1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50 
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54 
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57 
58 #include "amdgpu_ras.h"
59 
60 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
61 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
62 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
64 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86 
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114 
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124 
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134 
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148 
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213 
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219 
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225 
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261 
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274 
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278 	0, 0,
279 	},
280 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282 	0, 0,
283 	},
284 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286 	0, 0,
287 	},
288 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290 	0, 0,
291 	},
292 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294 	0, 0,
295 	},
296 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370 	0, 0,
371 	},
372 };
373 
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375 		u32 instance, u32 offset)
376 {
377 	switch (instance) {
378 	case 0:
379 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380 	case 1:
381 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382 	case 2:
383 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384 	case 3:
385 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386 	case 4:
387 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388 	case 5:
389 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390 	case 6:
391 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392 	case 7:
393 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394 	default:
395 		break;
396 	}
397 	return 0;
398 }
399 
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402 	switch (seq_num) {
403 	case 0:
404 		return SOC15_IH_CLIENTID_SDMA0;
405 	case 1:
406 		return SOC15_IH_CLIENTID_SDMA1;
407 	case 2:
408 		return SOC15_IH_CLIENTID_SDMA2;
409 	case 3:
410 		return SOC15_IH_CLIENTID_SDMA3;
411 	case 4:
412 		return SOC15_IH_CLIENTID_SDMA4;
413 	case 5:
414 		return SOC15_IH_CLIENTID_SDMA5;
415 	case 6:
416 		return SOC15_IH_CLIENTID_SDMA6;
417 	case 7:
418 		return SOC15_IH_CLIENTID_SDMA7;
419 	default:
420 		break;
421 	}
422 	return -EINVAL;
423 }
424 
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427 	switch (client_id) {
428 	case SOC15_IH_CLIENTID_SDMA0:
429 		return 0;
430 	case SOC15_IH_CLIENTID_SDMA1:
431 		return 1;
432 	case SOC15_IH_CLIENTID_SDMA2:
433 		return 2;
434 	case SOC15_IH_CLIENTID_SDMA3:
435 		return 3;
436 	case SOC15_IH_CLIENTID_SDMA4:
437 		return 4;
438 	case SOC15_IH_CLIENTID_SDMA5:
439 		return 5;
440 	case SOC15_IH_CLIENTID_SDMA6:
441 		return 6;
442 	case SOC15_IH_CLIENTID_SDMA7:
443 		return 7;
444 	default:
445 		break;
446 	}
447 	return -EINVAL;
448 }
449 
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		soc15_program_register_sequence(adev,
455 						golden_settings_sdma_4,
456 						ARRAY_SIZE(golden_settings_sdma_4));
457 		soc15_program_register_sequence(adev,
458 						golden_settings_sdma_vg10,
459 						ARRAY_SIZE(golden_settings_sdma_vg10));
460 		break;
461 	case CHIP_VEGA12:
462 		soc15_program_register_sequence(adev,
463 						golden_settings_sdma_4,
464 						ARRAY_SIZE(golden_settings_sdma_4));
465 		soc15_program_register_sequence(adev,
466 						golden_settings_sdma_vg12,
467 						ARRAY_SIZE(golden_settings_sdma_vg12));
468 		break;
469 	case CHIP_VEGA20:
470 		soc15_program_register_sequence(adev,
471 						golden_settings_sdma0_4_2_init,
472 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473 		soc15_program_register_sequence(adev,
474 						golden_settings_sdma0_4_2,
475 						ARRAY_SIZE(golden_settings_sdma0_4_2));
476 		soc15_program_register_sequence(adev,
477 						golden_settings_sdma1_4_2,
478 						ARRAY_SIZE(golden_settings_sdma1_4_2));
479 		break;
480 	case CHIP_ARCTURUS:
481 		soc15_program_register_sequence(adev,
482 						golden_settings_sdma_arct,
483 						ARRAY_SIZE(golden_settings_sdma_arct));
484 		break;
485 	case CHIP_RAVEN:
486 		soc15_program_register_sequence(adev,
487 						golden_settings_sdma_4_1,
488 						ARRAY_SIZE(golden_settings_sdma_4_1));
489 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490 			soc15_program_register_sequence(adev,
491 							golden_settings_sdma_rv2,
492 							ARRAY_SIZE(golden_settings_sdma_rv2));
493 		else
494 			soc15_program_register_sequence(adev,
495 							golden_settings_sdma_rv1,
496 							ARRAY_SIZE(golden_settings_sdma_rv1));
497 		break;
498 	case CHIP_RENOIR:
499 		soc15_program_register_sequence(adev,
500 						golden_settings_sdma_4_3,
501 						ARRAY_SIZE(golden_settings_sdma_4_3));
502 		break;
503 	default:
504 		break;
505 	}
506 }
507 
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510 	int i;
511 
512 	/*
513 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
514 	 * Server SKUs take a different hysteresis setting from other SKUs.
515 	 */
516 	switch (adev->asic_type) {
517 	case CHIP_VEGA10:
518 		if (adev->pdev->device == 0x6860)
519 			break;
520 		return;
521 	case CHIP_VEGA20:
522 		if (adev->pdev->device == 0x66a1)
523 			break;
524 		return;
525 	default:
526 		return;
527 	}
528 
529 	for (i = 0; i < adev->sdma.num_instances; i++) {
530 		uint32_t temp;
531 
532 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535 	}
536 }
537 
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540 	int err = 0;
541 	const struct sdma_firmware_header_v1_0 *hdr;
542 
543 	err = amdgpu_ucode_validate(sdma_inst->fw);
544 	if (err)
545 		return err;
546 
547 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550 
551 	if (sdma_inst->feature_version >= 20)
552 		sdma_inst->burst_nop = true;
553 
554 	return 0;
555 }
556 
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559 	int i;
560 
561 	for (i = 0; i < adev->sdma.num_instances; i++) {
562 		release_firmware(adev->sdma.instance[i].fw);
563 		adev->sdma.instance[i].fw = NULL;
564 
565 		/* arcturus shares the same FW memory across
566 		   all SDMA isntances */
567 		if (adev->asic_type == CHIP_ARCTURUS)
568 			break;
569 	}
570 
571 	memset((void *)adev->sdma.instance, 0,
572 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574 
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584 
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589 	const char *chip_name;
590 	char fw_name[30];
591 	int err = 0, i;
592 	struct amdgpu_firmware_info *info = NULL;
593 	const struct common_firmware_header *header = NULL;
594 
595 	DRM_DEBUG("\n");
596 
597 	switch (adev->asic_type) {
598 	case CHIP_VEGA10:
599 		chip_name = "vega10";
600 		break;
601 	case CHIP_VEGA12:
602 		chip_name = "vega12";
603 		break;
604 	case CHIP_VEGA20:
605 		chip_name = "vega20";
606 		break;
607 	case CHIP_RAVEN:
608 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
609 			chip_name = "raven2";
610 		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
611 			chip_name = "picasso";
612 		else
613 			chip_name = "raven";
614 		break;
615 	case CHIP_ARCTURUS:
616 		chip_name = "arcturus";
617 		break;
618 	case CHIP_RENOIR:
619 		if (adev->apu_flags & AMD_APU_IS_RENOIR)
620 			chip_name = "renoir";
621 		else
622 			chip_name = "green_sardine";
623 		break;
624 	default:
625 		BUG();
626 	}
627 
628 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
629 
630 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
631 	if (err)
632 		goto out;
633 
634 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
635 	if (err)
636 		goto out;
637 
638 	for (i = 1; i < adev->sdma.num_instances; i++) {
639 		if (adev->asic_type == CHIP_ARCTURUS) {
640 			/* Acturus will leverage the same FW memory
641 			   for every SDMA instance */
642 			memcpy((void *)&adev->sdma.instance[i],
643 			       (void *)&adev->sdma.instance[0],
644 			       sizeof(struct amdgpu_sdma_instance));
645 		}
646 		else {
647 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
648 
649 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
650 			if (err)
651 				goto out;
652 
653 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
654 			if (err)
655 				goto out;
656 		}
657 	}
658 
659 	DRM_DEBUG("psp_load == '%s'\n",
660 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
661 
662 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
663 		for (i = 0; i < adev->sdma.num_instances; i++) {
664 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
665 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
666 			info->fw = adev->sdma.instance[i].fw;
667 			header = (const struct common_firmware_header *)info->fw->data;
668 			adev->firmware.fw_size +=
669 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
670 		}
671 	}
672 
673 out:
674 	if (err) {
675 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
676 		sdma_v4_0_destroy_inst_ctx(adev);
677 	}
678 	return err;
679 }
680 
681 /**
682  * sdma_v4_0_ring_get_rptr - get the current read pointer
683  *
684  * @ring: amdgpu ring pointer
685  *
686  * Get the current rptr from the hardware (VEGA10+).
