1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_ucode.h" 31 #include "amdgpu_trace.h" 32 33 #include "sdma0/sdma0_4_2_offset.h" 34 #include "sdma0/sdma0_4_2_sh_mask.h" 35 #include "sdma1/sdma1_4_2_offset.h" 36 #include "sdma1/sdma1_4_2_sh_mask.h" 37 #include "sdma2/sdma2_4_2_2_offset.h" 38 #include "sdma2/sdma2_4_2_2_sh_mask.h" 39 #include "sdma3/sdma3_4_2_2_offset.h" 40 #include "sdma3/sdma3_4_2_2_sh_mask.h" 41 #include "sdma4/sdma4_4_2_2_offset.h" 42 #include "sdma4/sdma4_4_2_2_sh_mask.h" 43 #include "sdma5/sdma5_4_2_2_offset.h" 44 #include "sdma5/sdma5_4_2_2_sh_mask.h" 45 #include "sdma6/sdma6_4_2_2_offset.h" 46 #include "sdma6/sdma6_4_2_2_sh_mask.h" 47 #include "sdma7/sdma7_4_2_2_offset.h" 48 #include "sdma7/sdma7_4_2_2_sh_mask.h" 49 #include "sdma0/sdma0_4_1_default.h" 50 51 #include "soc15_common.h" 52 #include "soc15.h" 53 #include "vega10_sdma_pkt_open.h" 54 55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 57 58 #include "amdgpu_ras.h" 59 #include "sdma_v4_4.h" 60 61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin"); 62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin"); 63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin"); 64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin"); 65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin"); 66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin"); 67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin"); 68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin"); 69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin"); 70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin"); 71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin"); 72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin"); 73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin"); 74 75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L 76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L 77 78 #define WREG32_SDMA(instance, offset, value) \ 79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) 80 #define RREG32_SDMA(instance, offset) \ 81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) 82 83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); 84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); 85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); 86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); 87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev); 88 89 static const struct soc15_reg_golden golden_settings_sdma_4[] = { 90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), 92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), 93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), 97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), 103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), 105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), 107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), 109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), 110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), 112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), 113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) 115 }; 116 117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { 118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 125 }; 126 127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { 128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), 133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), 134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 135 }; 136 137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { 138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), 139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), 141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), 143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), 144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), 146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) 149 }; 150 151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { 152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 153 }; 154 155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = 156 { 157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), 166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), 183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 184 }; 185 186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { 187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), 189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), 196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), 198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), 211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), 213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 214 }; 215 216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] = 217 { 218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) 220 }; 221 222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] = 223 { 224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), 225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) 226 }; 227 228 static const struct soc15_reg_golden golden_settings_sdma_arct[] = 229 { 230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), 260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), 261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001) 262 }; 263 264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = { 265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), 278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), 279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001), 280 }; 281 282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = { 283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), 284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), 285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), 286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002), 287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051), 289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), 291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0), 292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe) 293 }; 294 295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = { 296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED), 298 0, 0, 299 }, 300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED), 302 0, 0, 303 }, 304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED), 306 0, 0, 307 }, 308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED), 310 0, 0, 311 }, 312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED), 314 0, 0, 315 }, 316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED), 318 0, 0, 319 }, 320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED), 322 0, 0, 323 }, 324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED), 326 0, 0, 327 }, 328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED), 330 0, 0, 331 }, 332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED), 334 0, 0, 335 }, 336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED), 338 0, 0, 339 }, 340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED), 342 0, 0, 343 }, 344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED), 346 0, 0, 347 }, 348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED), 350 0, 0, 351 }, 352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED), 354 0, 0, 355 }, 356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED), 358 0, 0, 359 }, 360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED), 362 0, 0, 363 }, 364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED), 366 0, 0, 367 }, 368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED), 370 0, 0, 371 }, 372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED), 374 0, 0, 375 }, 376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED), 378 0, 0, 379 }, 380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED), 382 0, 0, 383 }, 384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED), 386 0, 0, 387 }, 388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER), 389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED), 390 0, 0, 391 }, 392 }; 393 394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, 395 u32 instance, u32 offset) 396 { 397 switch (instance) { 398 case 0: 399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset); 400 case 1: 401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset); 402 case 2: 403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset); 404 case 3: 405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset); 406 case 4: 407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset); 408 case 5: 409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset); 410 case 6: 411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset); 412 case 7: 413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset); 414 default: 415 break; 416 } 417 return 0; 418 } 419 420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num) 421 { 422 switch (seq_num) { 423 case 0: 424 return SOC15_IH_CLIENTID_SDMA0; 425 case 1: 426 return SOC15_IH_CLIENTID_SDMA1; 427 case 2: 428 return SOC15_IH_CLIENTID_SDMA2; 429 case 3: 430 return SOC15_IH_CLIENTID_SDMA3; 431 case 4: 432 return SOC15_IH_CLIENTID_SDMA4; 433 case 5: 434 return SOC15_IH_CLIENTID_SDMA5; 435 case 6: 436 return SOC15_IH_CLIENTID_SDMA6; 437 case 7: 438 return SOC15_IH_CLIENTID_SDMA7; 439 default: 440 break; 441 } 442 return -EINVAL; 443 } 444 445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id) 446 { 447 switch (client_id) { 448 case SOC15_IH_CLIENTID_SDMA0: 449 return 0; 450 case SOC15_IH_CLIENTID_SDMA1: 451 return 1; 452 case SOC15_IH_CLIENTID_SDMA2: 453 return 2; 454 case SOC15_IH_CLIENTID_SDMA3: 455 return 3; 456 case SOC15_IH_CLIENTID_SDMA4: 457 return 4; 458 case SOC15_IH_CLIENTID_SDMA5: 459 return 5; 460 case SOC15_IH_CLIENTID_SDMA6: 461 return 6; 462 case SOC15_IH_CLIENTID_SDMA7: 463 return 7; 464 default: 465 break; 466 } 467 return -EINVAL; 468 } 469 470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) 471 { 472 switch (adev->ip_versions[SDMA0_HWIP][0]) { 473 case IP_VERSION(4, 0, 0): 474 soc15_program_register_sequence(adev, 475 golden_settings_sdma_4, 476 ARRAY_SIZE(golden_settings_sdma_4)); 477 soc15_program_register_sequence(adev, 478 golden_settings_sdma_vg10, 479 ARRAY_SIZE(golden_settings_sdma_vg10)); 480 break; 481 case IP_VERSION(4, 0, 1): 482 soc15_program_register_sequence(adev, 483 golden_settings_sdma_4, 484 ARRAY_SIZE(golden_settings_sdma_4)); 485 soc15_program_register_sequence(adev, 486 golden_settings_sdma_vg12, 487 ARRAY_SIZE(golden_settings_sdma_vg12)); 488 break; 489 case IP_VERSION(4, 2, 0): 490 soc15_program_register_sequence(adev, 491 golden_settings_sdma0_4_2_init, 492 ARRAY_SIZE(golden_settings_sdma0_4_2_init)); 493 soc15_program_register_sequence(adev, 494 golden_settings_sdma0_4_2, 495 ARRAY_SIZE(golden_settings_sdma0_4_2)); 496 soc15_program_register_sequence(adev, 497 golden_settings_sdma1_4_2, 498 ARRAY_SIZE(golden_settings_sdma1_4_2)); 499 break; 500 case IP_VERSION(4, 2, 2): 501 soc15_program_register_sequence(adev, 502 golden_settings_sdma_arct, 503 ARRAY_SIZE(golden_settings_sdma_arct)); 504 break; 505 case IP_VERSION(4, 4, 0): 506 soc15_program_register_sequence(adev, 507 golden_settings_sdma_aldebaran, 508 ARRAY_SIZE(golden_settings_sdma_aldebaran)); 509 break; 510 case IP_VERSION(4, 1, 0): 511 case IP_VERSION(4, 1, 1): 512 soc15_program_register_sequence(adev, 513 golden_settings_sdma_4_1, 514 ARRAY_SIZE(golden_settings_sdma_4_1)); 515 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 516 soc15_program_register_sequence(adev, 517 golden_settings_sdma_rv2, 518 ARRAY_SIZE(golden_settings_sdma_rv2)); 519 else 520 soc15_program_register_sequence(adev, 521 golden_settings_sdma_rv1, 522 ARRAY_SIZE(golden_settings_sdma_rv1)); 523 break; 524 case IP_VERSION(4, 1, 2): 525 soc15_program_register_sequence(adev, 526 golden_settings_sdma_4_3, 527 ARRAY_SIZE(golden_settings_sdma_4_3)); 528 break; 529 default: 530 break; 531 } 532 } 533 534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev) 535 { 536 int i; 537 538 /* 539 * The only chips with SDMAv4 and ULV are VG10 and VG20. 