1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 
86 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
87 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
112 };
113 
114 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
118 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
120 };
121 
122 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
125 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
126 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
128 };
129 
130 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
142 };
143 
144 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
146 };
147 
148 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
149 {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
176 };
177 
178 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
205 };
206 
207 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
208 {
209 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
210 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
211 };
212 
213 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
214 {
215 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
217 };
218 
219 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
220 {
221 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
224 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
225 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
226 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
227 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
228 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
229 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
234 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
236 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
240 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
241 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
245 };
246 
247 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
248 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
250 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003002),
252 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
253 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
254 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
255 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
256 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
257 };
258 
259 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
260 		u32 instance, u32 offset)
261 {
262 	switch (instance) {
263 	case 0:
264 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
265 	case 1:
266 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
267 	case 2:
268 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
269 	case 3:
270 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
271 	case 4:
272 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
273 	case 5:
274 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
275 	case 6:
276 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
277 	case 7:
278 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
279 	default:
280 		break;
281 	}
282 	return 0;
283 }
284 
285 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
286 {
287 	switch (seq_num) {
288 	case 0:
289 		return SOC15_IH_CLIENTID_SDMA0;
290 	case 1:
291 		return SOC15_IH_CLIENTID_SDMA1;
292 	case 2:
293 		return SOC15_IH_CLIENTID_SDMA2;
294 	case 3:
295 		return SOC15_IH_CLIENTID_SDMA3;
296 	case 4:
297 		return SOC15_IH_CLIENTID_SDMA4;
298 	case 5:
299 		return SOC15_IH_CLIENTID_SDMA5;
300 	case 6:
301 		return SOC15_IH_CLIENTID_SDMA6;
302 	case 7:
303 		return SOC15_IH_CLIENTID_SDMA7;
304 	default:
305 		break;
306 	}
307 	return -EINVAL;
308 }
309 
310 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
311 {
312 	switch (client_id) {
313 	case SOC15_IH_CLIENTID_SDMA0:
314 		return 0;
315 	case SOC15_IH_CLIENTID_SDMA1:
316 		return 1;
317 	case SOC15_IH_CLIENTID_SDMA2:
318 		return 2;
319 	case SOC15_IH_CLIENTID_SDMA3:
320 		return 3;
321 	case SOC15_IH_CLIENTID_SDMA4:
322 		return 4;
323 	case SOC15_IH_CLIENTID_SDMA5:
324 		return 5;
325 	case SOC15_IH_CLIENTID_SDMA6:
326 		return 6;
327 	case SOC15_IH_CLIENTID_SDMA7:
328 		return 7;
329 	default:
330 		break;
331 	}
332 	return -EINVAL;
333 }
334 
335 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
336 {
337 	switch (adev->asic_type) {
338 	case CHIP_VEGA10:
339 		soc15_program_register_sequence(adev,
340 						golden_settings_sdma_4,
341 						ARRAY_SIZE(golden_settings_sdma_4));
342 		soc15_program_register_sequence(adev,
343 						golden_settings_sdma_vg10,
344 						ARRAY_SIZE(golden_settings_sdma_vg10));
345 		break;
346 	case CHIP_VEGA12:
347 		soc15_program_register_sequence(adev,
348 						golden_settings_sdma_4,
349 						ARRAY_SIZE(golden_settings_sdma_4));
350 		soc15_program_register_sequence(adev,
351 						golden_settings_sdma_vg12,
352 						ARRAY_SIZE(golden_settings_sdma_vg12));
353 		break;
354 	case CHIP_VEGA20:
355 		soc15_program_register_sequence(adev,
356 						golden_settings_sdma0_4_2_init,
357 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
358 		soc15_program_register_sequence(adev,
359 						golden_settings_sdma0_4_2,
360 						ARRAY_SIZE(golden_settings_sdma0_4_2));
361 		soc15_program_register_sequence(adev,
362 						golden_settings_sdma1_4_2,
363 						ARRAY_SIZE(golden_settings_sdma1_4_2));
364 		break;
365 	case CHIP_ARCTURUS:
366 		soc15_program_register_sequence(adev,
367 						golden_settings_sdma_arct,
368 						ARRAY_SIZE(golden_settings_sdma_arct));
369 		break;
370 	case CHIP_RAVEN:
371 		soc15_program_register_sequence(adev,
372 						golden_settings_sdma_4_1,
373 						ARRAY_SIZE(golden_settings_sdma_4_1));
374 		if (adev->rev_id >= 8)
375 			soc15_program_register_sequence(adev,
376 							golden_settings_sdma_rv2,
377 							ARRAY_SIZE(golden_settings_sdma_rv2));
378 		else
379 			soc15_program_register_sequence(adev,
380 							golden_settings_sdma_rv1,
381 							ARRAY_SIZE(golden_settings_sdma_rv1));
382 		break;
383 	case CHIP_RENOIR:
384 		soc15_program_register_sequence(adev,
385 						golden_settings_sdma_4_3,
386 						ARRAY_SIZE(golden_settings_sdma_4_3));
387 		break;
388 	default:
389 		break;
390 	}
391 }
392 
393 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
394 {
395 	int err = 0;
396 	const struct sdma_firmware_header_v1_0 *hdr;
397 
398 	err = amdgpu_ucode_validate(sdma_inst->fw);
399 	if (err)
400 		return err;
401 
402 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
403 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
404 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
405 
406 	if (sdma_inst->feature_version >= 20)
407 		sdma_inst->burst_nop = true;
408 
409 	return 0;
410 }
411 
412 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
413 {
414 	int i;
415 
416 	for (i = 0; i < adev->sdma.num_instances; i++) {
417 		if (adev->sdma.instance[i].fw != NULL)
418 			release_firmware(adev->sdma.instance[i].fw);
419 
420 		/* arcturus shares the same FW memory across
421 		   all SDMA isntances */
422 		if (adev->asic_type == CHIP_ARCTURUS)
423 			break;
424 	}
425 
426 	memset((void*)adev->sdma.instance, 0,
427 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
428 }
429 
430 /**
431  * sdma_v4_0_init_microcode - load ucode images from disk
432  *
433  * @adev: amdgpu_device pointer
434  *
435  * Use the firmware interface to load the ucode images into
436  * the driver (not loaded into hw).
437  * Returns 0 on success, error on failure.
438  */
439 
440 // emulation only, won't work on real chip
441 // vega10 real chip need to use PSP to load firmware
442 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
443 {
444 	const char *chip_name;
445 	char fw_name[30];
446 	int err = 0, i;
447 	struct amdgpu_firmware_info *info = NULL;
448 	const struct common_firmware_header *header = NULL;
449 
450 	DRM_DEBUG("\n");
451 
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		chip_name = "vega10";
455 		break;
456 	case CHIP_VEGA12:
457 		chip_name = "vega12";
458 		break;
459 	case CHIP_VEGA20:
460 		chip_name = "vega20";
461 		break;
462 	case CHIP_RAVEN:
463 		if (adev->rev_id >= 8)
464 			chip_name = "raven2";
465 		else if (adev->pdev->device == 0x15d8)
466 			chip_name = "picasso";
467 		else
468 			chip_name = "raven";
469 		break;
470 	case CHIP_ARCTURUS:
471 		chip_name = "arcturus";
472 		break;
473 	case CHIP_RENOIR:
474 		chip_name = "renoir";
475 		break;
476 	default:
477 		BUG();
478 	}
479 
480 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
481 
482 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
483 	if (err)
484 		goto out;
485 
486 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
487 	if (err)
488 		goto out;
489 
490 	for (i = 1; i < adev->sdma.num_instances; i++) {
491 		if (adev->asic_type == CHIP_ARCTURUS) {
492 			/* Acturus will leverage the same FW memory
493 			   for every SDMA instance */
494 			memcpy((void*)&adev->sdma.instance[i],
495 			       (void*)&adev->sdma.instance[0],
496 			       sizeof(struct amdgpu_sdma_instance));
497 		}
498 		else {
499 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
500 
501 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
502 			if (err)
503 				goto out;
504 
505 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 	DRM_DEBUG("psp_load == '%s'\n",
512 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
513 
514 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
515 		for (i = 0; i < adev->sdma.num_instances; i++) {
516 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
517 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
518 			info->fw = adev->sdma.instance[i].fw;
519 			header = (const struct common_firmware_header *)info->fw->data;
520 			adev->firmware.fw_size +=
521 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
522 		}
523 	}
524 
525 out:
526 	if (err) {
527 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
528 		sdma_v4_0_destroy_inst_ctx(adev);
529 	}
530 	return err;
531 }
532 
533 /**
534  * sdma_v4_0_ring_get_rptr - get the current read pointer
535  *
536  * @ring: amdgpu ring pointer
537  *
538  * Get the current rptr from the hardware (VEGA10+).
