1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53 
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
56 
57 #define WREG32_SDMA(instance, offset, value) \
58 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
59 #define RREG32_SDMA(instance, offset) \
60 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
61 
62 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
66 
67 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
68 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
69 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
75 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
76 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
82 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
87 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
88 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
89 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
90 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
94 };
95 
96 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
99 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
101 };
102 
103 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
105 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
108 };
109 
110 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
111 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
112 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
113 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
119 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
122 };
123 
124 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
125 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
126 };
127 
128 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
129 {
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
131 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
132 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
157 };
158 
159 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
160 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
161 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
162 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
163 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
164 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
187 };
188 
189 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
190 {
191 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
192 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
193 };
194 
195 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
196 {
197 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
198 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
199 };
200 
201 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
202 		u32 instance, u32 offset)
203 {
204 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
205 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
206 }
207 
208 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
209 {
210 	switch (adev->asic_type) {
211 	case CHIP_VEGA10:
212 		soc15_program_register_sequence(adev,
213 						 golden_settings_sdma_4,
214 						 ARRAY_SIZE(golden_settings_sdma_4));
215 		soc15_program_register_sequence(adev,
216 						 golden_settings_sdma_vg10,
217 						 ARRAY_SIZE(golden_settings_sdma_vg10));
218 		break;
219 	case CHIP_VEGA12:
220 		soc15_program_register_sequence(adev,
221 						golden_settings_sdma_4,
222 						ARRAY_SIZE(golden_settings_sdma_4));
223 		soc15_program_register_sequence(adev,
224 						golden_settings_sdma_vg12,
225 						ARRAY_SIZE(golden_settings_sdma_vg12));
226 		break;
227 	case CHIP_VEGA20:
228 		soc15_program_register_sequence(adev,
229 						golden_settings_sdma0_4_2_init,
230 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
231 		soc15_program_register_sequence(adev,
232 						golden_settings_sdma0_4_2,
233 						ARRAY_SIZE(golden_settings_sdma0_4_2));
234 		soc15_program_register_sequence(adev,
235 						golden_settings_sdma1_4_2,
236 						ARRAY_SIZE(golden_settings_sdma1_4_2));
237 		break;
238 	case CHIP_RAVEN:
239 		soc15_program_register_sequence(adev,
240 						golden_settings_sdma_4_1,
241 						ARRAY_SIZE(golden_settings_sdma_4_1));
242 		if (adev->rev_id >= 8)
243 			soc15_program_register_sequence(adev,
244 							golden_settings_sdma_rv2,
245 							ARRAY_SIZE(golden_settings_sdma_rv2));
246 		else
247 			soc15_program_register_sequence(adev,
248 							golden_settings_sdma_rv1,
249 							ARRAY_SIZE(golden_settings_sdma_rv1));
250 		break;
251 	default:
252 		break;
253 	}
254 }
255 
256 /**
257  * sdma_v4_0_init_microcode - load ucode images from disk
258  *
259  * @adev: amdgpu_device pointer
260  *
261  * Use the firmware interface to load the ucode images into
262  * the driver (not loaded into hw).
263  * Returns 0 on success, error on failure.
264  */
265 
266 // emulation only, won't work on real chip
267 // vega10 real chip need to use PSP to load firmware
268 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
269 {
270 	const char *chip_name;
271 	char fw_name[30];
272 	int err = 0, i;
273 	struct amdgpu_firmware_info *info = NULL;
274 	const struct common_firmware_header *header = NULL;
275 	const struct sdma_firmware_header_v1_0 *hdr;
276 
277 	DRM_DEBUG("\n");
278 
279 	switch (adev->asic_type) {
280 	case CHIP_VEGA10:
281 		chip_name = "vega10";
282 		break;
283 	case CHIP_VEGA12:
284 		chip_name = "vega12";
285 		break;
286 	case CHIP_VEGA20:
287 		chip_name = "vega20";
288 		break;
289 	case CHIP_RAVEN:
290 		if (adev->rev_id >= 8)
291 			chip_name = "raven2";
292 		else if (adev->pdev->device == 0x15d8)
293 			chip_name = "picasso";
294 		else
295 			chip_name = "raven";
296 		break;
297 	default:
298 		BUG();
299 	}
300 
301 	for (i = 0; i < adev->sdma.num_instances; i++) {
302 		if (i == 0)
303 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
304 		else
305 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
306 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
307 		if (err)
308 			goto out;
309 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
310 		if (err)
311 			goto out;
312 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
313 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
314 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
315 		if (adev->sdma.instance[i].feature_version >= 20)
316 			adev->sdma.instance[i].burst_nop = true;
317 		DRM_DEBUG("psp_load == '%s'\n",
318 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
319 
320 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
321 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323 			info->fw = adev->sdma.instance[i].fw;
324 			header = (const struct common_firmware_header *)info->fw->data;
325 			adev->firmware.fw_size +=
326 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
327 		}
328 	}
329 out:
330 	if (err) {
331 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
332 		for (i = 0; i < adev->sdma.num_instances; i++) {
333 			release_firmware(adev->sdma.instance[i].fw);
334 			adev->sdma.instance[i].fw = NULL;
335 		}
336 	}
337 	return err;
338 }
339 
340 /**
341  * sdma_v4_0_ring_get_rptr - get the current read pointer
342  *
343  * @ring: amdgpu ring pointer
344  *
345  * Get the current rptr from the hardware (VEGA10+).
346  */
347 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
348 {
349 	u64 *rptr;
350 
351 	/* XXX check if swapping is necessary on BE */
352 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
353 
354 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
355 	return ((*rptr) >> 2);
356 }
357 
358 /**
359  * sdma_v4_0_ring_get_wptr - get the current write pointer
360  *
361  * @ring: amdgpu ring pointer
362  *
363  * Get the current wptr from the hardware (VEGA10+).
364  */
365 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
366 {
367 	struct amdgpu_device *adev = ring->adev;
368 	u64 wptr;
369 
370 	if (ring->use_doorbell) {
371 		/* XXX check if swapping is necessary on BE */
372 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
373 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
374 	} else {
375 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
376 		wptr = wptr << 32;
377 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
378 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
379 				ring->me, wptr);
380 	}
381 
382 	return wptr >> 2;
383 }
384 
385 /**
386  * sdma_v4_0_ring_set_wptr - commit the write pointer
387  *
388  * @ring: amdgpu ring pointer
389  *
390  * Write the wptr back to the hardware (VEGA10+).
