1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "sdma0/sdma0_4_2_offset.h" 34 #include "sdma0/sdma0_4_2_sh_mask.h" 35 #include "sdma1/sdma1_4_2_offset.h" 36 #include "sdma1/sdma1_4_2_sh_mask.h" 37 #include "sdma2/sdma2_4_2_2_offset.h" 38 #include "sdma2/sdma2_4_2_2_sh_mask.h" 39 #include "sdma3/sdma3_4_2_2_offset.h" 40 #include "sdma3/sdma3_4_2_2_sh_mask.h" 41 #include "sdma4/sdma4_4_2_2_offset.h" 42 #include "sdma4/sdma4_4_2_2_sh_mask.h" 43 #include "sdma5/sdma5_4_2_2_offset.h" 44 #include "sdma5/sdma5_4_2_2_sh_mask.h" 45 #include "sdma6/sdma6_4_2_2_offset.h" 46 #include "sdma6/sdma6_4_2_2_sh_mask.h" 47 #include "sdma7/sdma7_4_2_2_offset.h" 48 #include "sdma7/sdma7_4_2_2_sh_mask.h" 49 #include "sdma0/sdma0_4_1_default.h" 50 51 #include "soc15_common.h" 52 #include "soc15.h" 53 #include "vega10_sdma_pkt_open.h" 54 55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 57 58 #include "amdgpu_ras.h" 59 #include "sdma_v4_4.h" 60 61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); 70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin"); 72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin"); 73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin"); 74 75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L 76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L 77 78 #define WREG32_SDMA(instance, offset, value) \ 79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) 80 #define RREG32_SDMA(instance, offset) \ 81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) 82 83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); 84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); 85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); 86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); 87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev); 88 89 static const struct soc15_reg_golden golden_settings_sdma_4[] = { 90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), 92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), 93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), 97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), 103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), 105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), 109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) 115 }; 116 117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { 118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 125 }; 126 127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { 128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 135 }; 136 137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { 138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), 141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), 143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), 144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), 146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) 149 }; 150 151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { 152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 153 }; 154 155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = 156 { 157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), 166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 184 }; 185 186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { 187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), 196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 214 }; 215 216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] = 217 { 218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) 220 }; 221 222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] = 223 { 224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), 225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) 226 }; 227 228 static const struct soc15_reg_golden golden_settings_sdma_arct[] = 229 { 230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001) 262 }; 263 264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = { 265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 280 }; 281 282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = { 283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002), 287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051), 289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe) 293 }; 294 295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = { 296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED), 298 0, 0, 299 }, 300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED), 302 0, 0, 303 }, 304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED), 306 0, 0, 307 }, 308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED), 310 0, 0, 311 }, 312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED), 314 0, 0, 315 }, 316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED), 318 0, 0, 319 }, 320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED), 322 0, 0, 323 }, 324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED), 326 0, 0, 327 }, 328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED), 330 0, 0, 331 }, 332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED), 334 0, 0, 335 }, 336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED), 338 0, 0, 339 }, 340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED), 342 0, 0, 343 }, 344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED), 346 0, 0, 347 }, 348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED), 350 0, 0, 351 }, 352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED), 354 0, 0, 355 }, 356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED), 358 0, 0, 359 }, 360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED), 362 0, 0, 363 }, 364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED), 366 0, 0, 367 }, 368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED), 370 0, 0, 371 }, 372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED), 374 0, 0, 375 }, 376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED), 378 0, 0, 379 }, 380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED), 382 0, 0, 383 }, 384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED), 386 0, 0, 387 }, 388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED), 390 0, 0, 391 }, 392 }; 393 394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, 395 u32 instance, u32 offset) 396 { 397 switch (instance) { 398 case 0: 399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset); 400 case 1: 401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset); 402 case 2: 403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset); 404 case 3: 405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset); 406 case 4: 407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset); 408 case 5: 409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset); 410 case 6: 411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset); 412 case 7: 413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset); 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num) 421 { 422 switch (seq_num) { 423 case 0: 424 return SOC15_IH_CLIENTID_SDMA0; 425 case 1: 426 return SOC15_IH_CLIENTID_SDMA1; 427 case 2: 428 return SOC15_IH_CLIENTID_SDMA2; 429 case 3: 430 return SOC15_IH_CLIENTID_SDMA3; 431 case 4: 432 return SOC15_IH_CLIENTID_SDMA4; 433 case 5: 434 return SOC15_IH_CLIENTID_SDMA5; 435 case 6: 436 return SOC15_IH_CLIENTID_SDMA6; 437 case 7: 438 return SOC15_IH_CLIENTID_SDMA7; 439 default: 440 break; 441 } 442 return -EINVAL; 443 } 444 445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id) 446 { 447 switch (client_id) { 448 case SOC15_IH_CLIENTID_SDMA0: 449 return 0; 450 case SOC15_IH_CLIENTID_SDMA1: 451 return 1; 452 case SOC15_IH_CLIENTID_SDMA2: 453 return 2; 454 case SOC15_IH_CLIENTID_SDMA3: 455 return 3; 456 case SOC15_IH_CLIENTID_SDMA4: 457 return 4; 458 case SOC15_IH_CLIENTID_SDMA5: 459 return 5; 460 case SOC15_IH_CLIENTID_SDMA6: 461 return 6; 462 case SOC15_IH_CLIENTID_SDMA7: 463 return 7; 464 default: 465 break; 466 } 467 return -EINVAL; 468 } 469 470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) 471 { 472 switch (adev->asic_type) { 473 case CHIP_VEGA10: 474 soc15_program_register_sequence(adev, 475 golden_settings_sdma_4, 476 ARRAY_SIZE(golden_settings_sdma_4)); 477 soc15_program_register_sequence(adev, 478 golden_settings_sdma_vg10, 479 ARRAY_SIZE(golden_settings_sdma_vg10)); 480 break; 481 case CHIP_VEGA12: 482 soc15_program_register_sequence(adev, 483 golden_settings_sdma_4, 484 ARRAY_SIZE(golden_settings_sdma_4)); 485 soc15_program_register_sequence(adev, 486 golden_settings_sdma_vg12, 487 ARRAY_SIZE(golden_settings_sdma_vg12)); 488 break; 489 case CHIP_VEGA20: 490 soc15_program_register_sequence(adev, 491 golden_settings_sdma0_4_2_init, 492 ARRAY_SIZE(golden_settings_sdma0_4_2_init)); 493 soc15_program_register_sequence(adev, 494 golden_settings_sdma0_4_2, 495 ARRAY_SIZE(golden_settings_sdma0_4_2)); 496 soc15_program_register_sequence(adev, 497 golden_settings_sdma1_4_2, 498 ARRAY_SIZE(golden_settings_sdma1_4_2)); 499 break; 500 case CHIP_ARCTURUS: 501 soc15_program_register_sequence(adev, 502 golden_settings_sdma_arct, 503 ARRAY_SIZE(golden_settings_sdma_arct)); 504 break; 505 case CHIP_ALDEBARAN: 506 soc15_program_register_sequence(adev, 507 golden_settings_sdma_aldebaran, 508 ARRAY_SIZE(golden_settings_sdma_aldebaran)); 509 break; 510 case CHIP_RAVEN: 511 soc15_program_register_sequence(adev, 512 golden_settings_sdma_4_1, 513 ARRAY_SIZE(golden_settings_sdma_4_1)); 514 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 515 soc15_program_register_sequence(adev, 516 golden_settings_sdma_rv2, 517 ARRAY_SIZE(golden_settings_sdma_rv2)); 518 else 519 soc15_program_register_sequence(adev, 520 golden_settings_sdma_rv1, 521 ARRAY_SIZE(golden_settings_sdma_rv1)); 522 break; 523 case CHIP_RENOIR: 524 soc15_program_register_sequence(adev, 525 golden_settings_sdma_4_3, 526 ARRAY_SIZE(golden_settings_sdma_4_3)); 527 break; 528 default: 529 break; 530 } 531 } 532 533 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev) 534 { 535 int i; 536 537 /* 538 * The only chips with SDMAv4 and ULV are VG10 and VG20. 