687  */
688 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
689 {
690 	u64 *rptr;
691 
692 	/* XXX check if swapping is necessary on BE */
693 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
694 
695 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
696 	return ((*rptr) >> 2);
697 }
698 
699 /**
700  * sdma_v4_0_ring_get_wptr - get the current write pointer
701  *
702  * @ring: amdgpu ring pointer
703  *
704  * Get the current wptr from the hardware (VEGA10+).
705  */
706 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
707 {
708 	struct amdgpu_device *adev = ring->adev;
709 	u64 wptr;
710 
711 	if (ring->use_doorbell) {
712 		/* XXX check if swapping is necessary on BE */
713 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
714 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
715 	} else {
716 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
717 		wptr = wptr << 32;
718 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
719 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
720 				ring->me, wptr);
721 	}
722 
723 	return wptr >> 2;
724 }
725 
726 /**
727  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
728  *
729  * @ring: amdgpu ring pointer
730  *
731  * Write the wptr back to the hardware (VEGA10+).
732  */
733 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
734 {
735 	struct amdgpu_device *adev = ring->adev;
736 
737 	DRM_DEBUG("Setting write pointer\n");
738 	if (ring->use_doorbell) {
739 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
740 
741 		DRM_DEBUG("Using doorbell -- "
742 				"wptr_offs == 0x%08x "
743 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
744 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
745 				ring->wptr_offs,
746 				lower_32_bits(ring->wptr << 2),
747 				upper_32_bits(ring->wptr << 2));
748 		/* XXX check if swapping is necessary on BE */
749 		WRITE_ONCE(*wb, (ring->wptr << 2));
750 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
751 				ring->doorbell_index, ring->wptr << 2);
752 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
753 	} else {
754 		DRM_DEBUG("Not using doorbell -- "
755 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
756 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
757 				ring->me,
758 				lower_32_bits(ring->wptr << 2),
759 				ring->me,
760 				upper_32_bits(ring->wptr << 2));
761 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
762 			    lower_32_bits(ring->wptr << 2));
763 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
764 			    upper_32_bits(ring->wptr << 2));
765 	}
766 }
767 
768 /**
769  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
770  *
771  * @ring: amdgpu ring pointer
772  *
773  * Get the current wptr from the hardware (VEGA10+).
774  */
775 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
776 {
777 	struct amdgpu_device *adev = ring->adev;
778 	u64 wptr;
779 
780 	if (ring->use_doorbell) {
781 		/* XXX check if swapping is necessary on BE */
782 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
783 	} else {
784 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
785 		wptr = wptr << 32;
786 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
787 	}
788 
789 	return wptr >> 2;
790 }
791 
792 /**
793  * sdma_v4_0_ring_set_wptr - commit the write pointer
794  *
795  * @ring: amdgpu ring pointer
796  *
797  * Write the wptr back to the hardware (VEGA10+).
798  */
799 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
800 {
801 	struct amdgpu_device *adev = ring->adev;
802 
803 	if (ring->use_doorbell) {
804 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
805 
806 		/* XXX check if swapping is necessary on BE */
807 		WRITE_ONCE(*wb, (ring->wptr << 2));
808 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
809 	} else {
810 		uint64_t wptr = ring->wptr << 2;
811 
812 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
813 			    lower_32_bits(wptr));
814 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
815 			    upper_32_bits(wptr));
816 	}
817 }
818 
819 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
820 {
821 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
822 	int i;
823 
824 	for (i = 0; i < count; i++)
825 		if (sdma && sdma->burst_nop && (i == 0))
826 			amdgpu_ring_write(ring, ring->funcs->nop |
827 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
828 		else
829 			amdgpu_ring_write(ring, ring->funcs->nop);
830 }
831 
832 /**
833  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
834  *
835  * @ring: amdgpu ring pointer
836  * @job: job to retrieve vmid from
837  * @ib: IB object to schedule
838  * @flags: unused
839  *
840  * Schedule an IB in the DMA ring (VEGA10).
841  */
842 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
843 				   struct amdgpu_job *job,
844 				   struct amdgpu_ib *ib,
845 				   uint32_t flags)
846 {
847 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
848 
849 	/* IB packet must end on a 8 DW boundary */
850 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
851 
852 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
853 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
854 	/* base must be 32 byte aligned */
855 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
856 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
857 	amdgpu_ring_write(ring, ib->length_dw);
858 	amdgpu_ring_write(ring, 0);
859 	amdgpu_ring_write(ring, 0);
860 
861 }
862 
863 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
864 				   int mem_space, int hdp,
865 				   uint32_t addr0, uint32_t addr1,
866 				   uint32_t ref, uint32_t mask,
867 				   uint32_t inv)
868 {
869 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
870 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
871 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
872 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
873 	if (mem_space) {
874 		/* memory */
875 		amdgpu_ring_write(ring, addr0);
876 		amdgpu_ring_write(ring, addr1);
877 	} else {
878 		/* registers */
879 		amdgpu_ring_write(ring, addr0 << 2);
880 		amdgpu_ring_write(ring, addr1 << 2);
881 	}
882 	amdgpu_ring_write(ring, ref); /* reference */
883 	amdgpu_ring_write(ring, mask); /* mask */
884 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
885 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
886 }
887 
888 /**
889  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
890  *
891  * @ring: amdgpu ring pointer
892  *
893  * Emit an hdp flush packet on the requested DMA ring.
894  */
895 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
896 {
897 	struct amdgpu_device *adev = ring->adev;
898 	u32 ref_and_mask = 0;
899 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
900 
901 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
902 
903 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
904 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
905 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
906 			       ref_and_mask, ref_and_mask, 10);
907 }
908 
909 /**
910  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
911  *
912  * @ring: amdgpu ring pointer
913  * @addr: address
914  * @seq: sequence number
915  * @flags: fence related flags
916  *
917  * Add a DMA fence packet to the ring to write
918  * the fence seq number and DMA trap packet to generate
919  * an interrupt if needed (VEGA10).
920  */
921 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
922 				      unsigned flags)
923 {
924 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
925 	/* write the fence */
926 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
927 	/* zero in first two bits */
928 	BUG_ON(addr & 0x3);
929 	amdgpu_ring_write(ring, lower_32_bits(addr));
930 	amdgpu_ring_write(ring, upper_32_bits(addr));
931 	amdgpu_ring_write(ring, lower_32_bits(seq));
932 
933 	/* optionally write high bits as well */
934 	if (write64bit) {
935 		addr += 4;
936 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
937 		/* zero in first two bits */
938 		BUG_ON(addr & 0x3);
939 		amdgpu_ring_write(ring, lower_32_bits(addr));
940 		amdgpu_ring_write(ring, upper_32_bits(addr));
941 		amdgpu_ring_write(ring, upper_32_bits(seq));
942 	}
943 
944 	/* generate an interrupt */
945 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
946 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
947 }
948 
949 
950 /**
951  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
952  *
953  * @adev: amdgpu_device pointer
954  *
955  * Stop the gfx async dma ring buffers (VEGA10).