539  */
540 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
541 {
542 	u64 *rptr;
543 
544 	/* XXX check if swapping is necessary on BE */
545 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
546 
547 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
548 	return ((*rptr) >> 2);
549 }
550 
551 /**
552  * sdma_v4_0_ring_get_wptr - get the current write pointer
553  *
554  * @ring: amdgpu ring pointer
555  *
556  * Get the current wptr from the hardware (VEGA10+).
557  */
558 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
559 {
560 	struct amdgpu_device *adev = ring->adev;
561 	u64 wptr;
562 
563 	if (ring->use_doorbell) {
564 		/* XXX check if swapping is necessary on BE */
565 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
566 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
567 	} else {
568 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
569 		wptr = wptr << 32;
570 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
571 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
572 				ring->me, wptr);
573 	}
574 
575 	return wptr >> 2;
576 }
577 
578 /**
579  * sdma_v4_0_ring_set_wptr - commit the write pointer
580  *
581  * @ring: amdgpu ring pointer
582  *
583  * Write the wptr back to the hardware (VEGA10+).
584  */
585 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
586 {
587 	struct amdgpu_device *adev = ring->adev;
588 
589 	DRM_DEBUG("Setting write pointer\n");
590 	if (ring->use_doorbell) {
591 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
592 
593 		DRM_DEBUG("Using doorbell -- "
594 				"wptr_offs == 0x%08x "
595 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
596 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
597 				ring->wptr_offs,
598 				lower_32_bits(ring->wptr << 2),
599 				upper_32_bits(ring->wptr << 2));
600 		/* XXX check if swapping is necessary on BE */
601 		WRITE_ONCE(*wb, (ring->wptr << 2));
602 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
603 				ring->doorbell_index, ring->wptr << 2);
604 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
605 	} else {
606 		DRM_DEBUG("Not using doorbell -- "
607 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
608 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
609 				ring->me,
610 				lower_32_bits(ring->wptr << 2),
611 				ring->me,
612 				upper_32_bits(ring->wptr << 2));
613 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
614 			    lower_32_bits(ring->wptr << 2));
615 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
616 			    upper_32_bits(ring->wptr << 2));
617 	}
618 }
619 
620 /**
621  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
622  *
623  * @ring: amdgpu ring pointer
624  *
625  * Get the current wptr from the hardware (VEGA10+).
626  */
627 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
628 {
629 	struct amdgpu_device *adev = ring->adev;
630 	u64 wptr;
631 
632 	if (ring->use_doorbell) {
633 		/* XXX check if swapping is necessary on BE */
634 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
635 	} else {
636 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
637 		wptr = wptr << 32;
638 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
639 	}
640 
641 	return wptr >> 2;
642 }
643 
644 /**
645  * sdma_v4_0_ring_set_wptr - commit the write pointer
646  *
647  * @ring: amdgpu ring pointer
648  *
649  * Write the wptr back to the hardware (VEGA10+).
650  */
651 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
652 {
653 	struct amdgpu_device *adev = ring->adev;
654 
655 	if (ring->use_doorbell) {
656 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
657 
658 		/* XXX check if swapping is necessary on BE */
659 		WRITE_ONCE(*wb, (ring->wptr << 2));
660 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
661 	} else {
662 		uint64_t wptr = ring->wptr << 2;
663 
664 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
665 			    lower_32_bits(wptr));
666 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
667 			    upper_32_bits(wptr));
668 	}
669 }
670 
671 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
672 {
673 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
674 	int i;
675 
676 	for (i = 0; i < count; i++)
677 		if (sdma && sdma->burst_nop && (i == 0))
678 			amdgpu_ring_write(ring, ring->funcs->nop |
679 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
680 		else
681 			amdgpu_ring_write(ring, ring->funcs->nop);
682 }
683 
684 /**
685  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
686  *
687  * @ring: amdgpu ring pointer
688  * @ib: IB object to schedule
689  *
690  * Schedule an IB in the DMA ring (VEGA10).
691  */
692 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
693 				   struct amdgpu_job *job,
694 				   struct amdgpu_ib *ib,
695 				   uint32_t flags)
696 {
697 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
698 
699 	/* IB packet must end on a 8 DW boundary */
700 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
701 
702 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
703 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
704 	/* base must be 32 byte aligned */
705 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
706 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
707 	amdgpu_ring_write(ring, ib->length_dw);
708 	amdgpu_ring_write(ring, 0);
709 	amdgpu_ring_write(ring, 0);
710 
711 }
712 
713 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
714 				   int mem_space, int hdp,
715 				   uint32_t addr0, uint32_t addr1,
716 				   uint32_t ref, uint32_t mask,
717 				   uint32_t inv)
718 {
719 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
720 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
721 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
722 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
723 	if (mem_space) {
724 		/* memory */
725 		amdgpu_ring_write(ring, addr0);
726 		amdgpu_ring_write(ring, addr1);
727 	} else {
728 		/* registers */
729 		amdgpu_ring_write(ring, addr0 << 2);
730 		amdgpu_ring_write(ring, addr1 << 2);
731 	}
732 	amdgpu_ring_write(ring, ref); /* reference */
733 	amdgpu_ring_write(ring, mask); /* mask */
734 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
735 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
736 }
737 
738 /**
739  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
740  *
741  * @ring: amdgpu ring pointer
742  *
743  * Emit an hdp flush packet on the requested DMA ring.
744  */
745 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
746 {
747 	struct amdgpu_device *adev = ring->adev;
748 	u32 ref_and_mask = 0;
749 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
750 
751 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
752 
753 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
754 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
755 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
756 			       ref_and_mask, ref_and_mask, 10);
757 }
758 
759 /**
760  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
761  *
762  * @ring: amdgpu ring pointer
763  * @fence: amdgpu fence object
764  *
765  * Add a DMA fence packet to the ring to write
766  * the fence seq number and DMA trap packet to generate
767  * an interrupt if needed (VEGA10).
768  */
769 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
770 				      unsigned flags)
771 {
772 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
773 	/* write the fence */
774 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
775 	/* zero in first two bits */
776 	BUG_ON(addr & 0x3);
777 	amdgpu_ring_write(ring, lower_32_bits(addr));
778 	amdgpu_ring_write(ring, upper_32_bits(addr));
779 	amdgpu_ring_write(ring, lower_32_bits(seq));
780 
781 	/* optionally write high bits as well */
782 	if (write64bit) {
783 		addr += 4;
784 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
785 		/* zero in first two bits */
786 		BUG_ON(addr & 0x3);
787 		amdgpu_ring_write(ring, lower_32_bits(addr));
788 		amdgpu_ring_write(ring, upper_32_bits(addr));
789 		amdgpu_ring_write(ring, upper_32_bits(seq));
790 	}
791 
792 	/* generate an interrupt */
793 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
794 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
795 }
796 
797 
798 /**
799  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
800  *
801  * @adev: amdgpu_device pointer
802  *
803  * Stop the gfx async dma ring buffers (VEGA10).
