1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "sdma0/sdma0_4_2_offset.h" 34 #include "sdma0/sdma0_4_2_sh_mask.h" 35 #include "sdma1/sdma1_4_2_offset.h" 36 #include "sdma1/sdma1_4_2_sh_mask.h" 37 #include "sdma2/sdma2_4_2_2_offset.h" 38 #include "sdma2/sdma2_4_2_2_sh_mask.h" 39 #include "sdma3/sdma3_4_2_2_offset.h" 40 #include "sdma3/sdma3_4_2_2_sh_mask.h" 41 #include "sdma4/sdma4_4_2_2_offset.h" 42 #include "sdma4/sdma4_4_2_2_sh_mask.h" 43 #include "sdma5/sdma5_4_2_2_offset.h" 44 #include "sdma5/sdma5_4_2_2_sh_mask.h" 45 #include "sdma6/sdma6_4_2_2_offset.h" 46 #include "sdma6/sdma6_4_2_2_sh_mask.h" 47 #include "sdma7/sdma7_4_2_2_offset.h" 48 #include "sdma7/sdma7_4_2_2_sh_mask.h" 49 #include "sdma0/sdma0_4_1_default.h" 50 51 #include "soc15_common.h" 52 #include "soc15.h" 53 #include "vega10_sdma_pkt_open.h" 54 55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 57 58 #include "amdgpu_ras.h" 59 #include "sdma_v4_4.h" 60 61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); 70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin"); 72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin"); 73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin"); 74 75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L 76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L 77 78 #define WREG32_SDMA(instance, offset, value) \ 79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) 80 #define RREG32_SDMA(instance, offset) \ 81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) 82 83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); 84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); 85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); 86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); 87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev); 88 89 static const struct soc15_reg_golden golden_settings_sdma_4[] = { 90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), 92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), 93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), 97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), 103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), 105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), 109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) 115 }; 116 117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { 118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 125 }; 126 127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { 128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 135 }; 136 137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { 138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), 141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), 143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), 144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), 146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) 149 }; 150 151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { 152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 153 }; 154 155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = 156 { 157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), 166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 184 }; 185 186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { 187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), 196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 214 }; 215 216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] = 217 { 218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) 220 }; 221 222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] = 223 { 224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), 225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) 226 }; 227 228 static const struct soc15_reg_golden golden_settings_sdma_arct[] = 229 { 230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001) 262 }; 263 264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = { 265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 280 }; 281 282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = { 283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002), 287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051), 289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe) 293 }; 294 295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = { 296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED), 298 0, 0, 299 }, 300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED), 302 0, 0, 303 }, 304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED), 306 0, 0, 307 }, 308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED), 310 0, 0, 311 }, 312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED), 314 0, 0, 315 }, 316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED), 318 0, 0, 319 }, 320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED), 322 0, 0, 323 }, 324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED), 326 0, 0, 327 }, 328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED), 330 0, 0, 331 }, 332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED), 334 0, 0, 335 }, 336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED), 338 0, 0, 339 }, 340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED), 342 0, 0, 343 }, 344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED), 346 0, 0, 347 }, 348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED), 350 0, 0, 351 }, 352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED), 354 0, 0, 355 }, 356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED), 358 0, 0, 359 }, 360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED), 362 0, 0, 363 }, 364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED), 366 0, 0, 367 }, 368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED), 370 0, 0, 371 }, 372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED), 374 0, 0, 375 }, 376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED), 378 0, 0, 379 }, 380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED), 382 0, 0, 383 }, 384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED), 386 0, 0, 387 }, 388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED), 390 0, 0, 391 }, 392 }; 393 394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, 395 u32 instance, u32 offset) 396 { 397 switch (instance) { 398 case 0: 399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset); 400 case 1: 401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset); 402 case 2: 403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset); 404 case 3: 405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset); 406 case 4: 407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset); 408 case 5: 409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset); 410 case 6: 411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset); 412 case 7: 413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset); 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num) 421 { 422 switch (seq_num) { 423 case 0: 424 return SOC15_IH_CLIENTID_SDMA0; 425 case 1: 426 return SOC15_IH_CLIENTID_SDMA1; 427 case 2: 428 return SOC15_IH_CLIENTID_SDMA2; 429 case 3: 430 return SOC15_IH_CLIENTID_SDMA3; 431 case 4: 432 return SOC15_IH_CLIENTID_SDMA4; 433 case 5: 434 return SOC15_IH_CLIENTID_SDMA5; 435 case 6: 436 return SOC15_IH_CLIENTID_SDMA6; 437 case 7: 438 return SOC15_IH_CLIENTID_SDMA7; 439 default: 440 break; 441 } 442 return -EINVAL; 443 } 444 445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id) 446 { 447 switch (client_id) { 448 case SOC15_IH_CLIENTID_SDMA0: 449 return 0; 450 case SOC15_IH_CLIENTID_SDMA1: 451 return 1; 452 case SOC15_IH_CLIENTID_SDMA2: 453 return 2; 454 case SOC15_IH_CLIENTID_SDMA3: 455 return 3; 456 case SOC15_IH_CLIENTID_SDMA4: 457 return 4; 458 case SOC15_IH_CLIENTID_SDMA5: 459 return 5; 460 case SOC15_IH_CLIENTID_SDMA6: 461 return 6; 462 case SOC15_IH_CLIENTID_SDMA7: 463 return 7; 464 default: 465 break; 466 } 467 return -EINVAL; 468 } 469 470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) 471 { 472 switch (adev->ip_versions[SDMA0_HWIP][0]) { 473 case IP_VERSION(4, 0, 0): 474 soc15_program_register_sequence(adev, 475 golden_settings_sdma_4, 476 ARRAY_SIZE(golden_settings_sdma_4)); 477 soc15_program_register_sequence(adev, 478 golden_settings_sdma_vg10, 479 ARRAY_SIZE(golden_settings_sdma_vg10)); 480 break; 481 case IP_VERSION(4, 0, 1): 482 soc15_program_register_sequence(adev, 483 golden_settings_sdma_4, 484 ARRAY_SIZE(golden_settings_sdma_4)); 485 soc15_program_register_sequence(adev, 486 golden_settings_sdma_vg12, 487 ARRAY_SIZE(golden_settings_sdma_vg12)); 488 break; 489 case IP_VERSION(4, 2, 0): 490 soc15_program_register_sequence(adev, 491 golden_settings_sdma0_4_2_init, 492 ARRAY_SIZE(golden_settings_sdma0_4_2_init)); 493 soc15_program_register_sequence(adev, 494 golden_settings_sdma0_4_2, 495 ARRAY_SIZE(golden_settings_sdma0_4_2)); 496 soc15_program_register_sequence(adev, 497 golden_settings_sdma1_4_2, 498 ARRAY_SIZE(golden_settings_sdma1_4_2)); 499 break; 500 case IP_VERSION(4, 2, 2): 501 soc15_program_register_sequence(adev, 502 golden_settings_sdma_arct, 503 ARRAY_SIZE(golden_settings_sdma_arct)); 504 break; 505 case IP_VERSION(4, 4, 0): 506 soc15_program_register_sequence(adev, 507 golden_settings_sdma_aldebaran, 508 ARRAY_SIZE(golden_settings_sdma_aldebaran)); 509 break; 510 case IP_VERSION(4, 1, 0): 511 case IP_VERSION(4, 1, 1): 512 soc15_program_register_sequence(adev, 513 golden_settings_sdma_4_1, 514 ARRAY_SIZE(golden_settings_sdma_4_1)); 515 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 516 soc15_program_register_sequence(adev, 517 golden_settings_sdma_rv2, 518 ARRAY_SIZE(golden_settings_sdma_rv2)); 519 else 520 soc15_program_register_sequence(adev, 521 golden_settings_sdma_rv1, 522 ARRAY_SIZE(golden_settings_sdma_rv1)); 523 break; 524 case IP_VERSION(4, 1, 2): 525 soc15_program_register_sequence(adev, 526 golden_settings_sdma_4_3, 527 ARRAY_SIZE(golden_settings_sdma_4_3)); 528 break; 529 default: 530 break; 531 } 532 } 533 534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev) 535 { 536 int i; 537 538 /* 539 * The only chips with SDMAv4 and ULV are VG10 and VG20. 