xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "vega10/soc15ip.h"
31 #include "vega10/SDMA0/sdma0_4_0_offset.h"
32 #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
33 #include "vega10/SDMA1/sdma1_4_0_offset.h"
34 #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
35 #include "vega10/MMHUB/mmhub_1_0_offset.h"
36 #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
37 #include "vega10/HDP/hdp_4_0_offset.h"
38 
39 #include "soc15_common.h"
40 #include "soc15.h"
41 #include "vega10_sdma_pkt_open.h"
42 
43 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
44 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
45 
46 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
47 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
48 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
49 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
50 
51 static const u32 golden_settings_sdma_4[] =
52 {
53 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
54 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
55 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
56 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
57 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
58 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
59 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
60 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
61 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
62 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
63 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
64 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
65 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
66 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
67 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
68 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
69 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
70 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
71 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
72 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
73 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
74 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
75 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
76 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
77 };
78 
79 static const u32 golden_settings_sdma_vg10[] =
80 {
81 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
82 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
83 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
84 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
85 };
86 
87 static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
88 {
89 	u32 base = 0;
90 	switch (instance) {
91 		case 0:
92 			base = SDMA0_BASE.instance[0].segment[0];
93 			break;
94 		case 1:
95 			base = SDMA1_BASE.instance[0].segment[0];
96 			break;
97 		default:
98 			BUG();
99 			break;
100 	}
101 
102 	return base + internal_offset;
103 }
104 
105 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
106 {
107 	switch (adev->asic_type) {
108 	case CHIP_VEGA10:
109 		amdgpu_program_register_sequence(adev,
110 						 golden_settings_sdma_4,
111 						 (const u32)ARRAY_SIZE(golden_settings_sdma_4));
112 		amdgpu_program_register_sequence(adev,
113 						 golden_settings_sdma_vg10,
114 						 (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
115 		break;
116 	default:
117 		break;
118 	}
119 }
120 
121 static void sdma_v4_0_print_ucode_regs(void *handle)
122 {
123 	int i;
124 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
125 
126 	dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
127 	for (i = 0; i < adev->sdma.num_instances; i++) {
128 		dev_info(adev->dev, "  SDMA%d_UCODE_ADDR=0x%08X\n",
129 			 i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
130 		dev_info(adev->dev, "  SDMA%d_UCODE_CHECKSUM=0x%08X\n",
131 			 i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
132 	}
133 }
134 
135 /**
136  * sdma_v4_0_init_microcode - load ucode images from disk
137  *
138  * @adev: amdgpu_device pointer
139  *
140  * Use the firmware interface to load the ucode images into
141  * the driver (not loaded into hw).
142  * Returns 0 on success, error on failure.
143  */
144 
145 // emulation only, won't work on real chip
146 // vega10 real chip need to use PSP to load firmware
147 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
148 {
149 	const char *chip_name;
150 	char fw_name[30];
151 	int err = 0, i;
152 	struct amdgpu_firmware_info *info = NULL;
153 	const struct common_firmware_header *header = NULL;
154 	const struct sdma_firmware_header_v1_0 *hdr;
155 
156 	DRM_DEBUG("\n");
157 
158 	switch (adev->asic_type) {
159 	case CHIP_VEGA10:
160 		chip_name = "vega10";
161 		break;
162 	default: BUG();
163 	}
164 
165 	for (i = 0; i < adev->sdma.num_instances; i++) {
166 		if (i == 0)
167 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
168 		else
169 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
170 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
171 		if (err)
172 			goto out;
173 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
174 		if (err)
175 			goto out;
176 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
177 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
178 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
179 		if (adev->sdma.instance[i].feature_version >= 20)
180 			adev->sdma.instance[i].burst_nop = true;
181 		DRM_DEBUG("psp_load == '%s'\n",
182 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP? "true": "false");
183 
184 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
185 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
186 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
187 			info->fw = adev->sdma.instance[i].fw;
188 			header = (const struct common_firmware_header *)info->fw->data;
189 			adev->firmware.fw_size +=
190 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
191 		}
192 	}
193 out:
194 	if (err) {
195 		printk(KERN_ERR
196 		       "sdma_v4_0: Failed to load firmware \"%s\"\n",
197 		       fw_name);
198 		for (i = 0; i < adev->sdma.num_instances; i++) {
199 			release_firmware(adev->sdma.instance[i].fw);
200 			adev->sdma.instance[i].fw = NULL;
201 		}
202 	}
203 	return err;
204 }
205 
206 /**
207  * sdma_v4_0_ring_get_rptr - get the current read pointer
208  *
209  * @ring: amdgpu ring pointer
210  *
211  * Get the current rptr from the hardware (VEGA10+).
212  */
213 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
214 {
215 	u64* rptr;
216 
217 	/* XXX check if swapping is necessary on BE */
218 	rptr =((u64*)&ring->adev->wb.wb[ring->rptr_offs]);
219 
220 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
221 	return ((*rptr) >> 2);
222 }
223 
224 /**
225  * sdma_v4_0_ring_get_wptr - get the current write pointer
226  *
227  * @ring: amdgpu ring pointer
228  *
229  * Get the current wptr from the hardware (VEGA10+).