804  */
805 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
806 {
807 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
808 	u32 rb_cntl, ib_cntl;
809 	int i, unset = 0;
810 
811 	for (i = 0; i < adev->sdma.num_instances; i++) {
812 		sdma[i] = &adev->sdma.instance[i].ring;
813 
814 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
815 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
816 			unset = 1;
817 		}
818 
819 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
820 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
821 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
822 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
823 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
824 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
825 
826 		sdma[i]->sched.ready = false;
827 	}
828 }
829 
830 /**
831  * sdma_v4_0_rlc_stop - stop the compute async dma engines
832  *
833  * @adev: amdgpu_device pointer
834  *
835  * Stop the compute async dma queues (VEGA10).
836  */
837 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
838 {
839 	/* XXX todo */
840 }
841 
842 /**
843  * sdma_v4_0_page_stop - stop the page async dma engines
844  *
845  * @adev: amdgpu_device pointer
846  *
847  * Stop the page async dma ring buffers (VEGA10).
848  */
849 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
850 {
851 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
852 	u32 rb_cntl, ib_cntl;
853 	int i;
854 	bool unset = false;
855 
856 	for (i = 0; i < adev->sdma.num_instances; i++) {
857 		sdma[i] = &adev->sdma.instance[i].page;
858 
859 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
860 			(unset == false)) {
861 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
862 			unset = true;
863 		}
864 
865 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
866 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
867 					RB_ENABLE, 0);
868 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
869 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
870 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
871 					IB_ENABLE, 0);
872 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
873 
874 		sdma[i]->sched.ready = false;
875 	}
876 }
877 
878 /**
879  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
880  *
881  * @adev: amdgpu_device pointer
882  * @enable: enable/disable the DMA MEs context switch.
883  *
884  * Halt or unhalt the async dma engines context switch (VEGA10).
885  */
886 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
887 {
888 	u32 f32_cntl, phase_quantum = 0;
889 	int i;
890 
891 	if (amdgpu_sdma_phase_quantum) {
892 		unsigned value = amdgpu_sdma_phase_quantum;
893 		unsigned unit = 0;
894 
895 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
896 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
897 			value = (value + 1) >> 1;
898 			unit++;
899 		}
900 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
901 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
902 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
903 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
904 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
905 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
906 			WARN_ONCE(1,
907 			"clamping sdma_phase_quantum to %uK clock cycles\n",
908 				  value << unit);
909 		}
910 		phase_quantum =
911 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
912 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
913 	}
914 
915 	for (i = 0; i < adev->sdma.num_instances; i++) {
916 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
917 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
918 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
919 		if (enable && amdgpu_sdma_phase_quantum) {
920 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
921 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
922 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
923 		}
924 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
925 	}
926 
927 }
928 
929 /**
930  * sdma_v4_0_enable - stop the async dma engines
931  *
932  * @adev: amdgpu_device pointer
933  * @enable: enable/disable the DMA MEs.
934  *
935  * Halt or unhalt the async dma engines (VEGA10).
936  */
937 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
938 {
939 	u32 f32_cntl;
940 	int i;
941 
942 	if (enable == false) {
943 		sdma_v4_0_gfx_stop(adev);
944 		sdma_v4_0_rlc_stop(adev);
945 		if (adev->sdma.has_page_queue)
946 			sdma_v4_0_page_stop(adev);
947 	}
948 
949 	for (i = 0; i < adev->sdma.num_instances; i++) {
950 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
951 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
952 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
953 	}
954 }
955 
956 /**
957  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
958  */
959 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
960 {
961 	/* Set ring buffer size in dwords */
962 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
963 
964 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
965 #ifdef __BIG_ENDIAN
966 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
967 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
968 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
969 #endif
970 	return rb_cntl;
971 }
972 
973 /**
974  * sdma_v4_0_gfx_resume - setup and start the async dma engines
975  *
976  * @adev: amdgpu_device pointer
977  * @i: instance to resume
978  *
979  * Set up the gfx DMA ring buffers and enable them (VEGA10).
980  * Returns 0 for success, error for failure.
981  */
982 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
983 {
984 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
985 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
986 	u32 wb_offset;
987 	u32 doorbell;
988 	u32 doorbell_offset;
989 	u64 wptr_gpu_addr;
990 
991 	wb_offset = (ring->rptr_offs * 4);
992 
993 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
994 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
995 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
996 
997 	/* Initialize the ring buffer's read and write pointers */
998 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
999 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1000 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1001 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1002 
1003 	/* set the wb address whether it's enabled or not */
1004 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1005 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1006 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1007 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1008 
1009 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1010 				RPTR_WRITEBACK_ENABLE, 1);
1011 
1012 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1013 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1014 
1015 	ring->wptr = 0;
1016 
1017 	/* before programing wptr to a less value, need set minor_ptr_update first */
1018 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1019 
1020 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1021 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1022 
1023 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1024 				 ring->use_doorbell);
1025 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1026 					SDMA0_GFX_DOORBELL_OFFSET,
1027 					OFFSET, ring->doorbell_index);
1028 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1029 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1030 
1031 	sdma_v4_0_ring_set_wptr(ring);
1032 
1033 	/* set minor_ptr_update to 0 after wptr programed */
1034 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1035 
1036 	/* setup the wptr shadow polling */
1037 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1038 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1039 		    lower_32_bits(wptr_gpu_addr));
1040 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1041 		    upper_32_bits(wptr_gpu_addr));
1042 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1043 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1044 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1045 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1046 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1047 
1048 	/* enable DMA RB */
1049 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1050 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1051 
1052 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1053 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1054 #ifdef __BIG_ENDIAN
1055 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1056 #endif
1057 	/* enable DMA IBs */
1058 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1059 
1060 	ring->sched.ready = true;
1061 }
1062 
1063 /**
1064  * sdma_v4_0_page_resume - setup and start the async dma engines
1065  *
1066  * @adev: amdgpu_device pointer
1067  * @i: instance to resume
1068  *
1069  * Set up the page DMA ring buffers and enable them (VEGA10).
1070  * Returns 0 for success, error for failure.