540 * Server SKUs take a different hysteresis setting from other SKUs. 541 */ 542 switch (adev->ip_versions[SDMA0_HWIP][0]) { 543 case IP_VERSION(4, 0, 0): 544 if (adev->pdev->device == 0x6860) 545 break; 546 return; 547 case IP_VERSION(4, 2, 0): 548 if (adev->pdev->device == 0x66a1) 549 break; 550 return; 551 default: 552 return; 553 } 554 555 for (i = 0; i < adev->sdma.num_instances; i++) { 556 uint32_t temp; 557 558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL); 559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0); 560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp); 561 } 562 } 563 564 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst) 565 { 566 int err = 0; 567 const struct sdma_firmware_header_v1_0 *hdr; 568 569 err = amdgpu_ucode_validate(sdma_inst->fw); 570 if (err) 571 return err; 572 573 hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data; 574 sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version); 575 sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version); 576 577 if (sdma_inst->feature_version >= 20) 578 sdma_inst->burst_nop = true; 579 580 return 0; 581 } 582 583 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev) 584 { 585 int i; 586 587 for (i = 0; i < adev->sdma.num_instances; i++) { 588 release_firmware(adev->sdma.instance[i].fw); 589 adev->sdma.instance[i].fw = NULL; 590 591 /* arcturus shares the same FW memory across 592 all SDMA isntances */ 593 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) || 594 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) 595 break; 596 } 597 598 memset((void *)adev->sdma.instance, 0, 599 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES); 600 } 601 602 /** 603 * sdma_v4_0_init_microcode - load ucode images from disk 604 * 605 * @adev: amdgpu_device pointer 606 * 607 * Use the firmware interface to load the ucode images into 608 * the driver (not loaded into hw). 609 * Returns 0 on success, error on failure. 610 */ 611 612 // emulation only, won't work on real chip 613 // vega10 real chip need to use PSP to load firmware 614 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) 615 { 616 const char *chip_name; 617 char fw_name[30]; 618 int err = 0, i; 619 struct amdgpu_firmware_info *info = NULL; 620 const struct common_firmware_header *header = NULL; 621 622 DRM_DEBUG("\n"); 623 624 switch (adev->ip_versions[SDMA0_HWIP][0]) { 625 case IP_VERSION(4, 0, 0): 626 chip_name = "vega10"; 627 break; 628 case IP_VERSION(4, 0, 1): 629 chip_name = "vega12"; 630 break; 631 case IP_VERSION(4, 2, 0): 632 chip_name = "vega20"; 633 break; 634 case IP_VERSION(4, 1, 0): 635 case IP_VERSION(4, 1, 1): 636 if (adev->apu_flags & AMD_APU_IS_RAVEN2) 637 chip_name = "raven2"; 638 else if (adev->apu_flags & AMD_APU_IS_PICASSO) 639 chip_name = "picasso"; 640 else 641 chip_name = "raven"; 642 break; 643 case IP_VERSION(4, 2, 2): 644 chip_name = "arcturus"; 645 break; 646 case IP_VERSION(4, 1, 2): 647 if (adev->apu_flags & AMD_APU_IS_RENOIR) 648 chip_name = "renoir"; 649 else 650 chip_name = "green_sardine"; 651 break; 652 case IP_VERSION(4, 4, 0): 653 chip_name = "aldebaran"; 654 break; 655 default: 656 BUG(); 657 } 658 659 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); 660 661 err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev); 662 if (err) 663 goto out; 664 665 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]); 666 if (err) 667 goto out; 668 669 for (i = 1; i < adev->sdma.num_instances; i++) { 670 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) || 671 adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) { 672 /* Acturus & Aldebaran will leverage the same FW memory 673 for every SDMA instance */ 674 memcpy((void *)&adev->sdma.instance[i], 675 (void *)&adev->sdma.instance[0], 676 sizeof(struct amdgpu_sdma_instance)); 677 } 678 else { 679 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i); 680 681 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); 682 if (err) 683 goto out; 684 685 err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]); 686 if (err) 687 goto out; 688 } 689 } 690 691 DRM_DEBUG("psp_load == '%s'\n", 692 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false"); 693 694 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 695 for (i = 0; i < adev->sdma.num_instances; i++) { 696 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; 697 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; 698 info->fw = adev->sdma.instance[i].fw; 699 header = (const struct common_firmware_header *)info->fw->data; 700 adev->firmware.fw_size += 701 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); 702 } 703 } 704 705 out: 706 if (err) { 707 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name); 708 sdma_v4_0_destroy_inst_ctx(adev); 709 } 710 return err; 711 } 712 713 /** 714 * sdma_v4_0_ring_get_rptr - get the current read pointer 715 * 716 * @ring: amdgpu ring pointer 717 * 718 * Get the current rptr from the hardware (VEGA10+). 719 */ 720 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) 721 { 722 u64 *rptr; 723 724 /* XXX check if swapping is necessary on BE */ 725 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 726 727 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 728 return ((*rptr) >> 2); 729 } 730 731 /** 732 * sdma_v4_0_ring_get_wptr - get the current write pointer 733 * 734 * @ring: amdgpu ring pointer 735 * 736 * Get the current wptr from the hardware (VEGA10+). 737 */ 738 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) 739 { 740 struct amdgpu_device *adev = ring->adev; 741 u64 wptr; 742 743 if (ring->use_doorbell) { 744 /* XXX check if swapping is necessary on BE */ 745 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 746 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 747 } else { 748 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); 749 wptr = wptr << 32; 750 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); 751 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 752 ring->me, wptr); 753 } 754 755 return wptr >> 2; 756 } 757 758 /** 759 * sdma_v4_0_ring_set_wptr - commit the write pointer 760 * 761 * @ring: amdgpu ring pointer 762 * 763 * Write the wptr back to the hardware (VEGA10+). 764 */ 765 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) 766 { 767 struct amdgpu_device *adev = ring->adev; 768 769 DRM_DEBUG("Setting write pointer\n"); 770 if (ring->use_doorbell) { 771 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 772 773 DRM_DEBUG("Using doorbell -- " 774 "wptr_offs == 0x%08x " 775 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 776 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 777 ring->wptr_offs, 778 lower_32_bits(ring->wptr << 2), 779 upper_32_bits(ring->wptr << 2)); 780 /* XXX check if swapping is necessary on BE */ 781 WRITE_ONCE(*wb, (ring->wptr << 2)); 782 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 783 ring->doorbell_index, ring->wptr << 2); 784 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 785 } else { 786 DRM_DEBUG("Not using doorbell -- " 787 "mmSDMA%i_GFX_RB_WPTR == 0x%08x " 788 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 789 ring->me, 790 lower_32_bits(ring->wptr << 2), 791 ring->me, 792 upper_32_bits(ring->wptr << 2)); 793 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, 794 lower_32_bits(ring->wptr << 2)); 795 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, 796 upper_32_bits(ring->wptr << 2)); 797 } 798 } 799 800 /** 801 * sdma_v4_0_page_ring_get_wptr - get the current write pointer 802 * 803 * @ring: amdgpu ring pointer 804 * 805 * Get the current wptr from the hardware (VEGA10+). 806 */ 807 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) 808 { 809 struct amdgpu_device *adev = ring->adev; 810 u64 wptr; 811 812 if (ring->use_doorbell) { 813 /* XXX check if swapping is necessary on BE */ 814 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 815 } else { 816 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); 817 wptr = wptr << 32; 818 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); 819 } 820 821 return wptr >> 2; 822 } 823 824 /** 825 * sdma_v4_0_page_ring_set_wptr - commit the write pointer 826 * 827 * @ring: amdgpu ring pointer 828 * 829 * Write the wptr back to the hardware (VEGA10+). 830 */ 831 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) 832 { 833 struct amdgpu_device *adev = ring->adev; 834 835 if (ring->use_doorbell) { 836 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 837 838 /* XXX check if swapping is necessary on BE */ 839 WRITE_ONCE(*wb, (ring->wptr << 2)); 840 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 841 } else { 842 uint64_t wptr = ring->wptr << 2; 843 844 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, 845 lower_32_bits(wptr)); 846 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, 847 upper_32_bits(wptr)); 848 } 849 } 850 851 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 852 { 853 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 854 int i; 855 856 for (i = 0; i < count; i++) 857 if (sdma && sdma->burst_nop && (i == 0)) 858 amdgpu_ring_write(ring, ring->funcs->nop | 859 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 860 else 861 amdgpu_ring_write(ring, ring->funcs->nop); 862 } 863 864 /** 865 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine 866 * 867 * @ring: amdgpu ring pointer 868 * @job: job to retrieve vmid from 869 * @ib: IB object to schedule 870 * @flags: unused 871 * 872 * Schedule an IB in the DMA ring (VEGA10). 