391  */
392 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
393 {
394 	struct amdgpu_device *adev = ring->adev;
395 
396 	DRM_DEBUG("Setting write pointer\n");
397 	if (ring->use_doorbell) {
398 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
399 
400 		DRM_DEBUG("Using doorbell -- "
401 				"wptr_offs == 0x%08x "
402 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
403 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
404 				ring->wptr_offs,
405 				lower_32_bits(ring->wptr << 2),
406 				upper_32_bits(ring->wptr << 2));
407 		/* XXX check if swapping is necessary on BE */
408 		WRITE_ONCE(*wb, (ring->wptr << 2));
409 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
410 				ring->doorbell_index, ring->wptr << 2);
411 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
412 	} else {
413 		DRM_DEBUG("Not using doorbell -- "
414 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
415 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
416 				ring->me,
417 				lower_32_bits(ring->wptr << 2),
418 				ring->me,
419 				upper_32_bits(ring->wptr << 2));
420 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
421 			    lower_32_bits(ring->wptr << 2));
422 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
423 			    upper_32_bits(ring->wptr << 2));
424 	}
425 }
426 
427 /**
428  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
429  *
430  * @ring: amdgpu ring pointer
431  *
432  * Get the current wptr from the hardware (VEGA10+).
433  */
434 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
435 {
436 	struct amdgpu_device *adev = ring->adev;
437 	u64 wptr;
438 
439 	if (ring->use_doorbell) {
440 		/* XXX check if swapping is necessary on BE */
441 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
442 	} else {
443 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
444 		wptr = wptr << 32;
445 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
446 	}
447 
448 	return wptr >> 2;
449 }
450 
451 /**
452  * sdma_v4_0_ring_set_wptr - commit the write pointer
453  *
454  * @ring: amdgpu ring pointer
455  *
456  * Write the wptr back to the hardware (VEGA10+).
457  */
458 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
459 {
460 	struct amdgpu_device *adev = ring->adev;
461 
462 	if (ring->use_doorbell) {
463 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
464 
465 		/* XXX check if swapping is necessary on BE */
466 		WRITE_ONCE(*wb, (ring->wptr << 2));
467 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
468 	} else {
469 		uint64_t wptr = ring->wptr << 2;
470 
471 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
472 			    lower_32_bits(wptr));
473 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
474 			    upper_32_bits(wptr));
475 	}
476 }
477 
478 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
479 {
480 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
481 	int i;
482 
483 	for (i = 0; i < count; i++)
484 		if (sdma && sdma->burst_nop && (i == 0))
485 			amdgpu_ring_write(ring, ring->funcs->nop |
486 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
487 		else
488 			amdgpu_ring_write(ring, ring->funcs->nop);
489 }
490 
491 /**
492  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
493  *
494  * @ring: amdgpu ring pointer
495  * @ib: IB object to schedule
496  *
497  * Schedule an IB in the DMA ring (VEGA10).
498  */
499 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
500 				   struct amdgpu_job *job,
501 				   struct amdgpu_ib *ib,
502 				   bool ctx_switch)
503 {
504 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
505 
506 	/* IB packet must end on a 8 DW boundary */
507 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
508 
509 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
510 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
511 	/* base must be 32 byte aligned */
512 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
513 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
514 	amdgpu_ring_write(ring, ib->length_dw);
515 	amdgpu_ring_write(ring, 0);
516 	amdgpu_ring_write(ring, 0);
517 
518 }
519 
520 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
521 				   int mem_space, int hdp,
522 				   uint32_t addr0, uint32_t addr1,
523 				   uint32_t ref, uint32_t mask,
524 				   uint32_t inv)
525 {
526 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
527 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
528 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
529 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
530 	if (mem_space) {
531 		/* memory */
532 		amdgpu_ring_write(ring, addr0);
533 		amdgpu_ring_write(ring, addr1);
534 	} else {
535 		/* registers */
536 		amdgpu_ring_write(ring, addr0 << 2);
537 		amdgpu_ring_write(ring, addr1 << 2);
538 	}
539 	amdgpu_ring_write(ring, ref); /* reference */
540 	amdgpu_ring_write(ring, mask); /* mask */
541 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
542 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
543 }
544 
545 /**
546  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
547  *
548  * @ring: amdgpu ring pointer
549  *
550  * Emit an hdp flush packet on the requested DMA ring.
551  */
552 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
553 {
554 	struct amdgpu_device *adev = ring->adev;
555 	u32 ref_and_mask = 0;
556 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
557 
558 	if (ring->me == 0)
559 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
560 	else
561 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
562 
563 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
564 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
565 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
566 			       ref_and_mask, ref_and_mask, 10);
567 }
568 
569 /**
570  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
571  *
572  * @ring: amdgpu ring pointer
573  * @fence: amdgpu fence object
574  *
575  * Add a DMA fence packet to the ring to write
576  * the fence seq number and DMA trap packet to generate
577  * an interrupt if needed (VEGA10).
578  */
579 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
580 				      unsigned flags)
581 {
582 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
583 	/* write the fence */
584 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
585 	/* zero in first two bits */
586 	BUG_ON(addr & 0x3);
587 	amdgpu_ring_write(ring, lower_32_bits(addr));
588 	amdgpu_ring_write(ring, upper_32_bits(addr));
589 	amdgpu_ring_write(ring, lower_32_bits(seq));
590 
591 	/* optionally write high bits as well */
592 	if (write64bit) {
593 		addr += 4;
594 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
595 		/* zero in first two bits */
596 		BUG_ON(addr & 0x3);
597 		amdgpu_ring_write(ring, lower_32_bits(addr));
598 		amdgpu_ring_write(ring, upper_32_bits(addr));
599 		amdgpu_ring_write(ring, upper_32_bits(seq));
600 	}
601 
602 	/* generate an interrupt */
603 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
604 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
605 }
606 
607 
608 /**
609  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
610  *
611  * @adev: amdgpu_device pointer
612  *
613  * Stop the gfx async dma ring buffers (VEGA10).