539 * Server SKUs take a different hysteresis setting from other SKUs. 540 */ 541 switch (adev->asic_type) { 542 case CHIP_VEGA10: 543 if (adev->pdev->device == 0x6860) 544 break; 545 return; 546 case CHIP_VEGA20: 547 if (adev->pdev->device == 0x66a1) 548 break; 549 return; 550 default: 551 return; 552 } 553 554 for (i = 0; i < adev->sdma.num_instances; i++) { 555 uint32_t temp; 556 557 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL); 558 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0); 559 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp); 560 } 561 } 562 563 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst) 564 { 565 int err = 0; 566 const struct sdma_firmware_header_v1_0 *hdr; 567 568 err = amdgpu_ucode_validate(sdma_inst->fw); 569 if (err) 570 return err; 571 572 hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data; 573 sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version); 574 sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version); 575 576 if (sdma_inst->feature_version >= 20) 577 sdma_inst->burst_nop = true; 578 579 return 0; 580 } 581 582 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev) 583 { 584 int i; 585 586 for (i = 0; i < adev->sdma.num_instances; i++) { 587 release_firmware(adev->sdma.instance[i].fw); 588 adev->sdma.instance[i].fw = NULL; 589 590 /* arcturus shares the same FW memory across 591 all SDMA isntances */ 592 if (adev->asic_type == CHIP_ARCTURUS || 593 adev->asic_type == CHIP_ALDEBARAN) 594 break; 595 } 596 597 memset((void *)adev->sdma.instance, 0, 598 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES); 599 } 600 601 /** 602 * sdma_v4_0_init_microcode - load ucode images from disk 603 * 604 * @adev: amdgpu_device pointer 605 * 606 * Use the firmware interface to load the ucode images into 607 * the driver (not loaded into hw). 608 * Returns 0 on success, error on failure. 609 */ 610 611 // emulation only, won't work on real chip 612 // vega10 real chip need to use PSP to load firmware 613 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) 614 { 615 const char *chip_name; 616 char fw_name[30]; 617 int err = 0, i; 618 struct amdgpu_firmware_info *info = NULL; 619 const struct common_firmware_header *header = NULL; 620 621 DRM_DEBUG("\n"); 622 623 switch (adev->asic_type) { 624 case CHIP_VEGA10: 625 chip_name = "vega10"; 626 break; 627 case CHIP_VEGA12: 628 chip_name = "vega12"; 629 break; 630 case CHIP_VEGA20: 631 chip_name = "vega20"; 632 break; 633 case CHIP_RAVEN: 634 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 635 chip_name = "raven2"; 636 else if (adev->apu_flags & AMD_APU_IS_PICASSO) 637 chip_name = "picasso"; 638 else 639 chip_name = "raven"; 640 break; 641 case CHIP_ARCTURUS: 642 chip_name = "arcturus"; 643 break; 644 case CHIP_RENOIR: 645 if (adev->apu_flags & AMD_APU_IS_RENOIR) 646 chip_name = "renoir"; 647 else 648 chip_name = "green_sardine"; 649 break; 650 case CHIP_ALDEBARAN: 651 chip_name = "aldebaran"; 652 break; 653 default: 654 BUG(); 655 } 656 657 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 658 659 err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev); 660 if (err) 661 goto out; 662 663 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]); 664 if (err) 665 goto out; 666 667 for (i = 1; i < adev->sdma.num_instances; i++) { 668 if (adev->asic_type == CHIP_ARCTURUS || 669 adev->asic_type == CHIP_ALDEBARAN) { 670 /* Acturus & Aldebaran will leverage the same FW memory 671 for every SDMA instance */ 672 memcpy((void *)&adev->sdma.instance[i], 673 (void *)&adev->sdma.instance[0], 674 sizeof(struct amdgpu_sdma_instance)); 675 } 676 else { 677 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i); 678 679 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 680 if (err) 681 goto out; 682 683 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]); 684 if (err) 685 goto out; 686 } 687 } 688 689 DRM_DEBUG("psp_load == '%s'\n", 690 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); 691 692 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 693 for (i = 0; i < adev->sdma.num_instances; i++) { 694 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 695 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 696 info->fw = adev->sdma.instance[i].fw; 697 header = (const struct common_firmware_header *)info->fw->data; 698 adev->firmware.fw_size += 699 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 700 } 701 } 702 703 out: 704 if (err) { 705 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name); 706 sdma_v4_0_destroy_inst_ctx(adev); 707 } 708 return err; 709 } 710 711 /** 712 * sdma_v4_0_ring_get_rptr - get the current read pointer 713 * 714 * @ring: amdgpu ring pointer 715 * 716 * Get the current rptr from the hardware (VEGA10+). 717 */ 718 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) 719 { 720 u64 *rptr; 721 722 /* XXX check if swapping is necessary on BE */ 723 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 724 725 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 726 return ((*rptr) >> 2); 727 } 728 729 /** 730 * sdma_v4_0_ring_get_wptr - get the current write pointer 731 * 732 * @ring: amdgpu ring pointer 733 * 734 * Get the current wptr from the hardware (VEGA10+). 735 */ 736 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) 737 { 738 struct amdgpu_device *adev = ring->adev; 739 u64 wptr; 740 741 if (ring->use_doorbell) { 742 /* XXX check if swapping is necessary on BE */ 743 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 744 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 745 } else { 746 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); 747 wptr = wptr << 32; 748 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); 749 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 750 ring->me, wptr); 751 } 752 753 return wptr >> 2; 754 } 755 756 /** 757 * sdma_v4_0_ring_set_wptr - commit the write pointer 758 * 759 * @ring: amdgpu ring pointer 760 * 761 * Write the wptr back to the hardware (VEGA10+). 762 */ 763 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) 764 { 765 struct amdgpu_device *adev = ring->adev; 766 767 DRM_DEBUG("Setting write pointer\n"); 768 if (ring->use_doorbell) { 769 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 770 771 DRM_DEBUG("Using doorbell -- " 772 "wptr_offs == 0x%08x " 773 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 774 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 775 ring->wptr_offs, 776 lower_32_bits(ring->wptr << 2), 777 upper_32_bits(ring->wptr << 2)); 778 /* XXX check if swapping is necessary on BE */ 779 WRITE_ONCE(*wb, (ring->wptr << 2)); 780 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 781 ring->doorbell_index, ring->wptr << 2); 782 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 783 } else { 784 DRM_DEBUG("Not using doorbell -- " 785 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 786 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 787 ring->me, 788 lower_32_bits(ring->wptr << 2), 789 ring->me, 790 upper_32_bits(ring->wptr << 2)); 791 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, 792 lower_32_bits(ring->wptr << 2)); 793 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, 794 upper_32_bits(ring->wptr << 2)); 795 } 796 } 797 798 /** 799 * sdma_v4_0_page_ring_get_wptr - get the current write pointer 800 * 801 * @ring: amdgpu ring pointer 802 * 803 * Get the current wptr from the hardware (VEGA10+). 804 */ 805 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) 806 { 807 struct amdgpu_device *adev = ring->adev; 808 u64 wptr; 809 810 if (ring->use_doorbell) { 811 /* XXX check if swapping is necessary on BE */ 812 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 813 } else { 814 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); 815 wptr = wptr << 32; 816 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); 817 } 818 819 return wptr >> 2; 820 } 821 822 /** 823 * sdma_v4_0_page_ring_set_wptr - commit the write pointer 824 * 825 * @ring: amdgpu ring pointer 826 * 827 * Write the wptr back to the hardware (VEGA10+). 828 */ 829 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) 830 { 831 struct amdgpu_device *adev = ring->adev; 832 833 if (ring->use_doorbell) { 834 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 835 836 /* XXX check if swapping is necessary on BE */ 837 WRITE_ONCE(*wb, (ring->wptr << 2)); 838 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 839 } else { 840 uint64_t wptr = ring->wptr << 2; 841 842 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, 843 lower_32_bits(wptr)); 844 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, 845 upper_32_bits(wptr)); 846 } 847 } 848 849 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 850 { 851 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 852 int i; 853 854 for (i = 0; i < count; i++) 855 if (sdma && sdma->burst_nop && (i == 0)) 856 amdgpu_ring_write(ring, ring->funcs->nop | 857 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 858 else 859 amdgpu_ring_write(ring, ring->funcs->nop); 860 } 861 862 /** 863 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine 864 * 865 * @ring: amdgpu ring pointer 866 * @job: job to retrieve vmid from 867 * @ib: IB object to schedule 868 * @flags: unused 869 * 870 * Schedule an IB in the DMA ring (VEGA10). 