xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "vega10/soc15ip.h"
31 #include "vega10/SDMA0/sdma0_4_0_offset.h"
32 #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
33 #include "vega10/SDMA1/sdma1_4_0_offset.h"
34 #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
35 #include "vega10/MMHUB/mmhub_1_0_offset.h"
36 #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
37 #include "vega10/HDP/hdp_4_0_offset.h"
38 #include "raven1/SDMA0/sdma0_4_1_default.h"
39 
40 #include "soc15_common.h"
41 #include "soc15.h"
42 #include "vega10_sdma_pkt_open.h"
43 
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
47 
48 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
49 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
50 
51 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
52 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
53 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
54 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
55 
56 static const u32 golden_settings_sdma_4[] = {
57 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
58 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
59 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
60 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
61 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
62 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
63 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
64 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
65 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
66 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
67 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
68 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
69 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
70 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
71 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
72 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
73 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
74 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
75 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
76 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
77 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
78 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
79 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
80 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
81 };
82 
83 static const u32 golden_settings_sdma_vg10[] = {
84 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
85 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
86 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
87 	SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
88 };
89 
90 static const u32 golden_settings_sdma_4_1[] =
91 {
92 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
93 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xffffffff, 0x3f000100,
94 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0111, 0x00000100,
95 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
96 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0xfc3fffff, 0x40000051,
97 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0111, 0x00000100,
98 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
99 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0111, 0x00000100,
100 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
101 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0
102 };
103 
104 static const u32 golden_settings_sdma_rv1[] =
105 {
106 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00003002,
107 	SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00003002
108 };
109 
110 static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
111 {
112 	u32 base = 0;
113 
114 	switch (instance) {
115 	case 0:
116 		base = SDMA0_BASE.instance[0].segment[0];
117 		break;
118 	case 1:
119 		base = SDMA1_BASE.instance[0].segment[0];
120 		break;
121 	default:
122 		BUG();
123 		break;
124 	}
125 
126 	return base + internal_offset;
127 }
128 
129 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
130 {
131 	switch (adev->asic_type) {
132 	case CHIP_VEGA10:
133 		amdgpu_program_register_sequence(adev,
134 						 golden_settings_sdma_4,
135 						 (const u32)ARRAY_SIZE(golden_settings_sdma_4));
136 		amdgpu_program_register_sequence(adev,
137 						 golden_settings_sdma_vg10,
138 						 (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
139 		break;
140 	case CHIP_RAVEN:
141 		amdgpu_program_register_sequence(adev,
142 						 golden_settings_sdma_4_1,
143 						 (const u32)ARRAY_SIZE(golden_settings_sdma_4_1));
144 		amdgpu_program_register_sequence(adev,
145 						 golden_settings_sdma_rv1,
146 						 (const u32)ARRAY_SIZE(golden_settings_sdma_rv1));
147 		break;
148 	default:
149 		break;
150 	}
151 }
152 
153 static void sdma_v4_0_print_ucode_regs(void *handle)
154 {
155 	int i;
156 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
157 
158 	dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
159 	for (i = 0; i < adev->sdma.num_instances; i++) {
160 		dev_info(adev->dev, "  SDMA%d_UCODE_ADDR=0x%08X\n",
161 			 i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
162 		dev_info(adev->dev, "  SDMA%d_UCODE_CHECKSUM=0x%08X\n",
163 			 i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
164 	}
165 }
166 
167 /**
168  * sdma_v4_0_init_microcode - load ucode images from disk
169  *
170  * @adev: amdgpu_device pointer
171  *
172  * Use the firmware interface to load the ucode images into
173  * the driver (not loaded into hw).
174  * Returns 0 on success, error on failure.
175  */
176 
177 // emulation only, won't work on real chip
178 // vega10 real chip need to use PSP to load firmware
179 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
180 {
181 	const char *chip_name;
182 	char fw_name[30];
183 	int err = 0, i;
184 	struct amdgpu_firmware_info *info = NULL;
185 	const struct common_firmware_header *header = NULL;
186 	const struct sdma_firmware_header_v1_0 *hdr;
187 
188 	DRM_DEBUG("\n");
189 
190 	switch (adev->asic_type) {
191 	case CHIP_VEGA10:
192 		chip_name = "vega10";
193 		break;
194 	case CHIP_RAVEN:
195 		chip_name = "raven";
196 		break;
197 	default:
198 		BUG();
199 	}
200 
201 	for (i = 0; i < adev->sdma.num_instances; i++) {
202 		if (i == 0)
203 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
204 		else
205 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
206 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
207 		if (err)
208 			goto out;
209 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
210 		if (err)
211 			goto out;
212 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
213 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
214 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
215 		if (adev->sdma.instance[i].feature_version >= 20)
216 			adev->sdma.instance[i].burst_nop = true;
217 		DRM_DEBUG("psp_load == '%s'\n",
218 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
219 
220 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
221 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
222 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
223 			info->fw = adev->sdma.instance[i].fw;
224 			header = (const struct common_firmware_header *)info->fw->data;
225 			adev->firmware.fw_size +=
226 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
227 		}
228 	}
229 out:
230 	if (err) {
231 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
232 		for (i = 0; i < adev->sdma.num_instances; i++) {
233 			release_firmware(adev->sdma.instance[i].fw);
234 			adev->sdma.instance[i].fw = NULL;
235 		}
236 	}
237 	return err;
238 }
239 
240 /**
241  * sdma_v4_0_ring_get_rptr - get the current read pointer
242  *
243  * @ring: amdgpu ring pointer
244  *
245  * Get the current rptr from the hardware (VEGA10+).
