_emit_fence, 2387 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2388 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2389 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2390 .test_ring = sdma_v4_0_ring_test_ring, 2391 .test_ib = sdma_v4_0_ring_test_ib, 2392 .insert_nop = sdma_v4_0_ring_insert_nop, 2393 .pad_ib = sdma_v4_0_ring_pad_ib, 2394 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2395 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2396 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2397 }; 2398 2399 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { 2400 .type = AMDGPU_RING_TYPE_SDMA, 2401 .align_mask = 0xf, 2402 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2403 .support_64bit_ptrs = true, 2404 .secure_submission_supported = true, 2405 .vmhub = AMDGPU_MMHUB_0, 2406 .get_rptr = sdma_v4_0_ring_get_rptr, 2407 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2408 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2409 .emit_frame_size = 2410 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2411 3 + /* hdp invalidate */ 2412 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2413 /* sdma_v4_0_ring_emit_vm_flush */ 2414 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2415 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2416 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2417 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2418 .emit_ib = sdma_v4_0_ring_emit_ib, 2419 .emit_fence = sdma_v4_0_ring_emit_fence, 2420 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2421 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2422 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2423 .test_ring = sdma_v4_0_ring_test_ring, 2424 .test_ib = sdma_v4_0_ring_test_ib, 2425 .insert_nop = sdma_v4_0_ring_insert_nop, 2426 .pad_ib = sdma_v4_0_ring_pad_ib, 2427 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2428 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2429 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2430 }; 2431 2432 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = { 2433 .type = AMDGPU_RING_TYPE_SDMA, 2434 .align_mask = 0xf, 2435 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2436 .support_64bit_ptrs = true, 2437 .secure_submission_supported = true, 2438 .vmhub = AMDGPU_MMHUB_1, 2439 .get_rptr = sdma_v4_0_ring_get_rptr, 2440 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2441 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2442 .emit_frame_size = 2443 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2444 3 + /* hdp invalidate */ 2445 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2446 /* sdma_v4_0_ring_emit_vm_flush */ 2447 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2448 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2449 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2450 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2451 .emit_ib = sdma_v4_0_ring_emit_ib, 2452 .emit_fence = sdma_v4_0_ring_emit_fence, 2453 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2454 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2455 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2456 .test_ring = sdma_v4_0_ring_test_ring, 2457 .test_ib = sdma_v4_0_ring_test_ib, 2458 .insert_nop = sdma_v4_0_ring_insert_nop, 2459 .pad_ib = sdma_v4_0_ring_pad_ib, 2460 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2461 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2462 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2463 }; 2464 2465 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) 2466 { 2467 int i; 2468 2469 for (i = 0; i < adev->sdma.num_instances; i++) { 2470 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2471 adev->sdma.instance[i].ring.funcs = 2472 &sdma_v4_0_ring_funcs_2nd_mmhub; 2473 else 2474 adev->sdma.instance[i].ring.funcs = 2475 &sdma_v4_0_ring_funcs; 2476 adev->sdma.instance[i].ring.me = i; 2477 if (adev->sdma.has_page_queue) { 2478 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2479 adev->sdma.instance[i].page.funcs = 2480 &sdma_v4_0_page_ring_funcs_2nd_mmhub; 2481 else 2482 adev->sdma.instance[i].page.funcs = 2483 &sdma_v4_0_page_ring_funcs; 2484 adev->sdma.instance[i].page.me = i; 2485 } 2486 } 2487 } 2488 2489 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { 2490 .set = sdma_v4_0_set_trap_irq_state, 2491 .process = sdma_v4_0_process_trap_irq, 2492 }; 2493 2494 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { 2495 .process = sdma_v4_0_process_illegal_inst_irq, 2496 }; 2497 2498 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = { 2499 .set = sdma_v4_0_set_ecc_irq_state, 2500 .process = amdgpu_sdma_process_ecc_irq, 2501 }; 2502 2503 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = { 2504 .process = sdma_v4_0_process_vm_hole_irq, 2505 }; 2506 2507 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = { 2508 .process = sdma_v4_0_process_doorbell_invalid_irq, 2509 }; 2510 2511 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = { 2512 .process = sdma_v4_0_process_pool_timeout_irq, 2513 }; 2514 2515 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = { 2516 .process = sdma_v4_0_process_srbm_write_irq, 2517 }; 2518 2519 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) 2520 { 2521 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 2522 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 2523 /*For Arcturus and Aldebaran, add another 4 irq handler*/ 2524 switch (adev->sdma.num_instances) { 2525 case 5: 2526 case 8: 2527 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 2528 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 2529 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 2530 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 2531 break; 2532 default: 2533 break; 2534 } 2535 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; 2536 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; 2537 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs; 2538 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs; 2539 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs; 2540 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs; 2541 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs; 2542 } 2543 2544 /** 2545 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine 2546 * 2547 * @ib: indirect buffer to copy to 2548 * @src_offset: src GPU address 2549 * @dst_offset: dst GPU address 2550 * @byte_count: number of bytes to xfer 2551 * @tmz: if a secure copy should be used 2552 * 2553 * Copy GPU buffers using the DMA engine (VEGA10/12). 