871 */ 872 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, 873 struct amdgpu_job *job, 874 struct amdgpu_ib *ib, 875 uint32_t flags) 876 { 877 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 878 879 /* IB packet must end on a 8 DW boundary */ 880 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 881 882 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 883 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 884 /* base must be 32 byte aligned */ 885 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 886 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 887 amdgpu_ring_write(ring, ib->length_dw); 888 amdgpu_ring_write(ring, 0); 889 amdgpu_ring_write(ring, 0); 890 891 } 892 893 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, 894 int mem_space, int hdp, 895 uint32_t addr0, uint32_t addr1, 896 uint32_t ref, uint32_t mask, 897 uint32_t inv) 898 { 899 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 900 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 901 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 902 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 903 if (mem_space) { 904 /* memory */ 905 amdgpu_ring_write(ring, addr0); 906 amdgpu_ring_write(ring, addr1); 907 } else { 908 /* registers */ 909 amdgpu_ring_write(ring, addr0 << 2); 910 amdgpu_ring_write(ring, addr1 << 2); 911 } 912 amdgpu_ring_write(ring, ref); /* reference */ 913 amdgpu_ring_write(ring, mask); /* mask */ 914 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 915 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 916 } 917 918 /** 919 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 920 * 921 * @ring: amdgpu ring pointer 922 * 923 * Emit an hdp flush packet on the requested DMA ring. 924 */ 925 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 926 { 927 struct amdgpu_device *adev = ring->adev; 928 u32 ref_and_mask = 0; 929 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 930 931 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 932 933 sdma_v4_0_wait_reg_mem(ring, 0, 1, 934 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 935 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 936 ref_and_mask, ref_and_mask, 10); 937 } 938 939 /** 940 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring 941 * 942 * @ring: amdgpu ring pointer 943 * @addr: address 944 * @seq: sequence number 945 * @flags: fence related flags 946 * 947 * Add a DMA fence packet to the ring to write 948 * the fence seq number and DMA trap packet to generate 949 * an interrupt if needed (VEGA10). 950 */ 951 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 952 unsigned flags) 953 { 954 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 955 /* write the fence */ 956 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 957 /* zero in first two bits */ 958 BUG_ON(addr & 0x3); 959 amdgpu_ring_write(ring, lower_32_bits(addr)); 960 amdgpu_ring_write(ring, upper_32_bits(addr)); 961 amdgpu_ring_write(ring, lower_32_bits(seq)); 962 963 /* optionally write high bits as well */ 964 if (write64bit) { 965 addr += 4; 966 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 967 /* zero in first two bits */ 968 BUG_ON(addr & 0x3); 969 amdgpu_ring_write(ring, lower_32_bits(addr)); 970 amdgpu_ring_write(ring, upper_32_bits(addr)); 971 amdgpu_ring_write(ring, upper_32_bits(seq)); 972 } 973 974 /* generate an interrupt */ 975 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 976 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 977 } 978 979 980 /** 981 * sdma_v4_0_gfx_stop - stop the gfx async dma engines 982 * 983 * @adev: amdgpu_device pointer 984 * 985 * Stop the gfx async dma ring buffers (VEGA10). 986 */ 987 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) 988 { 989 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 990 u32 rb_cntl, ib_cntl; 991 int i, unset = 0; 992 993 for (i = 0; i < adev->sdma.num_instances; i++) { 994 sdma[i] = &adev->sdma.instance[i].ring; 995 996 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) { 997 amdgpu_ttm_set_buffer_funcs_status(adev, false); 998 unset = 1; 999 } 1000 1001 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1002 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 1003 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1004 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1005 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 1006 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1007 } 1008 } 1009 1010 /** 1011 * sdma_v4_0_rlc_stop - stop the compute async dma engines 1012 * 1013 * @adev: amdgpu_device pointer 1014 * 1015 * Stop the compute async dma queues (VEGA10). 1016 */ 1017 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) 1018 { 1019 /* XXX todo */ 1020 } 1021 1022 /** 1023 * sdma_v4_0_page_stop - stop the page async dma engines 1024 * 1025 * @adev: amdgpu_device pointer 1026 * 1027 * Stop the page async dma ring buffers (VEGA10). 1028 */ 1029 static void sdma_v4_0_page_stop(struct amdgpu_device *adev) 1030 { 1031 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1032 u32 rb_cntl, ib_cntl; 1033 int i; 1034 bool unset = false; 1035 1036 for (i = 0; i < adev->sdma.num_instances; i++) { 1037 sdma[i] = &adev->sdma.instance[i].page; 1038 1039 if ((adev->mman.buffer_funcs_ring == sdma[i]) && 1040 (!unset)) { 1041 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1042 unset = true; 1043 } 1044 1045 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1046 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1047 RB_ENABLE, 0); 1048 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1049 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1050 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, 1051 IB_ENABLE, 0); 1052 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1053 } 1054 } 1055 1056 /** 1057 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch 1058 * 1059 * @adev: amdgpu_device pointer 1060 * @enable: enable/disable the DMA MEs context switch. 1061 * 1062 * Halt or unhalt the async dma engines context switch (VEGA10). 1063 */ 1064 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 1065 { 1066 u32 f32_cntl, phase_quantum = 0; 1067 int i; 1068 1069 if (amdgpu_sdma_phase_quantum) { 1070 unsigned value = amdgpu_sdma_phase_quantum; 1071 unsigned unit = 0; 1072 1073 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 1074 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 1075 value = (value + 1) >> 1; 1076 unit++; 1077 } 1078 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1079 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 1080 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 1081 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 1082 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1083 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 1084 WARN_ONCE(1, 1085 "clamping sdma_phase_quantum to %uK clock cycles\n", 1086 value << unit); 1087 } 1088 phase_quantum = 1089 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 1090 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 1091 } 1092 1093 for (i = 0; i < adev->sdma.num_instances; i++) { 1094 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); 1095 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 1096 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 1097 if (enable && amdgpu_sdma_phase_quantum) { 1098 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); 1099 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); 1100 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); 1101 } 1102 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); 1103 1104 /* 1105 * Enable SDMA utilization. Its only supported on 1106 * Arcturus for the moment and firmware version 14 1107 * and above. 1108 */ 1109 if (adev->asic_type == CHIP_ARCTURUS && 1110 adev->sdma.instance[i].fw_version >= 14) 1111 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable); 1112 /* Extend page fault timeout to avoid interrupt storm */ 1113 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080); 1114 } 1115 1116 } 1117 1118 /** 1119 * sdma_v4_0_enable - stop the async dma engines 1120 * 1121 * @adev: amdgpu_device pointer 1122 * @enable: enable/disable the DMA MEs. 1123 * 1124 * Halt or unhalt the async dma engines (VEGA10). 1125 */ 1126 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) 1127 { 1128 u32 f32_cntl; 1129 int i; 1130 1131 if (!enable) { 1132 sdma_v4_0_gfx_stop(adev); 1133 sdma_v4_0_rlc_stop(adev); 1134 if (adev->sdma.has_page_queue) 1135 sdma_v4_0_page_stop(adev); 1136 } 1137 1138 for (i = 0; i < adev->sdma.num_instances; i++) { 1139 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1140 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 1141 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); 1142 } 1143 } 1144 1145 /* 1146 * sdma_v4_0_rb_cntl - get parameters for rb_cntl 1147 */ 1148 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 1149 { 1150 /* Set ring buffer size in dwords */ 1151 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 1152 1153 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 1154 #ifdef __BIG_ENDIAN 1155 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 1156 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1157 RPTR_WRITEBACK_SWAP_ENABLE, 1); 1158 #endif 1159 return rb_cntl; 1160 } 1161 1162 /** 1163 * sdma_v4_0_gfx_resume - setup and start the async dma engines 1164 * 1165 * @adev: amdgpu_device pointer 1166 * @i: instance to resume 1167 * 1168 * Set up the gfx DMA ring buffers and enable them (VEGA10). 1169 * Returns 0 for success, error for failure. 1170 */ 1171 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) 1172 { 1173 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 1174 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1175 u32 wb_offset; 1176 u32 doorbell; 1177 u32 doorbell_offset; 1178 u64 wptr_gpu_addr; 1179 1180 wb_offset = (ring->rptr_offs * 4); 1181 1182 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1183 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1184 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1185 1186 /* Initialize the ring buffer's read and write pointers */ 1187 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); 1188 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); 1189 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); 1190 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); 1191 1192 /* set the wb address whether it's enabled or not */ 1193 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, 1194 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1195 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 1196 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1197 1198 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1199 RPTR_WRITEBACK_ENABLE, 1); 1200 1201 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); 1202 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 1203 1204 ring->wptr = 0; 1205 1206 /* before programing wptr to a less value, need set minor_ptr_update first */ 1207 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); 1208 1209 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); 1210 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); 1211 1212 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1213 ring->use_doorbell); 1214 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1215 