540 * Server SKUs take a different hysteresis setting from other SKUs. 541 */ 542 switch (adev->ip_versions[SDMA0_HWIP][0]) { 543 case IP_VERSION(4, 0, 0): 544 if (adev->pdev->device == 0x6860) 545 break; 546 return; 547 case IP_VERSION(4, 2, 0): 548 if (adev->pdev->device == 0x66a1) 549 break; 550 return; 551 default: 552 return; 553 } 554 555 for (i = 0; i < adev->sdma.num_instances; i++) { 556 uint32_t temp; 557 558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL); 559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0); 560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp); 561 } 562 } 563 564 /** 565 * sdma_v4_0_init_microcode - load ucode images from disk 566 * 567 * @adev: amdgpu_device pointer 568 * 569 * Use the firmware interface to load the ucode images into 570 * the driver (not loaded into hw). 571 * Returns 0 on success, error on failure. 572 */ 573 574 // emulation only, won't work on real chip 575 // vega10 real chip need to use PSP to load firmware 576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) 577 { 578 const char *chip_name; 579 char fw_name[30]; 580 int ret, i; 581 582 DRM_DEBUG("\n"); 583 584 switch (adev->ip_versions[SDMA0_HWIP][0]) { 585 case IP_VERSION(4, 0, 0): 586 chip_name = "vega10"; 587 break; 588 case IP_VERSION(4, 0, 1): 589 chip_name = "vega12"; 590 break; 591 case IP_VERSION(4, 2, 0): 592 chip_name = "vega20"; 593 break; 594 case IP_VERSION(4, 1, 0): 595 case IP_VERSION(4, 1, 1): 596 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 597 chip_name = "raven2"; 598 else if (adev->apu_flags & AMD_APU_IS_PICASSO) 599 chip_name = "picasso"; 600 else 601 chip_name = "raven"; 602 break; 603 case IP_VERSION(4, 2, 2): 604 chip_name = "arcturus"; 605 break; 606 case IP_VERSION(4, 1, 2): 607 if (adev->apu_flags & AMD_APU_IS_RENOIR) 608 chip_name = "renoir"; 609 else 610 chip_name = "green_sardine"; 611 break; 612 case IP_VERSION(4, 4, 0): 613 chip_name = "aldebaran"; 614 break; 615 default: 616 BUG(); 617 } 618 619 for (i = 0; i < adev->sdma.num_instances; i++) { 620 if (i == 0) 621 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 622 else 623 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i); 624 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) || 625 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) { 626 /* Acturus & Aldebaran will leverage the same FW memory 627 for every SDMA instance */ 628 ret = amdgpu_sdma_init_microcode(adev, fw_name, 0, true); 629 break; 630 } else { 631 ret = amdgpu_sdma_init_microcode(adev, fw_name, i, false); 632 if (ret) 633 return ret; 634 } 635 } 636 637 return ret; 638 } 639 640 /** 641 * sdma_v4_0_ring_get_rptr - get the current read pointer 642 * 643 * @ring: amdgpu ring pointer 644 * 645 * Get the current rptr from the hardware (VEGA10+). 646 */ 647 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) 648 { 649 u64 *rptr; 650 651 /* XXX check if swapping is necessary on BE */ 652 rptr = ((u64 *)ring->rptr_cpu_addr); 653 654 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 655 return ((*rptr) >> 2); 656 } 657 658 /** 659 * sdma_v4_0_ring_get_wptr - get the current write pointer 660 * 661 * @ring: amdgpu ring pointer 662 * 663 * Get the current wptr from the hardware (VEGA10+). 664 */ 665 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) 666 { 667 struct amdgpu_device *adev = ring->adev; 668 u64 wptr; 669 670 if (ring->use_doorbell) { 671 /* XXX check if swapping is necessary on BE */ 672 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 673 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 674 } else { 675 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); 676 wptr = wptr << 32; 677 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); 678 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 679 ring->me, wptr); 680 } 681 682 return wptr >> 2; 683 } 684 685 /** 686 * sdma_v4_0_ring_set_wptr - commit the write pointer 687 * 688 * @ring: amdgpu ring pointer 689 * 690 * Write the wptr back to the hardware (VEGA10+). 691 */ 692 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) 693 { 694 struct amdgpu_device *adev = ring->adev; 695 696 DRM_DEBUG("Setting write pointer\n"); 697 if (ring->use_doorbell) { 698 u64 *wb = (u64 *)ring->wptr_cpu_addr; 699 700 DRM_DEBUG("Using doorbell -- " 701 "wptr_offs == 0x%08x " 702 "lower_32_bits(ring->wptr << 2) == 0x%08x " 703 "upper_32_bits(ring->wptr << 2) == 0x%08x\n", 704 ring->wptr_offs, 705 lower_32_bits(ring->wptr << 2), 706 upper_32_bits(ring->wptr << 2)); 707 /* XXX check if swapping is necessary on BE */ 708 WRITE_ONCE(*wb, (ring->wptr << 2)); 709 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 710 ring->doorbell_index, ring->wptr << 2); 711 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 712 } else { 713 DRM_DEBUG("Not using doorbell -- " 714 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 715 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 716 ring->me, 717 lower_32_bits(ring->wptr << 2), 718 ring->me, 719 upper_32_bits(ring->wptr << 2)); 720 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, 721 lower_32_bits(ring->wptr << 2)); 722 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, 723 upper_32_bits(ring->wptr << 2)); 724 } 725 } 726 727 /** 728 * sdma_v4_0_page_ring_get_wptr - get the current write pointer 729 * 730 * @ring: amdgpu ring pointer 731 * 732 * Get the current wptr from the hardware (VEGA10+). 733 */ 734 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) 735 { 736 struct amdgpu_device *adev = ring->adev; 737 u64 wptr; 738 739 if (ring->use_doorbell) { 740 /* XXX check if swapping is necessary on BE */ 741 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); 742 } else { 743 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); 744 wptr = wptr << 32; 745 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); 746 } 747 748 return wptr >> 2; 749 } 750 751 /** 752 * sdma_v4_0_page_ring_set_wptr - commit the write pointer 753 * 754 * @ring: amdgpu ring pointer 755 * 756 * Write the wptr back to the hardware (VEGA10+). 757 */ 758 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) 759 { 760 struct amdgpu_device *adev = ring->adev; 761 762 if (ring->use_doorbell) { 763 u64 *wb = (u64 *)ring->wptr_cpu_addr; 764 765 /* XXX check if swapping is necessary on BE */ 766 WRITE_ONCE(*wb, (ring->wptr << 2)); 767 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 768 } else { 769 uint64_t wptr = ring->wptr << 2; 770 771 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, 772 lower_32_bits(wptr)); 773 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, 774 upper_32_bits(wptr)); 775 } 776 } 777 778 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 779 { 780 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 781 int i; 782 783 for (i = 0; i < count; i++) 784 if (sdma && sdma->burst_nop && (i == 0)) 785 amdgpu_ring_write(ring, ring->funcs->nop | 786 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 787 else 788 amdgpu_ring_write(ring, ring->funcs->nop); 789 } 790 791 /** 792 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine 793 * 794 * @ring: amdgpu ring pointer 795 * @job: job to retrieve vmid from 796 * @ib: IB object to schedule 797 * @flags: unused 798 * 799 * Schedule an IB in the DMA ring (VEGA10). 800 */ 801 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, 802 struct amdgpu_job *job, 803 struct amdgpu_ib *ib, 804 uint32_t flags) 805 { 806 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 807 808 /* IB packet must end on a 8 DW boundary */ 809 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 810 811 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 812 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 813 /* base must be 32 byte aligned */ 814 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 815 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 816 amdgpu_ring_write(ring, ib->length_dw); 817 amdgpu_ring_write(ring, 0); 818 amdgpu_ring_write(ring, 0); 819 820 } 821 822 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, 823 int mem_space, int hdp, 824 uint32_t addr0, uint32_t addr1, 825 uint32_t ref, uint32_t mask, 826 uint32_t inv) 827 { 828 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 829 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 830 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 831 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 832 if (mem_space) { 833 /* memory */ 834 amdgpu_ring_write(ring, addr0); 835 amdgpu_ring_write(ring, addr1); 836 } else { 837 /* registers */ 838 amdgpu_ring_write(ring, addr0 << 2); 839 amdgpu_ring_write(ring, addr1 << 2); 840 } 841 amdgpu_ring_write(ring, ref); /* reference */ 842 amdgpu_ring_write(ring, mask); /* mask */ 843 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 844 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 845 } 846 847 /** 848 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 849 * 850 * @ring: amdgpu ring pointer 851 * 852 * Emit an hdp flush packet on the requested DMA ring. 853 */ 854 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 855 { 856 struct amdgpu_device *adev = ring->adev; 857 u32 ref_and_mask = 0; 858 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 859 860 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 861 862 sdma_v4_0_wait_reg_mem(ring, 0, 1, 863 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 864 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 865 ref_and_mask, ref_and_mask, 10); 866 } 867 868 /** 869 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring 870 * 871 * @ring: amdgpu ring pointer 872 * @addr: address 873 * @seq: sequence number 874 * @flags: fence related flags 875 * 876 * Add a DMA fence packet to the ring to write 877 * the fence seq number and DMA trap packet to generate 878 * an interrupt if needed (VEGA10). 