614  */
615 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
616 {
617 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
618 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
619 	u32 rb_cntl, ib_cntl;
620 	int i;
621 
622 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
623 	    (adev->mman.buffer_funcs_ring == sdma1))
624 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
625 
626 	for (i = 0; i < adev->sdma.num_instances; i++) {
627 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
628 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
629 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
630 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
631 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
632 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
633 	}
634 
635 	sdma0->sched.ready = false;
636 	sdma1->sched.ready = false;
637 }
638 
639 /**
640  * sdma_v4_0_rlc_stop - stop the compute async dma engines
641  *
642  * @adev: amdgpu_device pointer
643  *
644  * Stop the compute async dma queues (VEGA10).
645  */
646 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
647 {
648 	/* XXX todo */
649 }
650 
651 /**
652  * sdma_v4_0_page_stop - stop the page async dma engines
653  *
654  * @adev: amdgpu_device pointer
655  *
656  * Stop the page async dma ring buffers (VEGA10).
657  */
658 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
659 {
660 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
661 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
662 	u32 rb_cntl, ib_cntl;
663 	int i;
664 
665 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
666 	    (adev->mman.buffer_funcs_ring == sdma1))
667 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
668 
669 	for (i = 0; i < adev->sdma.num_instances; i++) {
670 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
671 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
672 					RB_ENABLE, 0);
673 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
674 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
675 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
676 					IB_ENABLE, 0);
677 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
678 	}
679 
680 	sdma0->sched.ready = false;
681 	sdma1->sched.ready = false;
682 }
683 
684 /**
685  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
686  *
687  * @adev: amdgpu_device pointer
688  * @enable: enable/disable the DMA MEs context switch.
689  *
690  * Halt or unhalt the async dma engines context switch (VEGA10).
691  */
692 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
693 {
694 	u32 f32_cntl, phase_quantum = 0;
695 	int i;
696 
697 	if (amdgpu_sdma_phase_quantum) {
698 		unsigned value = amdgpu_sdma_phase_quantum;
699 		unsigned unit = 0;
700 
701 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
702 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
703 			value = (value + 1) >> 1;
704 			unit++;
705 		}
706 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
707 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
708 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
709 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
710 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
711 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
712 			WARN_ONCE(1,
713 			"clamping sdma_phase_quantum to %uK clock cycles\n",
714 				  value << unit);
715 		}
716 		phase_quantum =
717 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
718 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
719 	}
720 
721 	for (i = 0; i < adev->sdma.num_instances; i++) {
722 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
723 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
724 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
725 		if (enable && amdgpu_sdma_phase_quantum) {
726 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
727 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
728 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
729 		}
730 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
731 	}
732 
733 }
734 
735 /**
736  * sdma_v4_0_enable - stop the async dma engines
737  *
738  * @adev: amdgpu_device pointer
739  * @enable: enable/disable the DMA MEs.
740  *
741  * Halt or unhalt the async dma engines (VEGA10).
742  */
743 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
744 {
745 	u32 f32_cntl;
746 	int i;
747 
748 	if (enable == false) {
749 		sdma_v4_0_gfx_stop(adev);
750 		sdma_v4_0_rlc_stop(adev);
751 		if (adev->sdma.has_page_queue)
752 			sdma_v4_0_page_stop(adev);
753 	}
754 
755 	for (i = 0; i < adev->sdma.num_instances; i++) {
756 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
757 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
758 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
759 	}
760 }
761 
762 /**
763  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
764  */
765 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
766 {
767 	/* Set ring buffer size in dwords */
768 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
769 
770 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
771 #ifdef __BIG_ENDIAN
772 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
773 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
774 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
775 #endif
776 	return rb_cntl;
777 }
778 
779 /**
780  * sdma_v4_0_gfx_resume - setup and start the async dma engines
781  *
782  * @adev: amdgpu_device pointer
783  * @i: instance to resume
784  *
785  * Set up the gfx DMA ring buffers and enable them (VEGA10).
786  * Returns 0 for success, error for failure.
787  */
788 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
789 {
790 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
791 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
792 	u32 wb_offset;
793 	u32 doorbell;
794 	u32 doorbell_offset;
795 	u64 wptr_gpu_addr;
796 
797 	wb_offset = (ring->rptr_offs * 4);
798 
799 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
800 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
801 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
802 
803 	/* Initialize the ring buffer's read and write pointers */
804 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
805 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
806 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
807 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
808 
809 	/* set the wb address whether it's enabled or not */
810 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
811 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
812 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
813 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
814 
815 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
816 				RPTR_WRITEBACK_ENABLE, 1);
817 
818 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
819 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
820 
821 	ring->wptr = 0;
822 
823 	/* before programing wptr to a less value, need set minor_ptr_update first */
824 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
825 
826 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
827 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
828 
829 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
830 				 ring->use_doorbell);
831 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
832 					SDMA0_GFX_DOORBELL_OFFSET,
833 					OFFSET, ring->doorbell_index);
834 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
835 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
836 	adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
837 					      ring->doorbell_index);
838 
839 	sdma_v4_0_ring_set_wptr(ring);
840 
841 	/* set minor_ptr_update to 0 after wptr programed */
842 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
843 
844 	/* setup the wptr shadow polling */
845 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
846 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
847 		    lower_32_bits(wptr_gpu_addr));
848 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
849 		    upper_32_bits(wptr_gpu_addr));
850 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
851 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
852 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
853 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
854 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
855 
856 	/* enable DMA RB */
857 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
858 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
859 
860 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
861 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
862 #ifdef __BIG_ENDIAN
863 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
864 #endif
865 	/* enable DMA IBs */
866 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
867 
868 	ring->sched.ready = true;
869 }
870 
871 /**
872  * sdma_v4_0_page_resume - setup and start the async dma engines
873  *
874  * @adev: amdgpu_device pointer
875  * @i: instance to resume
876  *
877  * Set up the page DMA ring buffers and enable them (VEGA10).
878  * Returns 0 for success, error for failure.