246  */
247 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
248 {
249 	u64 *rptr;
250 
251 	/* XXX check if swapping is necessary on BE */
252 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
253 
254 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
255 	return ((*rptr) >> 2);
256 }
257 
258 /**
259  * sdma_v4_0_ring_get_wptr - get the current write pointer
260  *
261  * @ring: amdgpu ring pointer
262  *
263  * Get the current wptr from the hardware (VEGA10+).
264  */
265 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
266 {
267 	struct amdgpu_device *adev = ring->adev;
268 	u64 *wptr = NULL;
269 	uint64_t local_wptr = 0;
270 
271 	if (ring->use_doorbell) {
272 		/* XXX check if swapping is necessary on BE */
273 		wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
274 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
275 		*wptr = (*wptr) >> 2;
276 		DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
277 	} else {
278 		u32 lowbit, highbit;
279 		int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
280 
281 		wptr = &local_wptr;
282 		lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
283 		highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
284 
285 		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
286 				me, highbit, lowbit);
287 		*wptr = highbit;
288 		*wptr = (*wptr) << 32;
289 		*wptr |= lowbit;
290 	}
291 
292 	return *wptr;
293 }
294 
295 /**
296  * sdma_v4_0_ring_set_wptr - commit the write pointer
297  *
298  * @ring: amdgpu ring pointer
299  *
300  * Write the wptr back to the hardware (VEGA10+).
301  */
302 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
303 {
304 	struct amdgpu_device *adev = ring->adev;
305 
306 	DRM_DEBUG("Setting write pointer\n");
307 	if (ring->use_doorbell) {
308 		DRM_DEBUG("Using doorbell -- "
309 				"wptr_offs == 0x%08x "
310 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
311 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
312 				ring->wptr_offs,
313 				lower_32_bits(ring->wptr << 2),
314 				upper_32_bits(ring->wptr << 2));
315 		/* XXX check if swapping is necessary on BE */
316 		adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
317 		adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
318 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
319 				ring->doorbell_index, ring->wptr << 2);
320 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
321 	} else {
322 		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
323 
324 		DRM_DEBUG("Not using doorbell -- "
325 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
326 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
327 				me,
328 				lower_32_bits(ring->wptr << 2),
329 				me,
330 				upper_32_bits(ring->wptr << 2));
331 		WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
332 		WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
333 	}
334 }
335 
336 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
337 {
338 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
339 	int i;
340 
341 	for (i = 0; i < count; i++)
342 		if (sdma && sdma->burst_nop && (i == 0))
343 			amdgpu_ring_write(ring, ring->funcs->nop |
344 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
345 		else
346 			amdgpu_ring_write(ring, ring->funcs->nop);
347 }
348 
349 /**
350  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
351  *
352  * @ring: amdgpu ring pointer
353  * @ib: IB object to schedule
354  *
355  * Schedule an IB in the DMA ring (VEGA10).
356  */
357 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
358 					struct amdgpu_ib *ib,
359 					unsigned vm_id, bool ctx_switch)
360 {
361 	u32 vmid = vm_id & 0xf;
362 
363 	/* IB packet must end on a 8 DW boundary */
364 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
365 
366 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
367 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
368 	/* base must be 32 byte aligned */
369 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
370 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
371 	amdgpu_ring_write(ring, ib->length_dw);
372 	amdgpu_ring_write(ring, 0);
373 	amdgpu_ring_write(ring, 0);
374 
375 }
376 
377 /**
378  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
379  *
380  * @ring: amdgpu ring pointer
381  *
382  * Emit an hdp flush packet on the requested DMA ring.
383  */
384 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
385 {
386 	u32 ref_and_mask = 0;
387 	struct nbio_hdp_flush_reg *nbio_hf_reg;
388 
389 	if (ring->adev->flags & AMD_IS_APU)
390 		nbio_hf_reg = &nbio_v7_0_hdp_flush_reg;
391 	else
392 		nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
393 
394 	if (ring == &ring->adev->sdma.instance[0].ring)
395 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
396 	else
397 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
398 
399 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
400 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
401 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
402 	amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
403 	amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
404 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
405 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
406 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
407 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
408 }
409 
410 static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
411 {
412 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
413 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
414 	amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
415 	amdgpu_ring_write(ring, 1);
416 }
417 
418 /**
419  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
420  *
421  * @ring: amdgpu ring pointer
422  * @fence: amdgpu fence object
423  *
424  * Add a DMA fence packet to the ring to write
425  * the fence seq number and DMA trap packet to generate
426  * an interrupt if needed (VEGA10).
427  */
428 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
429 				      unsigned flags)
430 {
431 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
432 	/* write the fence */
433 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
434 	/* zero in first two bits */
435 	BUG_ON(addr & 0x3);
436 	amdgpu_ring_write(ring, lower_32_bits(addr));
437 	amdgpu_ring_write(ring, upper_32_bits(addr));
438 	amdgpu_ring_write(ring, lower_32_bits(seq));
439 
440 	/* optionally write high bits as well */
441 	if (write64bit) {
442 		addr += 4;
443 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
444 		/* zero in first two bits */
445 		BUG_ON(addr & 0x3);
446 		amdgpu_ring_write(ring, lower_32_bits(addr));
447 		amdgpu_ring_write(ring, upper_32_bits(addr));
448 		amdgpu_ring_write(ring, upper_32_bits(seq));
449 	}
450 
451 	/* generate an interrupt */
452 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
453 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
454 }
455 
456 
457 /**
458  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
459  *
460  * @adev: amdgpu_device pointer
461  *
462  * Stop the gfx async dma ring buffers (VEGA10).
