1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53 
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
56 
57 #define WREG32_SDMA(instance, offset, value) \
58 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
59 #define RREG32_SDMA(instance, offset) \
60 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
61 
62 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
68 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
69 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
75 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
76 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
82 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
88 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
89 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
94 };
95 
96 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
99 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
101 };
102 
103 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
105 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
108 };
109 
110 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
111 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
112 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
113 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
119 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
122 };
123 
124 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
125 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
126 };
127 
128 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
129 {
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
157 };
158 
159 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
160 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
161 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
162 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
163 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
164 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
187 };
188 
189 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
190 {
191 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
192 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
193 };
194 
195 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
196 {
197 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
198 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
199 };
200 
201 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
202 		u32 instance, u32 offset)
203 {
204 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
205 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
206 }
207 
208 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
209 {
210 	switch (adev->asic_type) {
211 	case CHIP_VEGA10:
212 		soc15_program_register_sequence(adev,
213 						 golden_settings_sdma_4,
214 						 ARRAY_SIZE(golden_settings_sdma_4));
215 		soc15_program_register_sequence(adev,
216 						 golden_settings_sdma_vg10,
217 						 ARRAY_SIZE(golden_settings_sdma_vg10));
218 		break;
219 	case CHIP_VEGA12:
220 		soc15_program_register_sequence(adev,
221 						golden_settings_sdma_4,
222 						ARRAY_SIZE(golden_settings_sdma_4));
223 		soc15_program_register_sequence(adev,
224 						golden_settings_sdma_vg12,
225 						ARRAY_SIZE(golden_settings_sdma_vg12));
226 		break;
227 	case CHIP_VEGA20:
228 		soc15_program_register_sequence(adev,
229 						golden_settings_sdma0_4_2_init,
230 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
231 		soc15_program_register_sequence(adev,
232 						golden_settings_sdma0_4_2,
233 						ARRAY_SIZE(golden_settings_sdma0_4_2));
234 		soc15_program_register_sequence(adev,
235 						golden_settings_sdma1_4_2,
236 						ARRAY_SIZE(golden_settings_sdma1_4_2));
237 		break;
238 	case CHIP_RAVEN:
239 		soc15_program_register_sequence(adev,
240 						golden_settings_sdma_4_1,
241 						ARRAY_SIZE(golden_settings_sdma_4_1));
242 		if (adev->rev_id >= 8)
243 			soc15_program_register_sequence(adev,
244 							golden_settings_sdma_rv2,
245 							ARRAY_SIZE(golden_settings_sdma_rv2));
246 		else
247 			soc15_program_register_sequence(adev,
248 							golden_settings_sdma_rv1,
249 							ARRAY_SIZE(golden_settings_sdma_rv1));
250 		break;
251 	default:
252 		break;
253 	}
254 }
255 
256 /**
257  * sdma_v4_0_init_microcode - load ucode images from disk
258  *
259  * @adev: amdgpu_device pointer
260  *
261  * Use the firmware interface to load the ucode images into
262  * the driver (not loaded into hw).
263  * Returns 0 on success, error on failure.
264  */
265 
266 // emulation only, won't work on real chip
267 // vega10 real chip need to use PSP to load firmware
268 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
269 {
270 	const char *chip_name;
271 	char fw_name[30];
272 	int err = 0, i;
273 	struct amdgpu_firmware_info *info = NULL;
274 	const struct common_firmware_header *header = NULL;
275 	const struct sdma_firmware_header_v1_0 *hdr;
276 
277 	DRM_DEBUG("\n");
278 
279 	switch (adev->asic_type) {
280 	case CHIP_VEGA10:
281 		chip_name = "vega10";
282 		break;
283 	case CHIP_VEGA12:
284 		chip_name = "vega12";
285 		break;
286 	case CHIP_VEGA20:
287 		chip_name = "vega20";
288 		break;
289 	case CHIP_RAVEN:
290 		if (adev->rev_id >= 8)
291 			chip_name = "raven2";
292 		else if (adev->pdev->device == 0x15d8)
293 			chip_name = "picasso";
294 		else
295 			chip_name = "raven";
296 		break;
297 	default:
298 		BUG();
299 	}
300 
301 	for (i = 0; i < adev->sdma.num_instances; i++) {
302 		if (i == 0)
303 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
304 		else
305 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
306 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
307 		if (err)
308 			goto out;
309 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
310 		if (err)
311 			goto out;
312 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
313 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
314 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
315 		if (adev->sdma.instance[i].feature_version >= 20)
316 			adev->sdma.instance[i].burst_nop = true;
317 		DRM_DEBUG("psp_load == '%s'\n",
318 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
319 
320 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
321 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323 			info->fw = adev->sdma.instance[i].fw;
324 			header = (const struct common_firmware_header *)info->fw->data;
325 			adev->firmware.fw_size +=
326 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
327 		}
328 	}
329 out:
330 	if (err) {
331 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
332 		for (i = 0; i < adev->sdma.num_instances; i++) {
333 			release_firmware(adev->sdma.instance[i].fw);
334 			adev->sdma.instance[i].fw = NULL;
335 		}
336 	}
337 	return err;
338 }
339 
340 /**
341  * sdma_v4_0_ring_get_rptr - get the current read pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Get the current rptr from the hardware (VEGA10+).
346  */
347 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
348 {
349 	u64 *rptr;
350 
351 	/* XXX check if swapping is necessary on BE */
352 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
353 
354 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
355 	return ((*rptr) >> 2);
356 }
357 
358 /**
359  * sdma_v4_0_ring_get_wptr - get the current write pointer
360  *
361  * @ring: amdgpu ring pointer
362  *
363  * Get the current wptr from the hardware (VEGA10+).
364  */
365 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
366 {
367 	struct amdgpu_device *adev = ring->adev;
368 	u64 wptr;
369 
370 	if (ring->use_doorbell) {
371 		/* XXX check if swapping is necessary on BE */
372 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
373 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
374 	} else {
375 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
376 		wptr = wptr << 32;
377 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
378 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
379 				ring->me, wptr);
380 	}
381 
382 	return wptr >> 2;
383 }
384 
385 /**
386  * sdma_v4_0_ring_set_wptr - commit the write pointer
387  *
388  * @ring: amdgpu ring pointer
389  *
390  * Write the wptr back to the hardware (VEGA10+).