1071  */
1072 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1073 {
1074 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1075 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1076 	u32 wb_offset;
1077 	u32 doorbell;
1078 	u32 doorbell_offset;
1079 	u64 wptr_gpu_addr;
1080 
1081 	wb_offset = (ring->rptr_offs * 4);
1082 
1083 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1084 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1085 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1086 
1087 	/* Initialize the ring buffer's read and write pointers */
1088 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1089 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1090 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1091 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1092 
1093 	/* set the wb address whether it's enabled or not */
1094 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1095 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1096 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1097 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1098 
1099 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1100 				RPTR_WRITEBACK_ENABLE, 1);
1101 
1102 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1103 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1104 
1105 	ring->wptr = 0;
1106 
1107 	/* before programing wptr to a less value, need set minor_ptr_update first */
1108 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1109 
1110 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1111 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1112 
1113 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1114 				 ring->use_doorbell);
1115 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1116 					SDMA0_PAGE_DOORBELL_OFFSET,
1117 					OFFSET, ring->doorbell_index);
1118 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1119 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1120 
1121 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1122 	sdma_v4_0_page_ring_set_wptr(ring);
1123 
1124 	/* set minor_ptr_update to 0 after wptr programed */
1125 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1126 
1127 	/* setup the wptr shadow polling */
1128 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1129 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1130 		    lower_32_bits(wptr_gpu_addr));
1131 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1132 		    upper_32_bits(wptr_gpu_addr));
1133 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1134 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1135 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1136 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1137 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1138 
1139 	/* enable DMA RB */
1140 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1141 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1142 
1143 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1144 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1145 #ifdef __BIG_ENDIAN
1146 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1147 #endif
1148 	/* enable DMA IBs */
1149 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1150 
1151 	ring->sched.ready = true;
1152 }
1153 
1154 static void
1155 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1156 {
1157 	uint32_t def, data;
1158 
1159 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1160 		/* enable idle interrupt */
1161 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1162 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1163 
1164 		if (data != def)
1165 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1166 	} else {
1167 		/* disable idle interrupt */
1168 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1169 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1170 		if (data != def)
1171 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1172 	}
1173 }
1174 
1175 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1176 {
1177 	uint32_t def, data;
1178 
1179 	/* Enable HW based PG. */
1180 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1181 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1182 	if (data != def)
1183 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1184 
1185 	/* enable interrupt */
1186 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1187 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1188 	if (data != def)
1189 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1190 
1191 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1192 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1193 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1194 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1195 	/* Configure switch time for hysteresis purpose. Use default right now */
1196 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1197 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1198 	if(data != def)
1199 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1200 }
1201 
1202 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1203 {
1204 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1205 		return;
1206 
1207 	switch (adev->asic_type) {
1208 	case CHIP_RAVEN:
1209 		sdma_v4_1_init_power_gating(adev);
1210 		sdma_v4_1_update_power_gating(adev, true);
1211 		break;
1212 	default:
1213 		break;
1214 	}
1215 }
1216 
1217 /**
1218  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1219  *
1220  * @adev: amdgpu_device pointer
1221  *
1222  * Set up the compute DMA queues and enable them (VEGA10).
1223  * Returns 0 for success, error for failure.
1224  */
1225 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1226 {
1227 	sdma_v4_0_init_pg(adev);
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1234  *
1235  * @adev: amdgpu_device pointer
1236  *
1237  * Loads the sDMA0/1 ucode.
1238  * Returns 0 for success, -EINVAL if the ucode is not available.
1239  */
1240 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1241 {
1242 	const struct sdma_firmware_header_v1_0 *hdr;
1243 	const __le32 *fw_data;
1244 	u32 fw_size;
1245 	int i, j;
1246 
1247 	/* halt the MEs */
1248 	sdma_v4_0_enable(adev, false);
1249 
1250 	for (i = 0; i < adev->sdma.num_instances; i++) {
1251 		if (!adev->sdma.instance[i].fw)
1252 			return -EINVAL;
1253 
1254 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1255 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1256 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1257 
1258 		fw_data = (const __le32 *)
1259 			(adev->sdma.instance[i].fw->data +
1260 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1261 
1262 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1263 
1264 		for (j = 0; j < fw_size; j++)
1265 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1266 				    le32_to_cpup(fw_data++));
1267 
1268 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1269 			    adev->sdma.instance[i].fw_version);
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /**
1276  * sdma_v4_0_start - setup and start the async dma engines
1277  *
1278  * @adev: amdgpu_device pointer
1279  *
1280  * Set up the DMA engines and enable them (VEGA10).
1281  * Returns 0 for success, error for failure.
1282  */
1283 static int sdma_v4_0_start(struct amdgpu_device *adev)
1284 {
1285 	struct amdgpu_ring *ring;
1286 	int i, r = 0;
1287 
1288 	if (amdgpu_sriov_vf(adev)) {
1289 		sdma_v4_0_ctx_switch_enable(adev, false);
1290 		sdma_v4_0_enable(adev, false);
1291 	} else {
1292 
1293 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1294 			r = sdma_v4_0_load_microcode(adev);
1295 			if (r)
1296 				return r;
1297 		}
1298 
1299 		/* unhalt the MEs */
1300 		sdma_v4_0_enable(adev, true);
1301 		/* enable sdma ring preemption */
1302 		sdma_v4_0_ctx_switch_enable(adev, true);
1303 	}
1304 
1305 	/* start the gfx rings and rlc compute queues */
1306 	for (i = 0; i < adev->sdma.num_instances; i++) {
1307 		uint32_t temp;
1308 
1309 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1310 		sdma_v4_0_gfx_resume(adev, i);
1311 		if (adev->sdma.has_page_queue)
1312 			sdma_v4_0_page_resume(adev, i);
1313 
1314 		/* set utc l1 enable flag always to 1 */
1315 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1316 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1317 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1318 
1319 		if (!amdgpu_sriov_vf(adev)) {
1320 			/* unhalt engine */
1321 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1322 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1323 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1324 		}
1325 	}
1326 
1327 	if (amdgpu_sriov_vf(adev)) {
1328 		sdma_v4_0_ctx_switch_enable(adev, true);
1329 		sdma_v4_0_enable(adev, true);
1330 	} else {
1331 		r = sdma_v4_0_rlc_resume(adev);
1332 		if (r)
1333 			return r;
1334 	}
1335 
1336 	for (i = 0; i < adev->sdma.num_instances; i++) {
1337 		ring = &adev->sdma.instance[i].ring;
1338 
1339 		r = amdgpu_ring_test_helper(ring);
1340 		if (r)
1341 			return r;
1342 
1343 		if (adev->sdma.has_page_queue) {
1344 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1345 
1346 			r = amdgpu_ring_test_helper(page);
1347 			if (r)
1348 				return r;
1349 
1350 			if (adev->mman.buffer_funcs_ring == page)
1351 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1352 		}
1353 
1354 		if (adev->mman.buffer_funcs_ring == ring)
1355 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1356 	}
1357 
1358 	return r;
1359 }
1360 
1361 /**
1362  * sdma_v4_0_ring_test_ring - simple async dma engine test
1363  *
1364  * @ring: amdgpu_ring structure holding ring information
1365  *
1366  * Test the DMA engine by writing using it to write an
1367  * value to memory. (VEGA10).
1368  * Returns 0 for success, error for failure.
1369  */
1370 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1371 {
1372 	struct amdgpu_device *adev = ring->adev;
1373 	unsigned i;
1374 	unsigned index;
1375 	int r;
1376 	u32 tmp;
1377 	u64 gpu_addr;
1378 
1379 	r = amdgpu_device_wb_get(adev, &index);
1380 	if (r)
1381 		return r;
1382 
1383 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1384 	tmp = 0xCAFEDEAD;
1385 	adev->wb.wb[index] = cpu_to_le32(tmp);
1386 
1387 	r = amdgpu_ring_alloc(ring, 5);
1388 	if (r)
1389 		goto error_free_wb;
1390 
1391 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1392 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1393 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1394 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1395 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1396 	amdgpu_ring_write(ring, 0xDEADBEEF);
1397 	amdgpu_ring_commit(ring);
1398 
1399 	for (i = 0; i < adev->usec_timeout; i++) {
1400 		tmp = le32_to_cpu(adev->wb.wb[index]);
1401 		if (tmp == 0xDEADBEEF)
1402 			break;
1403 		udelay(1);
1404 	}
1405 
1406 	if (i >= adev->usec_timeout)
1407 		r = -ETIMEDOUT;
1408 
1409 error_free_wb:
1410 	amdgpu_device_wb_free(adev, index);
1411 	return r;
1412 }
1413 
1414 /**
1415  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1416  *
1417  * @ring: amdgpu_ring structure holding ring information
1418  *
1419  * Test a simple IB in the DMA ring (VEGA10).
1420  * Returns 0 on success, error on failure.