463  */
464 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
465 {
466 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
467 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
468 	u32 rb_cntl, ib_cntl;
469 	int i;
470 
471 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
472 	    (adev->mman.buffer_funcs_ring == sdma1))
473 		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
474 
475 	for (i = 0; i < adev->sdma.num_instances; i++) {
476 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
477 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
478 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
479 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
480 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
481 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
482 	}
483 
484 	sdma0->ready = false;
485 	sdma1->ready = false;
486 }
487 
488 /**
489  * sdma_v4_0_rlc_stop - stop the compute async dma engines
490  *
491  * @adev: amdgpu_device pointer
492  *
493  * Stop the compute async dma queues (VEGA10).
494  */
495 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
496 {
497 	/* XXX todo */
498 }
499 
500 /**
501  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
502  *
503  * @adev: amdgpu_device pointer
504  * @enable: enable/disable the DMA MEs context switch.
505  *
506  * Halt or unhalt the async dma engines context switch (VEGA10).
507  */
508 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
509 {
510 	u32 f32_cntl;
511 	int i;
512 
513 	for (i = 0; i < adev->sdma.num_instances; i++) {
514 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
515 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
516 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
517 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
518 	}
519 
520 }
521 
522 /**
523  * sdma_v4_0_enable - stop the async dma engines
524  *
525  * @adev: amdgpu_device pointer
526  * @enable: enable/disable the DMA MEs.
527  *
528  * Halt or unhalt the async dma engines (VEGA10).
529  */
530 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
531 {
532 	u32 f32_cntl;
533 	int i;
534 
535 	if (enable == false) {
536 		sdma_v4_0_gfx_stop(adev);
537 		sdma_v4_0_rlc_stop(adev);
538 	}
539 
540 	for (i = 0; i < adev->sdma.num_instances; i++) {
541 		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
542 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
543 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
544 	}
545 }
546 
547 /**
548  * sdma_v4_0_gfx_resume - setup and start the async dma engines
549  *
550  * @adev: amdgpu_device pointer
551  *
552  * Set up the gfx DMA ring buffers and enable them (VEGA10).
553  * Returns 0 for success, error for failure.
554  */
555 static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
556 {
557 	struct amdgpu_ring *ring;
558 	u32 rb_cntl, ib_cntl;
559 	u32 rb_bufsz;
560 	u32 wb_offset;
561 	u32 doorbell;
562 	u32 doorbell_offset;
563 	u32 temp;
564 	int i, r;
565 
566 	for (i = 0; i < adev->sdma.num_instances; i++) {
567 		ring = &adev->sdma.instance[i].ring;
568 		wb_offset = (ring->rptr_offs * 4);
569 
570 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
571 
572 		/* Set ring buffer size in dwords */
573 		rb_bufsz = order_base_2(ring->ring_size / 4);
574 		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
575 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
576 #ifdef __BIG_ENDIAN
577 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
578 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
579 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
580 #endif
581 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
582 
583 		/* Initialize the ring buffer's read and write pointers */
584 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
585 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
586 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
587 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
588 
589 		/* set the wb address whether it's enabled or not */
590 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
591 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
592 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
593 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
594 
595 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
596 
597 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
598 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
599 
600 		ring->wptr = 0;
601 
602 		/* before programing wptr to a less value, need set minor_ptr_update first */
603 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
604 
605 		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
606 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
607 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
608 		}
609 
610 		doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
611 		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
612 
613 		if (ring->use_doorbell) {
614 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
615 			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
616 					OFFSET, ring->doorbell_index);
617 		} else {
618 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
619 		}
620 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
621 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
622 		if (adev->flags & AMD_IS_APU)
623 			nbio_v7_0_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
624 		else
625 			nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
626 
627 		if (amdgpu_sriov_vf(adev))
628 			sdma_v4_0_ring_set_wptr(ring);
629 
630 		/* set minor_ptr_update to 0 after wptr programed */
631 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
632 
633 		/* set utc l1 enable flag always to 1 */
634 		temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
635 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
636 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
637 
638 		if (!amdgpu_sriov_vf(adev)) {
639 			/* unhalt engine */
640 			temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
641 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
642 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
643 		}
644 
645 		/* enable DMA RB */
646 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
647 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
648 
649 		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
650 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
651 #ifdef __BIG_ENDIAN
652 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
653 #endif
654 		/* enable DMA IBs */
655 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
656 
657 		ring->ready = true;
658 
659 		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
660 			sdma_v4_0_ctx_switch_enable(adev, true);
661 			sdma_v4_0_enable(adev, true);
662 		}
663 
664 		r = amdgpu_ring_test_ring(ring);
665 		if (r) {
666 			ring->ready = false;
667 			return r;
668 		}
669 
670 		if (adev->mman.buffer_funcs_ring == ring)
671 			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
672 	}
673 
674 	return 0;
675 }
676 
677 static void
678 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
679 {
680 	uint32_t def, data;
681 
682 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
683 		/* disable idle interrupt */
684 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
685 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
686 
687 		if (data != def)
688 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
689 	} else {
690 		/* disable idle interrupt */
691 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
692 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
693 		if (data != def)
694 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
695 	}
696 }
697 
698 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
699 {
700 	uint32_t def, data;
701 
702 	/* Enable HW based PG. */
703 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
704 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
705 	if (data != def)
706 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
707 
708 	/* enable interrupt */
709 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
710 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
711 	if (data != def)
712 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
713 
714 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
715 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
716 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
717 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
718 	/* Configure switch time for hysteresis purpose. Use default right now */
719 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
720 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
721 	if(data != def)
722 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
723 }
724 
725 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
726 {
727 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
728 		return;
729 
730 	switch (adev->asic_type) {
731 	case CHIP_RAVEN:
732 		sdma_v4_1_init_power_gating(adev);
733 		sdma_v4_1_update_power_gating(adev, true);
734 		break;
735 	default:
736 		break;
737 	}
738 }
739 
740 /**
741  * sdma_v4_0_rlc_resume - setup and start the async dma engines
742  *
743  * @adev: amdgpu_device pointer
744  *
745  * Set up the compute DMA queues and enable them (VEGA10).