873 */ 874 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, 875 struct amdgpu_job *job, 876 struct amdgpu_ib *ib, 877 uint32_t flags) 878 { 879 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 880 881 /* IB packet must end on a 8 DW boundary */ 882 sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 883 884 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 885 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 886 /* base must be 32 byte aligned */ 887 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 888 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 889 amdgpu_ring_write(ring, ib->length_dw); 890 amdgpu_ring_write(ring, 0); 891 amdgpu_ring_write(ring, 0); 892 893 } 894 895 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, 896 int mem_space, int hdp, 897 uint32_t addr0, uint32_t addr1, 898 uint32_t ref, uint32_t mask, 899 uint32_t inv) 900 { 901 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 902 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 903 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 904 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 905 if (mem_space) { 906 /* memory */ 907 amdgpu_ring_write(ring, addr0); 908 amdgpu_ring_write(ring, addr1); 909 } else { 910 /* registers */ 911 amdgpu_ring_write(ring, addr0 << 2); 912 amdgpu_ring_write(ring, addr1 << 2); 913 } 914 amdgpu_ring_write(ring, ref); /* reference */ 915 amdgpu_ring_write(ring, mask); /* mask */ 916 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 917 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 918 } 919 920 /** 921 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 922 * 923 * @ring: amdgpu ring pointer 924 * 925 * Emit an hdp flush packet on the requested DMA ring. 926 */ 927 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) 928 { 929 struct amdgpu_device *adev = ring->adev; 930 u32 ref_and_mask = 0; 931 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 932 933 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 934 935 sdma_v4_0_wait_reg_mem(ring, 0, 1, 936 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 937 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 938 ref_and_mask, ref_and_mask, 10); 939 } 940 941 /** 942 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring 943 * 944 * @ring: amdgpu ring pointer 945 * @addr: address 946 * @seq: sequence number 947 * @flags: fence related flags 948 * 949 * Add a DMA fence packet to the ring to write 950 * the fence seq number and DMA trap packet to generate 951 * an interrupt if needed (VEGA10). 952 */ 953 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 954 unsigned flags) 955 { 956 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 957 /* write the fence */ 958 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 959 /* zero in first two bits */ 960 BUG_ON(addr & 0x3); 961 amdgpu_ring_write(ring, lower_32_bits(addr)); 962 amdgpu_ring_write(ring, upper_32_bits(addr)); 963 amdgpu_ring_write(ring, lower_32_bits(seq)); 964 965 /* optionally write high bits as well */ 966 if (write64bit) { 967 addr += 4; 968 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 969 /* zero in first two bits */ 970 BUG_ON(addr & 0x3); 971 amdgpu_ring_write(ring, lower_32_bits(addr)); 972 amdgpu_ring_write(ring, upper_32_bits(addr)); 973 amdgpu_ring_write(ring, upper_32_bits(seq)); 974 } 975 976 /* generate an interrupt */ 977 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 978 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 979 } 980 981 982 /** 983 * sdma_v4_0_gfx_stop - stop the gfx async dma engines 984 * 985 * @adev: amdgpu_device pointer 986 * 987 * Stop the gfx async dma ring buffers (VEGA10). 988 */ 989 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) 990 { 991 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 992 u32 rb_cntl, ib_cntl; 993 int i, unset = 0; 994 995 for (i = 0; i < adev->sdma.num_instances; i++) { 996 sdma[i] = &adev->sdma.instance[i].ring; 997 998 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) { 999 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1000 unset = 1; 1001 } 1002 1003 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1004 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); 1005 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1006 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1007 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); 1008 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1009 } 1010 } 1011 1012 /** 1013 * sdma_v4_0_rlc_stop - stop the compute async dma engines 1014 * 1015 * @adev: amdgpu_device pointer 1016 * 1017 * Stop the compute async dma queues (VEGA10). 1018 */ 1019 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) 1020 { 1021 /* XXX todo */ 1022 } 1023 1024 /** 1025 * sdma_v4_0_page_stop - stop the page async dma engines 1026 * 1027 * @adev: amdgpu_device pointer 1028 * 1029 * Stop the page async dma ring buffers (VEGA10). 1030 */ 1031 static void sdma_v4_0_page_stop(struct amdgpu_device *adev) 1032 { 1033 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1034 u32 rb_cntl, ib_cntl; 1035 int i; 1036 bool unset = false; 1037 1038 for (i = 0; i < adev->sdma.num_instances; i++) { 1039 sdma[i] = &adev->sdma.instance[i].page; 1040 1041 if ((adev->mman.buffer_funcs_ring == sdma[i]) && 1042 (!unset)) { 1043 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1044 unset = true; 1045 } 1046 1047 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1048 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1049 RB_ENABLE, 0); 1050 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1051 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1052 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, 1053 IB_ENABLE, 0); 1054 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1055 } 1056 } 1057 1058 /** 1059 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch 1060 * 1061 * @adev: amdgpu_device pointer 1062 * @enable: enable/disable the DMA MEs context switch. 1063 * 1064 * Halt or unhalt the async dma engines context switch (VEGA10). 1065 */ 1066 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) 1067 { 1068 u32 f32_cntl, phase_quantum = 0; 1069 int i; 1070 1071 if (amdgpu_sdma_phase_quantum) { 1072 unsigned value = amdgpu_sdma_phase_quantum; 1073 unsigned unit = 0; 1074 1075 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 1076 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { 1077 value = (value + 1) >> 1; 1078 unit++; 1079 } 1080 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1081 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { 1082 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> 1083 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); 1084 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> 1085 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); 1086 WARN_ONCE(1, 1087 "clamping sdma_phase_quantum to %uK clock cycles\n", 1088 value << unit); 1089 } 1090 phase_quantum = 1091 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | 1092 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; 1093 } 1094 1095 for (i = 0; i < adev->sdma.num_instances; i++) { 1096 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); 1097 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, 1098 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 1099 if (enable && amdgpu_sdma_phase_quantum) { 1100 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); 1101 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); 1102 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); 1103 } 1104 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); 1105 1106 /* 1107 * Enable SDMA utilization. Its only supported on 1108 * Arcturus for the moment and firmware version 14 1109 * and above. 1110 */ 1111 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && 1112 adev->sdma.instance[i].fw_version >= 14) 1113 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable); 1114 /* Extend page fault timeout to avoid interrupt storm */ 1115 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080); 1116 } 1117 1118 } 1119 1120 /** 1121 * sdma_v4_0_enable - stop the async dma engines 1122 * 1123 * @adev: amdgpu_device pointer 1124 * @enable: enable/disable the DMA MEs. 1125 * 1126 * Halt or unhalt the async dma engines (VEGA10). 1127 */ 1128 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) 1129 { 1130 u32 f32_cntl; 1131 int i; 1132 1133 if (!enable) { 1134 sdma_v4_0_gfx_stop(adev); 1135 sdma_v4_0_rlc_stop(adev); 1136 if (adev->sdma.has_page_queue) 1137 sdma_v4_0_page_stop(adev); 1138 } 1139 1140 for (i = 0; i < adev->sdma.num_instances; i++) { 1141 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1142 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); 1143 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); 1144 } 1145 } 1146 1147 /* 1148 * sdma_v4_0_rb_cntl - get parameters for rb_cntl 1149 */ 1150 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 1151 { 1152 /* Set ring buffer size in dwords */ 1153 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 1154 1155 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 1156 #ifdef __BIG_ENDIAN 1157 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 1158 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1159 RPTR_WRITEBACK_SWAP_ENABLE, 1); 1160 #endif 1161 return rb_cntl; 1162 } 1163 1164 /** 1165 * sdma_v4_0_gfx_resume - setup and start the async dma engines 1166 * 1167 * @adev: amdgpu_device pointer 1168 * @i: instance to resume 1169 * 1170 * Set up the gfx DMA ring buffers and enable them (VEGA10). 1171 * Returns 0 for success, error for failure. 