xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29 
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36 
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40 
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43 
44 #include "amdgpu_ras.h"
45 
46 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
52 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
53 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
54 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
55 
56 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
57 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
58 
59 #define WREG32_SDMA(instance, offset, value) \
60 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
61 #define RREG32_SDMA(instance, offset) \
62 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
63 
64 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
66 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
67 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
68 
69 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
70 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
71 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
72 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
73 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
75 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
76 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
77 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
78 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
80 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
81 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
82 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
83 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
84 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
85 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
86 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
87 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
88 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
89 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
91 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
92 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
93 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
94 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
95 };
96 
97 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
100 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
103 };
104 
105 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
106 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
107 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
111 };
112 
113 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
114 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
115 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
119 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
120 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
123 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
124 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
125 };
126 
127 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
129 };
130 
131 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
132 {
133 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
134 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
135 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
149 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
152 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
153 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
154 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
159 };
160 
161 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
162 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
163 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
164 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
165 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
166 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
171 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
182 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
183 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
184 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
188 };
189 
190 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
191 {
192 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
193 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
194 };
195 
196 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
197 {
198 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
200 };
201 
202 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
203 		u32 instance, u32 offset)
204 {
205 	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
206 			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
207 }
208 
209 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
210 {
211 	switch (adev->asic_type) {
212 	case CHIP_VEGA10:
213 		soc15_program_register_sequence(adev,
214 						 golden_settings_sdma_4,
215 						 ARRAY_SIZE(golden_settings_sdma_4));
216 		soc15_program_register_sequence(adev,
217 						 golden_settings_sdma_vg10,
218 						 ARRAY_SIZE(golden_settings_sdma_vg10));
219 		break;
220 	case CHIP_VEGA12:
221 		soc15_program_register_sequence(adev,
222 						golden_settings_sdma_4,
223 						ARRAY_SIZE(golden_settings_sdma_4));
224 		soc15_program_register_sequence(adev,
225 						golden_settings_sdma_vg12,
226 						ARRAY_SIZE(golden_settings_sdma_vg12));
227 		break;
228 	case CHIP_VEGA20:
229 		soc15_program_register_sequence(adev,
230 						golden_settings_sdma0_4_2_init,
231 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
232 		soc15_program_register_sequence(adev,
233 						golden_settings_sdma0_4_2,
234 						ARRAY_SIZE(golden_settings_sdma0_4_2));
235 		soc15_program_register_sequence(adev,
236 						golden_settings_sdma1_4_2,
237 						ARRAY_SIZE(golden_settings_sdma1_4_2));
238 		break;
239 	case CHIP_RAVEN:
240 		soc15_program_register_sequence(adev,
241 						golden_settings_sdma_4_1,
242 						ARRAY_SIZE(golden_settings_sdma_4_1));
243 		if (adev->rev_id >= 8)
244 			soc15_program_register_sequence(adev,
245 							golden_settings_sdma_rv2,
246 							ARRAY_SIZE(golden_settings_sdma_rv2));
247 		else
248 			soc15_program_register_sequence(adev,
249 							golden_settings_sdma_rv1,
250 							ARRAY_SIZE(golden_settings_sdma_rv1));
251 		break;
252 	default:
253 		break;
254 	}
255 }
256 
257 /**
258  * sdma_v4_0_init_microcode - load ucode images from disk
259  *
260  * @adev: amdgpu_device pointer
261  *
262  * Use the firmware interface to load the ucode images into
263  * the driver (not loaded into hw).
264  * Returns 0 on success, error on failure.
265  */
266 
267 // emulation only, won't work on real chip
268 // vega10 real chip need to use PSP to load firmware
269 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
270 {
271 	const char *chip_name;
272 	char fw_name[30];
273 	int err = 0, i;
274 	struct amdgpu_firmware_info *info = NULL;
275 	const struct common_firmware_header *header = NULL;
276 	const struct sdma_firmware_header_v1_0 *hdr;
277 
278 	DRM_DEBUG("\n");
279 
280 	switch (adev->asic_type) {
281 	case CHIP_VEGA10:
282 		chip_name = "vega10";
283 		break;
284 	case CHIP_VEGA12:
285 		chip_name = "vega12";
286 		break;
287 	case CHIP_VEGA20:
288 		chip_name = "vega20";
289 		break;
290 	case CHIP_RAVEN:
291 		if (adev->rev_id >= 8)
292 			chip_name = "raven2";
293 		else if (adev->pdev->device == 0x15d8)
294 			chip_name = "picasso";
295 		else
296 			chip_name = "raven";
297 		break;
298 	default:
299 		BUG();
300 	}
301 
302 	for (i = 0; i < adev->sdma.num_instances; i++) {
303 		if (i == 0)
304 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
305 		else
306 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
307 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
308 		if (err)
309 			goto out;
310 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
311 		if (err)
312 			goto out;
313 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
314 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
315 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
316 		if (adev->sdma.instance[i].feature_version >= 20)
317 			adev->sdma.instance[i].burst_nop = true;
318 		DRM_DEBUG("psp_load == '%s'\n",
319 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
320 
321 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
322 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
323 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
324 			info->fw = adev->sdma.instance[i].fw;
325 			header = (const struct common_firmware_header *)info->fw->data;
326 			adev->firmware.fw_size +=
327 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
328 		}
329 	}
330 out:
331 	if (err) {
332 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
333 		for (i = 0; i < adev->sdma.num_instances; i++) {
334 			release_firmware(adev->sdma.instance[i].fw);
335 			adev->sdma.instance[i].fw = NULL;
336 		}
337 	}
338 	return err;
339 }
340 
341 /**
342  * sdma_v4_0_ring_get_rptr - get the current read pointer
343  *
344  * @ring: amdgpu ring pointer
345  *
346  * Get the current rptr from the hardware (VEGA10+).