956  */
957 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
958 {
959 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
960 	u32 rb_cntl, ib_cntl;
961 	int i, unset = 0;
962 
963 	for (i = 0; i < adev->sdma.num_instances; i++) {
964 		sdma[i] = &adev->sdma.instance[i].ring;
965 
966 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
967 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
968 			unset = 1;
969 		}
970 
971 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
972 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
973 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
974 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
975 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
976 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
977 	}
978 }
979 
980 /**
981  * sdma_v4_0_rlc_stop - stop the compute async dma engines
982  *
983  * @adev: amdgpu_device pointer
984  *
985  * Stop the compute async dma queues (VEGA10).
986  */
987 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
988 {
989 	/* XXX todo */
990 }
991 
992 /**
993  * sdma_v4_0_page_stop - stop the page async dma engines
994  *
995  * @adev: amdgpu_device pointer
996  *
997  * Stop the page async dma ring buffers (VEGA10).
998  */
999 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
1000 {
1001 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
1002 	u32 rb_cntl, ib_cntl;
1003 	int i;
1004 	bool unset = false;
1005 
1006 	for (i = 0; i < adev->sdma.num_instances; i++) {
1007 		sdma[i] = &adev->sdma.instance[i].page;
1008 
1009 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1010 			(!unset)) {
1011 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1012 			unset = true;
1013 		}
1014 
1015 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1016 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1017 					RB_ENABLE, 0);
1018 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1019 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1020 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1021 					IB_ENABLE, 0);
1022 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1023 	}
1024 }
1025 
1026 /**
1027  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1028  *
1029  * @adev: amdgpu_device pointer
1030  * @enable: enable/disable the DMA MEs context switch.
1031  *
1032  * Halt or unhalt the async dma engines context switch (VEGA10).
1033  */
1034 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1035 {
1036 	u32 f32_cntl, phase_quantum = 0;
1037 	int i;
1038 
1039 	if (amdgpu_sdma_phase_quantum) {
1040 		unsigned value = amdgpu_sdma_phase_quantum;
1041 		unsigned unit = 0;
1042 
1043 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1044 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1045 			value = (value + 1) >> 1;
1046 			unit++;
1047 		}
1048 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1049 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1050 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1051 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1052 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1053 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1054 			WARN_ONCE(1,
1055 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1056 				  value << unit);
1057 		}
1058 		phase_quantum =
1059 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1060 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1061 	}
1062 
1063 	for (i = 0; i < adev->sdma.num_instances; i++) {
1064 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1065 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1066 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1067 		if (enable && amdgpu_sdma_phase_quantum) {
1068 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1069 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1070 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1071 		}
1072 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1073 
1074 		/*
1075 		 * Enable SDMA utilization. Its only supported on
1076 		 * Arcturus for the moment and firmware version 14
1077 		 * and above.
1078 		 */
1079 		if (adev->asic_type == CHIP_ARCTURUS &&
1080 		    adev->sdma.instance[i].fw_version >= 14)
1081 			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1082 	}
1083 
1084 }
1085 
1086 /**
1087  * sdma_v4_0_enable - stop the async dma engines
1088  *
1089  * @adev: amdgpu_device pointer
1090  * @enable: enable/disable the DMA MEs.
1091  *
1092  * Halt or unhalt the async dma engines (VEGA10).
1093  */
1094 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1095 {
1096 	u32 f32_cntl;
1097 	int i;
1098 
1099 	if (!enable) {
1100 		sdma_v4_0_gfx_stop(adev);
1101 		sdma_v4_0_rlc_stop(adev);
1102 		if (adev->sdma.has_page_queue)
1103 			sdma_v4_0_page_stop(adev);
1104 	}
1105 
1106 	for (i = 0; i < adev->sdma.num_instances; i++) {
1107 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1108 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1109 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1110 	}
1111 }
1112 
1113 /*
1114  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1115  */
1116 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1117 {
1118 	/* Set ring buffer size in dwords */
1119 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1120 
1121 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1122 #ifdef __BIG_ENDIAN
1123 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1124 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1125 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1126 #endif
1127 	return rb_cntl;
1128 }
1129 
1130 /**
1131  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1132  *
1133  * @adev: amdgpu_device pointer
1134  * @i: instance to resume
1135  *
1136  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1137  * Returns 0 for success, error for failure.
1138  */
1139 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1140 {
1141 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1142 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1143 	u32 wb_offset;
1144 	u32 doorbell;
1145 	u32 doorbell_offset;
1146 	u64 wptr_gpu_addr;
1147 
1148 	wb_offset = (ring->rptr_offs * 4);
1149 
1150 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1151 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1152 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1153 
1154 	/* Initialize the ring buffer's read and write pointers */
1155 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1156 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1157 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1158 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1159 
1160 	/* set the wb address whether it's enabled or not */
1161 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1162 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1163 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1164 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1165 
1166 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1167 				RPTR_WRITEBACK_ENABLE, 1);
1168 
1169 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1170 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1171 
1172 	ring->wptr = 0;
1173 
1174 	/* before programing wptr to a less value, need set minor_ptr_update first */
1175 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1176 
1177 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1178 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1179 
1180 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1181 				 ring->use_doorbell);
1182 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1183 					SDMA0_GFX_DOORBELL_OFFSET,
1184 					OFFSET, ring->doorbell_index);
1185 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1186 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1187 
1188 	sdma_v4_0_ring_set_wptr(ring);
1189 
1190 	/* set minor_ptr_update to 0 after wptr programed */
1191 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1192 
1193 	/* setup the wptr shadow polling */
1194 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1195 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1196 		    lower_32_bits(wptr_gpu_addr));
1197 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1198 		    upper_32_bits(wptr_gpu_addr));
1199 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1200 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1201 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1202 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1203 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1204 
1205 	/* enable DMA RB */
1206 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1207 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1208 
1209 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1210 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1211 #ifdef __BIG_ENDIAN
1212 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1213 #endif
1214 	/* enable DMA IBs */
1215 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1216 
1217 	ring->sched.ready = true;
1218 }
1219 
1220 /**
1221  * sdma_v4_0_page_resume - setup and start the async dma engines
1222  *
1223  * @adev: amdgpu_device pointer
1224  * @i: instance to resume
1225  *
1226  * Set up the page DMA ring buffers and enable them (VEGA10).
1227  * Returns 0 for success, error for failure.
1228  */
1229 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1230 {
1231 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1232 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1233 	u32 wb_offset;
1234 	u32 doorbell;
1235 	u32 doorbell_offset;
1236 	u64 wptr_gpu_addr;
1237 
1238 	wb_offset = (ring->rptr_offs * 4);
1239 
1240 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1241 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1242 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1243 
1244 	/* Initialize the ring buffer's read and write pointers */
1245 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1246 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1247 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1248 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1249 
1250 	/* set the wb address whether it's enabled or not */
1251 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1252 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1253 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1254 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1255 
1256 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1257 				RPTR_WRITEBACK_ENABLE, 1);
1258 
1259 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1260 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1261 
1262 	ring->wptr = 0;
1263 
1264 	/* before programing wptr to a less value, need set minor_ptr_update first */
1265 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1266 
1267 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1268 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1269 
1270 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1271 				 ring->use_doorbell);
1272 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1273 					SDMA0_PAGE_DOORBELL_OFFSET,
1274 					OFFSET, ring->doorbell_index);
1275 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1276 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1277 
1278 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1279 	sdma_v4_0_page_ring_set_wptr(ring);
1280 
1281 	/* set minor_ptr_update to 0 after wptr programed */
1282 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1283 
1284 	/* setup the wptr shadow polling */
1285 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1286 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1287 		    lower_32_bits(wptr_gpu_addr));
1288 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1289 		    upper_32_bits(wptr_gpu_addr));
1290 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1291 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1292 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1293 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1294 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1295 
1296 	/* enable DMA RB */
1297 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1298 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1299 
1300 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1301 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1302 #ifdef __BIG_ENDIAN
1303 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1304 #endif
1305 	/* enable DMA IBs */
1306 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1307 
1308 	ring->sched.ready = true;
1309 }
1310 
1311 static void
1312 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1313 {
1314 	uint32_t def, data;
1315 
1316 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1317 		/* enable idle interrupt */
1318 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1319 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1320 
1321 		if (data != def)
1322 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1323 	} else {
1324 		/* disable idle interrupt */
1325 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1326 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1327 		if (data != def)
1328 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1329 	}
1330 }
1331 
1332 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1333 {
1334 	uint32_t def, data;
1335 
1336 	/* Enable HW based PG. */
1337 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1338 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1339 	if (data != def)
1340 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1341 
1342 	/* enable interrupt */
1343 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1344 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1345 	if (data != def)
1346 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1347 
1348 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1349 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1350 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1351 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1352 	/* Configure switch time for hysteresis purpose. Use default right now */
1353 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1354 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1355 	if(data != def)
1356 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1357 }
1358 
1359 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1360 {
1361 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1362 		return;
1363 
1364 	switch (adev->asic_type) {
1365 	case CHIP_RAVEN:
1366 	case CHIP_RENOIR:
1367 		sdma_v4_1_init_power_gating(adev);
1368 		sdma_v4_1_update_power_gating(adev, true);
1369 		break;
1370 	default:
1371 		break;
1372 	}
1373 }
1374 
1375 /**
1376  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1377  *
1378  * @adev: amdgpu_device pointer
1379  *
1380  * Set up the compute DMA queues and enable them (VEGA10).