746  * Returns 0 for success, error for failure.
747  */
748 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
749 {
750 	sdma_v4_0_init_pg(adev);
751 
752 	return 0;
753 }
754 
755 /**
756  * sdma_v4_0_load_microcode - load the sDMA ME ucode
757  *
758  * @adev: amdgpu_device pointer
759  *
760  * Loads the sDMA0/1 ucode.
761  * Returns 0 for success, -EINVAL if the ucode is not available.
762  */
763 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
764 {
765 	const struct sdma_firmware_header_v1_0 *hdr;
766 	const __le32 *fw_data;
767 	u32 fw_size;
768 	u32 digest_size = 0;
769 	int i, j;
770 
771 	/* halt the MEs */
772 	sdma_v4_0_enable(adev, false);
773 
774 	for (i = 0; i < adev->sdma.num_instances; i++) {
775 		uint16_t version_major;
776 		uint16_t version_minor;
777 		if (!adev->sdma.instance[i].fw)
778 			return -EINVAL;
779 
780 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
781 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
782 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
783 
784 		version_major = le16_to_cpu(hdr->header.header_version_major);
785 		version_minor = le16_to_cpu(hdr->header.header_version_minor);
786 
787 		if (version_major == 1 && version_minor >= 1) {
788 			const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
789 			digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
790 		}
791 
792 		fw_size -= digest_size;
793 
794 		fw_data = (const __le32 *)
795 			(adev->sdma.instance[i].fw->data +
796 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
797 
798 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
799 
800 
801 		for (j = 0; j < fw_size; j++)
802 			WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
803 
804 		WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
805 	}
806 
807 	sdma_v4_0_print_ucode_regs(adev);
808 
809 	return 0;
810 }
811 
812 /**
813  * sdma_v4_0_start - setup and start the async dma engines
814  *
815  * @adev: amdgpu_device pointer
816  *
817  * Set up the DMA engines and enable them (VEGA10).
818  * Returns 0 for success, error for failure.
819  */
820 static int sdma_v4_0_start(struct amdgpu_device *adev)
821 {
822 	int r = 0;
823 
824 	if (amdgpu_sriov_vf(adev)) {
825 		sdma_v4_0_ctx_switch_enable(adev, false);
826 		sdma_v4_0_enable(adev, false);
827 
828 		/* set RB registers */
829 		r = sdma_v4_0_gfx_resume(adev);
830 		return r;
831 	}
832 
833 	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
834 		DRM_INFO("Loading via direct write\n");
835 		r = sdma_v4_0_load_microcode(adev);
836 		if (r)
837 			return r;
838 	}
839 
840 	/* unhalt the MEs */
841 	sdma_v4_0_enable(adev, true);
842 	/* enable sdma ring preemption */
843 	sdma_v4_0_ctx_switch_enable(adev, true);
844 
845 	/* start the gfx rings and rlc compute queues */
846 	r = sdma_v4_0_gfx_resume(adev);
847 	if (r)
848 		return r;
849 	r = sdma_v4_0_rlc_resume(adev);
850 
851 	return r;
852 }
853 
854 /**
855  * sdma_v4_0_ring_test_ring - simple async dma engine test
856  *
857  * @ring: amdgpu_ring structure holding ring information
858  *
859  * Test the DMA engine by writing using it to write an
860  * value to memory. (VEGA10).
861  * Returns 0 for success, error for failure.
862  */
863 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
864 {
865 	struct amdgpu_device *adev = ring->adev;
866 	unsigned i;
867 	unsigned index;
868 	int r;
869 	u32 tmp;
870 	u64 gpu_addr;
871 
872 	DRM_INFO("In Ring test func\n");
873 
874 	r = amdgpu_wb_get(adev, &index);
875 	if (r) {
876 		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
877 		return r;
878 	}
879 
880 	gpu_addr = adev->wb.gpu_addr + (index * 4);
881 	tmp = 0xCAFEDEAD;
882 	adev->wb.wb[index] = cpu_to_le32(tmp);
883 
884 	r = amdgpu_ring_alloc(ring, 5);
885 	if (r) {
886 		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
887 		amdgpu_wb_free(adev, index);
888 		return r;
889 	}
890 
891 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
892 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
893 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
894 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
895 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
896 	amdgpu_ring_write(ring, 0xDEADBEEF);
897 	amdgpu_ring_commit(ring);
898 
899 	for (i = 0; i < adev->usec_timeout; i++) {
900 		tmp = le32_to_cpu(adev->wb.wb[index]);
901 		if (tmp == 0xDEADBEEF)
902 			break;
903 		DRM_UDELAY(1);
904 	}
905 
906 	if (i < adev->usec_timeout) {
907 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
908 	} else {
909 		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
910 			  ring->idx, tmp);
911 		r = -EINVAL;
912 	}
913 	amdgpu_wb_free(adev, index);
914 
915 	return r;
916 }
917 
918 /**
919  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
920  *
921  * @ring: amdgpu_ring structure holding ring information
922  *
923  * Test a simple IB in the DMA ring (VEGA10).