391  */
392 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
393 {
394 	struct amdgpu_device *adev = ring->adev;
395 
396 	DRM_DEBUG("Setting write pointer\n");
397 	if (ring->use_doorbell) {
398 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
399 
400 		DRM_DEBUG("Using doorbell -- "
401 				"wptr_offs == 0x%08x "
402 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
403 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
404 				ring->wptr_offs,
405 				lower_32_bits(ring->wptr << 2),
406 				upper_32_bits(ring->wptr << 2));
407 		/* XXX check if swapping is necessary on BE */
408 		WRITE_ONCE(*wb, (ring->wptr << 2));
409 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
410 				ring->doorbell_index, ring->wptr << 2);
411 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
412 	} else {
413 		DRM_DEBUG("Not using doorbell -- "
414 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
415 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
416 				ring->me,
417 				lower_32_bits(ring->wptr << 2),
418 				ring->me,
419 				upper_32_bits(ring->wptr << 2));
420 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
421 			    lower_32_bits(ring->wptr << 2));
422 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
423 			    upper_32_bits(ring->wptr << 2));
424 	}
425 }
426 
427 /**
428  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
429  *
430  * @ring: amdgpu ring pointer
431  *
432  * Get the current wptr from the hardware (VEGA10+).
433  */
434 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
435 {
436 	struct amdgpu_device *adev = ring->adev;
437 	u64 wptr;
438 
439 	if (ring->use_doorbell) {
440 		/* XXX check if swapping is necessary on BE */
441 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
442 	} else {
443 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
444 		wptr = wptr << 32;
445 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
446 	}
447 
448 	return wptr >> 2;
449 }
450 
451 /**
452  * sdma_v4_0_ring_set_wptr - commit the write pointer
453  *
454  * @ring: amdgpu ring pointer
455  *
456  * Write the wptr back to the hardware (VEGA10+).
457  */
458 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
459 {
460 	struct amdgpu_device *adev = ring->adev;
461 
462 	if (ring->use_doorbell) {
463 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
464 
465 		/* XXX check if swapping is necessary on BE */
466 		WRITE_ONCE(*wb, (ring->wptr << 2));
467 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
468 	} else {
469 		uint64_t wptr = ring->wptr << 2;
470 
471 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
472 			    lower_32_bits(wptr));
473 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
474 			    upper_32_bits(wptr));
475 	}
476 }
477 
478 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
479 {
480 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
481 	int i;
482 
483 	for (i = 0; i < count; i++)
484 		if (sdma && sdma->burst_nop && (i == 0))
485 			amdgpu_ring_write(ring, ring->funcs->nop |
486 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
487 		else
488 			amdgpu_ring_write(ring, ring->funcs->nop);
489 }
490 
491 /**
492  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
493  *
494  * @ring: amdgpu ring pointer
495  * @ib: IB object to schedule
496  *
497  * Schedule an IB in the DMA ring (VEGA10).
498  */
499 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
500 				   struct amdgpu_job *job,
501 				   struct amdgpu_ib *ib,
502 				   bool ctx_switch)
503 {
504 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
505 
506 	/* IB packet must end on a 8 DW boundary */
507 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
508 
509 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
510 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
511 	/* base must be 32 byte aligned */
512 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
513 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
514 	amdgpu_ring_write(ring, ib->length_dw);
515 	amdgpu_ring_write(ring, 0);
516 	amdgpu_ring_write(ring, 0);
517 
518 }
519 
520 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
521 				   int mem_space, int hdp,
522 				   uint32_t addr0, uint32_t addr1,
523 				   uint32_t ref, uint32_t mask,
524 				   uint32_t inv)
525 {
526 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
527 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
528 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
529 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
530 	if (mem_space) {
531 		/* memory */
532 		amdgpu_ring_write(ring, addr0);
533 		amdgpu_ring_write(ring, addr1);
534 	} else {
535 		/* registers */
536 		amdgpu_ring_write(ring, addr0 << 2);
537 		amdgpu_ring_write(ring, addr1 << 2);
538 	}
539 	amdgpu_ring_write(ring, ref); /* reference */
540 	amdgpu_ring_write(ring, mask); /* mask */
541 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
542 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
543 }
544 
545 /**
546  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
547  *
548  * @ring: amdgpu ring pointer
549  *
550  * Emit an hdp flush packet on the requested DMA ring.
551  */
552 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
553 {
554 	struct amdgpu_device *adev = ring->adev;
555 	u32 ref_and_mask = 0;
556 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
557 
558 	if (ring->me == 0)
559 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
560 	else
561 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
562 
563 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
564 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
565 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
566 			       ref_and_mask, ref_and_mask, 10);
567 }
568 
569 /**
570  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
571  *
572  * @ring: amdgpu ring pointer
573  * @fence: amdgpu fence object
574  *
575  * Add a DMA fence packet to the ring to write
576  * the fence seq number and DMA trap packet to generate
577  * an interrupt if needed (VEGA10).
578  */
579 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
580 				      unsigned flags)
581 {
582 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
583 	/* write the fence */
584 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
585 	/* zero in first two bits */
586 	BUG_ON(addr & 0x3);
587 	amdgpu_ring_write(ring, lower_32_bits(addr));
588 	amdgpu_ring_write(ring, upper_32_bits(addr));
589 	amdgpu_ring_write(ring, lower_32_bits(seq));
590 
591 	/* optionally write high bits as well */
592 	if (write64bit) {
593 		addr += 4;
594 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
595 		/* zero in first two bits */
596 		BUG_ON(addr & 0x3);
597 		amdgpu_ring_write(ring, lower_32_bits(addr));
598 		amdgpu_ring_write(ring, upper_32_bits(addr));
599 		amdgpu_ring_write(ring, upper_32_bits(seq));
600 	}
601 
602 	/* generate an interrupt */
603 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
604 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
605 }
606 
607 
608 /**
609  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
610  *
611  * @adev: amdgpu_device pointer
612  *
613  * Stop the gfx async dma ring buffers (VEGA10).
614  */
615 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
616 {
617 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
618 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
619 	u32 rb_cntl, ib_cntl;
620 	int i;
621 
622 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
623 	    (adev->mman.buffer_funcs_ring == sdma1))
624 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
625 
626 	for (i = 0; i < adev->sdma.num_instances; i++) {
627 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
628 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
629 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
630 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
631 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
632 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
633 	}
634 
635 	sdma0->sched.ready = false;
636 	sdma1->sched.ready = false;
637 }
638 
639 /**
640  * sdma_v4_0_rlc_stop - stop the compute async dma engines
641  *
642  * @adev: amdgpu_device pointer
643  *
644  * Stop the compute async dma queues (VEGA10).