879  */
880 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
881 {
882 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
883 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
884 	u32 wb_offset;
885 	u32 doorbell;
886 	u32 doorbell_offset;
887 	u64 wptr_gpu_addr;
888 
889 	wb_offset = (ring->rptr_offs * 4);
890 
891 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
892 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
893 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
894 
895 	/* Initialize the ring buffer's read and write pointers */
896 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
897 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
898 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
899 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
900 
901 	/* set the wb address whether it's enabled or not */
902 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
903 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
904 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
905 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
906 
907 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
908 				RPTR_WRITEBACK_ENABLE, 1);
909 
910 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
911 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
912 
913 	ring->wptr = 0;
914 
915 	/* before programing wptr to a less value, need set minor_ptr_update first */
916 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
917 
918 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
919 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
920 
921 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
922 				 ring->use_doorbell);
923 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
924 					SDMA0_PAGE_DOORBELL_OFFSET,
925 					OFFSET, ring->doorbell_index);
926 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
927 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
928 	/* TODO: enable doorbell support */
929 	/*adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
930 					      ring->doorbell_index);*/
931 
932 	sdma_v4_0_ring_set_wptr(ring);
933 
934 	/* set minor_ptr_update to 0 after wptr programed */
935 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
936 
937 	/* setup the wptr shadow polling */
938 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
939 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
940 		    lower_32_bits(wptr_gpu_addr));
941 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
942 		    upper_32_bits(wptr_gpu_addr));
943 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
944 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
945 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
946 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
947 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
948 
949 	/* enable DMA RB */
950 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
951 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
952 
953 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
954 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
955 #ifdef __BIG_ENDIAN
956 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
957 #endif
958 	/* enable DMA IBs */
959 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
960 
961 	ring->sched.ready = true;
962 }
963 
964 static void
965 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
966 {
967 	uint32_t def, data;
968 
969 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
970 		/* enable idle interrupt */
971 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
972 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
973 
974 		if (data != def)
975 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
976 	} else {
977 		/* disable idle interrupt */
978 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
979 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
980 		if (data != def)
981 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
982 	}
983 }
984 
985 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
986 {
987 	uint32_t def, data;
988 
989 	/* Enable HW based PG. */
990 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
991 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
992 	if (data != def)
993 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
994 
995 	/* enable interrupt */
996 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
997 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
998 	if (data != def)
999 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1000 
1001 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1002 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1003 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1004 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1005 	/* Configure switch time for hysteresis purpose. Use default right now */
1006 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1007 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1008 	if(data != def)
1009 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1010 }
1011 
1012 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1013 {
1014 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1015 		return;
1016 
1017 	switch (adev->asic_type) {
1018 	case CHIP_RAVEN:
1019 		sdma_v4_1_init_power_gating(adev);
1020 		sdma_v4_1_update_power_gating(adev, true);
1021 		break;
1022 	default:
1023 		break;
1024 	}
1025 }
1026 
1027 /**
1028  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1029  *
1030  * @adev: amdgpu_device pointer
1031  *
1032  * Set up the compute DMA queues and enable them (VEGA10).
1033  * Returns 0 for success, error for failure.
1034  */
1035 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1036 {
1037 	sdma_v4_0_init_pg(adev);
1038 
1039 	return 0;
1040 }
1041 
1042 /**
1043  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1044  *
1045  * @adev: amdgpu_device pointer
1046  *
1047  * Loads the sDMA0/1 ucode.
1048  * Returns 0 for success, -EINVAL if the ucode is not available.
1049  */
1050 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1051 {
1052 	const struct sdma_firmware_header_v1_0 *hdr;
1053 	const __le32 *fw_data;
1054 	u32 fw_size;
1055 	int i, j;
1056 
1057 	/* halt the MEs */
1058 	sdma_v4_0_enable(adev, false);
1059 
1060 	for (i = 0; i < adev->sdma.num_instances; i++) {
1061 		if (!adev->sdma.instance[i].fw)
1062 			return -EINVAL;
1063 
1064 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1065 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1066 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1067 
1068 		fw_data = (const __le32 *)
1069 			(adev->sdma.instance[i].fw->data +
1070 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1071 
1072 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1073 
1074 		for (j = 0; j < fw_size; j++)
1075 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1076 				    le32_to_cpup(fw_data++));
1077 
1078 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1079 			    adev->sdma.instance[i].fw_version);
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  * sdma_v4_0_start - setup and start the async dma engines
1087  *
1088  * @adev: amdgpu_device pointer
1089  *
1090  * Set up the DMA engines and enable them (VEGA10).
1091  * Returns 0 for success, error for failure.
1092  */
1093 static int sdma_v4_0_start(struct amdgpu_device *adev)
1094 {
1095 	struct amdgpu_ring *ring;
1096 	int i, r;
1097 
1098 	if (amdgpu_sriov_vf(adev)) {
1099 		sdma_v4_0_ctx_switch_enable(adev, false);
1100 		sdma_v4_0_enable(adev, false);
1101 	} else {
1102 
1103 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1104 			r = sdma_v4_0_load_microcode(adev);
1105 			if (r)
1106 				return r;
1107 		}
1108 
1109 		/* unhalt the MEs */
1110 		sdma_v4_0_enable(adev, true);
1111 		/* enable sdma ring preemption */
1112 		sdma_v4_0_ctx_switch_enable(adev, true);
1113 	}
1114 
1115 	/* start the gfx rings and rlc compute queues */
1116 	for (i = 0; i < adev->sdma.num_instances; i++) {
1117 		uint32_t temp;
1118 
1119 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1120 		sdma_v4_0_gfx_resume(adev, i);
1121 		if (adev->sdma.has_page_queue)
1122 			sdma_v4_0_page_resume(adev, i);
1123 
1124 		/* set utc l1 enable flag always to 1 */
1125 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1126 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1127 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1128 
1129 		if (!amdgpu_sriov_vf(adev)) {
1130 			/* unhalt engine */
1131 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1132 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1133 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1134 		}
1135 	}
1136 
1137 	if (amdgpu_sriov_vf(adev)) {
1138 		sdma_v4_0_ctx_switch_enable(adev, true);
1139 		sdma_v4_0_enable(adev, true);
1140 	} else {
1141 		r = sdma_v4_0_rlc_resume(adev);
1142 		if (r)
1143 			return r;
1144 	}
1145 
1146 	for (i = 0; i < adev->sdma.num_instances; i++) {
1147 		ring = &adev->sdma.instance[i].ring;
1148 
1149 		r = amdgpu_ring_test_helper(ring);
1150 		if (r)
1151 			return r;
1152 
1153 		if (adev->sdma.has_page_queue) {
1154 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1155 
1156 			r = amdgpu_ring_test_helper(page);
1157 			if (r)
1158 				return r;
1159 
1160 			if (adev->mman.buffer_funcs_ring == page)
1161 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1162 		}
1163 
1164 		if (adev->mman.buffer_funcs_ring == ring)
1165 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1166 	}
1167 
1168 	return r;
1169 }
1170 
1171 /**
1172  * sdma_v4_0_ring_test_ring - simple async dma engine test
1173  *
1174  * @ring: amdgpu_ring structure holding ring information
1175  *
1176  * Test the DMA engine by writing using it to write an
1177  * value to memory. (VEGA10).