879 */ 880 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 881 unsigned flags) 882 { 883 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 884 /* write the fence */ 885 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 886 /* zero in first two bits */ 887 BUG_ON(addr & 0x3); 888 amdgpu_ring_write(ring, lower_32_bits(addr)); 889 amdgpu_ring_write(ring, upper_32_bits(addr)); 890 amdgpu_ring_write(ring, lower_32_bits(seq)); 891 892 /* optionally write high bits as well */ 893 if (write64bit) { 894 addr += 4; 895 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 896 /* zero in first two bits */ 897 BUG_ON(addr & 0x3); 898 amdgpu_ring_write(ring, lower_32_bits(addr)); 899 amdgpu_ring_write(ring, upper_32_bits(addr)); 900 amdgpu_ring_write(ring, upper_32_bits(seq)); 901 } 902 903 /* generate an interrupt */ 904 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 905 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 906 } 907 908 909 /** 910 * sdma_v4_0_gfx_stop - stop the gfx async dma engines 911 * 912 * @adev: amdgpu_device pointer 913 * 914 * Stop the gfx async dma ring buffers (VEGA10). 915 */ 916 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) 917 { 918 u32 rb_cntl, ib_cntl; 919 int i; 920 921 amdgpu_sdma_unset_buffer_funcs_helper(adev); 922 923 for (i = 0; i < adev->sdma.num_instances; i++) { 924 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 925 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 926 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 927 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 928 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 929 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 930 } 931 } 932 933 /** 934 * sdma_v4_0_rlc_stop - stop the compute async dma engines 935 * 936 * @adev: amdgpu_device pointer 937 * 938 * Stop the compute async dma queues (VEGA10). 939 */ 940 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) 941 { 942 /* XXX todo */ 943 } 944 945 /** 946 * sdma_v4_0_page_stop - stop the page async dma engines 947 * 948 * @adev: amdgpu_device pointer 949 * 950 * Stop the page async dma ring buffers (VEGA10). 951 */ 952 static void sdma_v4_0_page_stop(struct amdgpu_device *adev) 953 { 954 u32 rb_cntl, ib_cntl; 955 int i; 956 957 amdgpu_sdma_unset_buffer_funcs_helper(adev); 958 959 for (i = 0; i < adev->sdma.num_instances; i++) { 960 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 961 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 962 RB_ENABLE, 0); 963 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 964 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 965 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, 966 IB_ENABLE, 0); 967 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 968 } 969 } 970 971 /** 972 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch 973 * 974 * @adev: amdgpu_device pointer 975 * @enable: enable/disable the DMA MEs context switch. 976 * 977 * Halt or unhalt the async dma engines context switch (VEGA10). 978 */ 979 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 980 { 981 u32 f32_cntl, phase_quantum = 0; 982 int i; 983 984 if (amdgpu_sdma_phase_quantum) { 985 unsigned value = amdgpu_sdma_phase_quantum; 986 unsigned unit = 0; 987 988 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 989 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 990 value = (value + 1) >> 1; 991 unit++; 992 } 993 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 994 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 995 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 996 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 997 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 998 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 999 WARN_ONCE(1, 1000 "clamping sdma_phase_quantum to %uK clock cycles\n", 1001 value << unit); 1002 } 1003 phase_quantum = 1004 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 1005 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 1006 } 1007 1008 for (i = 0; i < adev->sdma.num_instances; i++) { 1009 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); 1010 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 1011 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 1012 if (enable && amdgpu_sdma_phase_quantum) { 1013 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); 1014 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); 1015 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); 1016 } 1017 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); 1018 1019 /* 1020 * Enable SDMA utilization. Its only supported on 1021 * Arcturus for the moment and firmware version 14 1022 * and above. 1023 */ 1024 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && 1025 adev->sdma.instance[i].fw_version >= 14) 1026 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable); 1027 /* Extend page fault timeout to avoid interrupt storm */ 1028 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080); 1029 } 1030 1031 } 1032 1033 /** 1034 * sdma_v4_0_enable - stop the async dma engines 1035 * 1036 * @adev: amdgpu_device pointer 1037 * @enable: enable/disable the DMA MEs. 1038 * 1039 * Halt or unhalt the async dma engines (VEGA10). 1040 */ 1041 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) 1042 { 1043 u32 f32_cntl; 1044 int i; 1045 1046 if (!enable) { 1047 sdma_v4_0_gfx_stop(adev); 1048 sdma_v4_0_rlc_stop(adev); 1049 if (adev->sdma.has_page_queue) 1050 sdma_v4_0_page_stop(adev); 1051 } 1052 1053 for (i = 0; i < adev->sdma.num_instances; i++) { 1054 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1055 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 1056 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); 1057 } 1058 } 1059 1060 /* 1061 * sdma_v4_0_rb_cntl - get parameters for rb_cntl 1062 */ 1063 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 1064 { 1065 /* Set ring buffer size in dwords */ 1066 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 1067 1068 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 1069 #ifdef __BIG_ENDIAN 1070 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 1071 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1072 RPTR_WRITEBACK_SWAP_ENABLE, 1); 1073 #endif 1074 return rb_cntl; 1075 } 1076 1077 /** 1078 * sdma_v4_0_gfx_resume - setup and start the async dma engines 1079 * 1080 * @adev: amdgpu_device pointer 1081 * @i: instance to resume 1082 * 1083 * Set up the gfx DMA ring buffers and enable them (VEGA10). 1084 * Returns 0 for success, error for failure. 1085 */ 1086 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) 1087 { 1088 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 1089 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1090 u32 doorbell; 1091 u32 doorbell_offset; 1092 u64 wptr_gpu_addr; 1093 1094 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1095 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1096 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1097 1098 /* Initialize the ring buffer's read and write pointers */ 1099 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); 1100 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); 1101 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); 1102 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); 1103 1104 /* set the wb address whether it's enabled or not */ 1105 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, 1106 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 1107 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 1108 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 1109 1110 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1111 RPTR_WRITEBACK_ENABLE, 1); 1112 1113 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); 1114 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 1115 1116 ring->wptr = 0; 1117 1118 /* before programing wptr to a less value, need set minor_ptr_update first */ 1119 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); 1120 1121 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); 1122 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); 1123 1124 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1125 ring->use_doorbell); 1126 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1127 SDMA0_GFX_DOORBELL_OFFSET, 1128 OFFSET, ring->doorbell_index); 1129 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); 1130 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); 1131 1132 sdma_v4_0_ring_set_wptr(ring); 1133 1134 /* set minor_ptr_update to 0 after wptr programed */ 1135 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); 1136 1137 /* setup the wptr shadow polling */ 1138 wptr_gpu_addr = ring->wptr_gpu_addr; 1139 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, 1140 lower_32_bits(wptr_gpu_addr)); 1141 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, 1142 upper_32_bits(wptr_gpu_addr)); 1143 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); 1144 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1145 SDMA0_GFX_RB_WPTR_POLL_CNTL, 1146 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1147 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1148 1149 /* enable DMA RB */ 1150 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 1151 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1152 1153 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1154 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 1155 #ifdef __BIG_ENDIAN 1156 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 1157 #endif 1158 /* enable DMA IBs */ 1159 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1160 1161 ring->sched.ready = true; 1162 } 1163 1164 /** 1165 * sdma_v4_0_page_resume - setup and start the async dma engines 1166 * 1167 * @adev: amdgpu_device pointer 1168 * @i: instance to resume 1169 * 1170 * Set up the page DMA ring buffers and enable them (VEGA10). 1171 * Returns 0 for success, error for failure. 