924  * Returns 0 on success, error on failure.
925  */
926 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
927 {
928 	struct amdgpu_device *adev = ring->adev;
929 	struct amdgpu_ib ib;
930 	struct dma_fence *f = NULL;
931 	unsigned index;
932 	long r;
933 	u32 tmp = 0;
934 	u64 gpu_addr;
935 
936 	r = amdgpu_wb_get(adev, &index);
937 	if (r) {
938 		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
939 		return r;
940 	}
941 
942 	gpu_addr = adev->wb.gpu_addr + (index * 4);
943 	tmp = 0xCAFEDEAD;
944 	adev->wb.wb[index] = cpu_to_le32(tmp);
945 	memset(&ib, 0, sizeof(ib));
946 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
947 	if (r) {
948 		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
949 		goto err0;
950 	}
951 
952 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
953 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
954 	ib.ptr[1] = lower_32_bits(gpu_addr);
955 	ib.ptr[2] = upper_32_bits(gpu_addr);
956 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
957 	ib.ptr[4] = 0xDEADBEEF;
958 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
959 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
960 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
961 	ib.length_dw = 8;
962 
963 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
964 	if (r)
965 		goto err1;
966 
967 	r = dma_fence_wait_timeout(f, false, timeout);
968 	if (r == 0) {
969 		DRM_ERROR("amdgpu: IB test timed out\n");
970 		r = -ETIMEDOUT;
971 		goto err1;
972 	} else if (r < 0) {
973 		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
974 		goto err1;
975 	}
976 	tmp = le32_to_cpu(adev->wb.wb[index]);
977 	if (tmp == 0xDEADBEEF) {
978 		DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
979 		r = 0;
980 	} else {
981 		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
982 		r = -EINVAL;
983 	}
984 err1:
985 	amdgpu_ib_free(adev, &ib, NULL);
986 	dma_fence_put(f);
987 err0:
988 	amdgpu_wb_free(adev, index);
989 	return r;
990 }
991 
992 
993 /**
994  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
995  *
996  * @ib: indirect buffer to fill with commands
997  * @pe: addr of the page entry
998  * @src: src addr to copy from
999  * @count: number of page entries to update
1000  *
1001  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1002  */
1003 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1004 				  uint64_t pe, uint64_t src,
1005 				  unsigned count)
1006 {
1007 	unsigned bytes = count * 8;
1008 
1009 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1010 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1011 	ib->ptr[ib->length_dw++] = bytes - 1;
1012 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1013 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1014 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1015 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1016 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1017 
1018 }
1019 
1020 /**
1021  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1022  *
1023  * @ib: indirect buffer to fill with commands
1024  * @pe: addr of the page entry
1025  * @addr: dst addr to write into pe
1026  * @count: number of page entries to update
1027  * @incr: increase next addr by incr bytes
1028  * @flags: access flags
1029  *
1030  * Update PTEs by writing them manually using sDMA (VEGA10).
1031  */
1032 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1033 				   uint64_t value, unsigned count,
1034 				   uint32_t incr)
1035 {
1036 	unsigned ndw = count * 2;
1037 
1038 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1039 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1040 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1041 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1042 	ib->ptr[ib->length_dw++] = ndw - 1;
1043 	for (; ndw > 0; ndw -= 2) {
1044 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1045 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1046 		value += incr;
1047 	}
1048 }
1049 
1050 /**
1051  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1052  *
1053  * @ib: indirect buffer to fill with commands
1054  * @pe: addr of the page entry
1055  * @addr: dst addr to write into pe
1056  * @count: number of page entries to update
1057  * @incr: increase next addr by incr bytes
1058  * @flags: access flags
1059  *
1060  * Update the page tables using sDMA (VEGA10).
1061  */
1062 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1063 				     uint64_t pe,
1064 				     uint64_t addr, unsigned count,
1065 				     uint32_t incr, uint64_t flags)
1066 {
1067 	/* for physically contiguous pages (vram) */
1068 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1069 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1070 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1071 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1072 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1073 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1074 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1075 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1076 	ib->ptr[ib->length_dw++] = 0;
1077 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1078 }
1079 
1080 /**
1081  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1082  *
1083  * @ib: indirect buffer to fill with padding
1084  *
1085  */
1086 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1087 {
1088 	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
1089 	u32 pad_count;
1090 	int i;
1091 
1092 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1093 	for (i = 0; i < pad_count; i++)
1094 		if (sdma && sdma->burst_nop && (i == 0))
1095 			ib->ptr[ib->length_dw++] =
1096 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1097 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1098 		else
1099 			ib->ptr[ib->length_dw++] =
1100 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1101 }
1102 
1103 
1104 /**
1105  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1106  *
1107  * @ring: amdgpu_ring pointer
1108  *
1109  * Make sure all previous operations are completed (CIK).