1178  * Returns 0 for success, error for failure.
1179  */
1180 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1181 {
1182 	struct amdgpu_device *adev = ring->adev;
1183 	unsigned i;
1184 	unsigned index;
1185 	int r;
1186 	u32 tmp;
1187 	u64 gpu_addr;
1188 
1189 	r = amdgpu_device_wb_get(adev, &index);
1190 	if (r)
1191 		return r;
1192 
1193 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1194 	tmp = 0xCAFEDEAD;
1195 	adev->wb.wb[index] = cpu_to_le32(tmp);
1196 
1197 	r = amdgpu_ring_alloc(ring, 5);
1198 	if (r)
1199 		goto error_free_wb;
1200 
1201 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1202 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1203 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1204 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1205 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1206 	amdgpu_ring_write(ring, 0xDEADBEEF);
1207 	amdgpu_ring_commit(ring);
1208 
1209 	for (i = 0; i < adev->usec_timeout; i++) {
1210 		tmp = le32_to_cpu(adev->wb.wb[index]);
1211 		if (tmp == 0xDEADBEEF)
1212 			break;
1213 		DRM_UDELAY(1);
1214 	}
1215 
1216 	if (i >= adev->usec_timeout)
1217 		r = -ETIMEDOUT;
1218 
1219 error_free_wb:
1220 	amdgpu_device_wb_free(adev, index);
1221 	return r;
1222 }
1223 
1224 /**
1225  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1226  *
1227  * @ring: amdgpu_ring structure holding ring information
1228  *
1229  * Test a simple IB in the DMA ring (VEGA10).
1230  * Returns 0 on success, error on failure.
1231  */
1232 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1233 {
1234 	struct amdgpu_device *adev = ring->adev;
1235 	struct amdgpu_ib ib;
1236 	struct dma_fence *f = NULL;
1237 	unsigned index;
1238 	long r;
1239 	u32 tmp = 0;
1240 	u64 gpu_addr;
1241 
1242 	r = amdgpu_device_wb_get(adev, &index);
1243 	if (r)
1244 		return r;
1245 
1246 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1247 	tmp = 0xCAFEDEAD;
1248 	adev->wb.wb[index] = cpu_to_le32(tmp);
1249 	memset(&ib, 0, sizeof(ib));
1250 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1251 	if (r)
1252 		goto err0;
1253 
1254 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1255 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1256 	ib.ptr[1] = lower_32_bits(gpu_addr);
1257 	ib.ptr[2] = upper_32_bits(gpu_addr);
1258 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1259 	ib.ptr[4] = 0xDEADBEEF;
1260 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1261 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1262 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1263 	ib.length_dw = 8;
1264 
1265 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1266 	if (r)
1267 		goto err1;
1268 
1269 	r = dma_fence_wait_timeout(f, false, timeout);
1270 	if (r == 0) {
1271 		r = -ETIMEDOUT;
1272 		goto err1;
1273 	} else if (r < 0) {
1274 		goto err1;
1275 	}
1276 	tmp = le32_to_cpu(adev->wb.wb[index]);
1277 	if (tmp == 0xDEADBEEF)
1278 		r = 0;
1279 	else
1280 		r = -EINVAL;
1281 
1282 err1:
1283 	amdgpu_ib_free(adev, &ib, NULL);
1284 	dma_fence_put(f);
1285 err0:
1286 	amdgpu_device_wb_free(adev, index);
1287 	return r;
1288 }
1289 
1290 
1291 /**
1292  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1293  *
1294  * @ib: indirect buffer to fill with commands
1295  * @pe: addr of the page entry
1296  * @src: src addr to copy from
1297  * @count: number of page entries to update
1298  *
1299  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1300  */
1301 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1302 				  uint64_t pe, uint64_t src,
1303 				  unsigned count)
1304 {
1305 	unsigned bytes = count * 8;
1306 
1307 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1308 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1309 	ib->ptr[ib->length_dw++] = bytes - 1;
1310 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1311 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1312 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1313 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1314 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1315 
1316 }
1317 
1318 /**
1319  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1320  *
1321  * @ib: indirect buffer to fill with commands
1322  * @pe: addr of the page entry
1323  * @addr: dst addr to write into pe
1324  * @count: number of page entries to update
1325  * @incr: increase next addr by incr bytes
1326  * @flags: access flags
1327  *
1328  * Update PTEs by writing them manually using sDMA (VEGA10).
1329  */
1330 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1331 				   uint64_t value, unsigned count,
1332 				   uint32_t incr)
1333 {
1334 	unsigned ndw = count * 2;
1335 
1336 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1337 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1338 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1339 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1340 	ib->ptr[ib->length_dw++] = ndw - 1;
1341 	for (; ndw > 0; ndw -= 2) {
1342 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1343 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1344 		value += incr;
1345 	}
1346 }
1347 
1348 /**
1349  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1350  *
1351  * @ib: indirect buffer to fill with commands
1352  * @pe: addr of the page entry
1353  * @addr: dst addr to write into pe
1354  * @count: number of page entries to update
1355  * @incr: increase next addr by incr bytes
1356  * @flags: access flags
1357  *
1358  * Update the page tables using sDMA (VEGA10).
1359  */
1360 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1361 				     uint64_t pe,
1362 				     uint64_t addr, unsigned count,
1363 				     uint32_t incr, uint64_t flags)
1364 {
1365 	/* for physically contiguous pages (vram) */
1366 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1367 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1368 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1369 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1370 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1371 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1372 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1373 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1374 	ib->ptr[ib->length_dw++] = 0;
1375 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1376 }
1377 
1378 /**
1379  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1380  *
1381  * @ib: indirect buffer to fill with padding
1382  *
1383  */
1384 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1385 {
1386 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1387 	u32 pad_count;
1388 	int i;
1389 
1390 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1391 	for (i = 0; i < pad_count; i++)
1392 		if (sdma && sdma->burst_nop && (i == 0))
1393 			ib->ptr[ib->length_dw++] =
1394 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1395 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1396 		else
1397 			ib->ptr[ib->length_dw++] =
1398 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1399 }
1400 
1401 
1402 /**
1403  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1404  *
1405  * @ring: amdgpu_ring pointer
1406  *
1407  * Make sure all previous operations are completed (CIK).