1421  */
1422 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1423 {
1424 	struct amdgpu_device *adev = ring->adev;
1425 	struct amdgpu_ib ib;
1426 	struct dma_fence *f = NULL;
1427 	unsigned index;
1428 	long r;
1429 	u32 tmp = 0;
1430 	u64 gpu_addr;
1431 
1432 	r = amdgpu_device_wb_get(adev, &index);
1433 	if (r)
1434 		return r;
1435 
1436 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1437 	tmp = 0xCAFEDEAD;
1438 	adev->wb.wb[index] = cpu_to_le32(tmp);
1439 	memset(&ib, 0, sizeof(ib));
1440 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1441 	if (r)
1442 		goto err0;
1443 
1444 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1445 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1446 	ib.ptr[1] = lower_32_bits(gpu_addr);
1447 	ib.ptr[2] = upper_32_bits(gpu_addr);
1448 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1449 	ib.ptr[4] = 0xDEADBEEF;
1450 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1451 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1452 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1453 	ib.length_dw = 8;
1454 
1455 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1456 	if (r)
1457 		goto err1;
1458 
1459 	r = dma_fence_wait_timeout(f, false, timeout);
1460 	if (r == 0) {
1461 		r = -ETIMEDOUT;
1462 		goto err1;
1463 	} else if (r < 0) {
1464 		goto err1;
1465 	}
1466 	tmp = le32_to_cpu(adev->wb.wb[index]);
1467 	if (tmp == 0xDEADBEEF)
1468 		r = 0;
1469 	else
1470 		r = -EINVAL;
1471 
1472 err1:
1473 	amdgpu_ib_free(adev, &ib, NULL);
1474 	dma_fence_put(f);
1475 err0:
1476 	amdgpu_device_wb_free(adev, index);
1477 	return r;
1478 }
1479 
1480 
1481 /**
1482  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1483  *
1484  * @ib: indirect buffer to fill with commands
1485  * @pe: addr of the page entry
1486  * @src: src addr to copy from
1487  * @count: number of page entries to update
1488  *
1489  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1490  */
1491 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1492 				  uint64_t pe, uint64_t src,
1493 				  unsigned count)
1494 {
1495 	unsigned bytes = count * 8;
1496 
1497 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1498 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1499 	ib->ptr[ib->length_dw++] = bytes - 1;
1500 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1501 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1502 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1503 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1504 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1505 
1506 }
1507 
1508 /**
1509  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1510  *
1511  * @ib: indirect buffer to fill with commands
1512  * @pe: addr of the page entry
1513  * @addr: dst addr to write into pe
1514  * @count: number of page entries to update
1515  * @incr: increase next addr by incr bytes
1516  * @flags: access flags
1517  *
1518  * Update PTEs by writing them manually using sDMA (VEGA10).
1519  */
1520 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1521 				   uint64_t value, unsigned count,
1522 				   uint32_t incr)
1523 {
1524 	unsigned ndw = count * 2;
1525 
1526 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1527 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1528 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1529 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1530 	ib->ptr[ib->length_dw++] = ndw - 1;
1531 	for (; ndw > 0; ndw -= 2) {
1532 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1533 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1534 		value += incr;
1535 	}
1536 }
1537 
1538 /**
1539  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1540  *
1541  * @ib: indirect buffer to fill with commands
1542  * @pe: addr of the page entry
1543  * @addr: dst addr to write into pe
1544  * @count: number of page entries to update
1545  * @incr: increase next addr by incr bytes
1546  * @flags: access flags
1547  *
1548  * Update the page tables using sDMA (VEGA10).
1549  */
1550 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1551 				     uint64_t pe,
1552 				     uint64_t addr, unsigned count,
1553 				     uint32_t incr, uint64_t flags)
1554 {
1555 	/* for physically contiguous pages (vram) */
1556 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1557 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1558 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1559 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1560 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1561 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1562 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1563 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1564 	ib->ptr[ib->length_dw++] = 0;
1565 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1566 }
1567 
1568 /**
1569  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1570  *
1571  * @ib: indirect buffer to fill with padding
1572  *
1573  */
1574 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1575 {
1576 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1577 	u32 pad_count;
1578 	int i;
1579 
1580 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1581 	for (i = 0; i < pad_count; i++)
1582 		if (sdma && sdma->burst_nop && (i == 0))
1583 			ib->ptr[ib->length_dw++] =
1584 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1585 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1586 		else
1587 			ib->ptr[ib->length_dw++] =
1588 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1589 }
1590 
1591 
1592 /**
1593  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1594  *
1595  * @ring: amdgpu_ring pointer
1596  *
1597  * Make sure all previous operations are completed (CIK).
1598  */
1599 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1600 {
1601 	uint32_t seq = ring->fence_drv.sync_seq;
1602 	uint64_t addr = ring->fence_drv.gpu_addr;
1603 
1604 	/* wait for idle */
1605 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1606 			       addr & 0xfffffffc,
1607 			       upper_32_bits(addr) & 0xffffffff,
1608 			       seq, 0xffffffff, 4);
1609 }
1610 
1611 
1612 /**
1613  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1614  *
1615  * @ring: amdgpu_ring pointer
1616  * @vm: amdgpu_vm pointer
1617  *
1618  * Update the page table base and flush the VM TLB
1619  * using sDMA (VEGA10).
1620  */
1621 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1622 					 unsigned vmid, uint64_t pd_addr)
1623 {
1624 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1625 }
1626 
1627 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1628 				     uint32_t reg, uint32_t val)
1629 {
1630 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1631 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1632 	amdgpu_ring_write(ring, reg);
1633 	amdgpu_ring_write(ring, val);
1634 }
1635 
1636 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1637 					 uint32_t val, uint32_t mask)
1638 {
1639 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1640 }
1641 
1642 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1643 {
1644 	uint fw_version = adev->sdma.instance[0].fw_version;
1645 
1646 	switch (adev->asic_type) {
1647 	case CHIP_VEGA10:
1648 		return fw_version >= 430;
1649 	case CHIP_VEGA12:
1650 		/*return fw_version >= 31;*/
1651 		return false;
1652 	case CHIP_VEGA20:
1653 		return fw_version >= 123;
1654 	default:
1655 		return false;
1656 	}
1657 }
1658 
1659 static int sdma_v4_0_early_init(void *handle)
1660 {
1661 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1662 	int r;
1663 
1664 	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1665 		adev->sdma.num_instances = 1;
1666 	else if (adev->asic_type == CHIP_ARCTURUS)
1667 		adev->sdma.num_instances = 8;
1668 	else
1669 		adev->sdma.num_instances = 2;
1670 
1671 	r = sdma_v4_0_init_microcode(adev);
1672 	if (r) {
1673 		DRM_ERROR("Failed to load sdma firmware!\n");
1674 		return r;
1675 	}
1676 
1677 	/* TODO: Page queue breaks driver reload under SRIOV */
1678 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1679 		adev->sdma.has_page_queue = false;
1680 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1681 		adev->sdma.has_page_queue = true;
1682 
1683 	sdma_v4_0_set_ring_funcs(adev);
1684 	sdma_v4_0_set_buffer_funcs(adev);
1685 	sdma_v4_0_set_vm_pte_funcs(adev);
1686 	sdma_v4_0_set_irq_funcs(adev);
1687 
1688 	return 0;
1689 }
1690 
1691 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1692 		struct ras_err_data *err_data,
1693 		struct amdgpu_iv_entry *entry);
1694 
1695 static int sdma_v4_0_late_init(void *handle)
1696 {
1697 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1698 	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1699 	struct ras_ih_if ih_info = {
1700 		.cb = sdma_v4_0_process_ras_data_cb,
1701 	};
1702 	struct ras_fs_if fs_info = {
1703 		.sysfs_name = "sdma_err_count",
1704 		.debugfs_name = "sdma_err_inject",
1705 	};
1706 	struct ras_common_if ras_block = {
1707 		.block = AMDGPU_RAS_BLOCK__SDMA,
1708 		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1709 		.sub_block_index = 0,
1710 		.name = "sdma",
1711 	};
1712 	int r, i;
1713 
1714 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1715 		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1716 		return 0;
1717 	}
1718 
1719 	/* handle resume path. */
1720 	if (*ras_if) {
1721 		/* resend ras TA enable cmd during resume.