1172 */ 1173 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) 1174 { 1175 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 1176 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1177 u32 doorbell; 1178 u32 doorbell_offset; 1179 u64 wptr_gpu_addr; 1180 1181 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1182 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1183 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1184 1185 /* Initialize the ring buffer's read and write pointers */ 1186 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); 1187 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); 1188 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); 1189 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); 1190 1191 /* set the wb address whether it's enabled or not */ 1192 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, 1193 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); 1194 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 1195 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); 1196 1197 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1198 RPTR_WRITEBACK_ENABLE, 1); 1199 1200 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); 1201 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 1202 1203 ring->wptr = 0; 1204 1205 /* before programing wptr to a less value, need set minor_ptr_update first */ 1206 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); 1207 1208 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); 1209 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); 1210 1211 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, 1212 ring->use_doorbell); 1213 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1214 SDMA0_PAGE_DOORBELL_OFFSET, 1215 OFFSET, ring->doorbell_index); 1216 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); 1217 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); 1218 1219 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ 1220 sdma_v4_0_page_ring_set_wptr(ring); 1221 1222 /* set minor_ptr_update to 0 after wptr programed */ 1223 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); 1224 1225 /* setup the wptr shadow polling */ 1226 wptr_gpu_addr = ring->wptr_gpu_addr; 1227 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, 1228 lower_32_bits(wptr_gpu_addr)); 1229 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, 1230 upper_32_bits(wptr_gpu_addr)); 1231 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); 1232 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1233 SDMA0_PAGE_RB_WPTR_POLL_CNTL, 1234 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1235 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1236 1237 /* enable DMA RB */ 1238 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); 1239 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1240 1241 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1242 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); 1243 #ifdef __BIG_ENDIAN 1244 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 1245 #endif 1246 /* enable DMA IBs */ 1247 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1248 1249 ring->sched.ready = true; 1250 } 1251 1252 static void 1253 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) 1254 { 1255 uint32_t def, data; 1256 1257 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { 1258 /* enable idle interrupt */ 1259 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1260 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1261 1262 if (data != def) 1263 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1264 } else { 1265 /* disable idle interrupt */ 1266 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1267 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1268 if (data != def) 1269 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1270 } 1271 } 1272 1273 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) 1274 { 1275 uint32_t def, data; 1276 1277 /* Enable HW based PG. */ 1278 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1279 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; 1280 if (data != def) 1281 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1282 1283 /* enable interrupt */ 1284 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1285 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1286 if (data != def) 1287 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1288 1289 /* Configure hold time to filter in-valid power on/off request. Use default right now */ 1290 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1291 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; 1292 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); 1293 /* Configure switch time for hysteresis purpose. Use default right now */ 1294 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; 1295 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); 1296 if(data != def) 1297 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1298 } 1299 1300 static void sdma_v4_0_init_pg(struct amdgpu_device *adev) 1301 { 1302 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) 1303 return; 1304 1305 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1306 case IP_VERSION(4, 1, 0): 1307 case IP_VERSION(4, 1, 1): 1308 case IP_VERSION(4, 1, 2): 1309 sdma_v4_1_init_power_gating(adev); 1310 sdma_v4_1_update_power_gating(adev, true); 1311 break; 1312 default: 1313 break; 1314 } 1315 } 1316 1317 /** 1318 * sdma_v4_0_rlc_resume - setup and start the async dma engines 1319 * 1320 * @adev: amdgpu_device pointer 1321 * 1322 * Set up the compute DMA queues and enable them (VEGA10). 1323 * Returns 0 for success, error for failure. 1324 */ 1325 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) 1326 { 1327 sdma_v4_0_init_pg(adev); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * sdma_v4_0_load_microcode - load the sDMA ME ucode 1334 * 1335 * @adev: amdgpu_device pointer 1336 * 1337 * Loads the sDMA0/1 ucode. 1338 * Returns 0 for success, -EINVAL if the ucode is not available. 1339 */ 1340 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) 1341 { 1342 const struct sdma_firmware_header_v1_0 *hdr; 1343 const __le32 *fw_data; 1344 u32 fw_size; 1345 int i, j; 1346 1347 /* halt the MEs */ 1348 sdma_v4_0_enable(adev, false); 1349 1350 for (i = 0; i < adev->sdma.num_instances; i++) { 1351 if (!adev->sdma.instance[i].fw) 1352 return -EINVAL; 1353 1354 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 1355 amdgpu_ucode_print_sdma_hdr(&hdr->header); 1356 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 1357 1358 fw_data = (const __le32 *) 1359 (adev->sdma.instance[i].fw->data + 1360 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 1361 1362 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); 1363 1364 for (j = 0; j < fw_size; j++) 1365 WREG32_SDMA(i, mmSDMA0_UCODE_DATA, 1366 le32_to_cpup(fw_data++)); 1367 1368 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 1369 adev->sdma.instance[i].fw_version); 1370 } 1371 1372 return 0; 1373 } 1374 1375 /** 1376 * sdma_v4_0_start - setup and start the async dma engines 1377 * 1378 * @adev: amdgpu_device pointer 1379 * 1380 * Set up the DMA engines and enable them (VEGA10). 1381 * Returns 0 for success, error for failure. 1382 */ 1383 static int sdma_v4_0_start(struct amdgpu_device *adev) 1384 { 1385 struct amdgpu_ring *ring; 1386 int i, r = 0; 1387 1388 if (amdgpu_sriov_vf(adev)) { 1389 sdma_v4_0_ctx_switch_enable(adev, false); 1390 sdma_v4_0_enable(adev, false); 1391 } else { 1392 1393 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1394 r = sdma_v4_0_load_microcode(adev); 1395 if (r) 1396 return r; 1397 } 1398 1399 /* unhalt the MEs */ 1400 sdma_v4_0_enable(adev, true); 1401 /* enable sdma ring preemption */ 1402 sdma_v4_0_ctx_switch_enable(adev, true); 1403 } 1404 1405 /* start the gfx rings and rlc compute queues */ 1406 for (i = 0; i < adev->sdma.num_instances; i++) { 1407 uint32_t temp; 1408 1409 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); 1410 sdma_v4_0_gfx_resume(adev, i); 1411 if (adev->sdma.has_page_queue) 1412 sdma_v4_0_page_resume(adev, i); 1413 1414 /* set utc l1 enable flag always to 1 */ 1415 temp = RREG32_SDMA(i, mmSDMA0_CNTL); 1416 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 1417 WREG32_SDMA(i, mmSDMA0_CNTL, temp); 1418 1419 if (!amdgpu_sriov_vf(adev)) { 1420 ring = &adev->sdma.instance[i].ring; 1421 adev->nbio.funcs->sdma_doorbell_range(adev, i, 1422 ring->use_doorbell, ring->doorbell_index, 1423 adev->doorbell_index.sdma_doorbell_range); 1424 1425 /* unhalt engine */ 1426 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1427 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 1428 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); 1429 } 1430 } 1431 1432 if (amdgpu_sriov_vf(adev)) { 1433 sdma_v4_0_ctx_switch_enable(adev, true); 1434 sdma_v4_0_enable(adev, true); 1435 } else { 1436 r = sdma_v4_0_rlc_resume(adev); 1437 if (r) 1438 return r; 1439 } 1440 1441 for (i = 0; i < adev->sdma.num_instances; i++) { 1442 ring = &adev->sdma.instance[i].ring; 1443 1444 r = amdgpu_ring_test_helper(ring); 1445 if (r) 1446 return r; 1447 1448 if (adev->sdma.has_page_queue) { 1449 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1450 1451 r = amdgpu_ring_test_helper(page); 1452 if (r) 1453 return r; 1454 1455 if (adev->mman.buffer_funcs_ring == page) 1456 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1457 } 1458 1459 if (adev->mman.buffer_funcs_ring == ring) 1460 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1461 } 1462 1463 return r; 1464 } 1465 1466 /** 1467 * sdma_v4_0_ring_test_ring - simple async dma engine test 1468 * 1469 * @ring: amdgpu_ring structure holding ring information 1470 * 1471 * Test the DMA engine by writing using it to write an 1472 * value to memory. (VEGA10). 1473 * Returns 0 for success, error for failure. 1474 */ 1475 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) 1476 { 1477 struct amdgpu_device *adev = ring->adev; 1478 unsigned i; 1479 unsigned index; 1480 int r; 1481 u32 tmp; 1482 u64 gpu_addr; 1483 1484 r = amdgpu_device_wb_get(adev, &index); 1485 if (r) 1486 return r; 1487 1488 gpu_addr = adev->wb.gpu_addr + (index * 4); 1489 tmp = 0xCAFEDEAD; 1490 adev->wb.wb[index] = cpu_to_le32(tmp); 1491 1492 r = amdgpu_ring_alloc(ring, 5); 1493 if (r) 1494 goto error_free_wb; 1495 1496 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1497 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1498 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1499 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1500 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1501 amdgpu_ring_write(ring, 0xDEADBEEF); 1502 amdgpu_ring_commit(ring); 1503 1504 for (i = 0; i < adev->usec_timeout; i++) { 1505 tmp = le32_to_cpu(adev->wb.wb[index]); 1506 if (tmp == 0xDEADBEEF) 1507 break; 1508 udelay(1); 1509 } 1510 1511 if (i >= adev->usec_timeout) 1512 r = -ETIMEDOUT; 1513 1514 error_free_wb: 1515 amdgpu_device_wb_free(adev, index); 1516 return r; 1517 } 1518 1519 /** 1520 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine 1521 * 1522 * @ring: amdgpu_ring structure holding ring information 1523 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1524 * 1525 * Test a simple IB in the DMA ring (VEGA10). 