1381  * Returns 0 for success, error for failure.
1382  */
1383 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1384 {
1385 	sdma_v4_0_init_pg(adev);
1386 
1387 	return 0;
1388 }
1389 
1390 /**
1391  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1392  *
1393  * @adev: amdgpu_device pointer
1394  *
1395  * Loads the sDMA0/1 ucode.
1396  * Returns 0 for success, -EINVAL if the ucode is not available.
1397  */
1398 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1399 {
1400 	const struct sdma_firmware_header_v1_0 *hdr;
1401 	const __le32 *fw_data;
1402 	u32 fw_size;
1403 	int i, j;
1404 
1405 	/* halt the MEs */
1406 	sdma_v4_0_enable(adev, false);
1407 
1408 	for (i = 0; i < adev->sdma.num_instances; i++) {
1409 		if (!adev->sdma.instance[i].fw)
1410 			return -EINVAL;
1411 
1412 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1413 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1414 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1415 
1416 		fw_data = (const __le32 *)
1417 			(adev->sdma.instance[i].fw->data +
1418 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1419 
1420 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1421 
1422 		for (j = 0; j < fw_size; j++)
1423 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1424 				    le32_to_cpup(fw_data++));
1425 
1426 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1427 			    adev->sdma.instance[i].fw_version);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  * sdma_v4_0_start - setup and start the async dma engines
1435  *
1436  * @adev: amdgpu_device pointer
1437  *
1438  * Set up the DMA engines and enable them (VEGA10).
1439  * Returns 0 for success, error for failure.
1440  */
1441 static int sdma_v4_0_start(struct amdgpu_device *adev)
1442 {
1443 	struct amdgpu_ring *ring;
1444 	int i, r = 0;
1445 
1446 	if (amdgpu_sriov_vf(adev)) {
1447 		sdma_v4_0_ctx_switch_enable(adev, false);
1448 		sdma_v4_0_enable(adev, false);
1449 	} else {
1450 
1451 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1452 			r = sdma_v4_0_load_microcode(adev);
1453 			if (r)
1454 				return r;
1455 		}
1456 
1457 		/* unhalt the MEs */
1458 		sdma_v4_0_enable(adev, true);
1459 		/* enable sdma ring preemption */
1460 		sdma_v4_0_ctx_switch_enable(adev, true);
1461 	}
1462 
1463 	/* start the gfx rings and rlc compute queues */
1464 	for (i = 0; i < adev->sdma.num_instances; i++) {
1465 		uint32_t temp;
1466 
1467 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1468 		sdma_v4_0_gfx_resume(adev, i);
1469 		if (adev->sdma.has_page_queue)
1470 			sdma_v4_0_page_resume(adev, i);
1471 
1472 		/* set utc l1 enable flag always to 1 */
1473 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1474 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1475 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1476 
1477 		if (!amdgpu_sriov_vf(adev)) {
1478 			/* unhalt engine */
1479 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1480 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1481 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1482 		}
1483 	}
1484 
1485 	if (amdgpu_sriov_vf(adev)) {
1486 		sdma_v4_0_ctx_switch_enable(adev, true);
1487 		sdma_v4_0_enable(adev, true);
1488 	} else {
1489 		r = sdma_v4_0_rlc_resume(adev);
1490 		if (r)
1491 			return r;
1492 	}
1493 
1494 	for (i = 0; i < adev->sdma.num_instances; i++) {
1495 		ring = &adev->sdma.instance[i].ring;
1496 
1497 		r = amdgpu_ring_test_helper(ring);
1498 		if (r)
1499 			return r;
1500 
1501 		if (adev->sdma.has_page_queue) {
1502 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1503 
1504 			r = amdgpu_ring_test_helper(page);
1505 			if (r)
1506 				return r;
1507 
1508 			if (adev->mman.buffer_funcs_ring == page)
1509 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1510 		}
1511 
1512 		if (adev->mman.buffer_funcs_ring == ring)
1513 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1514 	}
1515 
1516 	return r;
1517 }
1518 
1519 /**
1520  * sdma_v4_0_ring_test_ring - simple async dma engine test
1521  *
1522  * @ring: amdgpu_ring structure holding ring information
1523  *
1524  * Test the DMA engine by writing using it to write an
1525  * value to memory. (VEGA10).
1526  * Returns 0 for success, error for failure.
1527  */
1528 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1529 {
1530 	struct amdgpu_device *adev = ring->adev;
1531 	unsigned i;
1532 	unsigned index;
1533 	int r;
1534 	u32 tmp;
1535 	u64 gpu_addr;
1536 
1537 	r = amdgpu_device_wb_get(adev, &index);
1538 	if (r)
1539 		return r;
1540 
1541 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1542 	tmp = 0xCAFEDEAD;
1543 	adev->wb.wb[index] = cpu_to_le32(tmp);
1544 
1545 	r = amdgpu_ring_alloc(ring, 5);
1546 	if (r)
1547 		goto error_free_wb;
1548 
1549 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1550 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1551 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1552 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1553 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1554 	amdgpu_ring_write(ring, 0xDEADBEEF);
1555 	amdgpu_ring_commit(ring);
1556 
1557 	for (i = 0; i < adev->usec_timeout; i++) {
1558 		tmp = le32_to_cpu(adev->wb.wb[index]);
1559 		if (tmp == 0xDEADBEEF)
1560 			break;
1561 		udelay(1);
1562 	}
1563 
1564 	if (i >= adev->usec_timeout)
1565 		r = -ETIMEDOUT;
1566 
1567 error_free_wb:
1568 	amdgpu_device_wb_free(adev, index);
1569 	return r;
1570 }
1571 
1572 /**
1573  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1574  *
1575  * @ring: amdgpu_ring structure holding ring information
1576  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1577  *
1578  * Test a simple IB in the DMA ring (VEGA10).
1579  * Returns 0 on success, error on failure.