1722 		 * prepare to handle failure.
1723 		 */
1724 		ih_info.head = **ras_if;
1725 		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1726 		if (r) {
1727 			if (r == -EAGAIN) {
1728 				/* request a gpu reset. will run again. */
1729 				amdgpu_ras_request_reset_on_boot(adev,
1730 						AMDGPU_RAS_BLOCK__SDMA);
1731 				return 0;
1732 			}
1733 			/* fail to enable ras, cleanup all. */
1734 			goto irq;
1735 		}
1736 		/* enable successfully. continue. */
1737 		goto resume;
1738 	}
1739 
1740 	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1741 	if (!*ras_if)
1742 		return -ENOMEM;
1743 
1744 	**ras_if = ras_block;
1745 
1746 	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1747 	if (r) {
1748 		if (r == -EAGAIN) {
1749 			amdgpu_ras_request_reset_on_boot(adev,
1750 					AMDGPU_RAS_BLOCK__SDMA);
1751 			r = 0;
1752 		}
1753 		goto feature;
1754 	}
1755 
1756 	ih_info.head = **ras_if;
1757 	fs_info.head = **ras_if;
1758 
1759 	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1760 	if (r)
1761 		goto interrupt;
1762 
1763 	amdgpu_ras_debugfs_create(adev, &fs_info);
1764 
1765 	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1766 	if (r)
1767 		goto sysfs;
1768 resume:
1769 	for (i = 0; i < adev->sdma.num_instances; i++) {
1770 		r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1771 				   AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1772 		if (r)
1773 			goto irq;
1774 	}
1775 
1776 	return 0;
1777 irq:
1778 	amdgpu_ras_sysfs_remove(adev, *ras_if);
1779 sysfs:
1780 	amdgpu_ras_debugfs_remove(adev, *ras_if);
1781 	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1782 interrupt:
1783 	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1784 feature:
1785 	kfree(*ras_if);
1786 	*ras_if = NULL;
1787 	return r;
1788 }
1789 
1790 static int sdma_v4_0_sw_init(void *handle)
1791 {
1792 	struct amdgpu_ring *ring;
1793 	int r, i;
1794 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1795 
1796 	/* SDMA trap event */
1797 	for (i = 0; i < adev->sdma.num_instances; i++) {
1798 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1799 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1800 				      &adev->sdma.trap_irq);
1801 		if (r)
1802 			return r;
1803 	}
1804 
1805 	/* SDMA SRAM ECC event */
1806 	for (i = 0; i < adev->sdma.num_instances; i++) {
1807 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1808 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1809 				      &adev->sdma.ecc_irq);
1810 		if (r)
1811 			return r;
1812 	}
1813 
1814 	for (i = 0; i < adev->sdma.num_instances; i++) {
1815 		ring = &adev->sdma.instance[i].ring;
1816 		ring->ring_obj = NULL;
1817 		ring->use_doorbell = true;
1818 
1819 		DRM_INFO("use_doorbell being set to: [%s]\n",
1820 				ring->use_doorbell?"true":"false");
1821 
1822 		/* doorbell size is 2 dwords, get DWORD offset */
1823 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1824 
1825 		sprintf(ring->name, "sdma%d", i);
1826 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1827 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1828 		if (r)
1829 			return r;
1830 
1831 		if (adev->sdma.has_page_queue) {
1832 			ring = &adev->sdma.instance[i].page;
1833 			ring->ring_obj = NULL;
1834 			ring->use_doorbell = true;
1835 
1836 			/* paging queue use same doorbell index/routing as gfx queue
1837 			 * with 0x400 (4096 dwords) offset on second doorbell page
1838 			 */
1839 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1840 			ring->doorbell_index += 0x400;
1841 
1842 			sprintf(ring->name, "page%d", i);
1843 			r = amdgpu_ring_init(adev, ring, 1024,
1844 					     &adev->sdma.trap_irq,
1845 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1846 			if (r)
1847 				return r;
1848 		}
1849 	}
1850 
1851 	return r;
1852 }
1853 
1854 static int sdma_v4_0_sw_fini(void *handle)
1855 {
1856 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1857 	int i;
1858 
1859 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1860 			adev->sdma.ras_if) {
1861 		struct ras_common_if *ras_if = adev->sdma.ras_if;
1862 		struct ras_ih_if ih_info = {
1863 			.head = *ras_if,
1864 		};
1865 
1866 		/*remove fs first*/
1867 		amdgpu_ras_debugfs_remove(adev, ras_if);
1868 		amdgpu_ras_sysfs_remove(adev, ras_if);
1869 		/*remove the IH*/
1870 		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1871 		amdgpu_ras_feature_enable(adev, ras_if, 0);
1872 		kfree(ras_if);
1873 	}
1874 
1875 	for (i = 0; i < adev->sdma.num_instances; i++) {
1876 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1877 		if (adev->sdma.has_page_queue)
1878 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1879 	}
1880 
1881 	sdma_v4_0_destroy_inst_ctx(adev);
1882 
1883 	return 0;
1884 }
1885 
1886 static int sdma_v4_0_hw_init(void *handle)
1887 {
1888 	int r;
1889 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1890 
1891 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1892 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1893 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1894 
1895 	if (!amdgpu_sriov_vf(adev))
1896 		sdma_v4_0_init_golden_registers(adev);
1897 
1898 	r = sdma_v4_0_start(adev);
1899 
1900 	return r;
1901 }
1902 
1903 static int sdma_v4_0_hw_fini(void *handle)
1904 {
1905 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1906 	int i;
1907 
1908 	if (amdgpu_sriov_vf(adev))
1909 		return 0;
1910 
1911 	for (i = 0; i < adev->sdma.num_instances; i++) {
1912 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1913 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1914 	}
1915 
1916 	sdma_v4_0_ctx_switch_enable(adev, false);
1917 	sdma_v4_0_enable(adev, false);
1918 
1919 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1920 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1921 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1922 
1923 	return 0;
1924 }
1925 
1926 static int sdma_v4_0_suspend(void *handle)
1927 {
1928 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1929 
1930 	return sdma_v4_0_hw_fini(adev);
1931 }
1932 
1933 static int sdma_v4_0_resume(void *handle)
1934 {
1935 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1936 
1937 	return sdma_v4_0_hw_init(adev);
1938 }
1939 
1940 static bool sdma_v4_0_is_idle(void *handle)
1941 {
1942 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1943 	u32 i;
1944 
1945 	for (i = 0; i < adev->sdma.num_instances; i++) {
1946 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1947 
1948 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1949 			return false;
1950 	}
1951 
1952 	return true;
1953 }
1954 
1955 static int sdma_v4_0_wait_for_idle(void *handle)
1956 {
1957 	unsigned i, j;
1958 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1959 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1960 
1961 	for (i = 0; i < adev->usec_timeout; i++) {
1962 		for (j = 0; j < adev->sdma.num_instances; j++) {
1963 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1964 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1965 				break;
1966 		}
1967 		if (j == adev->sdma.num_instances)
1968 			return 0;
1969 		udelay(1);
1970 	}
1971 	return -ETIMEDOUT;
1972 }
1973 
1974 static int sdma_v4_0_soft_reset(void *handle)
1975 {
1976 	/* todo */
1977 
1978 	return 0;
1979 }
1980 
1981 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1982 					struct amdgpu_irq_src *source,
1983 					unsigned type,
1984 					enum amdgpu_interrupt_state state)
1985 {
1986 	u32 sdma_cntl;
1987 
1988 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1989 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1990 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1991 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1992 
1993 	return 0;
1994 }
1995 
1996 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1997 				      struct amdgpu_irq_src *source,
1998 				      struct amdgpu_iv_entry *entry)
1999 {
2000 	uint32_t instance;
2001 
2002 	DRM_DEBUG("IH: SDMA trap\n");
2003 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2004 	switch (entry->ring_id) {
2005 	case 0:
2006 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2007 		break;
2008 	case 1:
2009 		if (adev->asic_type == CHIP_VEGA20)
2010 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2011 		break;
2012 	case 2:
2013 		/* XXX compute */
2014 		break;
2015 	case 3:
2016 		if (adev->asic_type != CHIP_VEGA20)
2017 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2018 		break;
2019 	}
2020 	return 0;
2021 }
2022 
2023 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2024 		struct ras_err_data *err_data,