347  */
348 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
349 {
350 	u64 *rptr;
351 
352 	/* XXX check if swapping is necessary on BE */
353 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
354 
355 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
356 	return ((*rptr) >> 2);
357 }
358 
359 /**
360  * sdma_v4_0_ring_get_wptr - get the current write pointer
361  *
362  * @ring: amdgpu ring pointer
363  *
364  * Get the current wptr from the hardware (VEGA10+).
365  */
366 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
367 {
368 	struct amdgpu_device *adev = ring->adev;
369 	u64 wptr;
370 
371 	if (ring->use_doorbell) {
372 		/* XXX check if swapping is necessary on BE */
373 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
374 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
375 	} else {
376 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
377 		wptr = wptr << 32;
378 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
379 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
380 				ring->me, wptr);
381 	}
382 
383 	return wptr >> 2;
384 }
385 
386 /**
387  * sdma_v4_0_ring_set_wptr - commit the write pointer
388  *
389  * @ring: amdgpu ring pointer
390  *
391  * Write the wptr back to the hardware (VEGA10+).
392  */
393 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
394 {
395 	struct amdgpu_device *adev = ring->adev;
396 
397 	DRM_DEBUG("Setting write pointer\n");
398 	if (ring->use_doorbell) {
399 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
400 
401 		DRM_DEBUG("Using doorbell -- "
402 				"wptr_offs == 0x%08x "
403 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
404 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
405 				ring->wptr_offs,
406 				lower_32_bits(ring->wptr << 2),
407 				upper_32_bits(ring->wptr << 2));
408 		/* XXX check if swapping is necessary on BE */
409 		WRITE_ONCE(*wb, (ring->wptr << 2));
410 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
411 				ring->doorbell_index, ring->wptr << 2);
412 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
413 	} else {
414 		DRM_DEBUG("Not using doorbell -- "
415 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
416 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
417 				ring->me,
418 				lower_32_bits(ring->wptr << 2),
419 				ring->me,
420 				upper_32_bits(ring->wptr << 2));
421 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
422 			    lower_32_bits(ring->wptr << 2));
423 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
424 			    upper_32_bits(ring->wptr << 2));
425 	}
426 }
427 
428 /**
429  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
430  *
431  * @ring: amdgpu ring pointer
432  *
433  * Get the current wptr from the hardware (VEGA10+).
434  */
435 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
436 {
437 	struct amdgpu_device *adev = ring->adev;
438 	u64 wptr;
439 
440 	if (ring->use_doorbell) {
441 		/* XXX check if swapping is necessary on BE */
442 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
443 	} else {
444 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
445 		wptr = wptr << 32;
446 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
447 	}
448 
449 	return wptr >> 2;
450 }
451 
452 /**
453  * sdma_v4_0_ring_set_wptr - commit the write pointer
454  *
455  * @ring: amdgpu ring pointer
456  *
457  * Write the wptr back to the hardware (VEGA10+).
458  */
459 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
460 {
461 	struct amdgpu_device *adev = ring->adev;
462 
463 	if (ring->use_doorbell) {
464 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
465 
466 		/* XXX check if swapping is necessary on BE */
467 		WRITE_ONCE(*wb, (ring->wptr << 2));
468 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
469 	} else {
470 		uint64_t wptr = ring->wptr << 2;
471 
472 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
473 			    lower_32_bits(wptr));
474 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
475 			    upper_32_bits(wptr));
476 	}
477 }
478 
479 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
480 {
481 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
482 	int i;
483 
484 	for (i = 0; i < count; i++)
485 		if (sdma && sdma->burst_nop && (i == 0))
486 			amdgpu_ring_write(ring, ring->funcs->nop |
487 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
488 		else
489 			amdgpu_ring_write(ring, ring->funcs->nop);
490 }
491 
492 /**
493  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
494  *
495  * @ring: amdgpu ring pointer
496  * @ib: IB object to schedule
497  *
498  * Schedule an IB in the DMA ring (VEGA10).