645  */
646 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
647 {
648 	/* XXX todo */
649 }
650 
651 /**
652  * sdma_v4_0_page_stop - stop the page async dma engines
653  *
654  * @adev: amdgpu_device pointer
655  *
656  * Stop the page async dma ring buffers (VEGA10).
657  */
658 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
659 {
660 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
661 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
662 	u32 rb_cntl, ib_cntl;
663 	int i;
664 
665 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
666 	    (adev->mman.buffer_funcs_ring == sdma1))
667 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
668 
669 	for (i = 0; i < adev->sdma.num_instances; i++) {
670 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
672 					RB_ENABLE, 0);
673 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
674 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
675 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
676 					IB_ENABLE, 0);
677 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
678 	}
679 
680 	sdma0->sched.ready = false;
681 	sdma1->sched.ready = false;
682 }
683 
684 /**
685  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
686  *
687  * @adev: amdgpu_device pointer
688  * @enable: enable/disable the DMA MEs context switch.
689  *
690  * Halt or unhalt the async dma engines context switch (VEGA10).
691  */
692 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
693 {
694 	u32 f32_cntl, phase_quantum = 0;
695 	int i;
696 
697 	if (amdgpu_sdma_phase_quantum) {
698 		unsigned value = amdgpu_sdma_phase_quantum;
699 		unsigned unit = 0;
700 
701 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
702 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
703 			value = (value + 1) >> 1;
704 			unit++;
705 		}
706 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
707 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
708 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
709 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
710 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
711 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
712 			WARN_ONCE(1,
713 			"clamping sdma_phase_quantum to %uK clock cycles\n",
714 				  value << unit);
715 		}
716 		phase_quantum =
717 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
718 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
719 	}
720 
721 	for (i = 0; i < adev->sdma.num_instances; i++) {
722 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
723 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
724 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
725 		if (enable && amdgpu_sdma_phase_quantum) {
726 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
727 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
728 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
729 		}
730 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
731 	}
732 
733 }
734 
735 /**
736  * sdma_v4_0_enable - stop the async dma engines
737  *
738  * @adev: amdgpu_device pointer
739  * @enable: enable/disable the DMA MEs.
740  *
741  * Halt or unhalt the async dma engines (VEGA10).
742  */
743 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
744 {
745 	u32 f32_cntl;
746 	int i;
747 
748 	if (enable == false) {
749 		sdma_v4_0_gfx_stop(adev);
750 		sdma_v4_0_rlc_stop(adev);
751 		if (adev->sdma.has_page_queue)
752 			sdma_v4_0_page_stop(adev);
753 	}
754 
755 	for (i = 0; i < adev->sdma.num_instances; i++) {
756 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
757 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
758 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
759 	}
760 }
761 
762 /**
763  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
764  */
765 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
766 {
767 	/* Set ring buffer size in dwords */
768 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
769 
770 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
771 #ifdef __BIG_ENDIAN
772 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
773 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
774 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
775 #endif
776 	return rb_cntl;
777 }
778 
779 /**
780  * sdma_v4_0_gfx_resume - setup and start the async dma engines
781  *
782  * @adev: amdgpu_device pointer
783  * @i: instance to resume
784  *
785  * Set up the gfx DMA ring buffers and enable them (VEGA10).
786  * Returns 0 for success, error for failure.
787  */
788 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
789 {
790 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
791 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
792 	u32 wb_offset;
793 	u32 doorbell;
794 	u32 doorbell_offset;
795 	u64 wptr_gpu_addr;
796 
797 	wb_offset = (ring->rptr_offs * 4);
798 
799 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
800 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
801 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
802 
803 	/* Initialize the ring buffer's read and write pointers */
804 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
805 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
806 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
807 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
808 
809 	/* set the wb address whether it's enabled or not */
810 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
811 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
812 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
813 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
814 
815 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
816 				RPTR_WRITEBACK_ENABLE, 1);
817 
818 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
819 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
820 
821 	ring->wptr = 0;
822 
823 	/* before programing wptr to a less value, need set minor_ptr_update first */
824 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
825 
826 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
827 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
828 
829 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
830 				 ring->use_doorbell);
831 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
832 					SDMA0_GFX_DOORBELL_OFFSET,
833 					OFFSET, ring->doorbell_index);
834 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
835 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
836 	adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
837 					      ring->doorbell_index);
838 
839 	sdma_v4_0_ring_set_wptr(ring);
840 
841 	/* set minor_ptr_update to 0 after wptr programed */
842 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
843 
844 	/* setup the wptr shadow polling */
845 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
846 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
847 		    lower_32_bits(wptr_gpu_addr));
848 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
849 		    upper_32_bits(wptr_gpu_addr));
850 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
851 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
852 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
853 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
854 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
855 
856 	/* enable DMA RB */
857 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
858 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
859 
860 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
861 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
862 #ifdef __BIG_ENDIAN
863 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
864 #endif
865 	/* enable DMA IBs */
866 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
867 
868 	ring->sched.ready = true;
869 }
870 
871 /**
872  * sdma_v4_0_page_resume - setup and start the async dma engines
873  *
874  * @adev: amdgpu_device pointer
875  * @i: instance to resume
876  *
877  * Set up the page DMA ring buffers and enable them (VEGA10).
878  * Returns 0 for success, error for failure.