230  */
231 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
232 {
233 	struct amdgpu_device *adev = ring->adev;
234 	u64* wptr = NULL;
235 	uint64_t local_wptr=0;
236 
237 	if (ring->use_doorbell) {
238 		/* XXX check if swapping is necessary on BE */
239 		wptr = ((u64*)&adev->wb.wb[ring->wptr_offs]);
240 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
241 		*wptr = (*wptr) >> 2;
242 		DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
243 	} else {
244 		u32 lowbit, highbit;
245 		int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
246 		wptr=&local_wptr;
247 		lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
248 		highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
249 
250 		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
251 				me, highbit, lowbit);
252 		*wptr = highbit;
253 		*wptr = (*wptr) << 32;
254 		*wptr |= lowbit;
255 	}
256 
257 	return *wptr;
258 }
259 
260 /**
261  * sdma_v4_0_ring_set_wptr - commit the write pointer
262  *
263  * @ring: amdgpu ring pointer
264  *
265  * Write the wptr back to the hardware (VEGA10+).
266  */
267 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
268 {
269 	struct amdgpu_device *adev = ring->adev;
270 
271 	DRM_DEBUG("Setting write pointer\n");
272 	if (ring->use_doorbell) {
273 		DRM_DEBUG("Using doorbell -- "
274 				"wptr_offs == 0x%08x "
275 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
276 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
277 				ring->wptr_offs,
278 				lower_32_bits(ring->wptr << 2),
279 				upper_32_bits(ring->wptr << 2));
280 		/* XXX check if swapping is necessary on BE */
281 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
282 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
283 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
284 				ring->doorbell_index, ring->wptr << 2);
285 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
286 	} else {
287 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
288 		DRM_DEBUG("Not using doorbell -- "
289 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
290 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x \n",
291 				me,
292 				me,
293 				lower_32_bits(ring->wptr << 2),
294 				upper_32_bits(ring->wptr << 2));
295 		WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
296 		WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
297 	}
298 }
299 
300 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
301 {
302 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
303 	int i;
304 
305 	for (i = 0; i < count; i++)
306 		if (sdma && sdma->burst_nop && (i == 0))
307 			amdgpu_ring_write(ring, ring->funcs->nop |
308 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
309 		else
310 			amdgpu_ring_write(ring, ring->funcs->nop);
311 }
312 
313 /**
314  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
315  *
316  * @ring: amdgpu ring pointer
317  * @ib: IB object to schedule
318  *
319  * Schedule an IB in the DMA ring (VEGA10).
320  */
321 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
322                                    struct amdgpu_ib *ib,
323                                    unsigned vm_id, bool ctx_switch)
324 {
325         u32 vmid = vm_id & 0xf;
326 
327         /* IB packet must end on a 8 DW boundary */
328         sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
329 
330         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
331                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
332         /* base must be 32 byte aligned */
333         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
334         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
335         amdgpu_ring_write(ring, ib->length_dw);
336         amdgpu_ring_write(ring, 0);
337         amdgpu_ring_write(ring, 0);
338 
339 }
340 
341 /**
342  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
343  *
344  * @ring: amdgpu ring pointer
345  *
346  * Emit an hdp flush packet on the requested DMA ring.
347  */
348 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
349 {
350 	u32 ref_and_mask = 0;
351 	struct nbio_hdp_flush_reg *nbio_hf_reg;
352 
353 	if (ring->adev->asic_type == CHIP_VEGA10)
354 		nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
355 
356 	if (ring == &ring->adev->sdma.instance[0].ring)
357 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
358 	else
359 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
360 
361 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
362 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
363 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
364 	amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
365 	amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
366 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
367 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
368 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
369 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
370 }
371 
372 static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
373 {
374 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
375 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
376 	amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
377 	amdgpu_ring_write(ring, 1);
378 }
379 
380 /**
381  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
382  *
383  * @ring: amdgpu ring pointer
384  * @fence: amdgpu fence object
385  *
386  * Add a DMA fence packet to the ring to write
387  * the fence seq number and DMA trap packet to generate
388  * an interrupt if needed (VEGA10).
389  */
390 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
391 				      unsigned flags)
392 {
393 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
394 	/* write the fence */
395 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
396 	/* zero in first two bits */
397 	BUG_ON(addr & 0x3);
398 	amdgpu_ring_write(ring, lower_32_bits(addr));
399 	amdgpu_ring_write(ring, upper_32_bits(addr));
400 	amdgpu_ring_write(ring, lower_32_bits(seq));
401 
402 	/* optionally write high bits as well */
403 	if (write64bit) {
404 		addr += 4;
405 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
406 		/* zero in first two bits */
407 		BUG_ON(addr & 0x3);
408 		amdgpu_ring_write(ring, lower_32_bits(addr));
409 		amdgpu_ring_write(ring, upper_32_bits(addr));
410 		amdgpu_ring_write(ring, upper_32_bits(seq));
411 	}
412 
413 	/* generate an interrupt */
414 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
415 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
416 }
417 
418 
419 /**
420  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
421  *
422  * @adev: amdgpu_device pointer
423  *
424  * Stop the gfx async dma ring buffers (VEGA10).