1580  */
1581 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1582 {
1583 	struct amdgpu_device *adev = ring->adev;
1584 	struct amdgpu_ib ib;
1585 	struct dma_fence *f = NULL;
1586 	unsigned index;
1587 	long r;
1588 	u32 tmp = 0;
1589 	u64 gpu_addr;
1590 
1591 	r = amdgpu_device_wb_get(adev, &index);
1592 	if (r)
1593 		return r;
1594 
1595 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1596 	tmp = 0xCAFEDEAD;
1597 	adev->wb.wb[index] = cpu_to_le32(tmp);
1598 	memset(&ib, 0, sizeof(ib));
1599 	r = amdgpu_ib_get(adev, NULL, 256,
1600 					AMDGPU_IB_POOL_DIRECT, &ib);
1601 	if (r)
1602 		goto err0;
1603 
1604 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1605 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1606 	ib.ptr[1] = lower_32_bits(gpu_addr);
1607 	ib.ptr[2] = upper_32_bits(gpu_addr);
1608 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1609 	ib.ptr[4] = 0xDEADBEEF;
1610 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1611 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1612 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1613 	ib.length_dw = 8;
1614 
1615 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1616 	if (r)
1617 		goto err1;
1618 
1619 	r = dma_fence_wait_timeout(f, false, timeout);
1620 	if (r == 0) {
1621 		r = -ETIMEDOUT;
1622 		goto err1;
1623 	} else if (r < 0) {
1624 		goto err1;
1625 	}
1626 	tmp = le32_to_cpu(adev->wb.wb[index]);
1627 	if (tmp == 0xDEADBEEF)
1628 		r = 0;
1629 	else
1630 		r = -EINVAL;
1631 
1632 err1:
1633 	amdgpu_ib_free(adev, &ib, NULL);
1634 	dma_fence_put(f);
1635 err0:
1636 	amdgpu_device_wb_free(adev, index);
1637 	return r;
1638 }
1639 
1640 
1641 /**
1642  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1643  *
1644  * @ib: indirect buffer to fill with commands
1645  * @pe: addr of the page entry
1646  * @src: src addr to copy from
1647  * @count: number of page entries to update
1648  *
1649  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1650  */
1651 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1652 				  uint64_t pe, uint64_t src,
1653 				  unsigned count)
1654 {
1655 	unsigned bytes = count * 8;
1656 
1657 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1658 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1659 	ib->ptr[ib->length_dw++] = bytes - 1;
1660 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1661 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1662 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1663 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1664 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1665 
1666 }
1667 
1668 /**
1669  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1670  *
1671  * @ib: indirect buffer to fill with commands
1672  * @pe: addr of the page entry
1673  * @value: dst addr to write into pe
1674  * @count: number of page entries to update
1675  * @incr: increase next addr by incr bytes
1676  *
1677  * Update PTEs by writing them manually using sDMA (VEGA10).
1678  */
1679 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1680 				   uint64_t value, unsigned count,
1681 				   uint32_t incr)
1682 {
1683 	unsigned ndw = count * 2;
1684 
1685 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1686 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1687 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1688 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1689 	ib->ptr[ib->length_dw++] = ndw - 1;
1690 	for (; ndw > 0; ndw -= 2) {
1691 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1692 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1693 		value += incr;
1694 	}
1695 }
1696 
1697 /**
1698  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1699  *
1700  * @ib: indirect buffer to fill with commands
1701  * @pe: addr of the page entry
1702  * @addr: dst addr to write into pe
1703  * @count: number of page entries to update
1704  * @incr: increase next addr by incr bytes
1705  * @flags: access flags
1706  *
1707  * Update the page tables using sDMA (VEGA10).
1708  */
1709 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1710 				     uint64_t pe,
1711 				     uint64_t addr, unsigned count,
1712 				     uint32_t incr, uint64_t flags)
1713 {
1714 	/* for physically contiguous pages (vram) */
1715 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1716 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1717 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1718 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1719 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1720 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1721 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1722 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1723 	ib->ptr[ib->length_dw++] = 0;
1724 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1725 }
1726 
1727 /**
1728  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1729  *
1730  * @ring: amdgpu_ring structure holding ring information
1731  * @ib: indirect buffer to fill with padding
1732  */
1733 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1734 {
1735 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1736 	u32 pad_count;
1737 	int i;
1738 
1739 	pad_count = (-ib->length_dw) & 7;
1740 	for (i = 0; i < pad_count; i++)
1741 		if (sdma && sdma->burst_nop && (i == 0))
1742 			ib->ptr[ib->length_dw++] =
1743 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1744 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1745 		else
1746 			ib->ptr[ib->length_dw++] =
1747 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1748 }
1749 
1750 
1751 /**
1752  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1753  *
1754  * @ring: amdgpu_ring pointer
1755  *
1756  * Make sure all previous operations are completed (CIK).
1757  */
1758 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1759 {
1760 	uint32_t seq = ring->fence_drv.sync_seq;
1761 	uint64_t addr = ring->fence_drv.gpu_addr;
1762 
1763 	/* wait for idle */
1764 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1765 			       addr & 0xfffffffc,
1766 			       upper_32_bits(addr) & 0xffffffff,
1767 			       seq, 0xffffffff, 4);
1768 }
1769 
1770 
1771 /**
1772  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1773  *
1774  * @ring: amdgpu_ring pointer
1775  * @vmid: vmid number to use
1776  * @pd_addr: address
1777  *
1778  * Update the page table base and flush the VM TLB
1779  * using sDMA (VEGA10).
1780  */
1781 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1782 					 unsigned vmid, uint64_t pd_addr)
1783 {
1784 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1785 }
1786 
1787 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1788 				     uint32_t reg, uint32_t val)
1789 {
1790 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1791 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1792 	amdgpu_ring_write(ring, reg);
1793 	amdgpu_ring_write(ring, val);
1794 }
1795 
1796 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1797 					 uint32_t val, uint32_t mask)
1798 {
1799 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1800 }
1801 
1802 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1803 {
1804 	uint fw_version = adev->sdma.instance[0].fw_version;
1805 
1806 	switch (adev->asic_type) {
1807 	case CHIP_VEGA10:
1808 		return fw_version >= 430;
1809 	case CHIP_VEGA12:
1810 		/*return fw_version >= 31;*/
1811 		return false;
1812 	case CHIP_VEGA20:
1813 		return fw_version >= 123;
1814 	default:
1815 		return false;
1816 	}
1817 }
1818 
1819 static int sdma_v4_0_early_init(void *handle)
1820 {
1821 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1822 	int r;
1823 
1824 	if (adev->flags & AMD_IS_APU)
1825 		adev->sdma.num_instances = 1;
1826 	else if (adev->asic_type == CHIP_ARCTURUS)
1827 		adev->sdma.num_instances = 8;
1828 	else
1829 		adev->sdma.num_instances = 2;
1830 
1831 	r = sdma_v4_0_init_microcode(adev);
1832 	if (r) {
1833 		DRM_ERROR("Failed to load sdma firmware!\n");
1834 		return r;
1835 	}
1836 
1837 	/* TODO: Page queue breaks driver reload under SRIOV */
1838 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1839 		adev->sdma.has_page_queue = false;
1840 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1841 		adev->sdma.has_page_queue = true;
1842 
1843 	sdma_v4_0_set_ring_funcs(adev);
1844 	sdma_v4_0_set_buffer_funcs(adev);
1845 	sdma_v4_0_set_vm_pte_funcs(adev);
1846 	sdma_v4_0_set_irq_funcs(adev);
1847 	sdma_v4_0_set_ras_funcs(adev);
1848 
1849 	return 0;
1850 }
1851 
1852 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1853 		void *err_data,
1854 		struct amdgpu_iv_entry *entry);
1855 
1856 static int sdma_v4_0_late_init(void *handle)
1857 {
1858 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1859 	struct ras_ih_if ih_info = {
1860 		.cb = sdma_v4_0_process_ras_data_cb,
1861 	};
1862 
1863 	sdma_v4_0_setup_ulv(adev);
1864 
1865 	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1866 		adev->sdma.funcs->reset_ras_error_count(adev);
1867 
1868 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1869 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1870 	else
1871 		return 0;
1872 }
1873 
1874 static int sdma_v4_0_sw_init(void *handle)
1875 {
1876 	struct amdgpu_ring *ring;
1877 	int r, i;
1878 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879 
1880 	/* SDMA trap event */
1881 	for (i = 0; i < adev->sdma.num_instances; i++) {
1882 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1883 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1884 				      &adev->sdma.trap_irq);
1885 		if (r)
1886 			return r;
1887 	}
1888 
1889 	/* SDMA SRAM ECC event */
1890 	for (i = 0; i < adev->sdma.num_instances; i++) {
1891 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1892 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1893 				      &adev->sdma.ecc_irq);
1894 		if (r)
1895 			return r;
1896 	}
1897 
1898 	/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1899 	for (i = 0; i < adev->sdma.num_instances; i++) {