1110  */
1111 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1112 {
1113 	uint32_t seq = ring->fence_drv.sync_seq;
1114 	uint64_t addr = ring->fence_drv.gpu_addr;
1115 
1116 	/* wait for idle */
1117 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1118 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1119 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1120 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1121 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1122 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1123 	amdgpu_ring_write(ring, seq); /* reference */
1124 	amdgpu_ring_write(ring, 0xfffffff); /* mask */
1125 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1126 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1127 }
1128 
1129 
1130 /**
1131  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1132  *
1133  * @ring: amdgpu_ring pointer
1134  * @vm: amdgpu_vm pointer
1135  *
1136  * Update the page table base and flush the VM TLB
1137  * using sDMA (VEGA10).
1138  */
1139 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1140 					 unsigned vm_id, uint64_t pd_addr)
1141 {
1142 	struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
1143 	uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
1144 	unsigned eng = ring->vm_inv_eng;
1145 
1146 	pd_addr = pd_addr | 0x1; /* valid bit */
1147 	/* now only use physical base address of PDE and valid */
1148 	BUG_ON(pd_addr & 0xFFFF00000000003EULL);
1149 
1150 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1151 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1152 	amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
1153 	amdgpu_ring_write(ring, lower_32_bits(pd_addr));
1154 
1155 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1156 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1157 	amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
1158 	amdgpu_ring_write(ring, upper_32_bits(pd_addr));
1159 
1160 	/* flush TLB */
1161 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1162 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1163 	amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
1164 	amdgpu_ring_write(ring, req);
1165 
1166 	/* wait for flush */
1167 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1168 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1169 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1170 	amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
1171 	amdgpu_ring_write(ring, 0);
1172 	amdgpu_ring_write(ring, 1 << vm_id); /* reference */
1173 	amdgpu_ring_write(ring, 1 << vm_id); /* mask */
1174 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1175 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1176 }
1177 
1178 static int sdma_v4_0_early_init(void *handle)
1179 {
1180 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1181 
1182 	if (adev->asic_type == CHIP_RAVEN)
1183 		adev->sdma.num_instances = 1;
1184 	else
1185 		adev->sdma.num_instances = 2;
1186 
1187 	sdma_v4_0_set_ring_funcs(adev);
1188 	sdma_v4_0_set_buffer_funcs(adev);
1189 	sdma_v4_0_set_vm_pte_funcs(adev);
1190 	sdma_v4_0_set_irq_funcs(adev);
1191 
1192 	return 0;
1193 }
1194 
1195 
1196 static int sdma_v4_0_sw_init(void *handle)
1197 {
1198 	struct amdgpu_ring *ring;
1199 	int r, i;
1200 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201 
1202 	/* SDMA trap event */
1203 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
1204 			      &adev->sdma.trap_irq);
1205 	if (r)
1206 		return r;
1207 
1208 	/* SDMA trap event */
1209 	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
1210 			      &adev->sdma.trap_irq);
1211 	if (r)
1212 		return r;
1213 
1214 	r = sdma_v4_0_init_microcode(adev);
1215 	if (r) {
1216 		DRM_ERROR("Failed to load sdma firmware!\n");
1217 		return r;
1218 	}
1219 
1220 	for (i = 0; i < adev->sdma.num_instances; i++) {
1221 		ring = &adev->sdma.instance[i].ring;
1222 		ring->ring_obj = NULL;
1223 		ring->use_doorbell = true;
1224 
1225 		DRM_INFO("use_doorbell being set to: [%s]\n",
1226 				ring->use_doorbell?"true":"false");
1227 
1228 		ring->doorbell_index = (i == 0) ?
1229 			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1230 			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1231 
1232 		sprintf(ring->name, "sdma%d", i);
1233 		r = amdgpu_ring_init(adev, ring, 1024,
1234 				     &adev->sdma.trap_irq,
1235 				     (i == 0) ?
1236 				     AMDGPU_SDMA_IRQ_TRAP0 :
1237 				     AMDGPU_SDMA_IRQ_TRAP1);
1238 		if (r)
1239 			return r;
1240 	}
1241 
1242 	return r;
1243 }
1244 
1245 static int sdma_v4_0_sw_fini(void *handle)
1246 {
1247 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248 	int i;
1249 
1250 	for (i = 0; i < adev->sdma.num_instances; i++)
1251 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1252 
1253 	return 0;
1254 }
1255 
1256 static int sdma_v4_0_hw_init(void *handle)
1257 {
1258 	int r;
1259 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1260 
1261 	sdma_v4_0_init_golden_registers(adev);
1262 
1263 	r = sdma_v4_0_start(adev);
1264 
1265 	return r;
1266 }
1267 
1268 static int sdma_v4_0_hw_fini(void *handle)
1269 {
1270 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1271 
1272 	if (amdgpu_sriov_vf(adev))
1273 		return 0;
1274 
1275 	sdma_v4_0_ctx_switch_enable(adev, false);
1276 	sdma_v4_0_enable(adev, false);
1277 
1278 	return 0;
1279 }
1280 
1281 static int sdma_v4_0_suspend(void *handle)
1282 {
1283 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1284 
1285 	return sdma_v4_0_hw_fini(adev);
1286 }
1287 
1288 static int sdma_v4_0_resume(void *handle)
1289 {
1290 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1291 
1292 	return sdma_v4_0_hw_init(adev);
1293 }
1294 
1295 static bool sdma_v4_0_is_idle(void *handle)
1296 {
1297 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1298 	u32 i;
1299 
1300 	for (i = 0; i < adev->sdma.num_instances; i++) {
1301 		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
1302 
1303 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1304 			return false;
1305 	}
1306 
1307 	return true;
1308 }
1309 
1310 static int sdma_v4_0_wait_for_idle(void *handle)
1311 {
1312 	unsigned i;
1313 	u32 sdma0, sdma1;
1314 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1315 
1316 	for (i = 0; i < adev->usec_timeout; i++) {
1317 		sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
1318 		sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
1319 
1320 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1321 			return 0;
1322 		udelay(1);
1323 	}
1324 	return -ETIMEDOUT;
1325 }
1326 
1327 static int sdma_v4_0_soft_reset(void *handle)
1328 {
1329 	/* todo */
1330 
1331 	return 0;