SDMA0_GFX_DOORBELL_OFFSET, 1216 OFFSET, ring->doorbell_index); 1217 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); 1218 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); 1219 1220 sdma_v4_0_ring_set_wptr(ring); 1221 1222 /* set minor_ptr_update to 0 after wptr programed */ 1223 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); 1224 1225 /* setup the wptr shadow polling */ 1226 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1227 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, 1228 lower_32_bits(wptr_gpu_addr)); 1229 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, 1230 upper_32_bits(wptr_gpu_addr)); 1231 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); 1232 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1233 SDMA0_GFX_RB_WPTR_POLL_CNTL, 1234 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1235 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1236 1237 /* enable DMA RB */ 1238 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 1239 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1240 1241 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1242 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 1243 #ifdef __BIG_ENDIAN 1244 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 1245 #endif 1246 /* enable DMA IBs */ 1247 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1248 1249 ring->sched.ready = true; 1250 } 1251 1252 /** 1253 * sdma_v4_0_page_resume - setup and start the async dma engines 1254 * 1255 * @adev: amdgpu_device pointer 1256 * @i: instance to resume 1257 * 1258 * Set up the page DMA ring buffers and enable them (VEGA10). 1259 * Returns 0 for success, error for failure. 1260 */ 1261 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) 1262 { 1263 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 1264 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1265 u32 wb_offset; 1266 u32 doorbell; 1267 u32 doorbell_offset; 1268 u64 wptr_gpu_addr; 1269 1270 wb_offset = (ring->rptr_offs * 4); 1271 1272 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1273 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1274 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1275 1276 /* Initialize the ring buffer's read and write pointers */ 1277 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); 1278 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); 1279 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); 1280 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); 1281 1282 /* set the wb address whether it's enabled or not */ 1283 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, 1284 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1285 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 1286 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1287 1288 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1289 RPTR_WRITEBACK_ENABLE, 1); 1290 1291 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); 1292 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 1293 1294 ring->wptr = 0; 1295 1296 /* before programing wptr to a less value, need set minor_ptr_update first */ 1297 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); 1298 1299 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); 1300 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); 1301 1302 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, 1303 ring->use_doorbell); 1304 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1305 SDMA0_PAGE_DOORBELL_OFFSET, 1306 OFFSET, ring->doorbell_index); 1307 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); 1308 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); 1309 1310 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ 1311 sdma_v4_0_page_ring_set_wptr(ring); 1312 1313 /* set minor_ptr_update to 0 after wptr programed */ 1314 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); 1315 1316 /* setup the wptr shadow polling */ 1317 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1318 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, 1319 lower_32_bits(wptr_gpu_addr)); 1320 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, 1321 upper_32_bits(wptr_gpu_addr)); 1322 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); 1323 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1324 SDMA0_PAGE_RB_WPTR_POLL_CNTL, 1325 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1326 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1327 1328 /* enable DMA RB */ 1329 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); 1330 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1331 1332 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1333 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); 1334 #ifdef __BIG_ENDIAN 1335 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 1336 #endif 1337 /* enable DMA IBs */ 1338 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1339 1340 ring->sched.ready = true; 1341 } 1342 1343 static void 1344 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) 1345 { 1346 uint32_t def, data; 1347 1348 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { 1349 /* enable idle interrupt */ 1350 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1351 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1352 1353 if (data != def) 1354 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1355 } else { 1356 /* disable idle interrupt */ 1357 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1358 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1359 if (data != def) 1360 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1361 } 1362 } 1363 1364 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) 1365 { 1366 uint32_t def, data; 1367 1368 /* Enable HW based PG. */ 1369 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1370 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; 1371 if (data != def) 1372 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1373 1374 /* enable interrupt */ 1375 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1376 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1377 if (data != def) 1378 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1379 1380 /* Configure hold time to filter in-valid power on/off request. Use default right now */ 1381 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1382 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; 1383 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); 1384 /* Configure switch time for hysteresis purpose. Use default right now */ 1385 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; 1386 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); 1387 if(data != def) 1388 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1389 } 1390 1391 static void sdma_v4_0_init_pg(struct amdgpu_device *adev) 1392 { 1393 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) 1394 return; 1395 1396 switch (adev->asic_type) { 1397 case CHIP_RAVEN: 1398 case CHIP_RENOIR: 1399 sdma_v4_1_init_power_gating(adev); 1400 sdma_v4_1_update_power_gating(adev, true); 1401 break; 1402 default: 1403 break; 1404 } 1405 } 1406 1407 /** 1408 * sdma_v4_0_rlc_resume - setup and start the async dma engines 1409 * 1410 * @adev: amdgpu_device pointer 1411 * 1412 * Set up the compute DMA queues and enable them (VEGA10). 1413 * Returns 0 for success, error for failure. 1414 */ 1415 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) 1416 { 1417 sdma_v4_0_init_pg(adev); 1418 1419 return 0; 1420 } 1421 1422 /** 1423 * sdma_v4_0_load_microcode - load the sDMA ME ucode 1424 * 1425 * @adev: amdgpu_device pointer 1426 * 1427 * Loads the sDMA0/1 ucode. 1428 * Returns 0 for success, -EINVAL if the ucode is not available. 1429 */ 1430 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) 1431 { 1432 const struct sdma_firmware_header_v1_0 *hdr; 1433 const __le32 *fw_data; 1434 u32 fw_size; 1435 int i, j; 1436 1437 /* halt the MEs */ 1438 sdma_v4_0_enable(adev, false); 1439 1440 for (i = 0; i < adev->sdma.num_instances; i++) { 1441 if (!adev->sdma.instance[i].fw) 1442 return -EINVAL; 1443 1444 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 1445 amdgpu_ucode_print_sdma_hdr(&hdr->header); 1446 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 1447 1448 fw_data = (const __le32 *) 1449 (adev->sdma.instance[i].fw->data + 1450 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 1451 1452 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); 1453 1454 for (j = 0; j < fw_size; j++) 1455 WREG32_SDMA(i, mmSDMA0_UCODE_DATA, 1456 le32_to_cpup(fw_data++)); 1457 1458 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 1459 adev->sdma.instance[i].fw_version); 1460 } 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * sdma_v4_0_start - setup and start the async dma engines 1467 * 1468 * @adev: amdgpu_device pointer 1469 * 1470 * Set up the DMA engines and enable them (VEGA10). 1471 * Returns 0 for success, error for failure. 1472 */ 1473 static int sdma_v4_0_start(struct amdgpu_device *adev) 1474 { 1475 struct amdgpu_ring *ring; 1476 int i, r = 0; 1477 1478 if (amdgpu_sriov_vf(adev)) { 1479 sdma_v4_0_ctx_switch_enable(adev, false); 1480 sdma_v4_0_enable(adev, false); 1481 } else { 1482 1483 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1484 r = sdma_v4_0_load_microcode(adev); 1485 if (r) 1486 return r; 1487 } 1488 1489 /* unhalt the MEs */ 1490 sdma_v4_0_enable(adev, true); 1491 /* enable sdma ring preemption */ 1492 sdma_v4_0_ctx_switch_enable(adev, true); 1493 } 1494 1495 /* start the gfx rings and rlc compute queues */ 1496 for (i = 0; i < adev->sdma.num_instances; i++) { 1497 uint32_t temp; 1498 1499 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); 1500 sdma_v4_0_gfx_resume(adev, i); 1501 if (adev->sdma.has_page_queue) 1502 sdma_v4_0_page_resume(adev, i); 1503 1504 /* set utc l1 enable flag always to 1 */ 1505 temp = RREG32_SDMA(i, mmSDMA0_CNTL); 1506 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 1507 WREG32_SDMA(i, mmSDMA0_CNTL, temp); 1508 1509 if (!amdgpu_sriov_vf(adev)) { 1510 /* unhalt engine */ 1511 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1512 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 1513 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); 1514 } 1515 } 1516 1517 if (amdgpu_sriov_vf(adev)) { 1518 sdma_v4_0_ctx_switch_enable(adev, true); 1519 sdma_v4_0_enable(adev, true); 1520 } else { 1521 r = sdma_v4_0_rlc_resume(adev); 1522 if (r) 1523 return r; 1524 } 1525 1526 for (i = 0; i < adev->sdma.num_instances; i++) { 1527 ring = &adev->sdma.instance[i].ring; 1528 1529 r = amdgpu_ring_test_helper(ring); 1530 if (r) 1531 return r; 1532 1533 if (adev->sdma.has_page_queue) { 1534 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1535 1536 r = amdgpu_ring_test_helper(page); 1537 if (r) 1538 return r; 1539 1540 if (adev->mman.buffer_funcs_ring == page) 1541 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1542 } 1543 1544 if (adev->mman.buffer_funcs_ring == ring) 1545 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1546 } 1547 1548 return r; 1549 } 1550 1551 /** 1552 * sdma_v4_0_ring_test_ring - simple async dma engine test 1553 * 1554 * @ring: amdgpu_ring structure holding ring information 1555 * 1556 * Test the DMA engine by writing using it to write an 1557 * value to memory. (VEGA10). 