1172 */ 1173 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) 1174 { 1175 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 1176 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1177 u32 wb_offset; 1178 u32 doorbell; 1179 u32 doorbell_offset; 1180 u64 wptr_gpu_addr; 1181 1182 wb_offset = (ring->rptr_offs * 4); 1183 1184 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); 1185 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1186 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1187 1188 /* Initialize the ring buffer's read and write pointers */ 1189 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); 1190 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); 1191 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); 1192 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); 1193 1194 /* set the wb address whether it's enabled or not */ 1195 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, 1196 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1197 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 1198 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1199 1200 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, 1201 RPTR_WRITEBACK_ENABLE, 1); 1202 1203 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); 1204 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 1205 1206 ring->wptr = 0; 1207 1208 /* before programing wptr to a less value, need set minor_ptr_update first */ 1209 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); 1210 1211 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); 1212 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); 1213 1214 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1215 ring->use_doorbell); 1216 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1217 SDMA0_GFX_DOORBELL_OFFSET, 1218 OFFSET, ring->doorbell_index); 1219 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); 1220 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); 1221 1222 sdma_v4_0_ring_set_wptr(ring); 1223 1224 /* set minor_ptr_update to 0 after wptr programed */ 1225 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); 1226 1227 /* setup the wptr shadow polling */ 1228 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1229 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, 1230 lower_32_bits(wptr_gpu_addr)); 1231 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, 1232 upper_32_bits(wptr_gpu_addr)); 1233 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); 1234 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1235 SDMA0_GFX_RB_WPTR_POLL_CNTL, 1236 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1237 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1238 1239 /* enable DMA RB */ 1240 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); 1241 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); 1242 1243 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); 1244 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); 1245 #ifdef __BIG_ENDIAN 1246 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 1247 #endif 1248 /* enable DMA IBs */ 1249 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); 1250 1251 ring->sched.ready = true; 1252 } 1253 1254 /** 1255 * sdma_v4_0_page_resume - setup and start the async dma engines 1256 * 1257 * @adev: amdgpu_device pointer 1258 * @i: instance to resume 1259 * 1260 * Set up the page DMA ring buffers and enable them (VEGA10). 1261 * Returns 0 for success, error for failure. 1262 */ 1263 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) 1264 { 1265 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 1266 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 1267 u32 wb_offset; 1268 u32 doorbell; 1269 u32 doorbell_offset; 1270 u64 wptr_gpu_addr; 1271 1272 wb_offset = (ring->rptr_offs * 4); 1273 1274 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); 1275 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); 1276 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1277 1278 /* Initialize the ring buffer's read and write pointers */ 1279 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); 1280 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); 1281 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); 1282 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); 1283 1284 /* set the wb address whether it's enabled or not */ 1285 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, 1286 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 1287 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 1288 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 1289 1290 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, 1291 RPTR_WRITEBACK_ENABLE, 1); 1292 1293 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); 1294 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 1295 1296 ring->wptr = 0; 1297 1298 /* before programing wptr to a less value, need set minor_ptr_update first */ 1299 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); 1300 1301 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); 1302 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); 1303 1304 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, 1305 ring->use_doorbell); 1306 doorbell_offset = REG_SET_FIELD(doorbell_offset, 1307 SDMA0_PAGE_DOORBELL_OFFSET, 1308 OFFSET, ring->doorbell_index); 1309 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); 1310 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); 1311 1312 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ 1313 sdma_v4_0_page_ring_set_wptr(ring); 1314 1315 /* set minor_ptr_update to 0 after wptr programed */ 1316 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); 1317 1318 /* setup the wptr shadow polling */ 1319 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 1320 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, 1321 lower_32_bits(wptr_gpu_addr)); 1322 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, 1323 upper_32_bits(wptr_gpu_addr)); 1324 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); 1325 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 1326 SDMA0_PAGE_RB_WPTR_POLL_CNTL, 1327 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 1328 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 1329 1330 /* enable DMA RB */ 1331 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); 1332 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); 1333 1334 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); 1335 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); 1336 #ifdef __BIG_ENDIAN 1337 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 1338 #endif 1339 /* enable DMA IBs */ 1340 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); 1341 1342 ring->sched.ready = true; 1343 } 1344 1345 static void 1346 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) 1347 { 1348 uint32_t def, data; 1349 1350 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { 1351 /* enable idle interrupt */ 1352 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1353 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1354 1355 if (data != def) 1356 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1357 } else { 1358 /* disable idle interrupt */ 1359 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1360 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1361 if (data != def) 1362 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1363 } 1364 } 1365 1366 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) 1367 { 1368 uint32_t def, data; 1369 1370 /* Enable HW based PG. */ 1371 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1372 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; 1373 if (data != def) 1374 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1375 1376 /* enable interrupt */ 1377 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); 1378 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; 1379 if (data != def) 1380 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); 1381 1382 /* Configure hold time to filter in-valid power on/off request. Use default right now */ 1383 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 1384 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; 1385 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); 1386 /* Configure switch time for hysteresis purpose. Use default right now */ 1387 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; 1388 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); 1389 if(data != def) 1390 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); 1391 } 1392 1393 static void sdma_v4_0_init_pg(struct amdgpu_device *adev) 1394 { 1395 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) 1396 return; 1397 1398 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1399 case IP_VERSION(4, 1, 0): 1400 case IP_VERSION(4, 1, 1): 1401 case IP_VERSION(4, 1, 2): 1402 sdma_v4_1_init_power_gating(adev); 1403 sdma_v4_1_update_power_gating(adev, true); 1404 break; 1405 default: 1406 break; 1407 } 1408 } 1409 1410 /** 1411 * sdma_v4_0_rlc_resume - setup and start the async dma engines 1412 * 1413 * @adev: amdgpu_device pointer 1414 * 1415 * Set up the compute DMA queues and enable them (VEGA10). 1416 * Returns 0 for success, error for failure. 1417 */ 1418 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) 1419 { 1420 sdma_v4_0_init_pg(adev); 1421 1422 return 0; 1423 } 1424 1425 /** 1426 * sdma_v4_0_load_microcode - load the sDMA ME ucode 1427 * 1428 * @adev: amdgpu_device pointer 1429 * 1430 * Loads the sDMA0/1 ucode. 1431 * Returns 0 for success, -EINVAL if the ucode is not available. 1432 */ 1433 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) 1434 { 1435 const struct sdma_firmware_header_v1_0 *hdr; 1436 const __le32 *fw_data; 1437 u32 fw_size; 1438 int i, j; 1439 1440 /* halt the MEs */ 1441 sdma_v4_0_enable(adev, false); 1442 1443 for (i = 0; i < adev->sdma.num_instances; i++) { 1444 if (!adev->sdma.instance[i].fw) 1445 return -EINVAL; 1446 1447 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 1448 amdgpu_ucode_print_sdma_hdr(&hdr->header); 1449 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 1450 1451 fw_data = (const __le32 *) 1452 (adev->sdma.instance[i].fw->data + 1453 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 1454 1455 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); 1456 1457 for (j = 0; j < fw_size; j++) 1458 WREG32_SDMA(i, mmSDMA0_UCODE_DATA, 1459 le32_to_cpup(fw_data++)); 1460 1461 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 1462 adev->sdma.instance[i].fw_version); 1463 } 1464 1465 return 0; 1466 } 1467 1468 /** 1469 * sdma_v4_0_start - setup and start the async dma engines 1470 * 1471 * @adev: amdgpu_device pointer 1472 * 1473 * Set up the DMA engines and enable them (VEGA10). 1474 * Returns 0 for success, error for failure. 