1900 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1901 				      SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1902 				      &adev->sdma.vm_hole_irq);
1903 		if (r)
1904 			return r;
1905 
1906 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1907 				      SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1908 				      &adev->sdma.doorbell_invalid_irq);
1909 		if (r)
1910 			return r;
1911 
1912 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1913 				      SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1914 				      &adev->sdma.pool_timeout_irq);
1915 		if (r)
1916 			return r;
1917 
1918 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1919 				      SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1920 				      &adev->sdma.srbm_write_irq);
1921 		if (r)
1922 			return r;
1923 	}
1924 
1925 	for (i = 0; i < adev->sdma.num_instances; i++) {
1926 		ring = &adev->sdma.instance[i].ring;
1927 		ring->ring_obj = NULL;
1928 		ring->use_doorbell = true;
1929 
1930 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1931 				ring->use_doorbell?"true":"false");
1932 
1933 		/* doorbell size is 2 dwords, get DWORD offset */
1934 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1935 
1936 		sprintf(ring->name, "sdma%d", i);
1937 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1938 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1939 				     AMDGPU_RING_PRIO_DEFAULT);
1940 		if (r)
1941 			return r;
1942 
1943 		if (adev->sdma.has_page_queue) {
1944 			ring = &adev->sdma.instance[i].page;
1945 			ring->ring_obj = NULL;
1946 			ring->use_doorbell = true;
1947 
1948 			/* paging queue use same doorbell index/routing as gfx queue
1949 			 * with 0x400 (4096 dwords) offset on second doorbell page
1950 			 */
1951 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1952 			ring->doorbell_index += 0x400;
1953 
1954 			sprintf(ring->name, "page%d", i);
1955 			r = amdgpu_ring_init(adev, ring, 1024,
1956 					     &adev->sdma.trap_irq,
1957 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1958 					     AMDGPU_RING_PRIO_DEFAULT);
1959 			if (r)
1960 				return r;
1961 		}
1962 	}
1963 
1964 	return r;
1965 }
1966 
1967 static int sdma_v4_0_sw_fini(void *handle)
1968 {
1969 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1970 	int i;
1971 
1972 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1973 		adev->sdma.funcs->ras_fini(adev);
1974 
1975 	for (i = 0; i < adev->sdma.num_instances; i++) {
1976 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1977 		if (adev->sdma.has_page_queue)
1978 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1979 	}
1980 
1981 	sdma_v4_0_destroy_inst_ctx(adev);
1982 
1983 	return 0;
1984 }
1985 
1986 static int sdma_v4_0_hw_init(void *handle)
1987 {
1988 	int r;
1989 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1990 
1991 	if (adev->flags & AMD_IS_APU)
1992 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1993 
1994 	if (!amdgpu_sriov_vf(adev))
1995 		sdma_v4_0_init_golden_registers(adev);
1996 
1997 	r = sdma_v4_0_start(adev);
1998 
1999 	return r;
2000 }
2001 
2002 static int sdma_v4_0_hw_fini(void *handle)
2003 {
2004 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2005 	int i;
2006 
2007 	if (amdgpu_sriov_vf(adev))
2008 		return 0;
2009 
2010 	for (i = 0; i < adev->sdma.num_instances; i++) {
2011 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2012 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2013 	}
2014 
2015 	sdma_v4_0_ctx_switch_enable(adev, false);
2016 	sdma_v4_0_enable(adev, false);
2017 
2018 	if (adev->flags & AMD_IS_APU)
2019 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
2020 
2021 	return 0;
2022 }
2023 
2024 static int sdma_v4_0_suspend(void *handle)
2025 {
2026 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2027 
2028 	return sdma_v4_0_hw_fini(adev);
2029 }
2030 
2031 static int sdma_v4_0_resume(void *handle)
2032 {
2033 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2034 
2035 	return sdma_v4_0_hw_init(adev);
2036 }
2037 
2038 static bool sdma_v4_0_is_idle(void *handle)
2039 {
2040 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2041 	u32 i;
2042 
2043 	for (i = 0; i < adev->sdma.num_instances; i++) {
2044 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2045 
2046 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2047 			return false;
2048 	}
2049 
2050 	return true;
2051 }
2052 
2053 static int sdma_v4_0_wait_for_idle(void *handle)
2054 {
2055 	unsigned i, j;
2056 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2057 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2058 
2059 	for (i = 0; i < adev->usec_timeout; i++) {
2060 		for (j = 0; j < adev->sdma.num_instances; j++) {
2061 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2062 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2063 				break;
2064 		}
2065 		if (j == adev->sdma.num_instances)
2066 			return 0;
2067 		udelay(1);
2068 	}
2069 	return -ETIMEDOUT;
2070 }
2071 
2072 static int sdma_v4_0_soft_reset(void *handle)
2073 {
2074 	/* todo */
2075 
2076 	return 0;
2077 }
2078 
2079 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2080 					struct amdgpu_irq_src *source,
2081 					unsigned type,
2082 					enum amdgpu_interrupt_state state)
2083 {
2084 	u32 sdma_cntl;
2085 
2086 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2087 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2088 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2089 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2090 
2091 	return 0;
2092 }
2093 
2094 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2095 				      struct amdgpu_irq_src *source,
2096 				      struct amdgpu_iv_entry *entry)
2097 {
2098 	uint32_t instance;
2099 
2100 	DRM_DEBUG("IH: SDMA trap\n");
2101 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2102 	switch (entry->ring_id) {
2103 	case 0:
2104 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2105 		break;
2106 	case 1:
2107 		if (adev->asic_type == CHIP_VEGA20)
2108 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2109 		break;
2110 	case 2:
2111 		/* XXX compute */
2112 		break;
2113 	case 3:
2114 		if (adev->asic_type != CHIP_VEGA20)
2115 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2116 		break;
2117 	}
2118 	return 0;
2119 }
2120 
2121 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2122 		void *err_data,
2123 		struct amdgpu_iv_entry *entry)
2124 {
2125 	int instance;
2126 
2127 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2128 	 * be disabled and the driver should only look for the aggregated
2129 	 * interrupt via sync flood
2130 	 */
2131 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2132 		goto out;
2133 
2134 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2135 	if (instance < 0)
2136 		goto out;
2137 
2138 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2139 
2140 out:
2141 	return AMDGPU_RAS_SUCCESS;
2142 }
2143 
2144 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2145 					      struct amdgpu_irq_src *source,
2146 					      struct amdgpu_iv_entry *entry)
2147 {
2148 	int instance;
2149 
2150 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2151 
2152 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2153 	if (instance < 0)
2154 		return 0;
2155 
2156 	switch (entry->ring_id) {
2157 	case 0:
2158 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2159 		break;
2160 	}
2161 	return 0;
2162 }
2163 
2164 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2165 					struct amdgpu_irq_src *source,
2166 					unsigned type,
2167 					enum amdgpu_interrupt_state state)
2168 {
2169 	u32 sdma_edc_config;
2170 
2171 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2172 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2173 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2174 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2175 
2176 	return 0;
2177 }
2178 
2179 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2180 					      struct amdgpu_iv_entry *entry)
2181 {
2182 	int instance;
2183 	struct amdgpu_task_info task_info;
2184 	u64 addr;
2185 
2186 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2187 	if (instance < 0 || instance >= adev->sdma.num_instances) {
2188 		dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2189 		return -EINVAL;
2190 	}
2191 
2192 	addr = (u64)entry->src_data[0] << 12;
2193 	addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2194 
2195 	memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2196 	amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2197 
2198 	dev_info(adev->dev,
2199 		   "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2200 		   "pasid:%u, for process %s pid %d thread %s pid %d\n",
2201 		   instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2202 		   entry->pasid, task_info.process_name, task_info.tgid,
2203 		   task_info.task_name, task_info.pid);
2204 	return 0;
2205 }
2206 
2207 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2208 					      struct amdgpu_irq_src *source,
2209 					      struct amdgpu_iv_entry *entry)
2210 {
2211 	dev_err(adev->dev, "MC or SEM address in VM hole\n");
2212 	sdma_v4_0_print_iv_entry(adev, entry);
2213 	return 0;
2214 }
2215 
2216 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2217 					      struct amdgpu_irq_src *source,
2218 					      struct amdgpu_iv_entry *entry)
2219 {
2220 	dev_err(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2221 	sdma_v4_0_print_iv_entry(adev, entry);
2222 	return 0;
2223 }
2224 
2225 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2226 					      struct amdgpu_irq_src *source,
2227 					      struct amdgpu_iv_entry *entry)
2228 {
2229 	dev_err(adev->dev,
2230 		"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2231 	sdma_v4_0_print_iv_entry(adev, entry);
2232 	return 0;
2233 }
2234 