425  */
426 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
427 {
428 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
429 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
430 	u32 rb_cntl, ib_cntl;
431 	int i;
432 
433 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
434 	    (adev->mman.buffer_funcs_ring == sdma1))
435 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
436 
437 	for (i = 0; i < adev->sdma.num_instances; i++) {
438 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
439 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
440 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
441 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
442 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
443 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
444 	}
445 
446 	sdma0->ready = false;
447 	sdma1->ready = false;
448 }
449 
450 /**
451  * sdma_v4_0_rlc_stop - stop the compute async dma engines
452  *
453  * @adev: amdgpu_device pointer
454  *
455  * Stop the compute async dma queues (VEGA10).
456  */
457 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
458 {
459 	/* XXX todo */
460 }
461 
462 /**
463  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
464  *
465  * @adev: amdgpu_device pointer
466  * @enable: enable/disable the DMA MEs context switch.
467  *
468  * Halt or unhalt the async dma engines context switch (VEGA10).
469  */
470 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
471 {
472 	u32 f32_cntl;
473 	int i;
474 
475 	for (i = 0; i < adev->sdma.num_instances; i++) {
476 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
477 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
478 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
479 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
480 	}
481 
482 }
483 
484 /**
485  * sdma_v4_0_enable - stop the async dma engines
486  *
487  * @adev: amdgpu_device pointer
488  * @enable: enable/disable the DMA MEs.
489  *
490  * Halt or unhalt the async dma engines (VEGA10).
491  */
492 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
493 {
494 	u32 f32_cntl;
495 	int i;
496 
497 	if (enable == false) {
498 		sdma_v4_0_gfx_stop(adev);
499 		sdma_v4_0_rlc_stop(adev);
500 	}
501 
502 	for (i = 0; i < adev->sdma.num_instances; i++) {
503 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
504 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
505 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
506 	}
507 }
508 
509 /**
510  * sdma_v4_0_gfx_resume - setup and start the async dma engines
511  *
512  * @adev: amdgpu_device pointer
513  *
514  * Set up the gfx DMA ring buffers and enable them (VEGA10).
515  * Returns 0 for success, error for failure.
516  */
517 static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
518 {
519 	struct amdgpu_ring *ring;
520 	u32 rb_cntl, ib_cntl;
521 	u32 rb_bufsz;
522 	u32 wb_offset;
523 	u32 doorbell;
524 	u32 doorbell_offset;
525 	u32 temp;
526 	int i,r;
527 
528 	for (i = 0; i < adev->sdma.num_instances; i++) {
529 		ring = &adev->sdma.instance[i].ring;
530 		wb_offset = (ring->rptr_offs * 4);
531 
532 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
533 
534 		/* Set ring buffer size in dwords */
535 		rb_bufsz = order_base_2(ring->ring_size / 4);
536 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
537 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
538 #ifdef __BIG_ENDIAN
539 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
540 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
541 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
542 #endif
543 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
544 
545 		/* Initialize the ring buffer's read and write pointers */
546 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
547 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
548 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
549 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
550 
551 		/* set the wb address whether it's enabled or not */
552 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
553 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
554 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
555 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
556 
557 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
558 
559 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
560 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
561 
562 		ring->wptr = 0;
563 
564 		/* before programing wptr to a less value, need set minor_ptr_update first */
565 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
566 
567 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
568 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
569 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
570 		}
571 
572 		doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
573 		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
574 
575 		if (ring->use_doorbell){
576 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
577 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
578 					OFFSET, ring->doorbell_index);
579 		} else {
580 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
581 		}
582 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
583 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
584 		nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
585 
586 		if (amdgpu_sriov_vf(adev))
587 			sdma_v4_0_ring_set_wptr(ring);
588 
589 		/* set minor_ptr_update to 0 after wptr programed */
590 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
591 
592 		/* set utc l1 enable flag always to 1 */
593 		temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
594 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
595 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
596 
597 		if (!amdgpu_sriov_vf(adev)) {
598 			/* unhalt engine */
599 			temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
600 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
601 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
602 		}
603 
604 		/* enable DMA RB */
605 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
606 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
607 
608 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
609 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
610 #ifdef __BIG_ENDIAN
611 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
612 #endif
613 		/* enable DMA IBs */
614 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
615 
616 		ring->ready = true;
617 
618 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
619 			sdma_v4_0_ctx_switch_enable(adev, true);
620 			sdma_v4_0_enable(adev, true);
621 		}
622 
623 		r = amdgpu_ring_test_ring(ring);
624 		if (r) {
625 			ring->ready = false;
626 			return r;
627 		}
628 
629 		if (adev->mman.buffer_funcs_ring == ring)
630 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
631 	}
632 
633 	return 0;
634 }
635 
636 /**
637  * sdma_v4_0_rlc_resume - setup and start the async dma engines
638  *
639  * @adev: amdgpu_device pointer
640  *
641  * Set up the compute DMA queues and enable them (VEGA10).
642  * Returns 0 for success, error for failure.
643  */
644 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
645 {
646 	/* XXX todo */
647 	return 0;
648 }
649 
650 /**
651  * sdma_v4_0_load_microcode - load the sDMA ME ucode
652  *
653  * @adev: amdgpu_device pointer
654  *
655  * Loads the sDMA0/1 ucode.