2554 * Used by the amdgpu ttm implementation to move pages if 2555 * registered as the asic copy callback. 2556 */ 2557 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, 2558 uint64_t src_offset, 2559 uint64_t dst_offset, 2560 uint32_t byte_count, 2561 bool tmz) 2562 { 2563 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2564 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 2565 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 2566 ib->ptr[ib->length_dw++] = byte_count - 1; 2567 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2568 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2569 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2570 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2571 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2572 } 2573 2574 /** 2575 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine 2576 * 2577 * @ib: indirect buffer to copy to 2578 * @src_data: value to write to buffer 2579 * @dst_offset: dst GPU address 2580 * @byte_count: number of bytes to xfer 2581 * 2582 * Fill GPU buffers using the DMA engine (VEGA10/12). 2583 */ 2584 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, 2585 uint32_t src_data, 2586 uint64_t dst_offset, 2587 uint32_t byte_count) 2588 { 2589 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2590 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2591 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2592 ib->ptr[ib->length_dw++] = src_data; 2593 ib->ptr[ib->length_dw++] = byte_count - 1; 2594 } 2595 2596 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { 2597 .copy_max_bytes = 0x400000, 2598 .copy_num_dw = 7, 2599 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, 2600 2601 .fill_max_bytes = 0x400000, 2602 .fill_num_dw = 5, 2603 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, 2604 }; 2605 2606 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) 2607 { 2608 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; 2609 if (adev->sdma.has_page_queue) 2610 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2611 else 2612 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2613 } 2614 2615 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { 2616 .copy_pte_num_dw = 7, 2617 .copy_pte = sdma_v4_0_vm_copy_pte, 2618 2619 .write_pte = sdma_v4_0_vm_write_pte, 2620 .set_pte_pde = sdma_v4_0_vm_set_pte_pde, 2621 }; 2622 2623 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) 2624 { 2625 struct drm_gpu_scheduler *sched; 2626 unsigned i; 2627 2628 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; 2629 for (i = 0; i < adev->sdma.num_instances; i++) { 2630 if (adev->sdma.has_page_queue) 2631 sched = &adev->sdma.instance[i].page.sched; 2632 else 2633 sched = &adev->sdma.instance[i].ring.sched; 2634 adev->vm_manager.vm_pte_scheds[i] = sched; 2635 } 2636 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2637 } 2638 2639 static void sdma_v4_0_get_ras_error_count(uint32_t value, 2640 uint32_t instance, 2641 uint32_t *sec_count) 2642 { 2643 uint32_t i; 2644 uint32_t sec_cnt; 2645 2646 /* double bits error (multiple bits) error detection is not supported */ 2647 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) { 2648 /* the SDMA_EDC_COUNTER register in each sdma instance 2649 * shares the same sed shift_mask 2650 * */ 2651 sec_cnt = (value & 2652 sdma_v4_0_ras_fields[i].sec_count_mask) >> 2653 sdma_v4_0_ras_fields[i].sec_count_shift; 2654 if (sec_cnt) { 2655 DRM_INFO("Detected %s in SDMA%d, SED %d\n", 2656 sdma_v4_0_ras_fields[i].name, 2657 instance, sec_cnt); 2658 *sec_count += sec_cnt; 2659 } 2660 } 2661 } 2662 2663 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev, 2664 uint32_t instance, void *ras_error_status) 2665 { 2666 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 2667 uint32_t sec_count = 0; 2668 uint32_t reg_value = 0; 2669 2670 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER); 2671 /* double bit error is not supported */ 2672 if (reg_value) 2673 sdma_v4_0_get_ras_error_count(reg_value, 2674 instance, &sec_count); 2675 /* err_data->ce_count should be initialized to 0 2676 * before calling into this function */ 2677 err_data->ce_count += sec_count; 2678 /* double bit error is not supported 2679 * set ue count to 0 */ 2680 err_data->ue_count = 0; 2681 2682 return 0; 2683 }; 2684 2685 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status) 2686 { 2687 int i = 0; 2688 2689 for (i = 0; i < adev->sdma.num_instances; i++) { 2690 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) { 2691 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i); 2692 return; 2693 } 2694 } 2695 } 2696 2697 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev) 2698 { 2699 int i; 2700 2701 /* read back edc counter registers to clear the counters */ 2702 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2703 for (i = 0; i < adev->sdma.num_instances; i++) 2704 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER); 2705 } 2706 } 2707 2708 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = { 2709 .query_ras_error_count = sdma_v4_0_query_ras_error_count, 2710 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count, 2711 }; 2712 2713 static struct amdgpu_sdma_ras sdma_v4_0_ras = { 2714 .ras_block = { 2715 .hw_ops = &sdma_v4_0_ras_hw_ops, 2716 .ras_cb = sdma_v4_0_process_ras_data_cb, 2717 }, 2718 }; 2719 2720 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev) 2721 { 2722 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2723 case IP_VERSION(4, 2, 0): 2724 case IP_VERSION(4, 2, 2): 2725 adev->sdma.ras = &sdma_v4_0_ras; 2726 break; 2727 case IP_VERSION(4, 4, 0): 2728 adev->sdma.ras = &sdma_v4_4_ras; 2729 break; 2730 default: 2731 break; 2732 } 2733 2734 if (adev->sdma.ras) { 2735 amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block); 2736 2737 strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma"); 2738 adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA; 2739 adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 2740 adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm; 2741 2742 /* If don't define special ras_late_init function, use default ras_late_init */ 2743 if (!adev->sdma.ras->ras_block.ras_late_init) 2744 adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init; 2745 2746 /* If not defined special ras_cb function, use default ras_cb */ 2747 if (!adev->sdma.ras->ras_block.ras_cb) 2748 adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb; 2749 } 2750 } 2751 2752 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { 2753 .type = AMD_IP_BLOCK_TYPE_SDMA, 2754 .major = 4, 2755 .minor = 0, 2756 .rev = 0, 2757 .funcs = &sdma_v4_0_ip_funcs, 2758 }; 2759