1526 * Returns 0 on success, error on failure. 1527 */ 1528 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1529 { 1530 struct amdgpu_device *adev = ring->adev; 1531 struct amdgpu_ib ib; 1532 struct dma_fence *f = NULL; 1533 unsigned index; 1534 long r; 1535 u32 tmp = 0; 1536 u64 gpu_addr; 1537 1538 r = amdgpu_device_wb_get(adev, &index); 1539 if (r) 1540 return r; 1541 1542 gpu_addr = adev->wb.gpu_addr + (index * 4); 1543 tmp = 0xCAFEDEAD; 1544 adev->wb.wb[index] = cpu_to_le32(tmp); 1545 memset(&ib, 0, sizeof(ib)); 1546 r = amdgpu_ib_get(adev, NULL, 256, 1547 AMDGPU_IB_POOL_DIRECT, &ib); 1548 if (r) 1549 goto err0; 1550 1551 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1552 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1553 ib.ptr[1] = lower_32_bits(gpu_addr); 1554 ib.ptr[2] = upper_32_bits(gpu_addr); 1555 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1556 ib.ptr[4] = 0xDEADBEEF; 1557 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1558 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1559 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1560 ib.length_dw = 8; 1561 1562 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1563 if (r) 1564 goto err1; 1565 1566 r = dma_fence_wait_timeout(f, false, timeout); 1567 if (r == 0) { 1568 r = -ETIMEDOUT; 1569 goto err1; 1570 } else if (r < 0) { 1571 goto err1; 1572 } 1573 tmp = le32_to_cpu(adev->wb.wb[index]); 1574 if (tmp == 0xDEADBEEF) 1575 r = 0; 1576 else 1577 r = -EINVAL; 1578 1579 err1: 1580 amdgpu_ib_free(adev, &ib, NULL); 1581 dma_fence_put(f); 1582 err0: 1583 amdgpu_device_wb_free(adev, index); 1584 return r; 1585 } 1586 1587 1588 /** 1589 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART 1590 * 1591 * @ib: indirect buffer to fill with commands 1592 * @pe: addr of the page entry 1593 * @src: src addr to copy from 1594 * @count: number of page entries to update 1595 * 1596 * Update PTEs by copying them from the GART using sDMA (VEGA10). 1597 */ 1598 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, 1599 uint64_t pe, uint64_t src, 1600 unsigned count) 1601 { 1602 unsigned bytes = count * 8; 1603 1604 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1605 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1606 ib->ptr[ib->length_dw++] = bytes - 1; 1607 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1608 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1609 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1610 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1611 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1612 1613 } 1614 1615 /** 1616 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually 1617 * 1618 * @ib: indirect buffer to fill with commands 1619 * @pe: addr of the page entry 1620 * @value: dst addr to write into pe 1621 * @count: number of page entries to update 1622 * @incr: increase next addr by incr bytes 1623 * 1624 * Update PTEs by writing them manually using sDMA (VEGA10). 1625 */ 1626 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1627 uint64_t value, unsigned count, 1628 uint32_t incr) 1629 { 1630 unsigned ndw = count * 2; 1631 1632 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1633 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1634 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1635 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1636 ib->ptr[ib->length_dw++] = ndw - 1; 1637 for (; ndw > 0; ndw -= 2) { 1638 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1639 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1640 value += incr; 1641 } 1642 } 1643 1644 /** 1645 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA 1646 * 1647 * @ib: indirect buffer to fill with commands 1648 * @pe: addr of the page entry 1649 * @addr: dst addr to write into pe 1650 * @count: number of page entries to update 1651 * @incr: increase next addr by incr bytes 1652 * @flags: access flags 1653 * 1654 * Update the page tables using sDMA (VEGA10). 1655 */ 1656 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1657 uint64_t pe, 1658 uint64_t addr, unsigned count, 1659 uint32_t incr, uint64_t flags) 1660 { 1661 /* for physically contiguous pages (vram) */ 1662 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1663 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1664 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1665 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1666 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1667 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1668 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1669 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1670 ib->ptr[ib->length_dw++] = 0; 1671 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1672 } 1673 1674 /** 1675 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw 1676 * 1677 * @ring: amdgpu_ring structure holding ring information 1678 * @ib: indirect buffer to fill with padding 1679 */ 1680 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1681 { 1682 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1683 u32 pad_count; 1684 int i; 1685 1686 pad_count = (-ib->length_dw) & 7; 1687 for (i = 0; i < pad_count; i++) 1688 if (sdma && sdma->burst_nop && (i == 0)) 1689 ib->ptr[ib->length_dw++] = 1690 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1691 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1692 else 1693 ib->ptr[ib->length_dw++] = 1694 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1695 } 1696 1697 1698 /** 1699 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline 1700 * 1701 * @ring: amdgpu_ring pointer 1702 * 1703 * Make sure all previous operations are completed (CIK). 1704 */ 1705 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1706 { 1707 uint32_t seq = ring->fence_drv.sync_seq; 1708 uint64_t addr = ring->fence_drv.gpu_addr; 1709 1710 /* wait for idle */ 1711 sdma_v4_0_wait_reg_mem(ring, 1, 0, 1712 addr & 0xfffffffc, 1713 upper_32_bits(addr) & 0xffffffff, 1714 seq, 0xffffffff, 4); 1715 } 1716 1717 1718 /** 1719 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA 1720 * 1721 * @ring: amdgpu_ring pointer 1722 * @vmid: vmid number to use 1723 * @pd_addr: address 1724 * 1725 * Update the page table base and flush the VM TLB 1726 * using sDMA (VEGA10). 1727 */ 1728 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1729 unsigned vmid, uint64_t pd_addr) 1730 { 1731 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1732 } 1733 1734 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, 1735 uint32_t reg, uint32_t val) 1736 { 1737 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1738 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1739 amdgpu_ring_write(ring, reg); 1740 amdgpu_ring_write(ring, val); 1741 } 1742 1743 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1744 uint32_t val, uint32_t mask) 1745 { 1746 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1747 } 1748 1749 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) 1750 { 1751 uint fw_version = adev->sdma.instance[0].fw_version; 1752 1753 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1754 case IP_VERSION(4, 0, 0): 1755 return fw_version >= 430; 1756 case IP_VERSION(4, 0, 1): 1757 /*return fw_version >= 31;*/ 1758 return false; 1759 case IP_VERSION(4, 2, 0): 1760 return fw_version >= 123; 1761 default: 1762 return false; 1763 } 1764 } 1765 1766 static int sdma_v4_0_early_init(void *handle) 1767 { 1768 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1769 int r; 1770 1771 r = sdma_v4_0_init_microcode(adev); 1772 if (r) { 1773 DRM_ERROR("Failed to load sdma firmware!\n"); 1774 return r; 1775 } 1776 1777 /* TODO: Page queue breaks driver reload under SRIOV */ 1778 if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) && 1779 amdgpu_sriov_vf((adev))) 1780 adev->sdma.has_page_queue = false; 1781 else if (sdma_v4_0_fw_support_paging_queue(adev)) 1782 adev->sdma.has_page_queue = true; 1783 1784 sdma_v4_0_set_ring_funcs(adev); 1785 sdma_v4_0_set_buffer_funcs(adev); 1786 sdma_v4_0_set_vm_pte_funcs(adev); 1787 sdma_v4_0_set_irq_funcs(adev); 1788 sdma_v4_0_set_ras_funcs(adev); 1789 1790 return 0; 1791 } 1792 1793 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 1794 void *err_data, 1795 struct amdgpu_iv_entry *entry); 1796 1797 static int sdma_v4_0_late_init(void *handle) 1798 { 1799 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1800 1801 sdma_v4_0_setup_ulv(adev); 1802 1803 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 1804 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops && 1805 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count) 1806 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev); 1807 } 1808 1809 return 0; 1810 } 1811 1812 static int sdma_v4_0_sw_init(void *handle) 1813 { 1814 struct amdgpu_ring *ring; 1815 int r, i; 1816 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1817 1818 /* SDMA trap event */ 1819 for (i = 0; i < adev->sdma.num_instances; i++) { 1820 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1821 SDMA0_4_0__SRCID__SDMA_TRAP, 1822 &adev->sdma.trap_irq); 1823 if (r) 1824 return r; 1825 } 1826 1827 /* SDMA SRAM ECC event */ 1828 for (i = 0; i < adev->sdma.num_instances; i++) { 1829 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1830 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1831 &adev->sdma.ecc_irq); 1832 if (r) 1833 return r; 1834 } 1835 1836 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1837 for (i = 0; i < adev->sdma.num_instances; i++) { 1838 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1839 