656  * Returns 0 for success, -EINVAL if the ucode is not available.
657  */
658 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
659 {
660 	const struct sdma_firmware_header_v1_0 *hdr;
661 	const __le32 *fw_data;
662 	u32 fw_size;
663 	u32 digest_size = 0;
664 	int i, j;
665 
666 	/* halt the MEs */
667 	sdma_v4_0_enable(adev, false);
668 
669 	for (i = 0; i < adev->sdma.num_instances; i++) {
670 		uint16_t version_major;
671 		uint16_t version_minor;
672 		if (!adev->sdma.instance[i].fw)
673 			return -EINVAL;
674 
675 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
676 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
677 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
678 
679 		version_major = le16_to_cpu(hdr->header.header_version_major);
680 		version_minor = le16_to_cpu(hdr->header.header_version_minor);
681 
682 		if (version_major == 1 && version_minor >= 1) {
683 			const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
684 			digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
685 		}
686 
687 		fw_size -= digest_size;
688 
689 		fw_data = (const __le32 *)
690 			(adev->sdma.instance[i].fw->data +
691 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
692 
693 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
694 
695 
696 		for (j = 0; j < fw_size; j++)
697 		{
698 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
699 		}
700 
701 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
702 	}
703 
704 	sdma_v4_0_print_ucode_regs(adev);
705 
706 	return 0;
707 }
708 
709 /**
710  * sdma_v4_0_start - setup and start the async dma engines
711  *
712  * @adev: amdgpu_device pointer
713  *
714  * Set up the DMA engines and enable them (VEGA10).
715  * Returns 0 for success, error for failure.
716  */
717 static int sdma_v4_0_start(struct amdgpu_device *adev)
718 {
719 	int r = 0;
720 
721 	if (amdgpu_sriov_vf(adev)) {
722 		sdma_v4_0_ctx_switch_enable(adev, false);
723 		sdma_v4_0_enable(adev, false);
724 
725 		/* set RB registers */
726 		r = sdma_v4_0_gfx_resume(adev);
727 		return r;
728 	}
729 
730 	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
731 		DRM_INFO("Loading via direct write\n");
732 		r = sdma_v4_0_load_microcode(adev);
733 		if (r)
734 			return r;
735 	}
736 
737 	/* unhalt the MEs */
738 	sdma_v4_0_enable(adev, true);
739 	/* enable sdma ring preemption */
740 	sdma_v4_0_ctx_switch_enable(adev, true);
741 
742 	/* start the gfx rings and rlc compute queues */
743 	r = sdma_v4_0_gfx_resume(adev);
744 	if (r)
745 		return r;
746 	r = sdma_v4_0_rlc_resume(adev);
747 	if (r)
748 		return r;
749 
750 	return 0;
751 }
752 
753 /**
754  * sdma_v4_0_ring_test_ring - simple async dma engine test
755  *
756  * @ring: amdgpu_ring structure holding ring information
757  *
758  * Test the DMA engine by writing using it to write an
759  * value to memory. (VEGA10).
760  * Returns 0 for success, error for failure.
761  */
762 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
763 {
764 	struct amdgpu_device *adev = ring->adev;
765 	unsigned i;
766 	unsigned index;
767 	int r;
768 	u32 tmp;
769 	u64 gpu_addr;
770 
771 	DRM_INFO("In Ring test func\n");
772 
773 	r = amdgpu_wb_get(adev, &index);
774 	if (r) {
775 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
776 		return r;
777 	}
778 
779 	gpu_addr = adev->wb.gpu_addr + (index * 4);
780 	tmp = 0xCAFEDEAD;
781 	adev->wb.wb[index] = cpu_to_le32(tmp);
782 
783 	r = amdgpu_ring_alloc(ring, 5);
784 	if (r) {
785 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
786 		amdgpu_wb_free(adev, index);
787 		return r;
788 	}
789 
790 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
791 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
792 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
793 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
794 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
795 	amdgpu_ring_write(ring, 0xDEADBEEF);
796 	amdgpu_ring_commit(ring);
797 
798 	for (i = 0; i < adev->usec_timeout; i++) {
799 		tmp = le32_to_cpu(adev->wb.wb[index]);
800 		if (tmp == 0xDEADBEEF) {
801 			break;
802 		}
803 		DRM_UDELAY(1);
804 	}
805 
806 	if (i < adev->usec_timeout) {
807 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
808 	} else {
809 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
810 			  ring->idx, tmp);
811 		r = -EINVAL;
812 	}
813 	amdgpu_wb_free(adev, index);
814 
815 	return r;
816 }
817 
818 /**
819  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
820  *
821  * @ring: amdgpu_ring structure holding ring information
822  *
823  * Test a simple IB in the DMA ring (VEGA10).
824  * Returns 0 on success, error on failure.