1332 }
1333 
1334 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1335 					struct amdgpu_irq_src *source,
1336 					unsigned type,
1337 					enum amdgpu_interrupt_state state)
1338 {
1339 	u32 sdma_cntl;
1340 
1341 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1342 		sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
1343 		sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
1344 
1345 	sdma_cntl = RREG32(reg_offset);
1346 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1347 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1348 	WREG32(reg_offset, sdma_cntl);
1349 
1350 	return 0;
1351 }
1352 
1353 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1354 				      struct amdgpu_irq_src *source,
1355 				      struct amdgpu_iv_entry *entry)
1356 {
1357 	DRM_DEBUG("IH: SDMA trap\n");
1358 	switch (entry->client_id) {
1359 	case AMDGPU_IH_CLIENTID_SDMA0:
1360 		switch (entry->ring_id) {
1361 		case 0:
1362 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1363 			break;
1364 		case 1:
1365 			/* XXX compute */
1366 			break;
1367 		case 2:
1368 			/* XXX compute */
1369 			break;
1370 		case 3:
1371 			/* XXX page queue*/
1372 			break;
1373 		}
1374 		break;
1375 	case AMDGPU_IH_CLIENTID_SDMA1:
1376 		switch (entry->ring_id) {
1377 		case 0:
1378 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1379 			break;
1380 		case 1:
1381 			/* XXX compute */
1382 			break;
1383 		case 2:
1384 			/* XXX compute */
1385 			break;
1386 		case 3:
1387 			/* XXX page queue*/
1388 			break;
1389 		}
1390 		break;
1391 	}
1392 	return 0;
1393 }
1394 
1395 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1396 					      struct amdgpu_irq_src *source,
1397 					      struct amdgpu_iv_entry *entry)
1398 {
1399 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1400 	schedule_work(&adev->reset_work);
1401 	return 0;
1402 }
1403 
1404 
1405 static void sdma_v4_0_update_medium_grain_clock_gating(
1406 		struct amdgpu_device *adev,
1407 		bool enable)
1408 {
1409 	uint32_t data, def;
1410 
1411 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1412 		/* enable sdma0 clock gating */
1413 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1414 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1415 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1416 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1417 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1418 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1419 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1420 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1421 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1422 		if (def != data)
1423 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1424 
1425 		if (adev->asic_type == CHIP_VEGA10) {
1426 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1427 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1428 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1429 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1430 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1431 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1432 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1433 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1434 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1435 			if (def != data)
1436 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1437 		}
1438 	} else {
1439 		/* disable sdma0 clock gating */
1440 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1441 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1442 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1443 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1444 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1445 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1446 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1447 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1448 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1449 
1450 		if (def != data)
1451 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1452 
1453 		if (adev->asic_type == CHIP_VEGA10) {
1454 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1455 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 			if (def != data)
1464 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1465 		}
1466 	}
1467 }
1468 
1469 
1470 static void sdma_v4_0_update_medium_grain_light_sleep(
1471 		struct amdgpu_device *adev,
1472 		bool enable)
1473 {
1474 	uint32_t data, def;
1475 
1476 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1477 		/* 1-not override: enable sdma0 mem light sleep */
1478 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1479 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1480 		if (def != data)
1481 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1482 
1483 		/* 1-not override: enable sdma1 mem light sleep */
1484 		if (adev->asic_type == CHIP_VEGA10) {
1485 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1486 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1487 			if (def != data)
1488 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1489 		}
1490 	} else {
1491 		/* 0-override:disable sdma0 mem light sleep */
1492 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1493 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1494 		if (def != data)
1495 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1496 
1497 		/* 0-override:disable sdma1 mem light sleep */
1498 		if (adev->asic_type == CHIP_VEGA10) {
1499 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1500 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1501 			if (def != data)
1502 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1503 		}
1504 	}
1505 }
1506 
1507 static int sdma_v4_0_set_clockgating_state(void *handle,
1508 					  enum amd_clockgating_state state)
1509 {
1510 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1511 
1512 	if (amdgpu_sriov_vf(adev))
1513 		return 0;
1514 
1515 	switch (adev->asic_type) {
1516 	case CHIP_VEGA10:
1517 	case CHIP_RAVEN:
1518 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1519 				state == AMD_CG_STATE_GATE ? true : false);
1520 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1521 				state == AMD_CG_STATE_GATE ? true : false);
1522 		break;
1523 	default:
1524 		break;
1525 	}
1526 	return 0;
1527 }
1528 
1529 static int sdma_v4_0_set_powergating_state(void *handle,
1530 					  enum amd_powergating_state state)
1531 {
1532 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1533 
1534 	switch (adev->asic_type) {
1535 	case CHIP_RAVEN:
1536 		sdma_v4_1_update_power_gating(adev,
1537 				state == AMD_PG_STATE_GATE ? true : false);