1558 * Returns 0 for success, error for failure. 1559 */ 1560 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) 1561 { 1562 struct amdgpu_device *adev = ring->adev; 1563 unsigned i; 1564 unsigned index; 1565 int r; 1566 u32 tmp; 1567 u64 gpu_addr; 1568 1569 r = amdgpu_device_wb_get(adev, &index); 1570 if (r) 1571 return r; 1572 1573 gpu_addr = adev->wb.gpu_addr + (index * 4); 1574 tmp = 0xCAFEDEAD; 1575 adev->wb.wb[index] = cpu_to_le32(tmp); 1576 1577 r = amdgpu_ring_alloc(ring, 5); 1578 if (r) 1579 goto error_free_wb; 1580 1581 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1582 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1583 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1584 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1585 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1586 amdgpu_ring_write(ring, 0xDEADBEEF); 1587 amdgpu_ring_commit(ring); 1588 1589 for (i = 0; i < adev->usec_timeout; i++) { 1590 tmp = le32_to_cpu(adev->wb.wb[index]); 1591 if (tmp == 0xDEADBEEF) 1592 break; 1593 udelay(1); 1594 } 1595 1596 if (i >= adev->usec_timeout) 1597 r = -ETIMEDOUT; 1598 1599 error_free_wb: 1600 amdgpu_device_wb_free(adev, index); 1601 return r; 1602 } 1603 1604 /** 1605 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine 1606 * 1607 * @ring: amdgpu_ring structure holding ring information 1608 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1609 * 1610 * Test a simple IB in the DMA ring (VEGA10). 1611 * Returns 0 on success, error on failure. 1612 */ 1613 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1614 { 1615 struct amdgpu_device *adev = ring->adev; 1616 struct amdgpu_ib ib; 1617 struct dma_fence *f = NULL; 1618 unsigned index; 1619 long r; 1620 u32 tmp = 0; 1621 u64 gpu_addr; 1622 1623 r = amdgpu_device_wb_get(adev, &index); 1624 if (r) 1625 return r; 1626 1627 gpu_addr = adev->wb.gpu_addr + (index * 4); 1628 tmp = 0xCAFEDEAD; 1629 adev->wb.wb[index] = cpu_to_le32(tmp); 1630 memset(&ib, 0, sizeof(ib)); 1631 r = amdgpu_ib_get(adev, NULL, 256, 1632 AMDGPU_IB_POOL_DIRECT, &ib); 1633 if (r) 1634 goto err0; 1635 1636 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1637 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1638 ib.ptr[1] = lower_32_bits(gpu_addr); 1639 ib.ptr[2] = upper_32_bits(gpu_addr); 1640 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1641 ib.ptr[4] = 0xDEADBEEF; 1642 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1643 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1644 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1645 ib.length_dw = 8; 1646 1647 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1648 if (r) 1649 goto err1; 1650 1651 r = dma_fence_wait_timeout(f, false, timeout); 1652 if (r == 0) { 1653 r = -ETIMEDOUT; 1654 goto err1; 1655 } else if (r < 0) { 1656 goto err1; 1657 } 1658 tmp = le32_to_cpu(adev->wb.wb[index]); 1659 if (tmp == 0xDEADBEEF) 1660 r = 0; 1661 else 1662 r = -EINVAL; 1663 1664 err1: 1665 amdgpu_ib_free(adev, &ib, NULL); 1666 dma_fence_put(f); 1667 err0: 1668 amdgpu_device_wb_free(adev, index); 1669 return r; 1670 } 1671 1672 1673 /** 1674 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART 1675 * 1676 * @ib: indirect buffer to fill with commands 1677 * @pe: addr of the page entry 1678 * @src: src addr to copy from 1679 * @count: number of page entries to update 1680 * 1681 * Update PTEs by copying them from the GART using sDMA (VEGA10). 1682 */ 1683 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, 1684 uint64_t pe, uint64_t src, 1685 unsigned count) 1686 { 1687 unsigned bytes = count * 8; 1688 1689 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1690 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1691 ib->ptr[ib->length_dw++] = bytes - 1; 1692 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1693 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1694 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1695 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1696 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1697 1698 } 1699 1700 /** 1701 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually 1702 * 1703 * @ib: indirect buffer to fill with commands 1704 * @pe: addr of the page entry 1705 * @value: dst addr to write into pe 1706 * @count: number of page entries to update 1707 * @incr: increase next addr by incr bytes 1708 * 1709 * Update PTEs by writing them manually using sDMA (VEGA10). 1710 */ 1711 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1712 uint64_t value, unsigned count, 1713 uint32_t incr) 1714 { 1715 unsigned ndw = count * 2; 1716 1717 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1718 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1719 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1720 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1721 ib->ptr[ib->length_dw++] = ndw - 1; 1722 for (; ndw > 0; ndw -= 2) { 1723 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1724 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1725 value += incr; 1726 } 1727 } 1728 1729 /** 1730 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA 1731 * 1732 * @ib: indirect buffer to fill with commands 1733 * @pe: addr of the page entry 1734 * @addr: dst addr to write into pe 1735 * @count: number of page entries to update 1736 * @incr: increase next addr by incr bytes 1737 * @flags: access flags 1738 * 1739 * Update the page tables using sDMA (VEGA10). 1740 */ 1741 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1742 uint64_t pe, 1743 uint64_t addr, unsigned count, 1744 uint32_t incr, uint64_t flags) 1745 { 1746 /* for physically contiguous pages (vram) */ 1747 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1748 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1749 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1750 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1751 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1752 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1753 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1754 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1755 ib->ptr[ib->length_dw++] = 0; 1756 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1757 } 1758 1759 /** 1760 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw 1761 * 1762 * @ring: amdgpu_ring structure holding ring information 1763 * @ib: indirect buffer to fill with padding 1764 */ 1765 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1766 { 1767 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1768 u32 pad_count; 1769 int i; 1770 1771 pad_count = (-ib->length_dw) & 7; 1772 for (i = 0; i < pad_count; i++) 1773 if (sdma && sdma->burst_nop && (i == 0)) 1774 ib->ptr[ib->length_dw++] = 1775 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1776 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1777 else 1778 ib->ptr[ib->length_dw++] = 1779 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1780 } 1781 1782 1783 /** 1784 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline 1785 * 1786 * @ring: amdgpu_ring pointer 1787 * 1788 * Make sure all previous operations are completed (CIK). 1789 */ 1790 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1791 { 1792 uint32_t seq = ring->fence_drv.sync_seq; 1793 uint64_t addr = ring->fence_drv.gpu_addr; 1794 1795 /* wait for idle */ 1796 sdma_v4_0_wait_reg_mem(ring, 1, 0, 1797 addr & 0xfffffffc, 1798 upper_32_bits(addr) & 0xffffffff, 1799 seq, 0xffffffff, 4); 1800 } 1801 1802 1803 /** 1804 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA 1805 * 1806 * @ring: amdgpu_ring pointer 1807 * @vmid: vmid number to use 1808 * @pd_addr: address 1809 * 1810 * Update the page table base and flush the VM TLB 1811 * using sDMA (VEGA10). 1812 */ 1813 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1814 unsigned vmid, uint64_t pd_addr) 1815 { 1816 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1817 } 1818 1819 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, 1820 uint32_t reg, uint32_t val) 1821 { 1822 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1823 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1824 amdgpu_ring_write(ring, reg); 1825 amdgpu_ring_write(ring, val); 1826 } 1827 1828 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1829 uint32_t val, uint32_t mask) 1830 { 1831 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1832 } 1833 1834 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) 1835 { 1836 uint fw_version = adev->sdma.instance[0].fw_version; 1837 1838 switch (adev->asic_type) { 1839 case CHIP_VEGA10: 1840 return fw_version >= 430; 1841 case CHIP_VEGA12: 1842 /*return fw_version >= 31;*/ 1843 return false; 1844 case CHIP_VEGA20: 1845 return fw_version >= 123; 1846 default: 1847 return false; 1848 } 1849 } 1850 1851 static int sdma_v4_0_early_init(void *handle) 1852 { 1853 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1854 int r; 1855 1856 if (adev->flags & AMD_IS_APU) 1857 adev->sdma.num_instances = 1; 1858 else if (adev->asic_type == CHIP_ARCTURUS) 1859 adev->sdma.num_instances = 8; 1860 else if (adev->asic_type == CHIP_ALDEBARAN) 1861 adev->sdma.num_instances = 5; 1862 else 1863 adev->sdma.num_instances = 2; 1864 1865 r = sdma_v4_0_init_microcode(adev); 1866 if (r) { 1867 DRM_ERROR("Failed to load sdma firmware!