1475 */ 1476 static int sdma_v4_0_start(struct amdgpu_device *adev) 1477 { 1478 struct amdgpu_ring *ring; 1479 int i, r = 0; 1480 1481 if (amdgpu_sriov_vf(adev)) { 1482 sdma_v4_0_ctx_switch_enable(adev, false); 1483 sdma_v4_0_enable(adev, false); 1484 } else { 1485 1486 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { 1487 r = sdma_v4_0_load_microcode(adev); 1488 if (r) 1489 return r; 1490 } 1491 1492 /* unhalt the MEs */ 1493 sdma_v4_0_enable(adev, true); 1494 /* enable sdma ring preemption */ 1495 sdma_v4_0_ctx_switch_enable(adev, true); 1496 } 1497 1498 /* start the gfx rings and rlc compute queues */ 1499 for (i = 0; i < adev->sdma.num_instances; i++) { 1500 uint32_t temp; 1501 1502 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); 1503 sdma_v4_0_gfx_resume(adev, i); 1504 if (adev->sdma.has_page_queue) 1505 sdma_v4_0_page_resume(adev, i); 1506 1507 /* set utc l1 enable flag always to 1 */ 1508 temp = RREG32_SDMA(i, mmSDMA0_CNTL); 1509 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); 1510 WREG32_SDMA(i, mmSDMA0_CNTL, temp); 1511 1512 if (!amdgpu_sriov_vf(adev)) { 1513 /* unhalt engine */ 1514 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); 1515 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); 1516 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); 1517 } 1518 } 1519 1520 if (amdgpu_sriov_vf(adev)) { 1521 sdma_v4_0_ctx_switch_enable(adev, true); 1522 sdma_v4_0_enable(adev, true); 1523 } else { 1524 r = sdma_v4_0_rlc_resume(adev); 1525 if (r) 1526 return r; 1527 } 1528 1529 for (i = 0; i < adev->sdma.num_instances; i++) { 1530 ring = &adev->sdma.instance[i].ring; 1531 1532 r = amdgpu_ring_test_helper(ring); 1533 if (r) 1534 return r; 1535 1536 if (adev->sdma.has_page_queue) { 1537 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 1538 1539 r = amdgpu_ring_test_helper(page); 1540 if (r) 1541 return r; 1542 1543 if (adev->mman.buffer_funcs_ring == page) 1544 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1545 } 1546 1547 if (adev->mman.buffer_funcs_ring == ring) 1548 amdgpu_ttm_set_buffer_funcs_status(adev, true); 1549 } 1550 1551 return r; 1552 } 1553 1554 /** 1555 * sdma_v4_0_ring_test_ring - simple async dma engine test 1556 * 1557 * @ring: amdgpu_ring structure holding ring information 1558 * 1559 * Test the DMA engine by writing using it to write an 1560 * value to memory. (VEGA10). 1561 * Returns 0 for success, error for failure. 1562 */ 1563 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) 1564 { 1565 struct amdgpu_device *adev = ring->adev; 1566 unsigned i; 1567 unsigned index; 1568 int r; 1569 u32 tmp; 1570 u64 gpu_addr; 1571 1572 r = amdgpu_device_wb_get(adev, &index); 1573 if (r) 1574 return r; 1575 1576 gpu_addr = adev->wb.gpu_addr + (index * 4); 1577 tmp = 0xCAFEDEAD; 1578 adev->wb.wb[index] = cpu_to_le32(tmp); 1579 1580 r = amdgpu_ring_alloc(ring, 5); 1581 if (r) 1582 goto error_free_wb; 1583 1584 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1585 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 1586 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 1587 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 1588 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 1589 amdgpu_ring_write(ring, 0xDEADBEEF); 1590 amdgpu_ring_commit(ring); 1591 1592 for (i = 0; i < adev->usec_timeout; i++) { 1593 tmp = le32_to_cpu(adev->wb.wb[index]); 1594 if (tmp == 0xDEADBEEF) 1595 break; 1596 udelay(1); 1597 } 1598 1599 if (i >= adev->usec_timeout) 1600 r = -ETIMEDOUT; 1601 1602 error_free_wb: 1603 amdgpu_device_wb_free(adev, index); 1604 return r; 1605 } 1606 1607 /** 1608 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine 1609 * 1610 * @ring: amdgpu_ring structure holding ring information 1611 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1612 * 1613 * Test a simple IB in the DMA ring (VEGA10). 1614 * Returns 0 on success, error on failure. 1615 */ 1616 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1617 { 1618 struct amdgpu_device *adev = ring->adev; 1619 struct amdgpu_ib ib; 1620 struct dma_fence *f = NULL; 1621 unsigned index; 1622 long r; 1623 u32 tmp = 0; 1624 u64 gpu_addr; 1625 1626 r = amdgpu_device_wb_get(adev, &index); 1627 if (r) 1628 return r; 1629 1630 gpu_addr = adev->wb.gpu_addr + (index * 4); 1631 tmp = 0xCAFEDEAD; 1632 adev->wb.wb[index] = cpu_to_le32(tmp); 1633 memset(&ib, 0, sizeof(ib)); 1634 r = amdgpu_ib_get(adev, NULL, 256, 1635 AMDGPU_IB_POOL_DIRECT, &ib); 1636 if (r) 1637 goto err0; 1638 1639 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1640 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1641 ib.ptr[1] = lower_32_bits(gpu_addr); 1642 ib.ptr[2] = upper_32_bits(gpu_addr); 1643 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1644 ib.ptr[4] = 0xDEADBEEF; 1645 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1646 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1647 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1648 ib.length_dw = 8; 1649 1650 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1651 if (r) 1652 goto err1; 1653 1654 r = dma_fence_wait_timeout(f, false, timeout); 1655 if (r == 0) { 1656 r = -ETIMEDOUT; 1657 goto err1; 1658 } else if (r < 0) { 1659 goto err1; 1660 } 1661 tmp = le32_to_cpu(adev->wb.wb[index]); 1662 if (tmp == 0xDEADBEEF) 1663 r = 0; 1664 else 1665 r = -EINVAL; 1666 1667 err1: 1668 amdgpu_ib_free(adev, &ib, NULL); 1669 dma_fence_put(f); 1670 err0: 1671 amdgpu_device_wb_free(adev, index); 1672 return r; 1673 } 1674 1675 1676 /** 1677 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART 1678 * 1679 * @ib: indirect buffer to fill with commands 1680 * @pe: addr of the page entry 1681 * @src: src addr to copy from 1682 * @count: number of page entries to update 1683 * 1684 * Update PTEs by copying them from the GART using sDMA (VEGA10). 1685 */ 1686 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, 1687 uint64_t pe, uint64_t src, 1688 unsigned count) 1689 { 1690 unsigned bytes = count * 8; 1691 1692 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1693 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1694 ib->ptr[ib->length_dw++] = bytes - 1; 1695 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1696 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1697 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1698 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1699 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1700 1701 } 1702 1703 /** 1704 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually 1705 * 1706 * @ib: indirect buffer to fill with commands 1707 * @pe: addr of the page entry 1708 * @value: dst addr to write into pe 1709 * @count: number of page entries to update 1710 * @incr: increase next addr by incr bytes 1711 * 1712 * Update PTEs by writing them manually using sDMA (VEGA10). 1713 */ 1714 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1715 uint64_t value, unsigned count, 1716 uint32_t incr) 1717 { 1718 unsigned ndw = count * 2; 1719 1720 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1721 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1722 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1723 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1724 ib->ptr[ib->length_dw++] = ndw - 1; 1725 for (; ndw > 0; ndw -= 2) { 1726 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1727 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1728 value += incr; 1729 } 1730 } 1731 1732 /** 1733 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA 1734 * 1735 * @ib: indirect buffer to fill with commands 1736 * @pe: addr of the page entry 1737 * @addr: dst addr to write into pe 1738 * @count: number of page entries to update 1739 * @incr: increase next addr by incr bytes 1740 * @flags: access flags 1741 * 1742 * Update the page tables using sDMA (VEGA10). 1743 */ 1744 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, 1745 uint64_t pe, 1746 uint64_t addr, unsigned count, 1747 uint32_t incr, uint64_t flags) 1748 { 1749 /* for physically contiguous pages (vram) */ 1750 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1751 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1752 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1753 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1754 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1755 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1756 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1757 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1758 ib->ptr[ib->length_dw++] = 0; 1759 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1760 } 1761 1762 /** 1763 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw 1764 * 1765 * @ring: amdgpu_ring structure holding ring information 1766 * @ib: indirect buffer to fill with padding 1767 */ 1768 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1769 { 1770 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1771 u32 pad_count; 1772 int i; 1773 1774 pad_count = (-ib->length_dw) & 7; 1775 for (i = 0; i < pad_count; i++) 1776 if (sdma && sdma->burst_nop && (i == 0)) 1777 ib->ptr[ib->length_dw++] = 1778 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1779 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1780 else 1781 ib->ptr[ib->length_dw++] = 1782 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1783 } 1784 1785 1786 /** 1787 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline 1788 * 1789 * @ring: amdgpu_ring pointer 1790 * 1791 * Make sure all previous operations are completed (CIK). 1792 */ 1793 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1794 { 1795 uint32_t seq = ring->fence_drv.sync_seq; 1796 uint64_t addr = ring->fence_drv.gpu_addr; 1797 1798 /* wait for idle */ 1799 sdma_v4_0_wait_reg_mem(ring, 1, 0, 1800 addr & 0xfffffffc, 1801 upper_32_bits(addr) & 0xffffffff, 1802 seq, 0xffffffff, 4); 1803 } 1804 1805 1806 /** 1807 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA 1808 * 1809 * @ring: amdgpu_ring pointer 1810 * @vmid: vmid number to use 1811 * @pd_addr: address 1812 * 1813 * Update the page table base and flush the VM TLB 1814 * using sDMA (VEGA10). 1815 */ 1816 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, 1817 unsigned vmid, uint64_t pd_addr) 1818 { 1819 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1820 } 1821 1822 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, 1823 uint32_t reg, uint32_t val) 1824 { 1825 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1826 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1827 amdgpu_ring_write(ring, reg); 1828 amdgpu_ring_write(ring, val); 1829 } 1830 1831 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1832 uint32_t val, uint32_t mask) 1833 { 1834 sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1835 } 1836 1837 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) 1838 { 1839 uint fw_version = adev->sdma.instance[0].fw_version; 1840 1841 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1842 case IP_VERSION(4, 0, 0): 1843 return fw_version >= 430; 1844 case IP_VERSION(4, 0, 1): 1845 /*return fw_version >= 31;*/ 1846 return false; 1847 case IP_VERSION(4, 2, 0): 1848 return fw_version >= 123; 1849 default: 1850 return false; 1851 } 1852 } 1853 1854 static int sdma_v4_0_early_init(void *handle) 1855 { 1856 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1857 int r; 1858 1859 r = sdma_v4_0_init_microcode(adev); 1860 if (r) { 1861 DRM_ERROR("Failed to load sdma firmware!