1538 		break;
1539 	default:
1540 		break;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1547 {
1548 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1549 	int data;
1550 
1551 	if (amdgpu_sriov_vf(adev))
1552 		*flags = 0;
1553 
1554 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1555 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1556 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1557 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1558 
1559 	/* AMD_CG_SUPPORT_SDMA_LS */
1560 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1561 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1562 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1563 }
1564 
1565 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1566 	.name = "sdma_v4_0",
1567 	.early_init = sdma_v4_0_early_init,
1568 	.late_init = NULL,
1569 	.sw_init = sdma_v4_0_sw_init,
1570 	.sw_fini = sdma_v4_0_sw_fini,
1571 	.hw_init = sdma_v4_0_hw_init,
1572 	.hw_fini = sdma_v4_0_hw_fini,
1573 	.suspend = sdma_v4_0_suspend,
1574 	.resume = sdma_v4_0_resume,
1575 	.is_idle = sdma_v4_0_is_idle,
1576 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1577 	.soft_reset = sdma_v4_0_soft_reset,
1578 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1579 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1580 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1581 };
1582 
1583 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1584 	.type = AMDGPU_RING_TYPE_SDMA,
1585 	.align_mask = 0xf,
1586 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1587 	.support_64bit_ptrs = true,
1588 	.vmhub = AMDGPU_MMHUB,
1589 	.get_rptr = sdma_v4_0_ring_get_rptr,
1590 	.get_wptr = sdma_v4_0_ring_get_wptr,
1591 	.set_wptr = sdma_v4_0_ring_set_wptr,
1592 	.emit_frame_size =
1593 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1594 		3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
1595 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1596 		18 + /* sdma_v4_0_ring_emit_vm_flush */
1597 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1598 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1599 	.emit_ib = sdma_v4_0_ring_emit_ib,
1600 	.emit_fence = sdma_v4_0_ring_emit_fence,
1601 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1602 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1603 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1604 	.emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
1605 	.test_ring = sdma_v4_0_ring_test_ring,
1606 	.test_ib = sdma_v4_0_ring_test_ib,
1607 	.insert_nop = sdma_v4_0_ring_insert_nop,
1608 	.pad_ib = sdma_v4_0_ring_pad_ib,
1609 };
1610 
1611 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1612 {
1613 	int i;
1614 
1615 	for (i = 0; i < adev->sdma.num_instances; i++)
1616 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1617 }
1618 
1619 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1620 	.set = sdma_v4_0_set_trap_irq_state,
1621 	.process = sdma_v4_0_process_trap_irq,
1622 };
1623 
1624 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1625 	.process = sdma_v4_0_process_illegal_inst_irq,
1626 };
1627 
1628 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1629 {
1630 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1631 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
1632 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
1633 }
1634 
1635 /**
1636  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
1637  *
1638  * @ring: amdgpu_ring structure holding ring information
1639  * @src_offset: src GPU address
1640  * @dst_offset: dst GPU address
1641  * @byte_count: number of bytes to xfer
1642  *
1643  * Copy GPU buffers using the DMA engine (VEGA10).
1644  * Used by the amdgpu ttm implementation to move pages if
1645  * registered as the asic copy callback.
1646  */
1647 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
1648 				       uint64_t src_offset,
1649 				       uint64_t dst_offset,
1650 				       uint32_t byte_count)
1651 {
1652 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1653 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1654 	ib->ptr[ib->length_dw++] = byte_count - 1;
1655 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1656 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1657 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1658 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1659 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1660 }
1661 
1662 /**
1663  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
1664  *
1665  * @ring: amdgpu_ring structure holding ring information
1666  * @src_data: value to write to buffer
1667  * @dst_offset: dst GPU address
1668  * @byte_count: number of bytes to xfer
1669  *
1670  * Fill GPU buffers using the DMA engine (VEGA10).
1671  */
1672 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
1673 				       uint32_t src_data,
1674 				       uint64_t dst_offset,
1675 				       uint32_t byte_count)
1676 {
1677 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1678 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1679 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1680 	ib->ptr[ib->length_dw++] = src_data;
1681 	ib->ptr[ib->length_dw++] = byte_count - 1;
1682 }
1683 
1684 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
1685 	.copy_max_bytes = 0x400000,
1686 	.copy_num_dw = 7,
1687 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
1688 
1689 	.fill_max_bytes = 0x400000,
1690 	.fill_num_dw = 5,
1691 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
1692 };
1693 
1694 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
1695 {
1696 	if (adev->mman.buffer_funcs == NULL) {
1697 		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
1698 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1699 	}
1700 }
1701 
1702 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1703 	.copy_pte = sdma_v4_0_vm_copy_pte,
1704 	.write_pte = sdma_v4_0_vm_write_pte,
1705 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
1706 };
1707 
1708 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1709 {
1710 	unsigned i;
1711 
1712 	if (adev->vm_manager.vm_pte_funcs == NULL) {
1713 		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
1714 		for (i = 0; i < adev->sdma.num_instances; i++)
1715 			adev->vm_manager.vm_pte_rings[i] =
1716 				&adev->sdma.instance[i].ring;
1717 
1718 		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
1719 	}
1720 }
1721 
1722 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1723 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1724 	.major = 4,
1725 	.minor = 0,
1726 	.rev = 0,
1727 	.funcs = &sdma_v4_0_ip_funcs,
1728 };
1729