879  */
880 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
881 {
882 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
883 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
884 	u32 wb_offset;
885 	u32 doorbell;
886 	u32 doorbell_offset;
887 	u64 wptr_gpu_addr;
888 
889 	wb_offset = (ring->rptr_offs * 4);
890 
891 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
892 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
893 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
894 
895 	/* Initialize the ring buffer's read and write pointers */
896 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
897 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
898 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
899 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
900 
901 	/* set the wb address whether it's enabled or not */
902 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
903 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
904 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
905 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
906 
907 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
908 				RPTR_WRITEBACK_ENABLE, 1);
909 
910 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
911 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
912 
913 	ring->wptr = 0;
914 
915 	/* before programing wptr to a less value, need set minor_ptr_update first */
916 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
917 
918 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
919 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
920 
921 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
922 				 ring->use_doorbell);
923 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
924 					SDMA0_PAGE_DOORBELL_OFFSET,
925 					OFFSET, ring->doorbell_index);
926 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
927 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
928 
929 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
930 	sdma_v4_0_page_ring_set_wptr(ring);
931 
932 	/* set minor_ptr_update to 0 after wptr programed */
933 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
934 
935 	/* setup the wptr shadow polling */
936 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
937 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
938 		    lower_32_bits(wptr_gpu_addr));
939 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
940 		    upper_32_bits(wptr_gpu_addr));
941 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
942 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
943 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
944 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
945 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
946 
947 	/* enable DMA RB */
948 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
949 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
950 
951 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
952 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
953 #ifdef __BIG_ENDIAN
954 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
955 #endif
956 	/* enable DMA IBs */
957 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
958 
959 	ring->sched.ready = true;
960 }
961 
962 static void
963 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
964 {
965 	uint32_t def, data;
966 
967 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
968 		/* enable idle interrupt */
969 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
970 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
971 
972 		if (data != def)
973 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
974 	} else {
975 		/* disable idle interrupt */
976 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
977 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
978 		if (data != def)
979 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
980 	}
981 }
982 
983 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
984 {
985 	uint32_t def, data;
986 
987 	/* Enable HW based PG. */
988 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
989 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
990 	if (data != def)
991 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
992 
993 	/* enable interrupt */
994 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
995 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
996 	if (data != def)
997 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
998 
999 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1000 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1001 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1002 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1003 	/* Configure switch time for hysteresis purpose. Use default right now */
1004 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1005 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1006 	if(data != def)
1007 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1008 }
1009 
1010 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1011 {
1012 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1013 		return;
1014 
1015 	switch (adev->asic_type) {
1016 	case CHIP_RAVEN:
1017 		sdma_v4_1_init_power_gating(adev);
1018 		sdma_v4_1_update_power_gating(adev, true);
1019 		break;
1020 	default:
1021 		break;
1022 	}
1023 }
1024 
1025 /**
1026  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1027  *
1028  * @adev: amdgpu_device pointer
1029  *
1030  * Set up the compute DMA queues and enable them (VEGA10).
1031  * Returns 0 for success, error for failure.
1032  */
1033 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1034 {
1035 	sdma_v4_0_init_pg(adev);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1042  *
1043  * @adev: amdgpu_device pointer
1044  *
1045  * Loads the sDMA0/1 ucode.
1046  * Returns 0 for success, -EINVAL if the ucode is not available.
1047  */
1048 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1049 {
1050 	const struct sdma_firmware_header_v1_0 *hdr;
1051 	const __le32 *fw_data;
1052 	u32 fw_size;
1053 	int i, j;
1054 
1055 	/* halt the MEs */
1056 	sdma_v4_0_enable(adev, false);
1057 
1058 	for (i = 0; i < adev->sdma.num_instances; i++) {
1059 		if (!adev->sdma.instance[i].fw)
1060 			return -EINVAL;
1061 
1062 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1063 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1064 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1065 
1066 		fw_data = (const __le32 *)
1067 			(adev->sdma.instance[i].fw->data +
1068 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1069 
1070 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1071 
1072 		for (j = 0; j < fw_size; j++)
1073 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1074 				    le32_to_cpup(fw_data++));
1075 
1076 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1077 			    adev->sdma.instance[i].fw_version);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 /**
1084  * sdma_v4_0_start - setup and start the async dma engines
1085  *
1086  * @adev: amdgpu_device pointer
1087  *
1088  * Set up the DMA engines and enable them (VEGA10).
1089  * Returns 0 for success, error for failure.
1090  */
1091 static int sdma_v4_0_start(struct amdgpu_device *adev)
1092 {
1093 	struct amdgpu_ring *ring;
1094 	int i, r;
1095 
1096 	if (amdgpu_sriov_vf(adev)) {
1097 		sdma_v4_0_ctx_switch_enable(adev, false);
1098 		sdma_v4_0_enable(adev, false);
1099 	} else {
1100 
1101 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1102 			r = sdma_v4_0_load_microcode(adev);
1103 			if (r)
1104 				return r;
1105 		}
1106 
1107 		/* unhalt the MEs */
1108 		sdma_v4_0_enable(adev, true);
1109 		/* enable sdma ring preemption */
1110 		sdma_v4_0_ctx_switch_enable(adev, true);
1111 	}
1112 
1113 	/* start the gfx rings and rlc compute queues */
1114 	for (i = 0; i < adev->sdma.num_instances; i++) {
1115 		uint32_t temp;
1116 
1117 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1118 		sdma_v4_0_gfx_resume(adev, i);
1119 		if (adev->sdma.has_page_queue)
1120 			sdma_v4_0_page_resume(adev, i);
1121 
1122 		/* set utc l1 enable flag always to 1 */
1123 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1124 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1125 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1126 
1127 		if (!amdgpu_sriov_vf(adev)) {
1128 			/* unhalt engine */
1129 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1130 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1131 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1132 		}
1133 	}
1134 
1135 	if (amdgpu_sriov_vf(adev)) {
1136 		sdma_v4_0_ctx_switch_enable(adev, true);
1137 		sdma_v4_0_enable(adev, true);
1138 	} else {
1139 		r = sdma_v4_0_rlc_resume(adev);
1140 		if (r)
1141 			return r;
1142 	}
1143 
1144 	for (i = 0; i < adev->sdma.num_instances; i++) {
1145 		ring = &adev->sdma.instance[i].ring;
1146 
1147 		r = amdgpu_ring_test_helper(ring);
1148 		if (r)
1149 			return r;
1150 
1151 		if (adev->sdma.has_page_queue) {
1152 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1153 
1154 			r = amdgpu_ring_test_helper(page);
1155 			if (r)
1156 				return r;
1157 
1158 			if (adev->mman.buffer_funcs_ring == page)
1159 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1160 		}
1161 
1162 		if (adev->mman.buffer_funcs_ring == ring)
1163 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1164 	}
1165 
1166 	return r;
1167 }
1168 
1169 /**
1170  * sdma_v4_0_ring_test_ring - simple async dma engine test
1171  *
1172  * @ring: amdgpu_ring structure holding ring information
1173  *
1174  * Test the DMA engine by writing using it to write an
1175  * value to memory. (VEGA10).
1176  * Returns 0 for success, error for failure.