\n"); 1862 return r; 1863 } 1864 1865 /* TODO: Page queue breaks driver reload under SRIOV */ 1866 if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) && 1867 amdgpu_sriov_vf((adev))) 1868 adev->sdma.has_page_queue = false; 1869 else if (sdma_v4_0_fw_support_paging_queue(adev)) 1870 adev->sdma.has_page_queue = true; 1871 1872 sdma_v4_0_set_ring_funcs(adev); 1873 sdma_v4_0_set_buffer_funcs(adev); 1874 sdma_v4_0_set_vm_pte_funcs(adev); 1875 sdma_v4_0_set_irq_funcs(adev); 1876 sdma_v4_0_set_ras_funcs(adev); 1877 1878 return 0; 1879 } 1880 1881 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 1882 void *err_data, 1883 struct amdgpu_iv_entry *entry); 1884 1885 static int sdma_v4_0_late_init(void *handle) 1886 { 1887 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1888 1889 sdma_v4_0_setup_ulv(adev); 1890 1891 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 1892 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops && 1893 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count) 1894 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev); 1895 } 1896 1897 return 0; 1898 } 1899 1900 static int sdma_v4_0_sw_init(void *handle) 1901 { 1902 struct amdgpu_ring *ring; 1903 int r, i; 1904 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1905 1906 /* SDMA trap event */ 1907 for (i = 0; i < adev->sdma.num_instances; i++) { 1908 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1909 SDMA0_4_0__SRCID__SDMA_TRAP, 1910 &adev->sdma.trap_irq); 1911 if (r) 1912 return r; 1913 } 1914 1915 /* SDMA SRAM ECC event */ 1916 for (i = 0; i < adev->sdma.num_instances; i++) { 1917 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1918 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1919 &adev->sdma.ecc_irq); 1920 if (r) 1921 return r; 1922 } 1923 1924 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1925 for (i = 0; i < adev->sdma.num_instances; i++) { 1926 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1927 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1928 &adev->sdma.vm_hole_irq); 1929 if (r) 1930 return r; 1931 1932 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1933 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1934 &adev->sdma.doorbell_invalid_irq); 1935 if (r) 1936 return r; 1937 1938 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1939 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1940 &adev->sdma.pool_timeout_irq); 1941 if (r) 1942 return r; 1943 1944 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i), 1945 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1946 &adev->sdma.srbm_write_irq); 1947 if (r) 1948 return r; 1949 } 1950 1951 for (i = 0; i < adev->sdma.num_instances; i++) { 1952 ring = &adev->sdma.instance[i].ring; 1953 ring->ring_obj = NULL; 1954 ring->use_doorbell = true; 1955 1956 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1957 ring->use_doorbell?"true":"false"); 1958 1959 /* doorbell size is 2 dwords, get DWORD offset */ 1960 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1961 1962 sprintf(ring->name, "sdma%d", i); 1963 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1964 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1965 AMDGPU_RING_PRIO_DEFAULT, NULL); 1966 if (r) 1967 return r; 1968 1969 if (adev->sdma.has_page_queue) { 1970 ring = &adev->sdma.instance[i].page; 1971 ring->ring_obj = NULL; 1972 ring->use_doorbell = true; 1973 1974 /* paging queue use same doorbell index/routing as gfx queue 1975 * with 0x400 (4096 dwords) offset on second doorbell page 1976 */ 1977 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1978 ring->doorbell_index += 0x400; 1979 1980 sprintf(ring->name, "page%d", i); 1981 r = amdgpu_ring_init(adev, ring, 1024, 1982 &adev->sdma.trap_irq, 1983 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1984 AMDGPU_RING_PRIO_DEFAULT, NULL); 1985 if (r) 1986 return r; 1987 } 1988 } 1989 1990 return r; 1991 } 1992 1993 static int sdma_v4_0_sw_fini(void *handle) 1994 { 1995 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1996 int i; 1997 1998 for (i = 0; i < adev->sdma.num_instances; i++) { 1999 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 2000 if (adev->sdma.has_page_queue) 2001 amdgpu_ring_fini(&adev->sdma.instance[i].page); 2002 } 2003 2004 sdma_v4_0_destroy_inst_ctx(adev); 2005 2006 return 0; 2007 } 2008 2009 static int sdma_v4_0_hw_init(void *handle) 2010 { 2011 int r; 2012 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2013 2014 if (adev->flags & AMD_IS_APU) 2015 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); 2016 2017 if (!amdgpu_sriov_vf(adev)) 2018 sdma_v4_0_init_golden_registers(adev); 2019 2020 r = sdma_v4_0_start(adev); 2021 2022 return r; 2023 } 2024 2025 static int sdma_v4_0_hw_fini(void *handle) 2026 { 2027 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2028 int i; 2029 2030 if (amdgpu_sriov_vf(adev)) 2031 return 0; 2032 2033 for (i = 0; i < adev->sdma.num_instances; i++) { 2034 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2035 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2036 } 2037 2038 sdma_v4_0_ctx_switch_enable(adev, false); 2039 sdma_v4_0_enable(adev, false); 2040 2041 if (adev->flags & AMD_IS_APU) 2042 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); 2043 2044 return 0; 2045 } 2046 2047 static int sdma_v4_0_suspend(void *handle) 2048 { 2049 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2050 2051 /* SMU saves SDMA state for us */ 2052 if (adev->in_s0ix) 2053 return 0; 2054 2055 return sdma_v4_0_hw_fini(adev); 2056 } 2057 2058 static int sdma_v4_0_resume(void *handle) 2059 { 2060 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2061 2062 /* SMU restores SDMA state for us */ 2063 if (adev->in_s0ix) 2064 return 0; 2065 2066 return sdma_v4_0_hw_init(adev); 2067 } 2068 2069 static bool sdma_v4_0_is_idle(void *handle) 2070 { 2071 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2072 u32 i; 2073 2074 for (i = 0; i < adev->sdma.num_instances; i++) { 2075 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); 2076 2077 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) 2078 return false; 2079 } 2080 2081 return true; 2082 } 2083 2084 static int sdma_v4_0_wait_for_idle(void *handle) 2085 { 2086 unsigned i, j; 2087 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 2088 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2089 2090 for (i = 0; i < adev->usec_timeout; i++) { 2091 for (j = 0; j < adev->sdma.num_instances; j++) { 2092 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG); 2093 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK)) 2094 break; 2095 } 2096 if (j == adev->sdma.num_instances) 2097 return 0; 2098 udelay(1); 2099 } 2100 return -ETIMEDOUT; 2101 } 2102 2103 static int sdma_v4_0_soft_reset(void *handle) 2104 { 2105 /* todo */ 2106 2107 return 0; 2108 } 2109 2110 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, 2111 struct amdgpu_irq_src *source, 2112 unsigned type, 2113 enum amdgpu_interrupt_state state) 2114 { 2115 u32 sdma_cntl; 2116 2117 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL); 2118 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 2119 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2120 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl); 2121 2122 return 0; 2123 } 2124 2125 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, 2126 struct amdgpu_irq_src *source, 2127 struct amdgpu_iv_entry *entry) 2128 { 2129 uint32_t instance; 2130 2131 DRM_DEBUG("IH: SDMA trap\n"); 2132 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2133 switch (entry->ring_id) { 2134 case 0: 2135 amdgpu_fence_process(&adev->sdma.instance[instance].ring); 2136 break; 2137 case 1: 2138 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0)) 2139 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2140 break; 2141 case 2: 2142 /* XXX compute */ 2143 break; 2144 case 3: 2145 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0)) 2146 amdgpu_fence_process(&adev->sdma.instance[instance].page); 2147 break; 2148 } 2149 return 0; 2150 } 2151 2152 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev, 2153 void *err_data, 2154 struct amdgpu_iv_entry *entry) 2155 { 2156 int instance; 2157 2158 /* When “Full RAS” is enabled, the per-IP interrupt sources should 2159 * be disabled and the driver should only look for the aggregated 2160 * interrupt via sync flood 2161 */ 2162 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) 2163 goto out; 2164 2165 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2166 if (instance < 0) 2167 goto out; 2168 2169 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 2170 2171 out: 2172 return AMDGPU_RAS_SUCCESS; 2173 } 2174 2175 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, 2176 struct amdgpu_irq_src *source, 2177 struct amdgpu_iv_entry *entry) 2178 { 2179 int instance; 2180 2181 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 2182 2183 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2184 if (instance < 0) 2185 return 0; 2186 2187 switch (entry->ring_id) { 2188 case 0: 2189 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 2190 break; 2191 } 2192 return 0; 2193 } 2194 2195 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev, 2196 struct amdgpu_irq_src *source, 2197 unsigned type, 2198 enum amdgpu_interrupt_state state) 2199 { 2200 u32 sdma_edc_config; 2201 2202 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG); 2203 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE, 2204 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 2205 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config); 2206 2207 return 0; 2208 } 2209 2210 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev, 2211 struct amdgpu_iv_entry *entry) 2212 { 2213 int instance; 2214 struct amdgpu_task_info task_info; 2215 u64 addr; 2216 2217 instance = sdma_v4_0_irq_id_to_seq(entry->client_id); 2218 if (instance < 0 || instance >= adev->sdma.num_instances) { 2219 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 2220 return -EINVAL; 2221 } 2222 2223 addr = (u64)entry->src_data[0] << 12; 2224 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 2225 2226 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 2227 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 2228 2229 dev_dbg_ratelimited(adev->dev, 2230 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 2231 "pasid:%u, for process %s pid %d thread %s pid %d\n", 2232 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 2233 entry->pasid, task_info.process_name, task_info.tgid, 2234 task_info.task_name, task_info.pid); 2235 return 0; 2236 } 2237 2238 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev, 