825  */
826 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
827 {
828 	struct amdgpu_device *adev = ring->adev;
829 	struct amdgpu_ib ib;
830 	struct dma_fence *f = NULL;
831 	unsigned index;
832 	long r;
833 	u32 tmp = 0;
834 	u64 gpu_addr;
835 
836 	r = amdgpu_wb_get(adev, &index);
837 	if (r) {
838 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
839 		return r;
840 	}
841 
842 	gpu_addr = adev->wb.gpu_addr + (index * 4);
843 	tmp = 0xCAFEDEAD;
844 	adev->wb.wb[index] = cpu_to_le32(tmp);
845 	memset(&ib, 0, sizeof(ib));
846 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
847 	if (r) {
848 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
849 		goto err0;
850 	}
851 
852 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
853 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
854 	ib.ptr[1] = lower_32_bits(gpu_addr);
855 	ib.ptr[2] = upper_32_bits(gpu_addr);
856 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
857 	ib.ptr[4] = 0xDEADBEEF;
858 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
859 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
860 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
861 	ib.length_dw = 8;
862 
863 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
864 	if (r)
865 		goto err1;
866 
867         r = dma_fence_wait_timeout(f, false, timeout);
868         if (r == 0) {
869                 DRM_ERROR("amdgpu: IB test timed out\n");
870                 r = -ETIMEDOUT;
871                 goto err1;
872         } else if (r < 0) {
873                 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
874                 goto err1;
875         }
876         tmp = le32_to_cpu(adev->wb.wb[index]);
877         if (tmp == 0xDEADBEEF) {
878                 DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
879                 r = 0;
880         } else {
881                 DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
882                 r = -EINVAL;
883         }
884 err1:
885         amdgpu_ib_free(adev, &ib, NULL);
886         dma_fence_put(f);
887 err0:
888         amdgpu_wb_free(adev, index);
889         return r;
890 }
891 
892 
893 /**
894  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
895  *
896  * @ib: indirect buffer to fill with commands
897  * @pe: addr of the page entry
898  * @src: src addr to copy from
899  * @count: number of page entries to update
900  *
901  * Update PTEs by copying them from the GART using sDMA (VEGA10).
902  */
903 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
904 				  uint64_t pe, uint64_t src,
905 				  unsigned count)
906 {
907 	unsigned bytes = count * 8;
908 
909 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
910 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
911 	ib->ptr[ib->length_dw++] = bytes - 1;
912 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
913 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
914 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
915 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
916 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
917 
918 }
919 
920 /**
921  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
922  *
923  * @ib: indirect buffer to fill with commands
924  * @pe: addr of the page entry
925  * @addr: dst addr to write into pe
926  * @count: number of page entries to update
927  * @incr: increase next addr by incr bytes
928  * @flags: access flags
929  *
930  * Update PTEs by writing them manually using sDMA (VEGA10).
931  */
932 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
933 				   uint64_t value, unsigned count,
934 				   uint32_t incr)
935 {
936 	unsigned ndw = count * 2;
937 
938 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
939 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
940 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
941 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
942 	ib->ptr[ib->length_dw++] = ndw - 1;
943 	for (; ndw > 0; ndw -= 2) {
944 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
945 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
946 		value += incr;
947 	}
948 }
949 
950 /**
951  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
952  *
953  * @ib: indirect buffer to fill with commands
954  * @pe: addr of the page entry
955  * @addr: dst addr to write into pe
956  * @count: number of page entries to update
957  * @incr: increase next addr by incr bytes
958  * @flags: access flags
959  *
960  * Update the page tables using sDMA (VEGA10).
961  */
962 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
963 				     uint64_t pe,
964 				     uint64_t addr, unsigned count,
965 				     uint32_t incr, uint64_t flags)
966 {
967 	/* for physically contiguous pages (vram) */
968 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
969 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
970 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
971 	ib->ptr[ib->length_dw++] = flags; /* mask */
972 	ib->ptr[ib->length_dw++] = 0;
973 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
974 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
975 	ib->ptr[ib->length_dw++] = incr; /* increment size */
976 	ib->ptr[ib->length_dw++] = 0;
977 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
978 }
979 
980 /**
981  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
982  *
983  * @ib: indirect buffer to fill with padding
984  *
985  */
986 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
987 {
988 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
989 	u32 pad_count;
990 	int i;
991 
992 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
993 	for (i = 0; i < pad_count; i++)
994 		if (sdma && sdma->burst_nop && (i == 0))
995 			ib->ptr[ib->length_dw++] =
996 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
997 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
998 		else
999 			ib->ptr[ib->length_dw++] =
1000 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1001 }
1002 
1003 
1004 /**
1005  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1006  *
1007  * @ring: amdgpu_ring pointer
1008  *
1009  * Make sure all previous operations are completed (CIK).
1010  */
1011 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1012 {
1013 	uint32_t seq = ring->fence_drv.sync_seq;
1014 	uint64_t addr = ring->fence_drv.gpu_addr;
1015 
1016 	/* wait for idle */
1017 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1018 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1019 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1020 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1021 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1022 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1023 	amdgpu_ring_write(ring, seq); /* reference */
1024 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1025 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1026 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1027 }
1028 
1029 
1030 /**
1031  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1032  *
1033  * @ring: amdgpu_ring pointer
1034  * @vm: amdgpu_vm pointer
1035  *
1036  * Update the page table base and flush the VM TLB
1037  * using sDMA (VEGA10).