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1840 &adev->sdma.vm_hole_irq); 1841 if (r) 1842 return r; 1843 1844 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1845 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1846 &adev->sdma.doorbell_invalid_irq); 1847 if (r) 1848 return r; 1849 1850 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1851 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1852 &adev->sdma.pool_timeout_irq); 1853 if (r) 1854 return r; 1855 1856 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1857 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1858 &adev->sdma.srbm_write_irq); 1859 if (r) 1860 return r; 1861 } 1862 1863 for (i = 0; i < adev->sdma.num_instances; i++) { 1864 ring = &adev->sdma.instance[i].ring; 1865 ring->ring_obj = NULL; 1866 ring->use_doorbell = true; 1867 1868 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1869 ring->use_doorbell?"true":"false"); 1870 1871 /* doorbell size is 2 dwords, get DWORD offset */ 1872 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1873 1874 sprintf(ring->name, "sdma%d", i); 1875 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1876 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1877 AMDGPU_RING_PRIO_DEFAULT, NULL); 1878 if (r) 1879 return r; 1880 1881 if (adev->sdma.has_page_queue) { 1882 ring = &adev->sdma.instance[i].page; 1883 ring->ring_obj = NULL; 1884 ring->use_doorbell = true; 1885 1886 /* paging queue use same doorbell index/routing as gfx queue 1887 * with 0x400 (4096 dwords) offset on second doorbell page 1888 */ 1889 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1890 ring->doorbell_index += 0x400; 1891 1892 sprintf(ring->name, "page%d", i); 1893 r = amdgpu_ring_init(adev, ring, 1024, 1894 &adev->sdma.trap_irq, 1895 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1896 AMDGPU_RING_PRIO_DEFAULT, NULL); 1897 if (r) 1898 return r; 1899 } 1900 } 1901 1902 return r; 1903 } 1904 1905 static int sdma_v4_0_sw_fini(void *handle) 1906 { 1907 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1908 int i; 1909 1910 for (i = 0; i < adev->sdma.num_instances; i++) { 1911 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1912 if (adev->sdma.has_page_queue) 1913 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1914 } 1915 1916 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0) || 1917 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) 1918 amdgpu_sdma_destroy_inst_ctx(adev, true); 1919 else 1920 amdgpu_sdma_destroy_inst_ctx(adev, false); 1921 1922 return 0; 1923 } 1924 1925 static int sdma_v4_0_hw_init(void *handle) 1926 { 1927 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1928 1929 if (adev->flags & AMD_IS_APU) 1930 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); 1931 1932 if (!amdgpu_sriov_vf(adev)) 1933 sdma_v4_0_init_golden_registers(adev); 1934 1935 return sdma_v4_0_start(adev); 1936 } 1937 1938 static int sdma_v4_0_hw_fini(void *handle) 1939 { 1940 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1941 int i; 1942 1943 if (amdgpu_sriov_vf(adev)) { 1944 /* disable the scheduler for SDMA */ 1945 amdgpu_sdma_unset_buffer_funcs_helper(adev); 1946 return 0; 1947 } 1948 1949 for (i = 0; i < adev->sdma.num_instances; i++) { 1950 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1951 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1952 } 1953 1954 sdma_v4_0_ctx_switch_enable(adev, false); 1955 sdma_v4_0_enable(adev, false); 1956 1957 if (adev->flags & AMD_IS_APU) 1958 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); 1959 1960 return 0; 1961 } 1962 1963 static int sdma_v4_0_suspend(void *handle) 1964 { 1965 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1966 1967 /* SMU saves SDMA state for us */ 1968 if (adev->in_s0ix) 1969 return 0; 1970 1971 return sdma_v4_0_hw_fini(adev); 1972 } 1973 1974 static int sdma_v4_0_resume(void *handle) 1975 { 1976 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1977 1978 /* SMU restores SDMA state for us */ 1979 if (adev->in_s0ix) 1980 return 0; 1981 1982 return sdma_v4_0_hw_init(adev); 1983 } 1984 1985 static bool sdma_v4_0_is_idle(void *handle) 1986 { 1987 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1988 u32 i; 1989 1990 for (i = 0; i < adev->sdma.num_instances; i++) { 1991 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); 1992 1993 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 1994 return false; 1995 } 1996 1997 return true; 1998 } 1999 2000 static int sdma_v4_0_wait_for_idle(void *handle) 2001 { 2002 unsigned i, j; 2003 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 2004 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2005 2006 for (i = 0; i < adev->usec_timeout; i++) { 2007 for (j = 0; j < adev->sdma.num_instances; j++) { 2008 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG); 2009 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK)) 2010 break; 2011 } 2012 if (j == adev->sdma.num_instances) 2013 return 0; 2014 udelay(1); 2015 } 2016 return -ETIMEDOUT; 2017 } 2018 2019 static int sdma_v4_0_soft_reset(void *handle) 2020 { 2021 /* todo */ 2022 2023 return 0; 2024 } 2025 2026 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, 2027 struct amdgpu_irq_src *source, 2028 unsigned type, 2029 enum amdgpu_interrupt_state state) 2030 { 2031 u32 sdma_cntl; 2032 2033 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL); 2034 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 2035 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2036 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl); 2037 2038 return 0; 2039 } 2040 2041 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, 2042 struct amdgpu_irq_src *source, 2043 struct amdgpu_iv_entry *entry) 2044 { 2045 uint32_t instance; 2046 2047 DRM_DEBUG("IH: SDMA trap\n"); 2048 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2049 switch (entry->ring_id) { 2050 case 0: 2051 amdgpu_fence_process(&adev->sdma.instance[instance].ring); 2052 break; 2053 case 1: 2054 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0)) 2055 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2056 break; 2057 case 2: 2058 /* XXX compute */ 2059 break; 2060 case 3: 2061 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0)) 2062 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2063 break; 2064 } 2065 return 0; 2066 } 2067 2068 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 2069 void *err_data, 2070 struct amdgpu_iv_entry *entry) 2071 { 2072 int instance; 2073 2074 /* When “Full RAS” is enabled, the per-IP interrupt sources should 2075 * be disabled and the driver should only look for the aggregated 2076 * interrupt via sync flood 2077 */ 2078 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) 2079 goto out; 2080 2081 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2082 if (instance < 0) 2083 goto out; 2084 2085 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 2086 2087 out: 2088 return AMDGPU_RAS_SUCCESS; 2089 } 2090 2091 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, 2092 struct amdgpu_irq_src *source, 2093 struct amdgpu_iv_entry *entry) 2094 { 2095 int instance; 2096 2097 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 2098 2099 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2100 if (instance < 0) 2101 return 0; 2102 2103 switch (entry->ring_id) { 2104 case 0: 2105 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 2106 break; 2107 } 2108 return 0; 2109 } 2110 2111 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev, 2112 struct amdgpu_irq_src *source, 2113 unsigned type, 2114 enum amdgpu_interrupt_state state) 2115 { 2116 u32 sdma_edc_config; 2117 2118 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG); 2119 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE, 2120 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2121 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config); 2122 2123 return 0; 2124 } 2125 2126 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev, 2127 struct amdgpu_iv_entry *entry) 2128 { 2129 int instance; 2130 struct amdgpu_task_info task_info; 2131 u64 addr; 2132 2133 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2134 if (instance < 0 || instance >= adev->sdma.num_instances) { 2135 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 2136 return -EINVAL; 2137 } 2138 2139 addr = (u64)entry->src_data[0] << 12; 2140 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 2141 2142 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 2143 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 2144 2145 dev_dbg_ratelimited(adev->dev, 2146 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 2147 "pasid:%u, for process %s pid %d thread %s pid %d\n", 2148 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 2149 entry->pasid, task_info.process_name, task_info.tgid, 2150 task_info.task_name, task_info.pid); 2151 return 0; 2152 } 2153 2154 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev, 2155 struct amdgpu_irq_src *source, 2156 struct amdgpu_iv_entry *entry) 2157 { 2158 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 2159 sdma_v4_0_print_iv_entry(adev, entry); 2160 return 0; 2161 } 2162 2163 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev, 2164 struct amdgpu_irq_src *source, 2165 struct amdgpu_iv_entry *entry) 2166 { 2167 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 2168 sdma_v4_0_print_iv_entry(adev, entry); 2169 return 0; 2170 } 2171 2172 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev, 2173 struct amdgpu_irq_src *source, 2174 struct amdgpu_iv_entry *entry) 2175 { 2176 dev_dbg_ratelimited(adev->dev, 2177 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 2178 sdma_v4_0_print_iv_entry(adev, entry); 2179 return 0; 2180 } 2181 2182 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev, 2183 struct amdgpu_irq_src *source, 2184 struct amdgpu_iv_entry *entry) 2185 { 2186 dev_dbg_ratelimited(adev->dev, 2187 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 2188 sdma_v4_0_print_iv_entry(adev, entry); 2189 return 0; 2190 } 2191 2192 static void sdma_v4_0_update_medium_grain_clock_gating( 2193 struct amdgpu_device *adev, 2194 bool enable) 2195 { 2196 uint32_t data, def; 2197 int