2239 struct amdgpu_irq_src *source, 2240 struct amdgpu_iv_entry *entry) 2241 { 2242 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 2243 sdma_v4_0_print_iv_entry(adev, entry); 2244 return 0; 2245 } 2246 2247 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev, 2248 struct amdgpu_irq_src *source, 2249 struct amdgpu_iv_entry *entry) 2250 { 2251 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 2252 sdma_v4_0_print_iv_entry(adev, entry); 2253 return 0; 2254 } 2255 2256 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev, 2257 struct amdgpu_irq_src *source, 2258 struct amdgpu_iv_entry *entry) 2259 { 2260 dev_dbg_ratelimited(adev->dev, 2261 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 2262 sdma_v4_0_print_iv_entry(adev, entry); 2263 return 0; 2264 } 2265 2266 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev, 2267 struct amdgpu_irq_src *source, 2268 struct amdgpu_iv_entry *entry) 2269 { 2270 dev_dbg_ratelimited(adev->dev, 2271 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 2272 sdma_v4_0_print_iv_entry(adev, entry); 2273 return 0; 2274 } 2275 2276 static void sdma_v4_0_update_medium_grain_clock_gating( 2277 struct amdgpu_device *adev, 2278 bool enable) 2279 { 2280 uint32_t data, def; 2281 int i; 2282 2283 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { 2284 for (i = 0; i < adev->sdma.num_instances; i++) { 2285 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2286 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2287 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2288 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2289 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2290 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2291 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2292 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2293 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2294 if (def != data) 2295 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2296 } 2297 } else { 2298 for (i = 0; i < adev->sdma.num_instances; i++) { 2299 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL); 2300 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | 2301 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | 2302 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | 2303 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | 2304 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | 2305 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | 2306 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | 2307 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); 2308 if (def != data) 2309 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data); 2310 } 2311 } 2312 } 2313 2314 2315 static void sdma_v4_0_update_medium_grain_light_sleep( 2316 struct amdgpu_device *adev, 2317 bool enable) 2318 { 2319 uint32_t data, def; 2320 int i; 2321 2322 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { 2323 for (i = 0; i < adev->sdma.num_instances; i++) { 2324 /* 1-not override: enable sdma mem light sleep */ 2325 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2326 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2327 if (def != data) 2328 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2329 } 2330 } else { 2331 for (i = 0; i < adev->sdma.num_instances; i++) { 2332 /* 0-override:disable sdma mem light sleep */ 2333 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL); 2334 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 2335 if (def != data) 2336 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data); 2337 } 2338 } 2339 } 2340 2341 static int sdma_v4_0_set_clockgating_state(void *handle, 2342 enum amd_clockgating_state state) 2343 { 2344 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2345 2346 if (amdgpu_sriov_vf(adev)) 2347 return 0; 2348 2349 sdma_v4_0_update_medium_grain_clock_gating(adev, 2350 state == AMD_CG_STATE_GATE); 2351 sdma_v4_0_update_medium_grain_light_sleep(adev, 2352 state == AMD_CG_STATE_GATE); 2353 return 0; 2354 } 2355 2356 static int sdma_v4_0_set_powergating_state(void *handle, 2357 enum amd_powergating_state state) 2358 { 2359 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2360 2361 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2362 case IP_VERSION(4, 1, 0): 2363 case IP_VERSION(4, 1, 1): 2364 case IP_VERSION(4, 1, 2): 2365 sdma_v4_1_update_power_gating(adev, 2366 state == AMD_PG_STATE_GATE); 2367 break; 2368 default: 2369 break; 2370 } 2371 2372 return 0; 2373 } 2374 2375 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) 2376 { 2377 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2378 int data; 2379 2380 if (amdgpu_sriov_vf(adev)) 2381 *flags = 0; 2382 2383 /* AMD_CG_SUPPORT_SDMA_MGCG */ 2384 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); 2385 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) 2386 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 2387 2388 /* AMD_CG_SUPPORT_SDMA_LS */ 2389 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); 2390 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 2391 *flags |= AMD_CG_SUPPORT_SDMA_LS; 2392 } 2393 2394 const struct amd_ip_funcs sdma_v4_0_ip_funcs = { 2395 .name = "sdma_v4_0", 2396 .early_init = sdma_v4_0_early_init, 2397 .late_init = sdma_v4_0_late_init, 2398 .sw_init = sdma_v4_0_sw_init, 2399 .sw_fini = sdma_v4_0_sw_fini, 2400 .hw_init = sdma_v4_0_hw_init, 2401 .hw_fini = sdma_v4_0_hw_fini, 2402 .suspend = sdma_v4_0_suspend, 2403 .resume = sdma_v4_0_resume, 2404 .is_idle = sdma_v4_0_is_idle, 2405 .wait_for_idle = sdma_v4_0_wait_for_idle, 2406 .soft_reset = sdma_v4_0_soft_reset, 2407 .set_clockgating_state = sdma_v4_0_set_clockgating_state, 2408 .set_powergating_state = sdma_v4_0_set_powergating_state, 2409 .get_clockgating_state = sdma_v4_0_get_clockgating_state, 2410 }; 2411 2412 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { 2413 .type = AMDGPU_RING_TYPE_SDMA, 2414 .align_mask = 0xf, 2415 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2416 .support_64bit_ptrs = true, 2417 .vmhub = AMDGPU_MMHUB_0, 2418 .get_rptr = sdma_v4_0_ring_get_rptr, 2419 .get_wptr = sdma_v4_0_ring_get_wptr, 2420 .set_wptr = sdma_v4_0_ring_set_wptr, 2421 .emit_frame_size = 2422 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2423 3 + /* hdp invalidate */ 2424 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2425 /* sdma_v4_0_ring_emit_vm_flush */ 2426 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2427 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2428 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2429 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2430 .emit_ib = sdma_v4_0_ring_emit_ib, 2431 .emit_fence = sdma_v4_0_ring_emit_fence, 2432 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2433 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2434 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2435 .test_ring = sdma_v4_0_ring_test_ring, 2436 .test_ib = sdma_v4_0_ring_test_ib, 2437 .insert_nop = sdma_v4_0_ring_insert_nop, 2438 .pad_ib = sdma_v4_0_ring_pad_ib, 2439 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2440 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2441 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2442 }; 2443 2444 /* 2445 * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1). 2446 * So create a individual constant ring_funcs for those instances. 2447 */ 2448 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = { 2449 .type = AMDGPU_RING_TYPE_SDMA, 2450 .align_mask = 0xf, 2451 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2452 .support_64bit_ptrs = true, 2453 .vmhub = AMDGPU_MMHUB_1, 2454 .get_rptr = sdma_v4_0_ring_get_rptr, 2455 .get_wptr = sdma_v4_0_ring_get_wptr, 2456 .set_wptr = sdma_v4_0_ring_set_wptr, 2457 .emit_frame_size = 2458 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2459 3 + /* hdp invalidate */ 2460 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2461 /* sdma_v4_0_ring_emit_vm_flush */ 2462 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2463 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2464 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2465 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2466 .emit_ib = sdma_v4_0_ring_emit_ib, 2467 .emit_fence = sdma_v4_0_ring_emit_fence, 2468 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2469 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2470 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2471 .test_ring = sdma_v4_0_ring_test_ring, 2472 .test_ib = sdma_v4_0_ring_test_ib, 2473 .insert_nop = sdma_v4_0_ring_insert_nop, 2474 .pad_ib = sdma_v4_0_ring_pad_ib, 2475 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2476 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2477 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2478 }; 2479 2480 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { 2481 .type = AMDGPU_RING_TYPE_SDMA, 2482 .align_mask = 0xf, 2483 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2484 .support_64bit_ptrs = true, 2485 .vmhub = AMDGPU_MMHUB_0, 2486 .get_rptr = sdma_v4_0_ring_get_rptr, 2487 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2488 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2489 .emit_frame_size = 2490 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2491 3 + /* hdp invalidate */ 2492 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2493 /* sdma_v4_0_ring_emit_vm_flush */ 2494 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2495 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2496 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2497 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2498 .emit_ib = sdma_v4_0_ring_emit_ib, 2499 .emit_fence = sdma_v4_0_ring_emit_fence, 2500 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2501 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2502 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2503 .test_ring = sdma_v4_0_ring_test_ring, 2504 .test_ib = sdma_v4_0_ring_test_ib, 2505 .insert_nop = sdma_v4_0_ring_insert_nop, 2506 .pad_ib = sdma_v4_0_ring_pad_ib, 2507 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2508 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2509 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2510 }; 2511 2512 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = { 2513 .type = AMDGPU_RING_TYPE_SDMA, 2514 .align_mask = 0xf, 2515 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 2516 .support_64bit_ptrs = true, 2517 .vmhub = AMDGPU_MMHUB_1, 2518 .get_rptr = sdma_v4_0_ring_get_rptr, 2519 .get_wptr = sdma_v4_0_page_ring_get_wptr, 2520 .set_wptr = sdma_v4_0_page_ring_set_wptr, 2521 .emit_frame_size = 2522 6 + /* sdma_v4_0_ring_emit_hdp_flush */ 2523 3 + /* hdp invalidate */ 2524 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ 2525 /* sdma_v4_0_ring_emit_vm_flush */ 2526 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 2527 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 2528 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ 2529 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ 2530 .emit_ib = sdma_v4_0_ring_emit_ib, 2531 .emit_fence = sdma_v4_0_ring_emit_fence, 2532 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, 2533 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, 2534 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, 2535 .test_ring = sdma_v4_0_ring_test_ring, 2536 .test_ib = sdma_v4_0_ring_test_ib, 2537 .insert_nop = sdma_v4_0_ring_insert_nop, 2538 .pad_ib = sdma_v4_0_ring_pad_ib, 2539 .emit_wreg = sdma_v4_0_ring_emit_wreg, 2540 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, 2541 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 2542 }; 2543 2544 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) 2545 { 2546 int i; 2547 2548 for (i = 0; i < adev->sdma.num_instances; i++) { 2549 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2550 adev->sdma.instance[i].ring.funcs = 2551 &sdma_v4_0_ring_funcs_2nd_mmhub; 2552 else 2553 adev->sdma.instance[i].ring.funcs = 2554 &sdma_v4_0_ring_funcs; 2555 adev->sdma.instance[i].ring.me = i; 2556 if (adev->sdma.has_page_queue) { 2557 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5) 2558 adev->sdma.instance[i].page.funcs = 2559 &sdma_v4_0_page_ring_funcs_2nd_mmhub; 2560 else 2561 adev->sdma.instance[i].page.funcs = 2562 &sdma_v4_0_page_ring_funcs; 2563 adev->sdma.instance[i].page.me = i; 2564 } 2565 } 2566 } 2567 2568 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { 2569 .set = sdma_v4_0_set_trap_irq_state, 2570 .process = sdma_v4_0_process_trap_irq, 2571 }; 2572 2573 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { 2574 .process = sdma_v4_0_process_illegal_inst_irq, 2575 }; 2576 2577 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = { 2578 .set = sdma_v4_0_set_ecc_irq_state, 2579 .process = amdgpu_sdma_process_ecc_irq, 2580 }; 2581 2582 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = { 2583 .process = sdma_v4_0_process_vm_hole_irq, 2584 }; 2585 2586 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = { 2587 .process = sdma_v4_0_process_doorbell_invalid_irq, 2588 }; 2589 2590 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = { 2591 .process = sdma_v4_0_process_pool_timeout_irq, 2592 }; 2593 2594 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = { 2595 .process = sdma_v4_0_process_srbm_write_irq, 2596 }; 2597 2598 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) 2599 { 2600 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 2601 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 2602 /*For Arcturus and Aldebaran, add another 4 irq handler*/ 2603 switch (adev->sdma.num_instances) { 2604 case 5: 2605 case 8: 2606 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 2607 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 2608 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 2609 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 2610 break; 2611 default: 2612 break; 2613 } 2614 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; 2615 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; 2616 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs; 2617 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs; 2618 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs; 2619 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs; 2620 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs; 2621 } 2622 2623 /** 2624 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine 2625 * 2626 * @ib: indirect buffer to copy to 2627 * @src_offset: src GPU address 2628 * @dst_offset: dst GPU address 2629 * @byte_count: number of bytes to xfer 2630 * @tmz: if a secure copy should be used 2631 * 2632 * Copy GPU buffers using the DMA engine (VEGA10/12). 2633 * Used by the amdgpu ttm implementation to move pages if 2634 * registered as the asic copy callback. 2635 */ 2636 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, 2637 uint64_t src_offset, 2638 uint64_t dst_offset, 2639 uint32_t byte_count, 2640 bool tmz) 2641 { 2642 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 2643 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 2644 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 2645 ib->ptr[ib->length_dw++] = byte_count - 1; 2646 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 2647 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 2648 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 2649 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2650 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2651 } 2652 2653 /** 2654 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine 2655 * 2656 * @ib: indirect buffer to copy to 2657 * @src_data: value to write to buffer 2658 * @dst_offset: dst GPU address 2659 * @byte_count: number of bytes to xfer 2660 * 2661 * Fill GPU buffers using the DMA engine (VEGA10/12). 2662 */ 2663 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, 2664 uint32_t src_data, 2665 uint64_t dst_offset, 2666 uint32_t byte_count) 2667 { 2668 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2669 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2670 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2671 ib->ptr[ib->length_dw++] = src_data; 2672 ib->ptr[ib->length_dw++] = byte_count - 1; 2673 } 2674 2675 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { 2676 .copy_max_bytes = 0x400000, 2677 .copy_num_dw = 7, 2678 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, 2679 2680 .fill_max_bytes = 0x400000, 2681 .fill_num_dw = 5, 2682 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, 2683 }; 2684 2685 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) 2686 { 2687 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; 2688 if (adev->sdma.has_page_queue) 2689 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2690 else 2691 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2692 } 2693 2694 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { 2695 .copy_pte_num_dw = 7, 2696 .copy_pte = sdma_v4_0_vm_copy_pte, 2697 2698 .write_pte = sdma_v4_0_vm_write_pte, 2699 .set_pte_pde = sdma_v4_0_vm_set_pte_pde, 2700 }; 2701 2702 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) 2703 { 2704 struct drm_gpu_scheduler *sched; 2705 unsigned i; 2706 2707 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; 2708 for (i = 0; i < adev->sdma.num_instances; i++) { 2709 if (adev->sdma.has_page_queue) 2710 sched = &adev->sdma.instance[i].page.sched; 2711 else 2712 sched = &adev->sdma.instance[i].ring.sched; 2713 adev->vm_manager.vm_pte_scheds[i] = sched; 2714 } 2715 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2716 } 2717 2718 static void sdma_v4_0_get_ras_error_count(uint32_t value, 2719 uint32_t instance, 2720 uint32_t *sec_count) 2721 { 2722 uint32_t i; 2723 uint32_t sec_cnt; 2724 2725 /* double bits error (multiple bits) error detection is not supported */ 2726 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) { 2727 /* the SDMA_EDC_COUNTER register in each sdma instance 2728 * shares the same sed shift_mask 2729 * */ 2730 sec_cnt = (value & 2731 sdma_v4_0_ras_fields[i].sec_count_mask) >> 2732 sdma_v4_0_ras_fields[i].sec_count_shift; 2733 if (sec_cnt) { 2734 DRM_INFO("Detected %s in SDMA%d, SED %d\n", 2735 sdma_v4_0_ras_fields[i].name, 2736 instance, sec_cnt); 2737 *sec_count += sec_cnt; 2738 } 2739 } 2740 } 2741 2742 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev, 2743 uint32_t instance, void *ras_error_status) 2744 { 2745 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 2746 uint32_t sec_count = 0; 2747 uint32_t reg_value = 0; 2748 2749 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER); 2750 /* double bit error is not supported */ 2751 if (reg_value) 2752 sdma_v4_0_get_ras_error_count(reg_value, 2753 instance, &sec_count); 2754 /* err_data->ce_count should be initialized to 0 2755 * before calling into this function */ 2756 err_data->ce_count += sec_count; 2757 /* double bit error is not supported 2758 * set ue count to 0 */ 2759 err_data->ue_count = 0; 2760 2761 return 0; 2762 }; 2763 2764 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status) 2765 { 2766 int i = 0; 2767 2768 for (i = 0; i < adev->sdma.num_instances; i++) { 2769 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) { 2770 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i); 2771 return; 2772 } 2773 } 2774 } 2775 2776 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev) 2777 { 2778 int i; 2779 2780 /* read back edc counter registers to clear the counters */ 2781 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2782 for (i = 0; i < adev->sdma.num_instances; i++) 2783 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER); 2784 } 2785 } 2786 2787 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = { 2788 .query_ras_error_count = sdma_v4_0_query_ras_error_count, 2789 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count, 2790 }; 2791 2792 static struct amdgpu_sdma_ras sdma_v4_0_ras = { 2793 .ras_block = { 2794 .hw_ops = &sdma_v4_0_ras_hw_ops, 2795 .ras_cb = sdma_v4_0_process_ras_data_cb, 2796 }, 2797 }; 2798 2799 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev) 2800 { 2801 switch (adev->ip_versions[SDMA0_HWIP][0]) { 2802 case IP_VERSION(4, 2, 0): 2803 case IP_VERSION(4, 2, 2): 2804 adev->sdma.ras = &sdma_v4_0_ras; 2805 break; 2806 case IP_VERSION(4, 4, 0): 2807 adev->sdma.ras = &sdma_v4_4_ras; 2808 break; 2809 default: 2810 break; 2811 } 2812 2813 if (adev->sdma.ras) { 2814 amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block); 2815 2816 strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma"); 2817 adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA; 2818 adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 2819 adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm; 2820 2821 /* If don't define special ras_late_init function, use default ras_late_init */ 2822 if (!adev->sdma.ras->ras_block.ras_late_init) 2823 adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init; 2824 2825 /* If not defined special ras_cb function, use default ras_cb */ 2826 if (!adev->sdma.ras->ras_block.ras_cb) 2827 adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb; 2828 } 2829 } 2830 2831 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { 2832 .type = AMD_IP_BLOCK_TYPE_SDMA, 2833 .major = 4, 2834 .minor = 0, 2835 .rev = 0, 2836 .funcs = &sdma_v4_0_ip_funcs, 2837 }; 2838