1038  */
1039 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1040 					 unsigned vm_id, uint64_t pd_addr)
1041 {
1042 	unsigned eng = ring->idx;
1043 	unsigned i;
1044 
1045 	pd_addr = pd_addr | 0x1; /* valid bit */
1046 	/* now only use physical base address of PDE and valid */
1047 	BUG_ON(pd_addr & 0xFFFF00000000003EULL);
1048 
1049 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
1050 		struct amdgpu_vmhub *hub = &ring->adev->vmhub[i];
1051 		uint32_t req = hub->get_invalidate_req(vm_id);
1052 
1053 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1054 				  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1055 		amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
1056 		amdgpu_ring_write(ring, lower_32_bits(pd_addr));
1057 
1058 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1059 				  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1060 		amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
1061 		amdgpu_ring_write(ring, upper_32_bits(pd_addr));
1062 
1063 		/* flush TLB */
1064 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1065 				  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1066 		amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
1067 		amdgpu_ring_write(ring, req);
1068 
1069 		/* wait for flush */
1070 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1071 				  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1072 				  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1073 		amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
1074 		amdgpu_ring_write(ring, 0);
1075 		amdgpu_ring_write(ring, 1 << vm_id); /* reference */
1076 		amdgpu_ring_write(ring, 1 << vm_id); /* mask */
1077 		amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1078 				  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1079 	}
1080 }
1081 
1082 static int sdma_v4_0_early_init(void *handle)
1083 {
1084 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1085 
1086 	adev->sdma.num_instances = 2;
1087 
1088 	sdma_v4_0_set_ring_funcs(adev);
1089 	sdma_v4_0_set_buffer_funcs(adev);
1090 	sdma_v4_0_set_vm_pte_funcs(adev);
1091 	sdma_v4_0_set_irq_funcs(adev);
1092 
1093 	return 0;
1094 }
1095 
1096 
1097 static int sdma_v4_0_sw_init(void *handle)
1098 {
1099 	struct amdgpu_ring *ring;
1100 	int r, i;
1101 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1102 
1103 	/* SDMA trap event */
1104 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
1105 			      &adev->sdma.trap_irq);
1106 	if (r)
1107 		return r;
1108 
1109 	/* SDMA trap event */
1110 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
1111 			      &adev->sdma.trap_irq);
1112 	if (r)
1113 		return r;
1114 
1115 	r = sdma_v4_0_init_microcode(adev);
1116 	if (r) {
1117 		DRM_ERROR("Failed to load sdma firmware!\n");
1118 		return r;
1119 	}
1120 
1121 	for (i = 0; i < adev->sdma.num_instances; i++) {
1122 		ring = &adev->sdma.instance[i].ring;
1123 		ring->ring_obj = NULL;
1124 		ring->use_doorbell = true;
1125 
1126 		DRM_INFO("use_doorbell being set to: [%s]\n",
1127 				ring->use_doorbell?"true":"false");
1128 
1129 		ring->doorbell_index = (i == 0) ?
1130 			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1131 			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1132 
1133 		sprintf(ring->name, "sdma%d", i);
1134 		r = amdgpu_ring_init(adev, ring, 1024,
1135 				     &adev->sdma.trap_irq,
1136 				     (i == 0) ?
1137 				     AMDGPU_SDMA_IRQ_TRAP0 :
1138 				     AMDGPU_SDMA_IRQ_TRAP1);
1139 		if (r)
1140 			return r;
1141 	}
1142 
1143 	return r;
1144 }
1145 
1146 static int sdma_v4_0_sw_fini(void *handle)
1147 {
1148 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1149 	int i;
1150 
1151 	for (i = 0; i < adev->sdma.num_instances; i++)
1152 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1153 
1154 	return 0;
1155 }
1156 
1157 static int sdma_v4_0_hw_init(void *handle)
1158 {
1159 	int r;
1160 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1161 
1162 	sdma_v4_0_init_golden_registers(adev);
1163 
1164 	r = sdma_v4_0_start(adev);
1165 	if (r)
1166 		return r;
1167 
1168 	return r;
1169 }
1170 
1171 static int sdma_v4_0_hw_fini(void *handle)
1172 {
1173 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1174 
1175 	if (amdgpu_sriov_vf(adev))
1176 		return 0;
1177 
1178 	sdma_v4_0_ctx_switch_enable(adev, false);
1179 	sdma_v4_0_enable(adev, false);
1180 
1181 	return 0;
1182 }
1183 
1184 static int sdma_v4_0_suspend(void *handle)
1185 {
1186 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1187 
1188 	return sdma_v4_0_hw_fini(adev);
1189 }
1190 
1191 static int sdma_v4_0_resume(void *handle)
1192 {
1193 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1194 
1195 	return sdma_v4_0_hw_init(adev);
1196 }
1197 
1198 static bool sdma_v4_0_is_idle(void *handle)
1199 {
1200 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201 	u32 i;
1202 	for (i = 0; i < adev->sdma.num_instances; i++) {
1203 		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
1204 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1205 	   		 return false;
1206 	}
1207 
1208 	return true;
1209 }
1210 
1211 static int sdma_v4_0_wait_for_idle(void *handle)
1212 {
1213 	unsigned i;
1214 	u32 sdma0,sdma1;
1215 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1216 	for (i = 0; i < adev->usec_timeout; i++) {
1217 		sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
1218 		sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
1219 
1220 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1221 			return 0;
1222 		udelay(1);
1223 	}
1224 	return -ETIMEDOUT;
1225 }
1226 
1227 static int sdma_v4_0_soft_reset(void *handle)
1228 {
1229 	/* todo */
1230 
1231 	return 0;
1232 }
1233 
1234 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1235 					struct amdgpu_irq_src *source,
1236 					unsigned type,
1237 					enum amdgpu_interrupt_state state)
1238 {
1239 	u32 sdma_cntl;
1240 
1241 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1242 		sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
1243 	       	sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
1244 
1245 	sdma_cntl = RREG32(reg_offset);
1246 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1247 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1248 	WREG32(reg_offset, sdma_cntl);
1249 
1250 	return 0;
1251 }
1252 
1253 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1254 				      struct amdgpu_irq_src *source,