2235 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2236 					      struct amdgpu_irq_src *source,
2237 					      struct amdgpu_iv_entry *entry)
2238 {
2239 	dev_err(adev->dev,
2240 		"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2241 	sdma_v4_0_print_iv_entry(adev, entry);
2242 	return 0;
2243 }
2244 
2245 static void sdma_v4_0_update_medium_grain_clock_gating(
2246 		struct amdgpu_device *adev,
2247 		bool enable)
2248 {
2249 	uint32_t data, def;
2250 	int i;
2251 
2252 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2253 		for (i = 0; i < adev->sdma.num_instances; i++) {
2254 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2255 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2256 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2257 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2258 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2259 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2260 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2261 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2262 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2263 			if (def != data)
2264 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2265 		}
2266 	} else {
2267 		for (i = 0; i < adev->sdma.num_instances; i++) {
2268 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2269 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2270 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2271 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2272 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2273 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2274 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2275 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2276 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2277 			if (def != data)
2278 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2279 		}
2280 	}
2281 }
2282 
2283 
2284 static void sdma_v4_0_update_medium_grain_light_sleep(
2285 		struct amdgpu_device *adev,
2286 		bool enable)
2287 {
2288 	uint32_t data, def;
2289 	int i;
2290 
2291 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2292 		for (i = 0; i < adev->sdma.num_instances; i++) {
2293 			/* 1-not override: enable sdma mem light sleep */
2294 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2295 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2296 			if (def != data)
2297 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2298 		}
2299 	} else {
2300 		for (i = 0; i < adev->sdma.num_instances; i++) {
2301 		/* 0-override:disable sdma mem light sleep */
2302 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2303 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2304 			if (def != data)
2305 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2306 		}
2307 	}
2308 }
2309 
2310 static int sdma_v4_0_set_clockgating_state(void *handle,
2311 					  enum amd_clockgating_state state)
2312 {
2313 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2314 
2315 	if (amdgpu_sriov_vf(adev))
2316 		return 0;
2317 
2318 	sdma_v4_0_update_medium_grain_clock_gating(adev,
2319 			state == AMD_CG_STATE_GATE);
2320 	sdma_v4_0_update_medium_grain_light_sleep(adev,
2321 			state == AMD_CG_STATE_GATE);
2322 	return 0;
2323 }
2324 
2325 static int sdma_v4_0_set_powergating_state(void *handle,
2326 					  enum amd_powergating_state state)
2327 {
2328 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2329 
2330 	switch (adev->asic_type) {
2331 	case CHIP_RAVEN:
2332 	case CHIP_RENOIR:
2333 		sdma_v4_1_update_power_gating(adev,
2334 				state == AMD_PG_STATE_GATE);
2335 		break;
2336 	default:
2337 		break;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2344 {
2345 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2346 	int data;
2347 
2348 	if (amdgpu_sriov_vf(adev))
2349 		*flags = 0;
2350 
2351 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2352 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2353 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2354 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2355 
2356 	/* AMD_CG_SUPPORT_SDMA_LS */
2357 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2358 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2359 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2360 }
2361 
2362 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2363 	.name = "sdma_v4_0",
2364 	.early_init = sdma_v4_0_early_init,
2365 	.late_init = sdma_v4_0_late_init,
2366 	.sw_init = sdma_v4_0_sw_init,
2367 	.sw_fini = sdma_v4_0_sw_fini,
2368 	.hw_init = sdma_v4_0_hw_init,
2369 	.hw_fini = sdma_v4_0_hw_fini,
2370 	.suspend = sdma_v4_0_suspend,
2371 	.resume = sdma_v4_0_resume,
2372 	.is_idle = sdma_v4_0_is_idle,
2373 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2374 	.soft_reset = sdma_v4_0_soft_reset,
2375 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2376 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2377 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2378 };
2379 
2380 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2381 	.type = AMDGPU_RING_TYPE_SDMA,
2382 	.align_mask = 0xf,
2383 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2384 	.support_64bit_ptrs = true,
2385 	.vmhub = AMDGPU_MMHUB_0,
2386 	.get_rptr = sdma_v4_0_ring_get_rptr,
2387 	.get_wptr = sdma_v4_0_ring_get_wptr,
2388 	.set_wptr = sdma_v4_0_ring_set_wptr,
2389 	.emit_frame_size =
2390 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2391 		3 + /* hdp invalidate */
2392 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2393 		/* sdma_v4_0_ring_emit_vm_flush */
2394 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2395 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2396 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2397 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2398 	.emit_ib = sdma_v4_0_ring_emit_ib,
2399 	.emit_fence = sdma_v4_0_ring_emit_fence,
2400 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2401 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2402 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2403 	.test_ring = sdma_v4_0_ring_test_ring,
2404 	.test_ib = sdma_v4_0_ring_test_ib,
2405 	.insert_nop = sdma_v4_0_ring_insert_nop,
2406 	.pad_ib = sdma_v4_0_ring_pad_ib,
2407 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2408 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2409 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2410 };
2411 
2412 /*
2413  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2414  * So create a individual constant ring_funcs for those instances.
2415  */
2416 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2417 	.type = AMDGPU_RING_TYPE_SDMA,
2418 	.align_mask = 0xf,
2419 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2420 	.support_64bit_ptrs = true,
2421 	.vmhub = AMDGPU_MMHUB_1,
2422 	.get_rptr = sdma_v4_0_ring_get_rptr,
2423 	.get_wptr = sdma_v4_0_ring_get_wptr,
2424 	.set_wptr = sdma_v4_0_ring_set_wptr,
2425 	.emit_frame_size =
2426 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2427 		3 + /* hdp invalidate */
2428 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2429 		/* sdma_v4_0_ring_emit_vm_flush */
2430 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2431 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2432 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2433 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2434 	.emit_ib = sdma_v4_0_ring_emit_ib,
2435 	.emit_fence = sdma_v4_0_ring_emit_fence,
2436 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2437 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2438 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2439 	.test_ring = sdma_v4_0_ring_test_ring,
2440 	.test_ib = sdma_v4_0_ring_test_ib,
2441 	.insert_nop = sdma_v4_0_ring_insert_nop,
2442 	.pad_ib = sdma_v4_0_ring_pad_ib,
2443 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2444 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2445 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2446 };
2447 
2448 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2449 	.type = AMDGPU_RING_TYPE_SDMA,
2450 	.align_mask = 0xf,
2451 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2452 	.support_64bit_ptrs = true,
2453 	.vmhub = AMDGPU_MMHUB_0,
2454 	.get_rptr = sdma_v4_0_ring_get_rptr,
2455 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2456 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2457 	.emit_frame_size =
2458 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2459 		3 + /* hdp invalidate */
2460 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2461 		/* sdma_v4_0_ring_emit_vm_flush */
2462 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2463 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2464 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2465 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2466 	.emit_ib = sdma_v4_0_ring_emit_ib,
2467 	.emit_fence = sdma_v4_0_ring_emit_fence,
2468 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2469 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2470 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2471 	.test_ring = sdma_v4_0_ring_test_ring,
2472 	.test_ib = sdma_v4_0_ring_test_ib,
2473 	.insert_nop = sdma_v4_0_ring_insert_nop,
2474 	.pad_ib = sdma_v4_0_ring_pad_ib,
2475 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2476 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2477 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2478 };
2479 
2480 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2481 	.type = AMDGPU_RING_TYPE_SDMA,
2482 	.align_mask = 0xf,
2483 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2484 	.support_64bit_ptrs = true,
2485 	.vmhub = AMDGPU_MMHUB_1,
2486 	.get_rptr = sdma_v4_0_ring_get_rptr,
2487 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2488 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2489 	.emit_frame_size =
2490 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2491 		3 + /* hdp invalidate */