2025 		struct amdgpu_iv_entry *entry)
2026 {
2027 	uint32_t err_source;
2028 	int instance;
2029 
2030 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2031 	if (instance < 0)
2032 		return 0;
2033 
2034 	switch (entry->src_id) {
2035 	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
2036 		err_source = 0;
2037 		break;
2038 	case SDMA0_4_0__SRCID__SDMA_ECC:
2039 		err_source = 1;
2040 		break;
2041 	default:
2042 		return 0;
2043 	}
2044 
2045 	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
2046 
2047 	amdgpu_ras_reset_gpu(adev, 0);
2048 
2049 	return AMDGPU_RAS_SUCCESS;
2050 }
2051 
2052 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
2053 				      struct amdgpu_irq_src *source,
2054 				      struct amdgpu_iv_entry *entry)
2055 {
2056 	struct ras_common_if *ras_if = adev->sdma.ras_if;
2057 	struct ras_dispatch_if ih_data = {
2058 		.entry = entry,
2059 	};
2060 
2061 	if (!ras_if)
2062 		return 0;
2063 
2064 	ih_data.head = *ras_if;
2065 
2066 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2067 	return 0;
2068 }
2069 
2070 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2071 					      struct amdgpu_irq_src *source,
2072 					      struct amdgpu_iv_entry *entry)
2073 {
2074 	int instance;
2075 
2076 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2077 
2078 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2079 	if (instance < 0)
2080 		return 0;
2081 
2082 	switch (entry->ring_id) {
2083 	case 0:
2084 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2085 		break;
2086 	}
2087 	return 0;
2088 }
2089 
2090 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2091 					struct amdgpu_irq_src *source,
2092 					unsigned type,
2093 					enum amdgpu_interrupt_state state)
2094 {
2095 	u32 sdma_edc_config;
2096 
2097 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2098 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2099 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2100 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2101 
2102 	return 0;
2103 }
2104 
2105 static void sdma_v4_0_update_medium_grain_clock_gating(
2106 		struct amdgpu_device *adev,
2107 		bool enable)
2108 {
2109 	uint32_t data, def;
2110 	int i;
2111 
2112 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2113 		for (i = 0; i < adev->sdma.num_instances; i++) {
2114 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2115 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2116 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2117 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2118 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2119 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2120 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2121 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2122 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2123 			if (def != data)
2124 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2125 		}
2126 	} else {
2127 		for (i = 0; i < adev->sdma.num_instances; i++) {
2128 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2129 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2130 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2131 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2132 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2133 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2134 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2135 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2136 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2137 			if (def != data)
2138 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2139 		}
2140 	}
2141 }
2142 
2143 
2144 static void sdma_v4_0_update_medium_grain_light_sleep(
2145 		struct amdgpu_device *adev,
2146 		bool enable)
2147 {
2148 	uint32_t data, def;
2149 	int i;
2150 
2151 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2152 		for (i = 0; i < adev->sdma.num_instances; i++) {
2153 			/* 1-not override: enable sdma mem light sleep */
2154 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2155 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2156 			if (def != data)
2157 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2158 		}
2159 	} else {
2160 		for (i = 0; i < adev->sdma.num_instances; i++) {
2161 		/* 0-override:disable sdma mem light sleep */
2162 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2163 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2164 			if (def != data)
2165 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2166 		}
2167 	}
2168 }
2169 
2170 static int sdma_v4_0_set_clockgating_state(void *handle,
2171 					  enum amd_clockgating_state state)
2172 {
2173 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2174 
2175 	if (amdgpu_sriov_vf(adev))
2176 		return 0;
2177 
2178 	switch (adev->asic_type) {
2179 	case CHIP_VEGA10:
2180 	case CHIP_VEGA12:
2181 	case CHIP_VEGA20:
2182 	case CHIP_RAVEN:
2183 	case CHIP_ARCTURUS:
2184 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2185 				state == AMD_CG_STATE_GATE ? true : false);
2186 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2187 				state == AMD_CG_STATE_GATE ? true : false);
2188 		break;
2189 	default:
2190 		break;
2191 	}
2192 	return 0;
2193 }
2194 
2195 static int sdma_v4_0_set_powergating_state(void *handle,
2196 					  enum amd_powergating_state state)
2197 {
2198 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2199 
2200 	switch (adev->asic_type) {
2201 	case CHIP_RAVEN:
2202 		sdma_v4_1_update_power_gating(adev,
2203 				state == AMD_PG_STATE_GATE ? true : false);
2204 		break;
2205 	default:
2206 		break;
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2213 {
2214 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2215 	int data;
2216 
2217 	if (amdgpu_sriov_vf(adev))
2218 		*flags = 0;
2219 
2220 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2221 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2222 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2223 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2224 
2225 	/* AMD_CG_SUPPORT_SDMA_LS */
2226 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2227 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2228 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2229 }
2230 
2231 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2232 	.name = "sdma_v4_0",
2233 	.early_init = sdma_v4_0_early_init,
2234 	.late_init = sdma_v4_0_late_init,
2235 	.sw_init = sdma_v4_0_sw_init,
2236 	.sw_fini = sdma_v4_0_sw_fini,
2237 	.hw_init = sdma_v4_0_hw_init,
2238 	.hw_fini = sdma_v4_0_hw_fini,
2239 	.suspend = sdma_v4_0_suspend,
2240 	.resume = sdma_v4_0_resume,
2241 	.is_idle = sdma_v4_0_is_idle,
2242 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2243 	.soft_reset = sdma_v4_0_soft_reset,
2244 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2245 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2246 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2247 };
2248 
2249 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2250 	.type = AMDGPU_RING_TYPE_SDMA,
2251 	.align_mask = 0xf,
2252 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2253 	.support_64bit_ptrs = true,
2254 	.vmhub = AMDGPU_MMHUB_0,
2255 	.get_rptr = sdma_v4_0_ring_get_rptr,
2256 	.get_wptr = sdma_v4_0_ring_get_wptr,
2257 	.set_wptr = sdma_v4_0_ring_set_wptr,
2258 	.emit_frame_size =
2259 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2260 		3 + /* hdp invalidate */
2261 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2262 		/* sdma_v4_0_ring_emit_vm_flush */
2263 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2264 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2265 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2266 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2267 	.emit_ib = sdma_v4_0_ring_emit_ib,
2268 	.emit_fence = sdma_v4_0_ring_emit_fence,
2269 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2270 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2271 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2272 	.test_ring = sdma_v4_0_ring_test_ring,
2273 	.test_ib = sdma_v4_0_ring_test_ib,
2274 	.insert_nop = sdma_v4_0_ring_insert_nop,
2275 	.pad_ib = sdma_v4_0_ring_pad_ib,
2276 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2277 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2278 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2279 };
2280 
2281 /*
2282  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2283  * So create a individual constant ring_funcs for those instances.