1177  */
1178 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1179 {
1180 	struct amdgpu_device *adev = ring->adev;
1181 	unsigned i;
1182 	unsigned index;
1183 	int r;
1184 	u32 tmp;
1185 	u64 gpu_addr;
1186 
1187 	r = amdgpu_device_wb_get(adev, &index);
1188 	if (r)
1189 		return r;
1190 
1191 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1192 	tmp = 0xCAFEDEAD;
1193 	adev->wb.wb[index] = cpu_to_le32(tmp);
1194 
1195 	r = amdgpu_ring_alloc(ring, 5);
1196 	if (r)
1197 		goto error_free_wb;
1198 
1199 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1200 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1201 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1202 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1203 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1204 	amdgpu_ring_write(ring, 0xDEADBEEF);
1205 	amdgpu_ring_commit(ring);
1206 
1207 	for (i = 0; i < adev->usec_timeout; i++) {
1208 		tmp = le32_to_cpu(adev->wb.wb[index]);
1209 		if (tmp == 0xDEADBEEF)
1210 			break;
1211 		DRM_UDELAY(1);
1212 	}
1213 
1214 	if (i >= adev->usec_timeout)
1215 		r = -ETIMEDOUT;
1216 
1217 error_free_wb:
1218 	amdgpu_device_wb_free(adev, index);
1219 	return r;
1220 }
1221 
1222 /**
1223  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1224  *
1225  * @ring: amdgpu_ring structure holding ring information
1226  *
1227  * Test a simple IB in the DMA ring (VEGA10).
1228  * Returns 0 on success, error on failure.
1229  */
1230 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1231 {
1232 	struct amdgpu_device *adev = ring->adev;
1233 	struct amdgpu_ib ib;
1234 	struct dma_fence *f = NULL;
1235 	unsigned index;
1236 	long r;
1237 	u32 tmp = 0;
1238 	u64 gpu_addr;
1239 
1240 	r = amdgpu_device_wb_get(adev, &index);
1241 	if (r)
1242 		return r;
1243 
1244 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1245 	tmp = 0xCAFEDEAD;
1246 	adev->wb.wb[index] = cpu_to_le32(tmp);
1247 	memset(&ib, 0, sizeof(ib));
1248 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1249 	if (r)
1250 		goto err0;
1251 
1252 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1253 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1254 	ib.ptr[1] = lower_32_bits(gpu_addr);
1255 	ib.ptr[2] = upper_32_bits(gpu_addr);
1256 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1257 	ib.ptr[4] = 0xDEADBEEF;
1258 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1259 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1261 	ib.length_dw = 8;
1262 
1263 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1264 	if (r)
1265 		goto err1;
1266 
1267 	r = dma_fence_wait_timeout(f, false, timeout);
1268 	if (r == 0) {
1269 		r = -ETIMEDOUT;
1270 		goto err1;
1271 	} else if (r < 0) {
1272 		goto err1;
1273 	}
1274 	tmp = le32_to_cpu(adev->wb.wb[index]);
1275 	if (tmp == 0xDEADBEEF)
1276 		r = 0;
1277 	else
1278 		r = -EINVAL;
1279 
1280 err1:
1281 	amdgpu_ib_free(adev, &ib, NULL);
1282 	dma_fence_put(f);
1283 err0:
1284 	amdgpu_device_wb_free(adev, index);
1285 	return r;
1286 }
1287 
1288 
1289 /**
1290  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1291  *
1292  * @ib: indirect buffer to fill with commands
1293  * @pe: addr of the page entry
1294  * @src: src addr to copy from
1295  * @count: number of page entries to update
1296  *
1297  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1298  */
1299 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1300 				  uint64_t pe, uint64_t src,
1301 				  unsigned count)
1302 {
1303 	unsigned bytes = count * 8;
1304 
1305 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1306 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1307 	ib->ptr[ib->length_dw++] = bytes - 1;
1308 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1309 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1310 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1311 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1312 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1313 
1314 }
1315 
1316 /**
1317  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1318  *
1319  * @ib: indirect buffer to fill with commands
1320  * @pe: addr of the page entry
1321  * @addr: dst addr to write into pe
1322  * @count: number of page entries to update
1323  * @incr: increase next addr by incr bytes
1324  * @flags: access flags
1325  *
1326  * Update PTEs by writing them manually using sDMA (VEGA10).
1327  */
1328 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1329 				   uint64_t value, unsigned count,
1330 				   uint32_t incr)
1331 {
1332 	unsigned ndw = count * 2;
1333 
1334 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1335 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1336 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1337 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1338 	ib->ptr[ib->length_dw++] = ndw - 1;
1339 	for (; ndw > 0; ndw -= 2) {
1340 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1341 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1342 		value += incr;
1343 	}
1344 }
1345 
1346 /**
1347  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1348  *
1349  * @ib: indirect buffer to fill with commands
1350  * @pe: addr of the page entry
1351  * @addr: dst addr to write into pe
1352  * @count: number of page entries to update
1353  * @incr: increase next addr by incr bytes
1354  * @flags: access flags
1355  *
1356  * Update the page tables using sDMA (VEGA10).
1357  */
1358 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1359 				     uint64_t pe,
1360 				     uint64_t addr, unsigned count,
1361 				     uint32_t incr, uint64_t flags)
1362 {
1363 	/* for physically contiguous pages (vram) */
1364 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1365 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1366 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1367 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1368 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1369 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1370 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1371 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1372 	ib->ptr[ib->length_dw++] = 0;
1373 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1374 }
1375 
1376 /**
1377  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1378  *
1379  * @ib: indirect buffer to fill with padding
1380  *
1381  */
1382 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1383 {
1384 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1385 	u32 pad_count;
1386 	int i;
1387 
1388 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1389 	for (i = 0; i < pad_count; i++)
1390 		if (sdma && sdma->burst_nop && (i == 0))
1391 			ib->ptr[ib->length_dw++] =
1392 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1393 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1394 		else
1395 			ib->ptr[ib->length_dw++] =
1396 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1397 }
1398 
1399 
1400 /**
1401  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1402  *
1403  * @ring: amdgpu_ring pointer
1404  *
1405  * Make sure all previous operations are completed (CIK).
1406  */
1407 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1408 {
1409 	uint32_t seq = ring->fence_drv.sync_seq;
1410 	uint64_t addr = ring->fence_drv.gpu_addr;
1411 
1412 	/* wait for idle */
1413 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1414 			       addr & 0xfffffffc,
1415 			       upper_32_bits(addr) & 0xffffffff,
1416 			       seq, 0xffffffff, 4);
1417 }
1418 
1419 
1420 /**
1421  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1422  *
1423  * @ring: amdgpu_ring pointer
1424  * @vm: amdgpu_vm pointer
1425  *
1426  * Update the page table base and flush the VM TLB
1427  * using sDMA (VEGA10).