\n"); 1868 return r; 1869 } 1870 1871 /* TODO: Page queue breaks driver reload under SRIOV */ 1872 if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev))) 1873 adev->sdma.has_page_queue = false; 1874 else if (sdma_v4_0_fw_support_paging_queue(adev)) 1875 adev->sdma.has_page_queue = true; 1876 1877 sdma_v4_0_set_ring_funcs(adev); 1878 sdma_v4_0_set_buffer_funcs(adev); 1879 sdma_v4_0_set_vm_pte_funcs(adev); 1880 sdma_v4_0_set_irq_funcs(adev); 1881 sdma_v4_0_set_ras_funcs(adev); 1882 1883 return 0; 1884 } 1885 1886 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 1887 void *err_data, 1888 struct amdgpu_iv_entry *entry); 1889 1890 static int sdma_v4_0_late_init(void *handle) 1891 { 1892 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1893 struct ras_ih_if ih_info = { 1894 .cb = sdma_v4_0_process_ras_data_cb, 1895 }; 1896 1897 sdma_v4_0_setup_ulv(adev); 1898 1899 if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count) 1900 adev->sdma.funcs->reset_ras_error_count(adev); 1901 1902 if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init) 1903 return adev->sdma.funcs->ras_late_init(adev, &ih_info); 1904 else 1905 return 0; 1906 } 1907 1908 static int sdma_v4_0_sw_init(void *handle) 1909 { 1910 struct amdgpu_ring *ring; 1911 int r, i; 1912 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1913 1914 /* SDMA trap event */ 1915 for (i = 0; i < adev->sdma.num_instances; i++) { 1916 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1917 SDMA0_4_0__SRCID__SDMA_TRAP, 1918 &adev->sdma.trap_irq); 1919 if (r) 1920 return r; 1921 } 1922 1923 /* SDMA SRAM ECC event */ 1924 for (i = 0; i < adev->sdma.num_instances; i++) { 1925 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1926 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1927 &adev->sdma.ecc_irq); 1928 if (r) 1929 return r; 1930 } 1931 1932 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1933 for (i = 0; i < adev->sdma.num_instances; i++) { 1934 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1935 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1936 &adev->sdma.vm_hole_irq); 1937 if (r) 1938 return r; 1939 1940 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1941 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1942 &adev->sdma.doorbell_invalid_irq); 1943 if (r) 1944 return r; 1945 1946 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1947 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1948 &adev->sdma.pool_timeout_irq); 1949 if (r) 1950 return r; 1951 1952 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1953 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1954 &adev->sdma.srbm_write_irq); 1955 if (r) 1956 return r; 1957 } 1958 1959 for (i = 0; i < adev->sdma.num_instances; i++) { 1960 ring = &adev->sdma.instance[i].ring; 1961 ring->ring_obj = NULL; 1962 ring->use_doorbell = true; 1963 1964 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1965 ring->use_doorbell?"true":"false"); 1966 1967 /* doorbell size is 2 dwords, get DWORD offset */ 1968 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1969 1970 sprintf(ring->name, "sdma%d", i); 1971 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1972 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1973 AMDGPU_RING_PRIO_DEFAULT, NULL); 1974 if (r) 1975 return r; 1976 1977 if (adev->sdma.has_page_queue) { 1978 ring = &adev->sdma.instance[i].page; 1979 ring->ring_obj = NULL; 1980 ring->use_doorbell = true; 1981 1982 /* paging queue use same doorbell index/routing as gfx queue 1983 * with 0x400 (4096 dwords) offset on second doorbell page 1984 */ 1985 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1986 ring->doorbell_index += 0x400; 1987 1988 sprintf(ring->name, "page%d", i); 1989 r = amdgpu_ring_init(adev, ring, 1024, 1990 &adev->sdma.trap_irq, 1991 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1992 AMDGPU_RING_PRIO_DEFAULT, NULL); 1993 if (r) 1994 return r; 1995 } 1996 } 1997 1998 return r; 1999 } 2000 2001 static int sdma_v4_0_sw_fini(void *handle) 2002 { 2003 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2004 int i; 2005 2006 if (adev->sdma.funcs && adev->sdma.funcs->ras_fini) 2007 adev->sdma.funcs->ras_fini(adev); 2008 2009 for (i = 0; i < adev->sdma.num_instances; i++) { 2010 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 2011 if (adev->sdma.has_page_queue) 2012 amdgpu_ring_fini(&adev->sdma.instance[i].page); 2013 } 2014 2015 sdma_v4_0_destroy_inst_ctx(adev); 2016 2017 return 0; 2018 } 2019 2020 static int sdma_v4_0_hw_init(void *handle) 2021 { 2022 int r; 2023 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2024 2025 if (adev->flags & AMD_IS_APU) 2026 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); 2027 2028 if (!amdgpu_sriov_vf(adev)) 2029 sdma_v4_0_init_golden_registers(adev); 2030 2031 r = sdma_v4_0_start(adev); 2032 2033 return r; 2034 } 2035 2036 static int sdma_v4_0_hw_fini(void *handle) 2037 { 2038 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2039 int i; 2040 2041 if (amdgpu_sriov_vf(adev)) 2042 return 0; 2043 2044 for (i = 0; i < adev->sdma.num_instances; i++) { 2045 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2046 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2047 } 2048 2049 sdma_v4_0_ctx_switch_enable(adev, false); 2050 sdma_v4_0_enable(adev, false); 2051 2052 if (adev->flags & AMD_IS_APU) 2053 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); 2054 2055 return 0; 2056 } 2057 2058 static int sdma_v4_0_suspend(void *handle) 2059 { 2060 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2061 2062 return sdma_v4_0_hw_fini(adev); 2063 } 2064 2065 static int sdma_v4_0_resume(void *handle) 2066 { 2067 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2068 2069 return sdma_v4_0_hw_init(adev); 2070 } 2071 2072 static bool sdma_v4_0_is_idle(void *handle) 2073 { 2074 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2075 u32 i; 2076 2077 for (i = 0; i < adev->sdma.num_instances; i++) { 2078 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); 2079 2080 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 2081 return false; 2082 } 2083 2084 return true; 2085 } 2086 2087 static int sdma_v4_0_wait_for_idle(void *handle) 2088 { 2089 unsigned i, j; 2090 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 2091 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2092 2093 for (i = 0; i < adev->usec_timeout; i++) { 2094 for (j = 0; j < adev->sdma.num_instances; j++) { 2095 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG); 2096 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK)) 2097 break; 2098 } 2099 if (j == adev->sdma.num_instances) 2100 return 0; 2101 udelay(1); 2102 } 2103 return -ETIMEDOUT; 2104 } 2105 2106 static int sdma_v4_0_soft_reset(void *handle) 2107 { 2108 /* todo */ 2109 2110 return 0; 2111 } 2112 2113 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, 2114 struct amdgpu_irq_src *source, 2115 unsigned type, 2116 enum amdgpu_interrupt_state state) 2117 { 2118 u32 sdma_cntl; 2119 2120 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL); 2121 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 2122 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2123 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl); 2124 2125 return 0; 2126 } 2127 2128 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, 2129 struct amdgpu_irq_src *source, 2130 struct amdgpu_iv_entry *entry) 2131 { 2132 uint32_t instance; 2133 2134 DRM_DEBUG("IH: SDMA trap\n"); 2135 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2136 switch (entry->ring_id) { 2137 case 0: 2138 amdgpu_fence_process(&adev->sdma.instance[instance].ring); 2139 break; 2140 case 1: 2141 if (adev->asic_type == CHIP_VEGA20) 2142 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2143 break; 2144 case 2: 2145 /* XXX compute */ 2146 break; 2147 case 3: 2148 if (adev->asic_type != CHIP_VEGA20) 2149 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2150 break; 2151 } 2152 return 0; 2153 } 2154 2155 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 2156 void *err_data, 2157 struct amdgpu_iv_entry *entry) 2158 { 2159 int instance; 2160 2161 /* When “Full RAS” is enabled, the per-IP interrupt sources should 2162 * be disabled and the driver should only look for the aggregated 2163 * interrupt via sync flood 2164 */ 2165 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) 2166 goto out; 2167 2168 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2169 if (instance < 0) 2170 goto out; 2171 2172 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 2173 2174 out: 2175 return AMDGPU_RAS_SUCCESS; 2176 } 2177 2178 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, 2179 struct amdgpu_irq_src *source, 2180 struct amdgpu_iv_entry *entry) 2181 { 2182 int instance; 2183 2184 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 2185 2186 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2187 if (instance < 0) 2188 return 0; 2189 2190 switch (entry->ring_id) { 2191 case 0: 2192 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 2193 break; 2194 } 2195 return 0; 2196 } 2197 2198 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev, 2199 struct amdgpu_irq_src *source, 2200 unsigned type, 2201 enum amdgpu_interrupt_state state) 2202 { 2203 u32 sdma_edc_config; 2204 2205 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG); 2206 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE, 2207 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2208 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config); 2209 2210 return 0; 2211 } 2212 2213 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev, 2214 struct amdgpu_iv_entry *entry) 2215 { 2216 int instance; 2217 struct amdgpu_task_info task_info; 2218 u64 addr; 2219 2220 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2221 if (instance < 0 || instance >= adev->sdma.num_instances) { 2222 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 2223 return -EINVAL; 2224 } 2225 2226 addr = (u64)entry->src_data[0] << 12; 2227 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 2228 2229 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 2230 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 2231 2232 