1255 				      struct amdgpu_iv_entry *entry)
1256 {
1257 	DRM_DEBUG("IH: SDMA trap\n");
1258 	switch (entry->client_id) {
1259 	case AMDGPU_IH_CLIENTID_SDMA0:
1260 		switch (entry->ring_id) {
1261 		case 0:
1262 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1263 			break;
1264 		case 1:
1265 			/* XXX compute */
1266 			break;
1267 		case 2:
1268 			/* XXX compute */
1269 			break;
1270 		case 3:
1271 			/* XXX page queue*/
1272 			break;
1273 		}
1274 		break;
1275 	case AMDGPU_IH_CLIENTID_SDMA1:
1276 		switch (entry->ring_id) {
1277 		case 0:
1278 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1279 			break;
1280 		case 1:
1281 			/* XXX compute */
1282 			break;
1283 		case 2:
1284 			/* XXX compute */
1285 			break;
1286 		case 3:
1287 			/* XXX page queue*/
1288 			break;
1289 		}
1290 		break;
1291 	}
1292 	return 0;
1293 }
1294 
1295 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1296 					      struct amdgpu_irq_src *source,
1297 					      struct amdgpu_iv_entry *entry)
1298 {
1299 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1300 	schedule_work(&adev->reset_work);
1301 	return 0;
1302 }
1303 
1304 
1305 static void sdma_v4_0_update_medium_grain_clock_gating(
1306 		struct amdgpu_device *adev,
1307 		bool enable)
1308 {
1309 	uint32_t data, def;
1310 
1311 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1312 		/* enable sdma0 clock gating */
1313 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1314 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1315 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1316 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1317 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1318 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1319 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1320 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1321 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1322 		if (def != data)
1323 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1324 
1325 		if (adev->asic_type == CHIP_VEGA10) {
1326 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1327 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1328 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1329 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1330 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1331 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1332 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1333 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1334 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1335 			if(def != data)
1336 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1337 		}
1338 	} else {
1339 		/* disable sdma0 clock gating */
1340 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1341 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1342 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1343 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1344 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1345 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1346 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1347 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1348 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1349 
1350 		if (def != data)
1351 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1352 
1353 		if (adev->asic_type == CHIP_VEGA10) {
1354 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1355 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1356 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1357 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1358 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1359 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1360 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1361 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1362 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1363 			if (def != data)
1364 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1365 		}
1366 	}
1367 }
1368 
1369 
1370 static void sdma_v4_0_update_medium_grain_light_sleep(
1371 		struct amdgpu_device *adev,
1372 		bool enable)
1373 {
1374 	uint32_t data, def;
1375 
1376 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1377 		/* 1-not override: enable sdma0 mem light sleep */
1378 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1379 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1380 		if (def != data)
1381 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1382 
1383 		/* 1-not override: enable sdma1 mem light sleep */
1384 		if (adev->asic_type == CHIP_VEGA10) {
1385 			 def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1386 			 data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1387 			 if (def != data)
1388 				 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1389 		}
1390 	} else {
1391 		/* 0-override:disable sdma0 mem light sleep */
1392 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1393 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1394 		if (def != data)
1395 		       WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1396 
1397 		/* 0-override:disable sdma1 mem light sleep */
1398 		if (adev->asic_type == CHIP_VEGA10) {
1399 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1400 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1401 			if (def != data)
1402 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1403 		}
1404 	}
1405 }
1406 
1407 static int sdma_v4_0_set_clockgating_state(void *handle,
1408 					  enum amd_clockgating_state state)
1409 {
1410 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1411 
1412 	if (amdgpu_sriov_vf(adev))
1413 		return 0;
1414 
1415 	switch (adev->asic_type) {
1416 	case CHIP_VEGA10:
1417 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1418 				state == AMD_CG_STATE_GATE ? true : false);
1419 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1420 				state == AMD_CG_STATE_GATE ? true : false);
1421 		break;
1422 	default:
1423 		break;
1424 	}
1425 	return 0;
1426 }
1427 
1428 static int sdma_v4_0_set_powergating_state(void *handle,
1429 					  enum amd_powergating_state state)
1430 {
1431 	return 0;
1432 }
1433 
1434 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1435 {
1436 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1437 	int data;
1438 
1439 	if (amdgpu_sriov_vf(adev))
1440 		*flags = 0;
1441 