2284  */
2285 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2286 	.type = AMDGPU_RING_TYPE_SDMA,
2287 	.align_mask = 0xf,
2288 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2289 	.support_64bit_ptrs = true,
2290 	.vmhub = AMDGPU_MMHUB_1,
2291 	.get_rptr = sdma_v4_0_ring_get_rptr,
2292 	.get_wptr = sdma_v4_0_ring_get_wptr,
2293 	.set_wptr = sdma_v4_0_ring_set_wptr,
2294 	.emit_frame_size =
2295 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2296 		3 + /* hdp invalidate */
2297 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2298 		/* sdma_v4_0_ring_emit_vm_flush */
2299 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2300 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2301 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2302 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2303 	.emit_ib = sdma_v4_0_ring_emit_ib,
2304 	.emit_fence = sdma_v4_0_ring_emit_fence,
2305 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2306 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2307 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2308 	.test_ring = sdma_v4_0_ring_test_ring,
2309 	.test_ib = sdma_v4_0_ring_test_ib,
2310 	.insert_nop = sdma_v4_0_ring_insert_nop,
2311 	.pad_ib = sdma_v4_0_ring_pad_ib,
2312 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2313 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2314 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2315 };
2316 
2317 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2318 	.type = AMDGPU_RING_TYPE_SDMA,
2319 	.align_mask = 0xf,
2320 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2321 	.support_64bit_ptrs = true,
2322 	.vmhub = AMDGPU_MMHUB_0,
2323 	.get_rptr = sdma_v4_0_ring_get_rptr,
2324 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2325 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2326 	.emit_frame_size =
2327 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2328 		3 + /* hdp invalidate */
2329 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2330 		/* sdma_v4_0_ring_emit_vm_flush */
2331 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2332 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2333 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2334 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2335 	.emit_ib = sdma_v4_0_ring_emit_ib,
2336 	.emit_fence = sdma_v4_0_ring_emit_fence,
2337 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2338 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2339 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2340 	.test_ring = sdma_v4_0_ring_test_ring,
2341 	.test_ib = sdma_v4_0_ring_test_ib,
2342 	.insert_nop = sdma_v4_0_ring_insert_nop,
2343 	.pad_ib = sdma_v4_0_ring_pad_ib,
2344 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2345 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2346 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2347 };
2348 
2349 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2350 	.type = AMDGPU_RING_TYPE_SDMA,
2351 	.align_mask = 0xf,
2352 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2353 	.support_64bit_ptrs = true,
2354 	.vmhub = AMDGPU_MMHUB_1,
2355 	.get_rptr = sdma_v4_0_ring_get_rptr,
2356 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2357 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2358 	.emit_frame_size =
2359 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2360 		3 + /* hdp invalidate */
2361 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2362 		/* sdma_v4_0_ring_emit_vm_flush */
2363 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2364 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2365 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2366 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2367 	.emit_ib = sdma_v4_0_ring_emit_ib,
2368 	.emit_fence = sdma_v4_0_ring_emit_fence,
2369 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2370 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2371 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2372 	.test_ring = sdma_v4_0_ring_test_ring,
2373 	.test_ib = sdma_v4_0_ring_test_ib,
2374 	.insert_nop = sdma_v4_0_ring_insert_nop,
2375 	.pad_ib = sdma_v4_0_ring_pad_ib,
2376 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2377 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2378 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2379 };
2380 
2381 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2382 {
2383 	int i;
2384 
2385 	for (i = 0; i < adev->sdma.num_instances; i++) {
2386 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2387 			adev->sdma.instance[i].ring.funcs =
2388 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2389 		else
2390 			adev->sdma.instance[i].ring.funcs =
2391 					&sdma_v4_0_ring_funcs;
2392 		adev->sdma.instance[i].ring.me = i;
2393 		if (adev->sdma.has_page_queue) {
2394 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2395 				adev->sdma.instance[i].page.funcs =
2396 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2397 			else
2398 				adev->sdma.instance[i].page.funcs =
2399 					&sdma_v4_0_page_ring_funcs;
2400 			adev->sdma.instance[i].page.me = i;
2401 		}
2402 	}
2403 }
2404 
2405 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2406 	.set = sdma_v4_0_set_trap_irq_state,
2407 	.process = sdma_v4_0_process_trap_irq,
2408 };
2409 
2410 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2411 	.process = sdma_v4_0_process_illegal_inst_irq,
2412 };
2413 
2414 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2415 	.set = sdma_v4_0_set_ecc_irq_state,
2416 	.process = sdma_v4_0_process_ecc_irq,
2417 };
2418 
2419 
2420 
2421 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2422 {
2423 	switch (adev->sdma.num_instances) {
2424 	case 1:
2425 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2426 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2427 		break;
2428 	case 8:
2429 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2430 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2431 		break;
2432 	case 2:
2433 	default:
2434 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2435 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2436 		break;
2437 	}
2438 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2439 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2440 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2441 }
2442 
2443 /**
2444  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2445  *
2446  * @ring: amdgpu_ring structure holding ring information
2447  * @src_offset: src GPU address
2448  * @dst_offset: dst GPU address
2449  * @byte_count: number of bytes to xfer
2450  *
2451  * Copy GPU buffers using the DMA engine (VEGA10/12).
2452  * Used by the amdgpu ttm implementation to move pages if
2453  * registered as the asic copy callback.
2454  */
2455 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2456 				       uint64_t src_offset,
2457 				       uint64_t dst_offset,
2458 				       uint32_t byte_count)
2459 {
2460 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2461 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2462 	ib->ptr[ib->length_dw++] = byte_count - 1;
2463 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2464 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2465 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2466 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2467 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2468 }
2469 
2470 /**
2471  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2472  *
2473  * @ring: amdgpu_ring structure holding ring information
2474  * @src_data: value to write to buffer
2475  * @dst_offset: dst GPU address
2476  * @byte_count: number of bytes to xfer
2477  *
2478  * Fill GPU buffers using the DMA engine (VEGA10/12).
2479  */
2480 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2481 				       uint32_t src_data,
2482 				       uint64_t dst_offset,
2483 				       uint32_t byte_count)
2484 {
2485 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2486 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2487 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2488 	ib->ptr[ib->length_dw++] = src_data;
2489 	ib->ptr[ib->length_dw++] = byte_count - 1;
2490 }
2491 
2492 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2493 	.copy_max_bytes = 0x400000,
2494 	.copy_num_dw = 7,
2495 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2496 
2497 	.fill_max_bytes = 0x400000,
2498 	.fill_num_dw = 5,
2499 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2500 };
2501 
2502 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2503 {
2504 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2505 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2506 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2507 	else
2508 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2509 }
2510 
2511 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2512 	.copy_pte_num_dw = 7,
2513 	.copy_pte = sdma_v4_0_vm_copy_pte,
2514 
2515 	.write_pte = sdma_v4_0_vm_write_pte,
2516 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2517 };
2518 
2519 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2520 {
2521 	struct drm_gpu_scheduler *sched;
2522 	unsigned i;
2523 
2524 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2525 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2526 		for (i = 1; i < adev->sdma.num_instances; i++) {
2527 			sched = &adev->sdma.instance[i].page.sched;
2528 			adev->vm_manager.vm_pte_rqs[i - 1] =
2529 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2530 		}
2531 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2532 		adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2533 	} else {
2534 		for (i = 0; i < adev->sdma.num_instances; i++) {
2535 			sched = &adev->sdma.instance[i].ring.sched;
2536 			adev->vm_manager.vm_pte_rqs[i] =
2537 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2538 		}
2539 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2540 	}
2541 }
2542 
2543 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2544 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2545 	.major = 4,
2546 	.minor = 0,
2547 	.rev = 0,
2548 	.funcs = &sdma_v4_0_ip_funcs,
2549 };
2550