1428  */
1429 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1430 					 unsigned vmid, uint64_t pd_addr)
1431 {
1432 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1433 }
1434 
1435 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1436 				     uint32_t reg, uint32_t val)
1437 {
1438 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1439 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1440 	amdgpu_ring_write(ring, reg);
1441 	amdgpu_ring_write(ring, val);
1442 }
1443 
1444 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1445 					 uint32_t val, uint32_t mask)
1446 {
1447 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1448 }
1449 
1450 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1451 {
1452 	uint fw_version = adev->sdma.instance[0].fw_version;
1453 
1454 	switch (adev->asic_type) {
1455 	case CHIP_VEGA10:
1456 		return fw_version >= 430;
1457 	case CHIP_VEGA12:
1458 		/*return fw_version >= 31;*/
1459 		return false;
1460 	case CHIP_VEGA20:
1461 		/*return fw_version >= 115;*/
1462 		return false;
1463 	default:
1464 		return false;
1465 	}
1466 }
1467 
1468 static int sdma_v4_0_early_init(void *handle)
1469 {
1470 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1471 	int r;
1472 
1473 	if (adev->asic_type == CHIP_RAVEN)
1474 		adev->sdma.num_instances = 1;
1475 	else
1476 		adev->sdma.num_instances = 2;
1477 
1478 	r = sdma_v4_0_init_microcode(adev);
1479 	if (r) {
1480 		DRM_ERROR("Failed to load sdma firmware!\n");
1481 		return r;
1482 	}
1483 
1484 	/* TODO: Page queue breaks driver reload under SRIOV */
1485 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1486 		adev->sdma.has_page_queue = false;
1487 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1488 		adev->sdma.has_page_queue = true;
1489 
1490 	sdma_v4_0_set_ring_funcs(adev);
1491 	sdma_v4_0_set_buffer_funcs(adev);
1492 	sdma_v4_0_set_vm_pte_funcs(adev);
1493 	sdma_v4_0_set_irq_funcs(adev);
1494 
1495 	return 0;
1496 }
1497 
1498 static int sdma_v4_0_sw_init(void *handle)
1499 {
1500 	struct amdgpu_ring *ring;
1501 	int r, i;
1502 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1503 
1504 	/* SDMA trap event */
1505 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1506 			      &adev->sdma.trap_irq);
1507 	if (r)
1508 		return r;
1509 
1510 	/* SDMA trap event */
1511 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1512 			      &adev->sdma.trap_irq);
1513 	if (r)
1514 		return r;
1515 
1516 	for (i = 0; i < adev->sdma.num_instances; i++) {
1517 		ring = &adev->sdma.instance[i].ring;
1518 		ring->ring_obj = NULL;
1519 		ring->use_doorbell = true;
1520 
1521 		DRM_INFO("use_doorbell being set to: [%s]\n",
1522 				ring->use_doorbell?"true":"false");
1523 
1524 		/* doorbell size is 2 dwords, get DWORD offset */
1525 		ring->doorbell_index = (i == 0) ?
1526 			(adev->doorbell_index.sdma_engine0 << 1)
1527 			: (adev->doorbell_index.sdma_engine1 << 1);
1528 
1529 		sprintf(ring->name, "sdma%d", i);
1530 		r = amdgpu_ring_init(adev, ring, 1024,
1531 				     &adev->sdma.trap_irq,
1532 				     (i == 0) ?
1533 				     AMDGPU_SDMA_IRQ_TRAP0 :
1534 				     AMDGPU_SDMA_IRQ_TRAP1);
1535 		if (r)
1536 			return r;
1537 
1538 		if (adev->sdma.has_page_queue) {
1539 			ring = &adev->sdma.instance[i].page;
1540 			ring->ring_obj = NULL;
1541 			ring->use_doorbell = true;
1542 
1543 			/* paging queue use same doorbell index/routing as gfx queue
1544 			 * with 0x400 (4096 dwords) offset on second doorbell page
1545 			 */
1546 			ring->doorbell_index = (i == 0) ?
1547 				(adev->doorbell_index.sdma_engine0 << 1)
1548 				: (adev->doorbell_index.sdma_engine1 << 1);
1549 			ring->doorbell_index += 0x400;
1550 
1551 			sprintf(ring->name, "page%d", i);
1552 			r = amdgpu_ring_init(adev, ring, 1024,
1553 					     &adev->sdma.trap_irq,
1554 					     (i == 0) ?