1408  */
1409 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1410 {
1411 	uint32_t seq = ring->fence_drv.sync_seq;
1412 	uint64_t addr = ring->fence_drv.gpu_addr;
1413 
1414 	/* wait for idle */
1415 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1416 			       addr & 0xfffffffc,
1417 			       upper_32_bits(addr) & 0xffffffff,
1418 			       seq, 0xffffffff, 4);
1419 }
1420 
1421 
1422 /**
1423  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1424  *
1425  * @ring: amdgpu_ring pointer
1426  * @vm: amdgpu_vm pointer
1427  *
1428  * Update the page table base and flush the VM TLB
1429  * using sDMA (VEGA10).
1430  */
1431 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1432 					 unsigned vmid, uint64_t pd_addr)
1433 {
1434 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1435 }
1436 
1437 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1438 				     uint32_t reg, uint32_t val)
1439 {
1440 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1441 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1442 	amdgpu_ring_write(ring, reg);
1443 	amdgpu_ring_write(ring, val);
1444 }
1445 
1446 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1447 					 uint32_t val, uint32_t mask)
1448 {
1449 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1450 }
1451 
1452 static int sdma_v4_0_early_init(void *handle)
1453 {
1454 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1455 
1456 	if (adev->asic_type == CHIP_RAVEN) {
1457 		adev->sdma.num_instances = 1;
1458 		adev->sdma.has_page_queue = false;
1459 	} else {
1460 		adev->sdma.num_instances = 2;
1461 		/* TODO: Page queue breaks driver reload under SRIOV */
1462 		if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1463 			adev->sdma.has_page_queue = false;
1464 		else if (adev->asic_type != CHIP_VEGA20 &&
1465 				adev->asic_type != CHIP_VEGA12)
1466 			adev->sdma.has_page_queue = true;
1467 	}
1468 
1469 	sdma_v4_0_set_ring_funcs(adev);
1470 	sdma_v4_0_set_buffer_funcs(adev);
1471 	sdma_v4_0_set_vm_pte_funcs(adev);
1472 	sdma_v4_0_set_irq_funcs(adev);
1473 
1474 	return 0;
1475 }
1476 
1477 
1478 static int sdma_v4_0_sw_init(void *handle)
1479 {
1480 	struct amdgpu_ring *ring;
1481 	int r, i;
1482 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1483 
1484 	/* SDMA trap event */
1485 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1486 			      &adev->sdma.trap_irq);
1487 	if (r)
1488 		return r;
1489 
1490 	/* SDMA trap event */
1491 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1492 			      &adev->sdma.trap_irq);
1493 	if (r)
1494 		return r;
1495 
1496 	r = sdma_v4_0_init_microcode(adev);
1497 	if (r) {
1498 		DRM_ERROR("Failed to load sdma firmware!\n");
1499 		return r;
1500 	}
1501 
1502 	for (i = 0; i < adev->sdma.num_instances; i++) {
1503 		ring = &adev->sdma.instance[i].ring;
1504 		ring->ring_obj = NULL;
1505 		ring->use_doorbell = true;
1506 
1507 		DRM_INFO("use_doorbell being set to: [%s]\n",
1508 				ring->use_doorbell?"true":"false");
1509 
1510 		if (adev->asic_type == CHIP_VEGA10)
1511 			ring->doorbell_index = (i == 0) ?
1512 				(AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1513 				: (AMDGPU_VEGA10_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1514 		else
1515 			ring->doorbell_index = (i == 0) ?
1516 				(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
1517 				: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
1518 
1519 
1520 		sprintf(ring->name, "sdma%d", i);
1521 		r = amdgpu_ring_init(adev, ring, 1024,
1522 				     &adev->sdma.trap_irq,
1523 				     (i == 0) ?
1524 				     AMDGPU_SDMA_IRQ_TRAP0 :
1525 				     AMDGPU_SDMA_IRQ_TRAP1);
1526 		if (r)
1527 			return r;
1528 
1529 		if (adev->sdma.has_page_queue) {
1530 			ring = &adev->sdma.instance[i].page;
1531 			ring->ring_obj = NULL;
1532 			ring->use_doorbell = false;
1533 
1534 			sprintf(ring->name, "page%d", i);
1535 			r = amdgpu_ring_init(adev, ring, 1024,
1536 					     &adev->sdma.trap_irq,
1537 					     (i == 0) ?
1538 					     AMDGPU_SDMA_IRQ_TRAP0 :
1539 					     AMDGPU_SDMA_IRQ_TRAP1);
1540 			if (r)
1541 				return r;
1542 		}
1543 	}
1544 
1545 	return r;
1546 }
1547 
1548 static int sdma_v4_0_sw_fini(void *handle)
1549 {
1550 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1551 	int i;
1552 
1553 	for (i = 0; i < adev->sdma.num_instances; i++) {
1554 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1555 		if (adev->sdma.has_page_queue)
1556 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1557 	}
1558 
1559 	for (i = 0; i < adev->sdma.num_instances; i++) {
1560 		release_firmware(adev->sdma.instance[i].fw);
1561 		adev->sdma.instance[i].fw = NULL;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int sdma_v4_0_hw_init(void *handle)
1568 {
1569 	int r;
1570 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1571 
1572 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1573 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1574 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1575 
1576 	sdma_v4_0_init_golden_registers(adev);
1577 
1578 	r = sdma_v4_0_start(adev);
1579 
1580 	return r;
1581 }
1582 
1583 static int sdma_v4_0_hw_fini(void *handle)
1584 {
1585 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1586 
1587 	if (amdgpu_sriov_vf(adev))
1588 		return 0;
1589 
1590 	sdma_v4_0_ctx_switch_enable(adev, false);
1591 	sdma_v4_0_enable(adev, false);
1592 
1593 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1594 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1595 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1596 
1597 	return 0;
1598 }
1599 
1600 static int sdma_v4_0_suspend(void *handle)
1601 {
1602 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1603 
1604 	return sdma_v4_0_hw_fini(adev);
1605 }
1606 
1607 static int sdma_v4_0_resume(void *handle)
1608 {
1609 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1610 
1611 	return sdma_v4_0_hw_init(adev);
1612 }
1613 
1614 static bool sdma_v4_0_is_idle(void *handle)
1615 {
1616 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1617 	u32 i;
1618 
1619 	for (i = 0; i < adev->sdma.num_instances; i++) {
1620 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1621 
1622 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1623 			return false;
1624 	}
1625 
1626 	return true;
1627 }
1628 
1629 static int sdma_v4_0_wait_for_idle(void *handle)
1630 {
1631 	unsigned i;
1632 	u32 sdma0, sdma1;
1633 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1634 
1635 	for (i = 0; i < adev->usec_timeout; i++) {
1636 		sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1637 		sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1638 
1639 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1640 			return 0;
1641 		udelay(1);
1642 	}
1643 	return -ETIMEDOUT;
1644 }
1645 
1646 static int sdma_v4_0_soft_reset(void *handle)
1647 {
1648 	/* todo */
1649 
1650 	return 0;
1651 }
1652 
1653 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1654 					struct amdgpu_irq_src *source,
1655 					unsigned type,
1656 					enum amdgpu_interrupt_state state)
1657 {
1658 	unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1659 	u32 sdma_cntl;
1660 
1661 	sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1662 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1663 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1664 	WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1665 
1666 	return 0;
1667 }
1668 
1669 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1670 				      struct amdgpu_irq_src *source,
1671 				      struct amdgpu_iv_entry *entry)
1672 {