i; 2198 2199 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 2200 for (i = 0; i < adev->sdma.num_instances; i++) { 2201 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2202 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2203 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2204 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2205 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2206 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2207 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2208 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2209 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2210 if (def != data) 2211 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2212 } 2213 } else { 2214 for (i = 0; i < adev->sdma.num_instances; i++) { 2215 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2216 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2217 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2218 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2219 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2220 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2221 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2222 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2223 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2224 if (def != data) 2225 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2226 } 2227 } 2228 } 2229 2230 2231 static void sdma_v4_0_update_medium_grain_light_sleep( 2232 struct amdgpu_device *adev, 2233 bool enable) 2234 { 2235 uint32_t data, def; 2236 int i; 2237 2238 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 2239 for (i = 0; i < adev->sdma.num_instances; i++) { 2240 /* 1-not override: enable sdma mem light sleep */ 2241 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2242 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2243 if (def != data) 2244 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2245 } 2246 } else { 2247 for (i = 0; i < adev->sdma.num_instances; i++) { 2248 /* 0-override:disable sdma mem light sleep */ 2249 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2250 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2251 if (def != data) 2252 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2253 } 2254 } 2255 } 2256 2257 static int sdma_v4_0_set_clockgating_state(void *handle, 2258 enum amd_clockgating_state state) 2259 { 2260 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2261 2262 if (amdgpu_sriov_vf(adev)) 2263 return 0; 2264 2265 sdma_v4_0_update_medium_grain_clock_gating(adev, 2266 state == AMD_CG_STATE_GATE); 2267 sdma_v4_0_update_medium_grain_light_sleep(adev, 2268 state == AMD_CG_STATE_GATE); 2269 return 0; 2270 } 2271 2272 static int sdma_v4_0_set_powergating_state(void *handle, 2273 enum amd_powergating_state state) 2274 { 2275 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2276 2277 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2278 case IP_VERSION(4, 1, 0): 2279 case IP_VERSION(4, 1, 1): 2280 case IP_VERSION(4, 1, 2): 2281 sdma_v4_1_update_power_gating(adev, 2282 state == AMD_PG_STATE_GATE); 2283 break; 2284 default: 2285 break; 2286 } 2287 2288 return 0; 2289 } 2290 2291 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags) 2292 { 2293 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2294 int data; 2295 2296 if (amdgpu_sriov_vf(adev)) 2297 *flags = 0; 2298 2299 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2300 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); 2301 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 2302 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2303 2304 /* AMD_CG_SUPPORT_SDMA_LS */ 2305 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 2306 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2307 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2308 } 2309 2310 const struct amd_ip_funcs sdma_v4_0_ip_funcs = { 2311 .name = "sdma_v4_0", 2312 .early_init = sdma_v4_0_early_init, 2313 .late_init = sdma_v4_0_late_init, 2314 .sw_init = sdma_v4_0_sw_init, 2315 .sw_fini = sdma_v4_0_sw_fini, 2316 .hw_init = sdma_v4_0_hw_init, 2317 .hw_fini = sdma_v4_0_hw_fini, 2318 .suspend = sdma_v4_0_suspend, 2319 .resume = sdma_v4_0_resume, 2320 .is_idle = sdma_v4_0_is_idle, 2321 .wait_for_idle = sdma_v4_0_wait_for_idle, 2322 .soft_reset = sdma_v4_0_soft_reset, 2323 .set_clockgating_state = sdma_v4_0_set_clockgating_state, 2324 .set_powergating_state = sdma_v4_0_set_powergating_state, 2325 .get_clockgating_state = sdma_v4_0_get_clockgating_state, 2326 }; 2327 2328 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { 2329 .type = AMDGPU_RING_TYPE_SDMA, 2330 .align_mask = 0xf, 2331 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2332 .support_64bit_ptrs = true, 2333 .secure_submission_supported = true, 2334 .vmhub = AMDGPU_MMHUB_0, 2335 .get_rptr = sdma_v4_0_ring_get_rptr, 2336 .get_wptr = sdma_v4_0_ring_get_wptr, 2337 .set_wptr = sdma_v4_0_ring_set_wptr, 2338 .emit_frame_size = 2339 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2340 3 + /* hdp invalidate */ 2341 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2342 /* sdma_v4_0_ring_emit_vm_flush */ 2343 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2344 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2345 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2346 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2347 .emit_ib = sdma_v4_0_ring_emit_ib, 2348 .emit_fence = sdma_v4_0_ring_emit_fence, 2349 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2350 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2351 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2352 .test_ring = sdma_v4_0_ring_test_ring, 2353 .test_ib = sdma_v4_0_ring_test_ib, 2354 .insert_nop = sdma_v4_0_ring_insert_nop, 2355 .pad_ib = sdma_v4_0_ring_pad_ib, 2356 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2357 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2358 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2359 }; 2360 2361 /* 2362 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1). 2363 * So create a individual constant ring_funcs for those instances. 2364 */ 2365 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = { 2366 .type = AMDGPU_RING_TYPE_SDMA, 2367 .align_mask = 0xf, 2368 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2369 .support_64bit_ptrs = true, 2370 .secure_submission_supported = true, 2371 .vmhub = AMDGPU_MMHUB_1, 2372 .get_rptr = sdma_v4_0_ring_get_rptr, 2373 .get_wptr = sdma_v4_0_ring_get_wptr, 2374 .set_wptr = sdma_v4_0_ring_set_wptr, 2375 .emit_frame_size = 2376 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2377 3 + /* hdp invalidate */ 2378 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2379 /* sdma_v4_0_ring_emit_vm_flush */ 2380 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2381 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2382 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2383 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2384 .emit_ib = sdma_v4_0_ring_emit_ib, 2385 .emit_fence = sdma_v4_0_ring_emit_fence, 2386 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2387 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2388 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2389 .test_ring = sdma_v4_0_ring_test_ring, 2390 .test_ib = sdma_v4_0_ring_test_ib, 2391 .insert_nop = sdma_v4_0_ring_insert_nop, 2392 .pad_ib = sdma_v4_0_ring_pad_ib, 2393 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2394 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2395 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2396 }; 2397 2398 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { 2399 .type = AMDGPU_RING_TYPE_SDMA, 2400 .align_mask = 0xf, 2401 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2402 .support_64bit_ptrs = true, 2403 .secure_submission_supported = true, 2404 .vmhub = AMDGPU_MMHUB_0, 2405 .get_rptr = sdma_v4_0_ring_get_rptr, 2406 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2407 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2408 .emit_frame_size = 2409 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2410 3 + /* hdp invalidate */ 2411 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2412 /* sdma_v4_0_ring_emit_vm_flush */ 2413 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2414 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2415 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2416 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2417 .emit_ib = sdma_v4_0_ring_emit_ib, 2418 .emit_fence = sdma_v4_0_ring_emit_fence, 2419 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2420 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2421 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2422 .test_ring = sdma_v4_0_ring_test_ring, 2423 .test_ib = sdma_v4_0_ring_test_ib, 2424 .insert_nop = sdma_v4_0_ring_insert_nop, 2425 .pad_ib = sdma_v4_0_ring_pad_ib, 2426 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2427 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2428 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2429 }; 2430 2431 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = { 2432 .type = AMDGPU_RING_TYPE_SDMA, 2433 .align_mask = 0xf, 2434 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2435 .support_64bit_ptrs = true, 2436 .secure_submission_supported = true, 2437 .vmhub = AMDGPU_MMHUB_1, 2438 .get_rptr = sdma_v4_0_ring_get_rptr, 2439 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2440 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2441 .emit_frame_size = 2442 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2443 3 + /* hdp invalidate */ 2444 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2445 /* sdma_v4_0_ring_emit_vm_flush */ 2446 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2447 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2448 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2449 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2450 .emit_ib = sdma_v4_0_ring_emit_ib, 2451 .emit_fence = sdma_v4_0_ring_emit_fence, 2452 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2453 