1555 					     AMDGPU_SDMA_IRQ_TRAP0 :
1556 					     AMDGPU_SDMA_IRQ_TRAP1);
1557 			if (r)
1558 				return r;
1559 		}
1560 	}
1561 
1562 	return r;
1563 }
1564 
1565 static int sdma_v4_0_sw_fini(void *handle)
1566 {
1567 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1568 	int i;
1569 
1570 	for (i = 0; i < adev->sdma.num_instances; i++) {
1571 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1572 		if (adev->sdma.has_page_queue)
1573 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1574 	}
1575 
1576 	for (i = 0; i < adev->sdma.num_instances; i++) {
1577 		release_firmware(adev->sdma.instance[i].fw);
1578 		adev->sdma.instance[i].fw = NULL;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static int sdma_v4_0_hw_init(void *handle)
1585 {
1586 	int r;
1587 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1588 
1589 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1590 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1591 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1592 
1593 	sdma_v4_0_init_golden_registers(adev);
1594 
1595 	r = sdma_v4_0_start(adev);
1596 
1597 	return r;
1598 }
1599 
1600 static int sdma_v4_0_hw_fini(void *handle)
1601 {
1602 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1603 
1604 	if (amdgpu_sriov_vf(adev))
1605 		return 0;
1606 
1607 	sdma_v4_0_ctx_switch_enable(adev, false);
1608 	sdma_v4_0_enable(adev, false);
1609 
1610 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1611 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1612 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1613 
1614 	return 0;
1615 }
1616 
1617 static int sdma_v4_0_suspend(void *handle)
1618 {
1619 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1620 
1621 	return sdma_v4_0_hw_fini(adev);
1622 }
1623 
1624 static int sdma_v4_0_resume(void *handle)
1625 {
1626 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1627 
1628 	return sdma_v4_0_hw_init(adev);
1629 }
1630 
1631 static bool sdma_v4_0_is_idle(void *handle)
1632 {
1633 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1634 	u32 i;
1635 
1636 	for (i = 0; i < adev->sdma.num_instances; i++) {
1637 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1638 
1639 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1640 			return false;
1641 	}
1642 
1643 	return true;
1644 }
1645 
1646 static int sdma_v4_0_wait_for_idle(void *handle)
1647 {
1648 	unsigned i;
1649 	u32 sdma0, sdma1;
1650 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1651 
1652 	for (i = 0; i < adev->usec_timeout; i++) {
1653 		sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1654 		sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1655 
1656 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1657 			return 0;
1658 		udelay(1);
1659 	}
1660 	return -ETIMEDOUT;
1661 }
1662 
1663 static int sdma_v4_0_soft_reset(void *handle)
1664 {
1665 	/* todo */
1666 
1667 	return 0;
1668 }
1669 
1670 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1671 					struct amdgpu_irq_src *source,
1672 					unsigned type,
1673 					enum amdgpu_interrupt_state state)
1674 {
1675 	unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1676 	u32 sdma_cntl;
1677 
1678 	sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1679 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1680 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1681 	WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1682 
1683 	return 0;
1684 }
1685 
1686 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1687 				      struct amdgpu_irq_src *source,
1688 				      struct amdgpu_iv_entry *entry)
1689 {
1690 	uint32_t instance;
1691 
1692 	DRM_DEBUG("IH: SDMA trap\n");
1693 	switch (entry->client_id) {
1694 	case SOC15_IH_CLIENTID_SDMA0:
1695 		instance = 0;
1696 		break;
1697 	case SOC15_IH_CLIENTID_SDMA1:
1698 		instance = 1;
1699 		break;
1700 	default:
1701 		return 0;
1702 	}
1703 
1704 	switch (entry->ring_id) {
1705 	case 0:
1706 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1707 		break;
1708 	case 1:
1709 		/* XXX compute */
1710 		break;
1711 	case 2:
1712 		/* XXX compute */
1713 		break;
1714 	case 3:
1715 		amdgpu_fence_process(&adev->sdma.instance[instance].page);
1716 		break;
1717 	}
1718 	return 0;
1719 }
1720 
1721 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1722 					      struct amdgpu_irq_src *source,
1723 					      struct amdgpu_iv_entry *entry)
1724 {
1725 	int instance;
1726 
1727 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1728 
1729 	switch (entry->client_id) {
1730 	case SOC15_IH_CLIENTID_SDMA0:
1731 		instance = 0;
1732 		break;
1733 	case SOC15_IH_CLIENTID_SDMA1:
1734 		instance = 1;
1735 		break;
1736 	default:
1737 		return 0;
1738 	}
1739 
1740 	switch (entry->ring_id) {
1741 	case 0:
1742 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1743 		break;
1744 	}
1745 	return 0;
1746 }
1747 
1748 static void sdma_v4_0_update_medium_grain_clock_gating(
1749 		struct amdgpu_device *adev,
1750 		bool enable)
1751 {
1752 	uint32_t data, def;
1753 
1754 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1755 		/* enable sdma0 clock gating */
1756 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1757 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1758 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1759 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1760 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1761 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1762 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1763 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1764 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1765 		if (def != data)
1766 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1767 
1768 		if (adev->sdma.num_instances > 1) {
1769 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1770 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1771 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1772 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1773 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1774 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1775 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1776 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1777 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1778 			if (def != data)
1779 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1780 		}
1781 	} else {
1782 		/* disable sdma0 clock gating */
1783 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1784 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1785 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1786 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1787 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1788 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1789 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1790 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1791 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1792 
1793 		if (def != data)
1794 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1795 
1796 		if (adev->sdma.num_instances > 1) {
1797 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1798 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1799 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1800 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1801 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1802 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1803 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1804 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1805 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1806 			if (def != data)
1807 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1808 		}
1809 	}
1810 }
1811 
1812 
1813 static void sdma_v4_0_update_medium_grain_light_sleep(
1814 		struct amdgpu_device *adev,
1815 		bool enable)
1816 {
1817 	uint32_t data, def;
1818 
1819 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1820 		/* 1-not override: enable sdma0 mem light sleep */
1821 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1822 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1823 		if (def != data)
1824 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1825 
1826 		/* 1-not override: enable sdma1 mem light sleep */
1827 		if (adev->sdma.num_instances > 1) {
1828 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1829 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1830 			if (def != data)
1831 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1832 		}
1833 	} else {
1834 		/* 0-override:disable sdma0 mem light sleep */
1835 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1836 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1837 		if (def != data)
1838 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1839 
1840 		/* 0-override:disable sdma1 mem light sleep */
1841 		if (adev->sdma.num_instances > 1) {
1842 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1843 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1844 			if (def != data)
1845 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1846 		}
1847 	}
1848 }
1849 
1850 static int sdma_v4_0_set_clockgating_state(void *handle,
1851 					  enum amd_clockgating_state state)
1852 {
1853 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1854 
1855 	if (amdgpu_sriov_vf(adev))
1856 		return 0;
1857 
1858 	switch (adev->asic_type) {
1859 	case CHIP_VEGA10:
1860 	case CHIP_VEGA12:
1861 	case CHIP_VEGA20:
1862 	case CHIP_RAVEN:
1863 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1864 				state == AMD_CG_STATE_GATE ? true : false);
1865 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1866 				state == AMD_CG_STATE_GATE ? true : false);
1867 		break;
1868 	default:
1869 		break;
1870 	}
1871 	return 0;
1872 }
1873 
1874 static int sdma_v4_0_set_powergating_state(void *handle,
1875 					  enum amd_powergating_state state)
1876 {
1877 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1878 
1879 	switch (adev->asic_type) {
1880 	case CHIP_RAVEN:
1881 		sdma_v4_1_update_power_gating(adev,
1882 				state == AMD_PG_STATE_GATE ? true : false);
1883 		break;
1884 	default:
1885 		break;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1892 {
1893 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1894 	int data;
1895 
1896 	if (amdgpu_sriov_vf(adev))
1897 		*flags = 0;
1898 
1899 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1900 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1901 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1902 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1903 
1904 	/* AMD_CG_SUPPORT_SDMA_LS */
1905 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1906 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1907 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1908 }
1909 
1910 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1911 	.name = "sdma_v4_0",
1912 	.early_init = sdma_v4_0_early_init,
1913 	.late_init = NULL,
1914 	.sw_init = sdma_v4_0_sw_init,
1915 	.sw_fini = sdma_v4_0_sw_fini,
1916 	.hw_init = sdma_v4_0_hw_init,
1917 	.hw_fini = sdma_v4_0_hw_fini,
1918 	.suspend = sdma_v4_0_suspend,
1919 	.resume = sdma_v4_0_resume,
1920 	.is_idle = sdma_v4_0_is_idle,
1921 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1922 	.soft_reset = sdma_v4_0_soft_reset,
1923 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1924 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1925 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1926 };
1927 
1928 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1929 	.type = AMDGPU_RING_TYPE_SDMA,
1930 	.align_mask = 0xf,
1931 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1932 	.support_64bit_ptrs = true,
1933 	.vmhub = AMDGPU_MMHUB,
1934 	.get_rptr = sdma_v4_0_ring_get_rptr,
1935 	.get_wptr = sdma_v4_0_ring_get_wptr,
1936 	.set_wptr = sdma_v4_0_ring_set_wptr,
1937 	.emit_frame_size =
1938 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1939 		3 + /* hdp invalidate */
1940 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1941 		/* sdma_v4_0_ring_emit_vm_flush */
1942 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1943 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1944 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1945 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1946 	.emit_ib = sdma_v4_0_ring_emit_ib,
1947 	.emit_fence = sdma_v4_0_ring_emit_fence,
1948 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1949 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1950 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1951 	.test_ring = sdma_v4_0_ring_test_ring,
1952 	.test_ib = sdma_v4_0_ring_test_ib,
1953 	.insert_nop = sdma_v4_0_ring_insert_nop,
1954 	.pad_ib = sdma_v4_0_ring_pad_ib,
1955 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1956 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1957 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1958 };
1959 
1960 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
1961 	.type = AMDGPU_RING_TYPE_SDMA,
1962 	.align_mask = 0xf,
1963 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1964 	.support_64bit_ptrs = true,
1965 	.vmhub = AMDGPU_MMHUB,
1966 	.get_rptr = sdma_v4_0_ring_get_rptr,
1967 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
1968 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
1969 	.emit_frame_size =
1970 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1971 		3 + /* hdp invalidate */
1972 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1973 		/* sdma_v4_0_ring_emit_vm_flush */
1974 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1975 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1976 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1977 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1978 	.emit_ib = sdma_v4_0_ring_emit_ib,
1979 	.emit_fence = sdma_v4_0_ring_emit_fence,
1980 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1981 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1982 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1983 	.test_ring = sdma_v4_0_ring_test_ring,
1984 	.test_ib = sdma_v4_0_ring_test_ib,
1985 	.insert_nop = sdma_v4_0_ring_insert_nop,
1986 	.pad_ib = sdma_v4_0_ring_pad_ib,
1987 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1988 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1989 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1990 };
1991 
1992 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1993 {
1994 	int i;
1995 
1996 	for (i = 0; i < adev->sdma.num_instances; i++) {
1997 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1998 		adev->sdma.instance[i].ring.me = i;
1999 		if (adev->sdma.has_page_queue) {
2000 			adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2001 			adev->sdma.instance[i].page.me = i;
2002 		}
2003 	}
2004 }
2005 
2006 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2007 	.set = sdma_v4_0_set_trap_irq_state,
2008 	.process = sdma_v4_0_process_trap_irq,
2009 };
2010 
2011 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2012 	.process = sdma_v4_0_process_illegal_inst_irq,
2013 };
2014 
2015 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2016 {
2017 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2018 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2019 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2020 }
2021 
2022 /**
2023  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2024  *
2025  * @ring: amdgpu_ring structure holding ring information
2026  * @src_offset: src GPU address
2027  * @dst_offset: dst GPU address
2028  * @byte_count: number of bytes to xfer
2029  *
2030  * Copy GPU buffers using the DMA engine (VEGA10/12).
2031  * Used by the amdgpu ttm implementation to move pages if
2032  * registered as the asic copy callback.
2033  */
2034 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2035 				       uint64_t src_offset,
2036 				       uint64_t dst_offset,
2037 				       uint32_t byte_count)
2038 {
2039 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2040 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2041 	ib->ptr[ib->length_dw++] = byte_count - 1;
2042 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2043 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2044 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2045 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2046 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2047 }
2048 
2049 /**
2050  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2051  *
2052  * @ring: amdgpu_ring structure holding ring information
2053  * @src_data: value to write to buffer
2054  * @dst_offset: dst GPU address
2055  * @byte_count: number of bytes to xfer
2056  *
2057  * Fill GPU buffers using the DMA engine (VEGA10/12).
2058  */
2059 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2060 				       uint32_t src_data,
2061 				       uint64_t dst_offset,
2062 				       uint32_t byte_count)
2063 {
2064 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2065 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2066 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2067 	ib->ptr[ib->length_dw++] = src_data;
2068 	ib->ptr[ib->length_dw++] = byte_count - 1;
2069 }
2070 
2071 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2072 	.copy_max_bytes = 0x400000,
2073 	.copy_num_dw = 7,
2074 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2075 
2076 	.fill_max_bytes = 0x400000,
2077 	.fill_num_dw = 5,
2078 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2079 };
2080 
2081 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2082 {
2083 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2084 	if (adev->sdma.has_page_queue)
2085 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2086 	else
2087 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2088 }
2089 
2090 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2091 	.copy_pte_num_dw = 7,
2092 	.copy_pte = sdma_v4_0_vm_copy_pte,
2093 
2094 	.write_pte = sdma_v4_0_vm_write_pte,
2095 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2096 };
2097 
2098 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2099 {
2100 	struct drm_gpu_scheduler *sched;
2101 	unsigned i;
2102 
2103 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2104 	for (i = 0; i < adev->sdma.num_instances; i++) {
2105 		if (adev->sdma.has_page_queue)
2106 			sched = &adev->sdma.instance[i].page.sched;
2107 		else
2108 			sched = &adev->sdma.instance[i].ring.sched;
2109 		adev->vm_manager.vm_pte_rqs[i] =
2110 			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2111 	}
2112 	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2113 }
2114 
2115 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2116 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2117 	.major = 4,
2118 	.minor = 0,
2119 	.rev = 0,
2120 	.funcs = &sdma_v4_0_ip_funcs,
2121 };
2122