1673 	uint32_t instance;
1674 
1675 	DRM_DEBUG("IH: SDMA trap\n");
1676 	switch (entry->client_id) {
1677 	case SOC15_IH_CLIENTID_SDMA0:
1678 		instance = 0;
1679 		break;
1680 	case SOC15_IH_CLIENTID_SDMA1:
1681 		instance = 1;
1682 		break;
1683 	default:
1684 		return 0;
1685 	}
1686 
1687 	switch (entry->ring_id) {
1688 	case 0:
1689 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1690 		break;
1691 	case 1:
1692 		/* XXX compute */
1693 		break;
1694 	case 2:
1695 		/* XXX compute */
1696 		break;
1697 	case 3:
1698 		amdgpu_fence_process(&adev->sdma.instance[instance].page);
1699 		break;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1705 					      struct amdgpu_irq_src *source,
1706 					      struct amdgpu_iv_entry *entry)
1707 {
1708 	int instance;
1709 
1710 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1711 
1712 	switch (entry->client_id) {
1713 	case SOC15_IH_CLIENTID_SDMA0:
1714 		instance = 0;
1715 		break;
1716 	case SOC15_IH_CLIENTID_SDMA1:
1717 		instance = 1;
1718 		break;
1719 	default:
1720 		return 0;
1721 	}
1722 
1723 	switch (entry->ring_id) {
1724 	case 0:
1725 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1726 		break;
1727 	}
1728 	return 0;
1729 }
1730 
1731 static void sdma_v4_0_update_medium_grain_clock_gating(
1732 		struct amdgpu_device *adev,
1733 		bool enable)
1734 {
1735 	uint32_t data, def;
1736 
1737 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1738 		/* enable sdma0 clock gating */
1739 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1740 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1741 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1742 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1743 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1744 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1745 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1746 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1747 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1748 		if (def != data)
1749 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1750 
1751 		if (adev->sdma.num_instances > 1) {
1752 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1753 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1754 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1755 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1756 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1757 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1758 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1759 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1760 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1761 			if (def != data)
1762 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1763 		}
1764 	} else {
1765 		/* disable sdma0 clock gating */
1766 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1767 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1768 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1769 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1770 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1771 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1772 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1773 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1774 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1775 
1776 		if (def != data)
1777 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1778 
1779 		if (adev->sdma.num_instances > 1) {
1780 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1781 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1782 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1783 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1784 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1785 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1786 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1787 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1788 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1789 			if (def != data)
1790 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1791 		}
1792 	}
1793 }
1794 
1795 
1796 static void sdma_v4_0_update_medium_grain_light_sleep(
1797 		struct amdgpu_device *adev,
1798 		bool enable)
1799 {
1800 	uint32_t data, def;
1801 
1802 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1803 		/* 1-not override: enable sdma0 mem light sleep */
1804 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1805 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1806 		if (def != data)
1807 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1808 
1809 		/* 1-not override: enable sdma1 mem light sleep */
1810 		if (adev->sdma.num_instances > 1) {
1811 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1812 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1813 			if (def != data)
1814 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1815 		}
1816 	} else {
1817 		/* 0-override:disable sdma0 mem light sleep */
1818 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1819 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1820 		if (def != data)
1821 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1822 
1823 		/* 0-override:disable sdma1 mem light sleep */
1824 		if (adev->sdma.num_instances > 1) {
1825 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1826 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1827 			if (def != data)
1828 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1829 		}
1830 	}
1831 }
1832 
1833 static int sdma_v4_0_set_clockgating_state(void *handle,
1834 					  enum amd_clockgating_state state)
1835 {
1836 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1837 
1838 	if (amdgpu_sriov_vf(adev))
1839 		return 0;
1840 
1841 	switch (adev->asic_type) {
1842 	case CHIP_VEGA10:
1843 	case CHIP_VEGA12:
1844 	case CHIP_VEGA20:
1845 	case CHIP_RAVEN:
1846 		sdma_v4_0_update_medium_grain_clock_gating(adev,
1847 				state == AMD_CG_STATE_GATE ? true : false);
1848 		sdma_v4_0_update_medium_grain_light_sleep(adev,
1849 				state == AMD_CG_STATE_GATE ? true : false);
1850 		break;
1851 	default:
1852 		break;
1853 	}
1854 	return 0;
1855 }
1856 
1857 static int sdma_v4_0_set_powergating_state(void *handle,
1858 					  enum amd_powergating_state state)
1859 {
1860 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1861 
1862 	switch (adev->asic_type) {
1863 	case CHIP_RAVEN:
1864 		sdma_v4_1_update_power_gating(adev,
1865 				state == AMD_PG_STATE_GATE ? true : false);
1866 		break;
1867 	default:
1868 		break;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1875 {
1876 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1877 	int data;
1878 
1879 	if (amdgpu_sriov_vf(adev))
1880 		*flags = 0;
1881 
1882 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1883 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1884 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1885 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1886 
1887 	/* AMD_CG_SUPPORT_SDMA_LS */
1888 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1889 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1890 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1891 }
1892 
1893 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1894 	.name = "sdma_v4_0",
1895 	.early_init = sdma_v4_0_early_init,
1896 	.late_init = NULL,
1897 	.sw_init = sdma_v4_0_sw_init,
1898 	.sw_fini = sdma_v4_0_sw_fini,
1899 	.hw_init = sdma_v4_0_hw_init,
1900 	.hw_fini = sdma_v4_0_hw_fini,
1901 	.suspend = sdma_v4_0_suspend,
1902 	.resume = sdma_v4_0_resume,
1903 	.is_idle = sdma_v4_0_is_idle,
1904 	.wait_for_idle = sdma_v4_0_wait_for_idle,