1442 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1443 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1444 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1445 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1446 
1447 	/* AMD_CG_SUPPORT_SDMA_LS */
1448 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1449 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1450 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1451 }
1452 
1453 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1454 	.name = "sdma_v4_0",
1455 	.early_init = sdma_v4_0_early_init,
1456 	.late_init = NULL,
1457 	.sw_init = sdma_v4_0_sw_init,
1458 	.sw_fini = sdma_v4_0_sw_fini,
1459 	.hw_init = sdma_v4_0_hw_init,
1460 	.hw_fini = sdma_v4_0_hw_fini,
1461 	.suspend = sdma_v4_0_suspend,
1462 	.resume = sdma_v4_0_resume,
1463 	.is_idle = sdma_v4_0_is_idle,
1464 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1465 	.soft_reset = sdma_v4_0_soft_reset,
1466 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1467 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1468 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1469 };
1470 
1471 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1472 	.type = AMDGPU_RING_TYPE_SDMA,
1473 	.align_mask = 0xf,
1474 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1475 	.support_64bit_ptrs = true,
1476 	.get_rptr = sdma_v4_0_ring_get_rptr,
1477 	.get_wptr = sdma_v4_0_ring_get_wptr,
1478 	.set_wptr = sdma_v4_0_ring_set_wptr,
1479 	.emit_frame_size =
1480 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1481 		3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
1482 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1483 		36 + /* sdma_v4_0_ring_emit_vm_flush */
1484 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1485 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1486 	.emit_ib = sdma_v4_0_ring_emit_ib,
1487 	.emit_fence = sdma_v4_0_ring_emit_fence,
1488 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1489 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1490 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1491 	.emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
1492 	.test_ring = sdma_v4_0_ring_test_ring,
1493 	.test_ib = sdma_v4_0_ring_test_ib,
1494 	.insert_nop = sdma_v4_0_ring_insert_nop,
1495 	.pad_ib = sdma_v4_0_ring_pad_ib,
1496 };
1497 
1498 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1499 {
1500 	int i;
1501 
1502 	for (i = 0; i < adev->sdma.num_instances; i++)
1503 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1504 }
1505 
1506 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1507 	.set = sdma_v4_0_set_trap_irq_state,
1508 	.process = sdma_v4_0_process_trap_irq,
1509 };
1510 
1511 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1512 	.process = sdma_v4_0_process_illegal_inst_irq,
1513 };
1514 
1515 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1516 {
1517 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1518 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
1519 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
1520 }
1521 
1522 /**
1523  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
1524  *
1525  * @ring: amdgpu_ring structure holding ring information
1526  * @src_offset: src GPU address
1527  * @dst_offset: dst GPU address
1528  * @byte_count: number of bytes to xfer
1529  *
1530  * Copy GPU buffers using the DMA engine (VEGA10).
1531  * Used by the amdgpu ttm implementation to move pages if
1532  * registered as the asic copy callback.
1533  */
1534 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
1535 				       uint64_t src_offset,
1536 				       uint64_t dst_offset,
1537 				       uint32_t byte_count)
1538 {
1539 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1540 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1541 	ib->ptr[ib->length_dw++] = byte_count - 1;
1542 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1543 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1544 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1545 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1546 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1547 }
1548 
1549 /**
1550  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
1551  *
1552  * @ring: amdgpu_ring structure holding ring information
1553  * @src_data: value to write to buffer
1554  * @dst_offset: dst GPU address
1555  * @byte_count: number of bytes to xfer
1556  *
1557  * Fill GPU buffers using the DMA engine (VEGA10).
1558  */
1559 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
1560 				       uint32_t src_data,
1561 				       uint64_t dst_offset,
1562 				       uint32_t byte_count)
1563 {
1564 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1565 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1566 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1567 	ib->ptr[ib->length_dw++] = src_data;
1568 	ib->ptr[ib->length_dw++] = byte_count - 1;
1569 }
1570 
1571 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
1572 	.copy_max_bytes = 0x400000,
1573 	.copy_num_dw = 7,
1574 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
1575 
1576 	.fill_max_bytes = 0x400000,
1577 	.fill_num_dw = 5,
1578 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
1579 };
1580 
1581 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
1582 {
1583 	if (adev->mman.buffer_funcs == NULL) {
1584 		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
1585 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1586 	}
1587 }
1588 
1589 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1590 	.copy_pte = sdma_v4_0_vm_copy_pte,
1591 	.write_pte = sdma_v4_0_vm_write_pte,
1592 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
1593 };
1594 
1595 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1596 {
1597 	unsigned i;
1598 
1599 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1600 		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
1601 		for (i = 0; i < adev->sdma.num_instances; i++)
1602 			adev->vm_manager.vm_pte_rings[i] =
1603 				&adev->sdma.instance[i].ring;
1604 
1605 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1606 	}
1607 }
1608 
1609 const struct amdgpu_ip_block_version sdma_v4_0_ip_block =
1610 {
1611 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1612 	.major = 4,
1613 	.minor = 0,
1614 	.rev = 0,
1615 	.funcs = &sdma_v4_0_ip_funcs,
1616 };
1617