dev_dbg_ratelimited(adev->dev, 2233 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 2234 "pasid:%u, for process %s pid %d thread %s pid %d\n", 2235 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 2236 entry->pasid, task_info.process_name, task_info.tgid, 2237 task_info.task_name, task_info.pid); 2238 return 0; 2239 } 2240 2241 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev, 2242 struct amdgpu_irq_src *source, 2243 struct amdgpu_iv_entry *entry) 2244 { 2245 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 2246 sdma_v4_0_print_iv_entry(adev, entry); 2247 return 0; 2248 } 2249 2250 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev, 2251 struct amdgpu_irq_src *source, 2252 struct amdgpu_iv_entry *entry) 2253 { 2254 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 2255 sdma_v4_0_print_iv_entry(adev, entry); 2256 return 0; 2257 } 2258 2259 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev, 2260 struct amdgpu_irq_src *source, 2261 struct amdgpu_iv_entry *entry) 2262 { 2263 dev_dbg_ratelimited(adev->dev, 2264 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 2265 sdma_v4_0_print_iv_entry(adev, entry); 2266 return 0; 2267 } 2268 2269 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev, 2270 struct amdgpu_irq_src *source, 2271 struct amdgpu_iv_entry *entry) 2272 { 2273 dev_dbg_ratelimited(adev->dev, 2274 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 2275 sdma_v4_0_print_iv_entry(adev, entry); 2276 return 0; 2277 } 2278 2279 static void sdma_v4_0_update_medium_grain_clock_gating( 2280 struct amdgpu_device *adev, 2281 bool enable) 2282 { 2283 uint32_t data, def; 2284 int i; 2285 2286 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 2287 for (i = 0; i < adev->sdma.num_instances; i++) { 2288 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2289 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2290 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2291 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2292 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2293 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2294 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2295 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2296 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2297 if (def != data) 2298 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2299 } 2300 } else { 2301 for (i = 0; i < adev->sdma.num_instances; i++) { 2302 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2303 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2304 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2305 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2306 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2307 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2308 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2309 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2310 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2311 if (def != data) 2312 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2313 } 2314 } 2315 } 2316 2317 2318 static void sdma_v4_0_update_medium_grain_light_sleep( 2319 struct amdgpu_device *adev, 2320 bool enable) 2321 { 2322 uint32_t data, def; 2323 int i; 2324 2325 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 2326 for (i = 0; i < adev->sdma.num_instances; i++) { 2327 /* 1-not override: enable sdma mem light sleep */ 2328 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2329 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2330 if (def != data) 2331 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2332 } 2333 } else { 2334 for (i = 0; i < adev->sdma.num_instances; i++) { 2335 /* 0-override:disable sdma mem light sleep */ 2336 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2337 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2338 if (def != data) 2339 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2340 } 2341 } 2342 } 2343 2344 static int sdma_v4_0_set_clockgating_state(void *handle, 2345 enum amd_clockgating_state state) 2346 { 2347 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2348 2349 if (amdgpu_sriov_vf(adev)) 2350 return 0; 2351 2352 sdma_v4_0_update_medium_grain_clock_gating(adev, 2353 state == AMD_CG_STATE_GATE); 2354 sdma_v4_0_update_medium_grain_light_sleep(adev, 2355 state == AMD_CG_STATE_GATE); 2356 return 0; 2357 } 2358 2359 static int sdma_v4_0_set_powergating_state(void *handle, 2360 enum amd_powergating_state state) 2361 { 2362 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2363 2364 switch (adev->asic_type) { 2365 case CHIP_RAVEN: 2366 case CHIP_RENOIR: 2367 sdma_v4_1_update_power_gating(adev, 2368 state == AMD_PG_STATE_GATE); 2369 break; 2370 default: 2371 break; 2372 } 2373 2374 return 0; 2375 } 2376 2377 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) 2378 { 2379 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2380 int data; 2381 2382 if (amdgpu_sriov_vf(adev)) 2383 *flags = 0; 2384 2385 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2386 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); 2387 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 2388 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2389 2390 /* AMD_CG_SUPPORT_SDMA_LS */ 2391 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 2392 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2393 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2394 } 2395 2396 const struct amd_ip_funcs sdma_v4_0_ip_funcs = { 2397 .name = "sdma_v4_0", 2398 .early_init = sdma_v4_0_early_init, 2399 .late_init = sdma_v4_0_late_init, 2400 .sw_init = sdma_v4_0_sw_init, 2401 .sw_fini = sdma_v4_0_sw_fini, 2402 .hw_init = sdma_v4_0_hw_init, 2403 .hw_fini = sdma_v4_0_hw_fini, 2404 .suspend = sdma_v4_0_suspend, 2405 .resume = sdma_v4_0_resume, 2406 .is_idle = sdma_v4_0_is_idle, 2407 .wait_for_idle = sdma_v4_0_wait_for_idle, 2408 .soft_reset = sdma_v4_0_soft_reset, 2409 .set_clockgating_state = sdma_v4_0_set_clockgating_state, 2410 .set_powergating_state = sdma_v4_0_set_powergating_state, 2411 .get_clockgating_state = sdma_v4_0_get_clockgating_state, 2412 }; 2413 2414 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { 2415 .type = AMDGPU_RING_TYPE_SDMA, 2416 .align_mask = 0xf, 2417 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2418 .support_64bit_ptrs = true, 2419 .vmhub = AMDGPU_MMHUB_0, 2420 .get_rptr = sdma_v4_0_ring_get_rptr, 2421 .get_wptr = sdma_v4_0_ring_get_wptr, 2422 .set_wptr = sdma_v4_0_ring_set_wptr, 2423 .emit_frame_size = 2424 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2425 3 + /* hdp invalidate */ 2426 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2427 /* sdma_v4_0_ring_emit_vm_flush */ 2428 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2429 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2430 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2431 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2432 .emit_ib = sdma_v4_0_ring_emit_ib, 2433 .emit_fence = sdma_v4_0_ring_emit_fence, 2434 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2435 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2436 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2437 .test_ring = sdma_v4_0_ring_test_ring, 2438 .test_ib = sdma_v4_0_ring_test_ib, 2439 .insert_nop = sdma_v4_0_ring_insert_nop, 2440 .pad_ib = sdma_v4_0_ring_pad_ib, 2441 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2442 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2443 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2444 }; 2445 2446 /* 2447 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1). 2448 * So create a individual constant ring_funcs for those instances. 2449 */ 2450 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = { 2451 .type = AMDGPU_RING_TYPE_SDMA, 2452 .align_mask = 0xf, 2453 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2454 .support_64bit_ptrs = true, 2455 .vmhub = AMDGPU_MMHUB_1, 2456 .get_rptr = sdma_v4_0_ring_get_rptr, 2457 .get_wptr = sdma_v4_0_ring_get_wptr, 2458 .set_wptr = sdma_v4_0_ring_set_wptr, 2459 .emit_frame_size = 2460 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2461 3 + /* hdp invalidate */ 2462 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2463 /* sdma_v4_0_ring_emit_vm_flush */ 2464 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2465 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2466 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2467 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2468 .emit_ib = sdma_v4_0_ring_emit_ib, 2469 .emit_fence = sdma_v4_0_ring_emit_fence, 2470 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2471 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2472 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2473 .test_ring = sdma_v4_0_ring_test_ring, 2474 .test_ib = sdma_v4_0_ring_test_ib, 2475 .insert_nop = sdma_v4_0_ring_insert_nop, 2476 .pad_ib = sdma_v4_0_ring_pad_ib, 2477 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2478 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2479 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2480 }; 2481 2482 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { 2483 .type = AMDGPU_RING_TYPE_SDMA, 2484 .align_mask = 0xf, 2485 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2486 .support_64bit_ptrs = true, 2487 .vmhub = AMDGPU_MMHUB_0, 2488 .get_rptr = sdma_v4_0_ring_get_rptr, 2489 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2490 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2491 .emit_frame_size = 2492 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2493 3 + /* hdp invalidate */ 2494 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2495 /* sdma_v4_0_ring_emit_vm_flush */ 2496 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2497 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2498 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2499 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2500 .emit_ib = sdma_v4_0_ring_emit_ib, 2501 .emit_fence = sdma_v4_0_ring_emit_fence, 2502 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2503 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2504 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2505 .test_ring = sdma_v4_0_ring_test_ring, 2506 .test_ib = sdma_v4_0_ring_test_ib, 2507 .insert_nop = sdma_v4_0_ring_insert_nop, 2508 .pad_ib = sdma_v4_0_ring_pad_ib, 2509 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2510 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2511 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2512 }; 2513 2514 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = { 2515 .type = AMDGPU_RING_TYPE_SDMA, 2516 .align_mask = 0xf, 2517 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2518 .support_64bit_ptrs = true, 2519 .vmhub = AMDGPU_MMHUB_1, 2520 .get_rptr = sdma_v4_0_ring_get_rptr, 2521 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2522 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2523 .emit_frame_size = 2524 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2525 3 + /* hdp invalidate */ 2526 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2527 /* sdma_v4_0_ring_emit_vm_flush */ 2528 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2529 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2530 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2531 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2532 .emit_ib = sdma_v4_0_ring_emit_ib, 2533 .emit_fence = sdma_v4_0_ring_emit_fence, 2534 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2535 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2536 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2537 .test_ring = sdma_v4_0_ring_test_ring, 2538 .test_ib = sdma_v4_0_ring_test_ib, 2539 .insert_nop = sdma_v4_0_ring_insert_nop, 2540 .pad_ib = sdma_v4_0_ring_pad_ib, 2541 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2542 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2543 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2544 }; 2545 2546 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) 2547 { 2548 int i; 2549 2550 for (i = 0; i < adev->sdma.num_instances; i++) { 2551 if (adev->asic_type == CHIP_ARCTURUS && i >= 5) 2552 adev->sdma.instance[i].ring.funcs = 2553 &sdma_v4_0_ring_funcs_2nd_mmhub; 2554 else 2555 adev->sdma.instance[i].ring.funcs = 2556 &sdma_v4_0_ring_funcs; 2557 adev->sdma.instance[i].ring.me = i; 2558 if (adev->sdma.has_page_queue) { 2559 if (adev->asic_type == CHIP_ARCTURUS && i >= 5) 2560 adev->sdma.instance[i].page.funcs = 2561 &sdma_v4_0_page_ring_funcs_2nd_mmhub; 2562 else 2563 adev->sdma.instance[i].page.funcs = 2564 &sdma_v4_0_page_ring_funcs; 2565 adev->sdma.instance[i].page.me = i; 2566 } 2567 } 2568 } 2569 2570 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { 2571 .set = sdma_v4_0_set_trap_irq_state, 2572 .process = sdma_v4_0_process_trap_irq, 2573 }; 2574 2575 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { 2576 .process = sdma_v4_0_process_illegal_inst_irq, 2577 }; 2578 2579 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = { 2580 .set = sdma_v4_0_set_ecc_irq_state, 2581 .process = amdgpu_sdma_process_ecc_irq, 2582 }; 2583 2584 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = { 2585 .process = sdma_v4_0_process_vm_hole_irq, 2586 }; 2587 2588 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = { 2589 .process = sdma_v4_0_process_doorbell_invalid_irq, 2590 }; 2591 2592 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = { 2593 .process = sdma_v4_0_process_pool_timeout_irq, 2594 }; 2595 2596 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = { 2597 .process = sdma_v4_0_process_srbm_write_irq, 2598 }; 2599 2600 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) 2601 { 2602 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 2603 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 2604 /*For Arcturus and Aldebaran, add another 4 irq handler*/ 2605 switch (adev->sdma.num_instances) { 2606 case 5: 2607 case 8: 2608 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 2609 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 2610 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 2611 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 2612 break; 2613 default: 2614 break; 2615 } 2616 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; 2617 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; 2618 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs; 2619 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs; 2620 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs; 2621 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs; 2622 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs; 2623 } 2624 2625 /** 2626 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine 2627 * 2628 * @ib: indirect buffer to copy to 2629 * @src_offset: src GPU address 2630 * @dst_offset: dst GPU address 2631 * @byte_count: number of bytes to xfer 2632 * @tmz: if a secure copy should be used 2633 * 2634 * Copy GPU buffers using the DMA engine (VEGA10/12). 2635 * Used by the amdgpu ttm implementation to move pages if 2636 * registered as the asic copy callback. 2637 */ 2638 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, 2639 uint64_t src_offset, 2640 uint64_t dst_offset, 2641 uint32_t byte_count, 2642 bool tmz) 2643 { 2644 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2645 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 2646 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 2647 ib->ptr[ib->length_dw++] = byte_count - 1; 2648 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2649 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2650 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2651 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2652 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2653 } 2654 2655 /** 2656 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine 2657 * 2658 * @ib: indirect buffer to copy to 2659 * @src_data: value to write to buffer 2660 * @dst_offset: dst GPU address 2661 * @byte_count: number of bytes to xfer 2662 * 2663 * Fill GPU buffers using the DMA engine (VEGA10/12). 2664 */ 2665 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, 2666 uint32_t src_data, 2667 uint64_t dst_offset, 2668 uint32_t byte_count) 2669 { 2670 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2671 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2672 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2673 ib->ptr[ib->length_dw++] = src_data; 2674 ib->ptr[ib->length_dw++] = byte_count - 1; 2675 } 2676 2677 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { 2678 .copy_max_bytes = 0x400000, 2679 .copy_num_dw = 7, 2680 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, 2681 2682 .fill_max_bytes = 0x400000, 2683 .fill_num_dw = 5, 2684 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, 2685 }; 2686 2687 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) 2688 { 2689 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; 2690 if (adev->sdma.has_page_queue) 2691 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2692 else 2693 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2694 } 2695 2696 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { 2697 .copy_pte_num_dw = 7, 2698 .copy_pte = sdma_v4_0_vm_copy_pte, 2699 2700 .write_pte = sdma_v4_0_vm_write_pte, 2701 .set_pte_pde = sdma_v4_0_vm_set_pte_pde, 2702 }; 2703 2704 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) 2705 { 2706 struct drm_gpu_scheduler *sched; 2707 unsigned i; 2708 2709 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; 2710 for (i = 0; i < adev->sdma.num_instances; i++) { 2711 if (adev->sdma.has_page_queue) 2712 sched = &adev->sdma.instance[i].page.sched; 2713 else 2714 sched = &adev->sdma.instance[i].ring.sched; 2715 adev->vm_manager.vm_pte_scheds[i] = sched; 2716 } 2717 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2718 } 2719 2720 static void sdma_v4_0_get_ras_error_count(uint32_t value, 2721 uint32_t instance, 2722 uint32_t *sec_count) 2723 { 2724 uint32_t i; 2725 uint32_t sec_cnt; 2726 2727 /* double bits error (multiple bits) error detection is not supported */ 2728 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) { 2729 /* the SDMA_EDC_COUNTER register in each sdma instance 2730 * shares the same sed shift_mask 2731 * */ 2732 sec_cnt = (value & 2733 sdma_v4_0_ras_fields[i].sec_count_mask) >> 2734 sdma_v4_0_ras_fields[i].sec_count_shift; 2735 if (sec_cnt) { 2736 DRM_INFO("Detected %s in SDMA%d, SED %d\n", 2737 sdma_v4_0_ras_fields[i].name, 2738 instance, sec_cnt); 2739 *sec_count += sec_cnt; 2740 } 2741 } 2742 } 2743 2744 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, 2745 uint32_t instance, void *ras_error_status) 2746 { 2747 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 2748 uint32_t sec_count = 0; 2749 uint32_t reg_value = 0; 2750 2751 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER); 2752 /* double bit error is not supported */ 2753 if (reg_value) 2754 sdma_v4_0_get_ras_error_count(reg_value, 2755 instance, &sec_count); 2756 /* err_data->ce_count should be initialized to 0 2757 * before calling into this function */ 2758 err_data->ce_count += sec_count; 2759 /* double bit error is not supported 2760 * set ue count to 0 */ 2761 err_data->ue_count = 0; 2762 2763 return 0; 2764 }; 2765 2766 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev) 2767 { 2768 int i; 2769 2770 /* read back edc counter registers to clear the counters */ 2771 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2772 for (i = 0; i < adev->sdma.num_instances; i++) 2773 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER); 2774 } 2775 } 2776 2777 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = { 2778 .ras_late_init = amdgpu_sdma_ras_late_init, 2779 .ras_fini = amdgpu_sdma_ras_fini, 2780 .query_ras_error_count = sdma_v4_0_query_ras_error_count, 2781 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count, 2782 }; 2783 2784 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev) 2785 { 2786 switch (adev->asic_type) { 2787 case CHIP_VEGA20: 2788 case CHIP_ARCTURUS: 2789 adev->sdma.funcs = &sdma_v4_0_ras_funcs; 2790 break; 2791 case CHIP_ALDEBARAN: 2792 adev->sdma.funcs = &sdma_v4_4_ras_funcs; 2793 break; 2794 default: 2795 break; 2796 } 2797 } 2798 2799 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { 2800 .type = AMD_IP_BLOCK_TYPE_SDMA, 2801 .major = 4, 2802 .minor = 0, 2803 .rev = 0, 2804 .funcs = &sdma_v4_0_ip_funcs, 2805 }; 2806