1905 	.soft_reset = sdma_v4_0_soft_reset,
1906 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
1907 	.set_powergating_state = sdma_v4_0_set_powergating_state,
1908 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1909 };
1910 
1911 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1912 	.type = AMDGPU_RING_TYPE_SDMA,
1913 	.align_mask = 0xf,
1914 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1915 	.support_64bit_ptrs = true,
1916 	.vmhub = AMDGPU_MMHUB,
1917 	.get_rptr = sdma_v4_0_ring_get_rptr,
1918 	.get_wptr = sdma_v4_0_ring_get_wptr,
1919 	.set_wptr = sdma_v4_0_ring_set_wptr,
1920 	.emit_frame_size =
1921 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1922 		3 + /* hdp invalidate */
1923 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1924 		/* sdma_v4_0_ring_emit_vm_flush */
1925 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1926 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1927 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1928 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1929 	.emit_ib = sdma_v4_0_ring_emit_ib,
1930 	.emit_fence = sdma_v4_0_ring_emit_fence,
1931 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1932 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1933 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1934 	.test_ring = sdma_v4_0_ring_test_ring,
1935 	.test_ib = sdma_v4_0_ring_test_ib,
1936 	.insert_nop = sdma_v4_0_ring_insert_nop,
1937 	.pad_ib = sdma_v4_0_ring_pad_ib,
1938 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1939 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1940 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1941 };
1942 
1943 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
1944 	.type = AMDGPU_RING_TYPE_SDMA,
1945 	.align_mask = 0xf,
1946 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1947 	.support_64bit_ptrs = true,
1948 	.vmhub = AMDGPU_MMHUB,
1949 	.get_rptr = sdma_v4_0_ring_get_rptr,
1950 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
1951 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
1952 	.emit_frame_size =
1953 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
1954 		3 + /* hdp invalidate */
1955 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1956 		/* sdma_v4_0_ring_emit_vm_flush */
1957 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1958 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1959 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1960 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1961 	.emit_ib = sdma_v4_0_ring_emit_ib,
1962 	.emit_fence = sdma_v4_0_ring_emit_fence,
1963 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1964 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1965 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1966 	.test_ring = sdma_v4_0_ring_test_ring,
1967 	.test_ib = sdma_v4_0_ring_test_ib,
1968 	.insert_nop = sdma_v4_0_ring_insert_nop,
1969 	.pad_ib = sdma_v4_0_ring_pad_ib,
1970 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
1971 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1972 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1973 };
1974 
1975 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1976 {
1977 	int i;
1978 
1979 	for (i = 0; i < adev->sdma.num_instances; i++) {
1980 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1981 		adev->sdma.instance[i].ring.me = i;
1982 		if (adev->sdma.has_page_queue) {
1983 			adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
1984 			adev->sdma.instance[i].page.me = i;
1985 		}
1986 	}
1987 }
1988 
1989 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
1990 	.set = sdma_v4_0_set_trap_irq_state,
1991 	.process = sdma_v4_0_process_trap_irq,
1992 };
1993 
1994 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
1995 	.process = sdma_v4_0_process_illegal_inst_irq,
1996 };
1997 
1998 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
1999 {
2000 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2001 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2002 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2003 }
2004 
2005 /**
2006  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2007  *
2008  * @ring: amdgpu_ring structure holding ring information
2009  * @src_offset: src GPU address
2010  * @dst_offset: dst GPU address
2011  * @byte_count: number of bytes to xfer
2012  *
2013  * Copy GPU buffers using the DMA engine (VEGA10/12).
2014  * Used by the amdgpu ttm implementation to move pages if
2015  * registered as the asic copy callback.
2016  */
2017 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2018 				       uint64_t src_offset,
2019 				       uint64_t dst_offset,
2020 				       uint32_t byte_count)
2021 {
2022 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2023 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2024 	ib->ptr[ib->length_dw++] = byte_count - 1;
2025 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2026 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2027 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2028 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2029 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2030 }
2031 
2032 /**
2033  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2034  *
2035  * @ring: amdgpu_ring structure holding ring information
2036  * @src_data: value to write to buffer
2037  * @dst_offset: dst GPU address
2038  * @byte_count: number of bytes to xfer
2039  *
2040  * Fill GPU buffers using the DMA engine (VEGA10/12).
2041  */
2042 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2043 				       uint32_t src_data,
2044 				       uint64_t dst_offset,
2045 				       uint32_t byte_count)
2046 {
2047 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2048 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2049 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2050 	ib->ptr[ib->length_dw++] = src_data;
2051 	ib->ptr[ib->length_dw++] = byte_count - 1;
2052 }
2053 
2054 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2055 	.copy_max_bytes = 0x400000,
2056 	.copy_num_dw = 7,
2057 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2058 
2059 	.fill_max_bytes = 0x400000,
2060 	.fill_num_dw = 5,
2061 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2062 };
2063 
2064 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2065 {
2066 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2067 	if (adev->sdma.has_page_queue)
2068 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2069 	else
2070 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2071 }
2072 
2073 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2074 	.copy_pte_num_dw = 7,
2075 	.copy_pte = sdma_v4_0_vm_copy_pte,
2076 
2077 	.write_pte = sdma_v4_0_vm_write_pte,
2078 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2079 };
2080 
2081 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2082 {
2083 	struct drm_gpu_scheduler *sched;
2084 	unsigned i;
2085 
2086 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2087 	for (i = 0; i < adev->sdma.num_instances; i++) {
2088 		if (adev->sdma.has_page_queue)
2089 			sched = &adev->sdma.instance[i].page.sched;
2090 		else
2091 			sched = &adev->sdma.instance[i].ring.sched;
2092 		adev->vm_manager.vm_pte_rqs[i] =
2093 			&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2094 	}
2095 	adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2096 }
2097 
2098 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2099 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2100 	.major = 4,
2101 	.minor = 0,
2102 	.rev = 0,
2103 	.funcs = &sdma_v4_0_ip_funcs,
2104 };
2105