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2454 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2455 .test_ring = sdma_v4_0_ring_test_ring, 2456 .test_ib = sdma_v4_0_ring_test_ib, 2457 .insert_nop = sdma_v4_0_ring_insert_nop, 2458 .pad_ib = sdma_v4_0_ring_pad_ib, 2459 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2460 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2461 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2462 }; 2463 2464 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) 2465 { 2466 int i; 2467 2468 for (i = 0; i < adev->sdma.num_instances; i++) { 2469 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2470 adev->sdma.instance[i].ring.funcs = 2471 &sdma_v4_0_ring_funcs_2nd_mmhub; 2472 else 2473 adev->sdma.instance[i].ring.funcs = 2474 &sdma_v4_0_ring_funcs; 2475 adev->sdma.instance[i].ring.me = i; 2476 if (adev->sdma.has_page_queue) { 2477 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2478 adev->sdma.instance[i].page.funcs = 2479 &sdma_v4_0_page_ring_funcs_2nd_mmhub; 2480 else 2481 adev->sdma.instance[i].page.funcs = 2482 &sdma_v4_0_page_ring_funcs; 2483 adev->sdma.instance[i].page.me = i; 2484 } 2485 } 2486 } 2487 2488 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { 2489 .set = sdma_v4_0_set_trap_irq_state, 2490 .process = sdma_v4_0_process_trap_irq, 2491 }; 2492 2493 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { 2494 .process = sdma_v4_0_process_illegal_inst_irq, 2495 }; 2496 2497 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = { 2498 .set = sdma_v4_0_set_ecc_irq_state, 2499 .process = amdgpu_sdma_process_ecc_irq, 2500 }; 2501 2502 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = { 2503 .process = sdma_v4_0_process_vm_hole_irq, 2504 }; 2505 2506 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = { 2507 .process = sdma_v4_0_process_doorbell_invalid_irq, 2508 }; 2509 2510 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = { 2511 .process = sdma_v4_0_process_pool_timeout_irq, 2512 }; 2513 2514 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = { 2515 .process = sdma_v4_0_process_srbm_write_irq, 2516 }; 2517 2518 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) 2519 { 2520 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 2521 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 2522 /*For Arcturus and Aldebaran, add another 4 irq handler*/ 2523 switch (adev->sdma.num_instances) { 2524 case 5: 2525 case 8: 2526 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 2527 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 2528 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 2529 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 2530 break; 2531 default: 2532 break; 2533 } 2534 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; 2535 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; 2536 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs; 2537 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs; 2538 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs; 2539 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs; 2540 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs; 2541 } 2542 2543 /** 2544 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine 2545 * 2546 * @ib: indirect buffer to copy to 2547 * @src_offset: src GPU address 2548 * @dst_offset: dst GPU address 2549 * @byte_count: number of bytes to xfer 2550 * @tmz: if a secure copy should be used 2551 * 2552 * Copy GPU buffers using the DMA engine (VEGA10/12). 2553 * Used by the amdgpu ttm implementation to move pages if 2554 * registered as the asic copy callback. 2555 */ 2556 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, 2557 uint64_t src_offset, 2558 uint64_t dst_offset, 2559 uint32_t byte_count, 2560 bool tmz) 2561 { 2562 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2563 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 2564 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 2565 ib->ptr[ib->length_dw++] = byte_count - 1; 2566 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2567 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2568 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2569 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2570 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2571 } 2572 2573 /** 2574 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine 2575 * 2576 * @ib: indirect buffer to copy to 2577 * @src_data: value to write to buffer 2578 * @dst_offset: dst GPU address 2579 * @byte_count: number of bytes to xfer 2580 * 2581 * Fill GPU buffers using the DMA engine (VEGA10/12). 2582 */ 2583 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, 2584 uint32_t src_data, 2585 uint64_t dst_offset, 2586 uint32_t byte_count) 2587 { 2588 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2589 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2590 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2591 ib->ptr[ib->length_dw++] = src_data; 2592 ib->ptr[ib->length_dw++] = byte_count - 1; 2593 } 2594 2595 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { 2596 .copy_max_bytes = 0x400000, 2597 .copy_num_dw = 7, 2598 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, 2599 2600 .fill_max_bytes = 0x400000, 2601 .fill_num_dw = 5, 2602 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, 2603 }; 2604 2605 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) 2606 { 2607 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; 2608 if (adev->sdma.has_page_queue) 2609 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2610 else 2611 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2612 } 2613 2614 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { 2615 .copy_pte_num_dw = 7, 2616 .copy_pte = sdma_v4_0_vm_copy_pte, 2617 2618 .write_pte = sdma_v4_0_vm_write_pte, 2619 .set_pte_pde = sdma_v4_0_vm_set_pte_pde, 2620 }; 2621 2622 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) 2623 { 2624 struct drm_gpu_scheduler *sched; 2625 unsigned i; 2626 2627 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; 2628 for (i = 0; i < adev->sdma.num_instances; i++) { 2629 if (adev->sdma.has_page_queue) 2630 sched = &adev->sdma.instance[i].page.sched; 2631 else 2632 sched = &adev->sdma.instance[i].ring.sched; 2633 adev->vm_manager.vm_pte_scheds[i] = sched; 2634 } 2635 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2636 } 2637 2638 static void sdma_v4_0_get_ras_error_count(uint32_t value, 2639 uint32_t instance, 2640 uint32_t *sec_count) 2641 { 2642 uint32_t i; 2643 uint32_t sec_cnt; 2644 2645 /* double bits error (multiple bits) error detection is not supported */ 2646 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) { 2647 /* the SDMA_EDC_COUNTER register in each sdma instance 2648 * shares the same sed shift_mask 2649 * */ 2650 sec_cnt = (value & 2651 sdma_v4_0_ras_fields[i].sec_count_mask) >> 2652 sdma_v4_0_ras_fields[i].sec_count_shift; 2653 if (sec_cnt) { 2654 DRM_INFO("Detected %s in SDMA%d, SED %d\n", 2655 sdma_v4_0_ras_fields[i].name, 2656 instance, sec_cnt); 2657 *sec_count += sec_cnt; 2658 } 2659 } 2660 } 2661 2662 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev, 2663 uint32_t instance, void *ras_error_status) 2664 { 2665 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 2666 uint32_t sec_count = 0; 2667 uint32_t reg_value = 0; 2668 2669 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER); 2670 /* double bit error is not supported */ 2671 if (reg_value) 2672 sdma_v4_0_get_ras_error_count(reg_value, 2673 instance, &sec_count); 2674 /* err_data->ce_count should be initialized to 0 2675 * before calling into this function */ 2676 err_data->ce_count += sec_count; 2677 /* double bit error is not supported 2678 * set ue count to 0 */ 2679 err_data->ue_count = 0; 2680 2681 return 0; 2682 }; 2683 2684 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status) 2685 { 2686 int i = 0; 2687 2688 for (i = 0; i < adev->sdma.num_instances; i++) { 2689 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) { 2690 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i); 2691 return; 2692 } 2693 } 2694 } 2695 2696 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev) 2697 { 2698 int i; 2699 2700 /* read back edc counter registers to clear the counters */ 2701 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2702 for (i = 0; i < adev->sdma.num_instances; i++) 2703 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER); 2704 } 2705 } 2706 2707 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = { 2708 .query_ras_error_count = sdma_v4_0_query_ras_error_count, 2709 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count, 2710 }; 2711 2712 static struct amdgpu_sdma_ras sdma_v4_0_ras = { 2713 .ras_block = { 2714 .hw_ops = &sdma_v4_0_ras_hw_ops, 2715 .ras_cb = sdma_v4_0_process_ras_data_cb, 2716 }, 2717 }; 2718 2719 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev) 2720 { 2721 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2722 case IP_VERSION(4, 2, 0): 2723 case IP_VERSION(4, 2, 2): 2724 adev->sdma.ras = &sdma_v4_0_ras; 2725 break; 2726 case IP_VERSION(4, 4, 0): 2727 adev->sdma.ras = &sdma_v4_4_ras; 2728 break; 2729 default: 2730 break; 2731 } 2732 2733 if (adev->sdma.ras) { 2734 amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block); 2735 2736 strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma"); 2737 adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA; 2738 adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 2739 adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm; 2740 2741 /* If don't define special ras_late_init function, use default ras_late_init */ 2742 if (!adev->sdma.ras->ras_block.ras_late_init) 2743 adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init; 2744 2745 /* If not defined special ras_cb function, use default ras_cb */ 2746 if (!adev->sdma.ras->ras_block.ras_cb) 2747 adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb; 2748 } 2749 } 2750 2751 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { 2752 .type = AMD_IP_BLOCK_TYPE_SDMA, 2753 .major = 4, 2754 .minor = 0, 2755 .rev = 0, 2756 .funcs = &sdma_v4_0_ip_funcs, 2757 }; 2758