2492 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2493 		/* sdma_v4_0_ring_emit_vm_flush */
2494 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2495 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2496 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2497 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2498 	.emit_ib = sdma_v4_0_ring_emit_ib,
2499 	.emit_fence = sdma_v4_0_ring_emit_fence,
2500 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2501 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2502 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2503 	.test_ring = sdma_v4_0_ring_test_ring,
2504 	.test_ib = sdma_v4_0_ring_test_ib,
2505 	.insert_nop = sdma_v4_0_ring_insert_nop,
2506 	.pad_ib = sdma_v4_0_ring_pad_ib,
2507 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2508 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2509 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2510 };
2511 
2512 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2513 {
2514 	int i;
2515 
2516 	for (i = 0; i < adev->sdma.num_instances; i++) {
2517 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2518 			adev->sdma.instance[i].ring.funcs =
2519 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2520 		else
2521 			adev->sdma.instance[i].ring.funcs =
2522 					&sdma_v4_0_ring_funcs;
2523 		adev->sdma.instance[i].ring.me = i;
2524 		if (adev->sdma.has_page_queue) {
2525 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2526 				adev->sdma.instance[i].page.funcs =
2527 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2528 			else
2529 				adev->sdma.instance[i].page.funcs =
2530 					&sdma_v4_0_page_ring_funcs;
2531 			adev->sdma.instance[i].page.me = i;
2532 		}
2533 	}
2534 }
2535 
2536 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2537 	.set = sdma_v4_0_set_trap_irq_state,
2538 	.process = sdma_v4_0_process_trap_irq,
2539 };
2540 
2541 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2542 	.process = sdma_v4_0_process_illegal_inst_irq,
2543 };
2544 
2545 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2546 	.set = sdma_v4_0_set_ecc_irq_state,
2547 	.process = amdgpu_sdma_process_ecc_irq,
2548 };
2549 
2550 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2551 	.process = sdma_v4_0_process_vm_hole_irq,
2552 };
2553 
2554 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2555 	.process = sdma_v4_0_process_doorbell_invalid_irq,
2556 };
2557 
2558 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2559 	.process = sdma_v4_0_process_pool_timeout_irq,
2560 };
2561 
2562 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2563 	.process = sdma_v4_0_process_srbm_write_irq,
2564 };
2565 
2566 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2567 {
2568 	switch (adev->sdma.num_instances) {
2569 	case 1:
2570 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2571 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2572 		break;
2573 	case 8:
2574 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2575 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2576 		adev->sdma.vm_hole_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE5;
2577 		adev->sdma.doorbell_invalid_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2578 		adev->sdma.pool_timeout_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2579 		adev->sdma.srbm_write_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2580 		break;
2581 	case 2:
2582 	default:
2583 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2584 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2585 		break;
2586 	}
2587 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2588 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2589 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2590 	adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2591 	adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2592 	adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2593 	adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2594 }
2595 
2596 /**
2597  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2598  *
2599  * @ib: indirect buffer to copy to
2600  * @src_offset: src GPU address
2601  * @dst_offset: dst GPU address
2602  * @byte_count: number of bytes to xfer
2603  * @tmz: if a secure copy should be used
2604  *
2605  * Copy GPU buffers using the DMA engine (VEGA10/12).
2606  * Used by the amdgpu ttm implementation to move pages if
2607  * registered as the asic copy callback.
2608  */
2609 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2610 				       uint64_t src_offset,
2611 				       uint64_t dst_offset,
2612 				       uint32_t byte_count,
2613 				       bool tmz)
2614 {
2615 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2616 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2617 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2618 	ib->ptr[ib->length_dw++] = byte_count - 1;
2619 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2620 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2621 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2622 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2623 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2624 }
2625 
2626 /**
2627  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2628  *
2629  * @ib: indirect buffer to copy to
2630  * @src_data: value to write to buffer
2631  * @dst_offset: dst GPU address
2632  * @byte_count: number of bytes to xfer
2633  *
2634  * Fill GPU buffers using the DMA engine (VEGA10/12).
2635  */
2636 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2637 				       uint32_t src_data,
2638 				       uint64_t dst_offset,
2639 				       uint32_t byte_count)
2640 {
2641 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2642 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2643 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2644 	ib->ptr[ib->length_dw++] = src_data;
2645 	ib->ptr[ib->length_dw++] = byte_count - 1;
2646 }
2647 
2648 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2649 	.copy_max_bytes = 0x400000,
2650 	.copy_num_dw = 7,
2651 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2652 
2653 	.fill_max_bytes = 0x400000,
2654 	.fill_num_dw = 5,
2655 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2656 };
2657 
2658 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2659 {
2660 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2661 	if (adev->sdma.has_page_queue)
2662 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2663 	else
2664 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2665 }
2666 
2667 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2668 	.copy_pte_num_dw = 7,
2669 	.copy_pte = sdma_v4_0_vm_copy_pte,
2670 
2671 	.write_pte = sdma_v4_0_vm_write_pte,
2672 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2673 };
2674 
2675 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2676 {
2677 	struct drm_gpu_scheduler *sched;
2678 	unsigned i;
2679 
2680 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2681 	for (i = 0; i < adev->sdma.num_instances; i++) {
2682 		if (adev->sdma.has_page_queue)
2683 			sched = &adev->sdma.instance[i].page.sched;
2684 		else
2685 			sched = &adev->sdma.instance[i].ring.sched;
2686 		adev->vm_manager.vm_pte_scheds[i] = sched;
2687 	}
2688 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2689 }
2690 
2691 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2692 					uint32_t instance,
2693 					uint32_t *sec_count)
2694 {
2695 	uint32_t i;
2696 	uint32_t sec_cnt;
2697 
2698 	/* double bits error (multiple bits) error detection is not supported */
2699 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2700 		/* the SDMA_EDC_COUNTER register in each sdma instance
2701 		 * shares the same sed shift_mask
2702 		 * */
2703 		sec_cnt = (value &
2704 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2705 			sdma_v4_0_ras_fields[i].sec_count_shift;
2706 		if (sec_cnt) {
2707 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2708 				sdma_v4_0_ras_fields[i].name,
2709 				instance, sec_cnt);
2710 			*sec_count += sec_cnt;
2711 		}
2712 	}
2713 }
2714 
2715 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2716 			uint32_t instance, void *ras_error_status)
2717 {
2718 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2719 	uint32_t sec_count = 0;
2720 	uint32_t reg_value = 0;
2721 
2722 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2723 	/* double bit error is not supported */
2724 	if (reg_value)
2725 		sdma_v4_0_get_ras_error_count(reg_value,
2726 				instance, &sec_count);
2727 	/* err_data->ce_count should be initialized to 0
2728 	 * before calling into this function */
2729 	err_data->ce_count += sec_count;
2730 	/* double bit error is not supported
2731 	 * set ue count to 0 */
2732 	err_data->ue_count = 0;
2733 
2734 	return 0;
2735 };
2736 
2737 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2738 {
2739 	int i;
2740 
2741 	/* read back edc counter registers to clear the counters */
2742 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2743 		for (i = 0; i < adev->sdma.num_instances; i++)
2744 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2745 	}
2746 }
2747 
2748 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2749 	.ras_late_init = amdgpu_sdma_ras_late_init,
2750 	.ras_fini = amdgpu_sdma_ras_fini,
2751 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2752 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2753 };
2754 
2755 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2756 {
2757 	switch (adev->asic_type) {
2758 	case CHIP_VEGA20:
2759 	case CHIP_ARCTURUS:
2760 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2761 		break;
2762 	default:
2763 		break;
2764 	}
2765 }
2766 
2767 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2768 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2769 	.major = 4,
2770 	.minor = 0,
2771 	.rev = 0,
2772 	.funcs = &sdma_v4_0_ip_funcs,
2773 };
2774