499  */
500 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
501 				   struct amdgpu_job *job,
502 				   struct amdgpu_ib *ib,
503 				   uint32_t flags)
504 {
505 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
506 
507 	/* IB packet must end on a 8 DW boundary */
508 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
509 
510 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
511 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
512 	/* base must be 32 byte aligned */
513 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
514 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
515 	amdgpu_ring_write(ring, ib->length_dw);
516 	amdgpu_ring_write(ring, 0);
517 	amdgpu_ring_write(ring, 0);
518 
519 }
520 
521 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
522 				   int mem_space, int hdp,
523 				   uint32_t addr0, uint32_t addr1,
524 				   uint32_t ref, uint32_t mask,
525 				   uint32_t inv)
526 {
527 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
528 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
529 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
530 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
531 	if (mem_space) {
532 		/* memory */
533 		amdgpu_ring_write(ring, addr0);
534 		amdgpu_ring_write(ring, addr1);
535 	} else {
536 		/* registers */
537 		amdgpu_ring_write(ring, addr0 << 2);
538 		amdgpu_ring_write(ring, addr1 << 2);
539 	}
540 	amdgpu_ring_write(ring, ref); /* reference */
541 	amdgpu_ring_write(ring, mask); /* mask */
542 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
543 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
544 }
545 
546 /**
547  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
548  *
549  * @ring: amdgpu ring pointer
550  *
551  * Emit an hdp flush packet on the requested DMA ring.
552  */
553 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
554 {
555 	struct amdgpu_device *adev = ring->adev;
556 	u32 ref_and_mask = 0;
557 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
558 
559 	if (ring->me == 0)
560 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
561 	else
562 		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
563 
564 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
565 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
566 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
567 			       ref_and_mask, ref_and_mask, 10);
568 }
569 
570 /**
571  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
572  *
573  * @ring: amdgpu ring pointer
574  * @fence: amdgpu fence object
575  *
576  * Add a DMA fence packet to the ring to write
577  * the fence seq number and DMA trap packet to generate
578  * an interrupt if needed (VEGA10).
579  */
580 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
581 				      unsigned flags)
582 {
583 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
584 	/* write the fence */
585 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
586 	/* zero in first two bits */
587 	BUG_ON(addr & 0x3);
588 	amdgpu_ring_write(ring, lower_32_bits(addr));
589 	amdgpu_ring_write(ring, upper_32_bits(addr));
590 	amdgpu_ring_write(ring, lower_32_bits(seq));
591 
592 	/* optionally write high bits as well */
593 	if (write64bit) {
594 		addr += 4;
595 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
596 		/* zero in first two bits */
597 		BUG_ON(addr & 0x3);
598 		amdgpu_ring_write(ring, lower_32_bits(addr));
599 		amdgpu_ring_write(ring, upper_32_bits(addr));
600 		amdgpu_ring_write(ring, upper_32_bits(seq));
601 	}
602 
603 	/* generate an interrupt */
604 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
605 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
606 }
607 
608 
609 /**
610  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
611  *
612  * @adev: amdgpu_device pointer
613  *
614  * Stop the gfx async dma ring buffers (VEGA10).
615  */
616 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
617 {
618 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
619 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
620 	u32 rb_cntl, ib_cntl;
621 	int i;
622 
623 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
624 	    (adev->mman.buffer_funcs_ring == sdma1))
625 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
626 
627 	for (i = 0; i < adev->sdma.num_instances; i++) {
628 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
629 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
630 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
631 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
632 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
633 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
634 	}
635 
636 	sdma0->sched.ready = false;
637 	sdma1->sched.ready = false;
638 }
639 
640 /**
641  * sdma_v4_0_rlc_stop - stop the compute async dma engines
642  *
643  * @adev: amdgpu_device pointer
644  *
645  * Stop the compute async dma queues (VEGA10).
646  */
647 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
648 {
649 	/* XXX todo */
650 }
651 
652 /**
653  * sdma_v4_0_page_stop - stop the page async dma engines
654  *
655  * @adev: amdgpu_device pointer
656  *
657  * Stop the page async dma ring buffers (VEGA10).
658  */
659 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
660 {
661 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
662 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
663 	u32 rb_cntl, ib_cntl;
664 	int i;
665 
666 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
667 	    (adev->mman.buffer_funcs_ring == sdma1))
668 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
669 
670 	for (i = 0; i < adev->sdma.num_instances; i++) {
671 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
672 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
673 					RB_ENABLE, 0);
674 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
675 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
676 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
677 					IB_ENABLE, 0);
678 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
679 	}
680 
681 	sdma0->sched.ready = false;
682 	sdma1->sched.ready = false;
683 }
684 
685 /**
686  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
687  *
688  * @adev: amdgpu_device pointer
689  * @enable: enable/disable the DMA MEs context switch.
690  *
691  * Halt or unhalt the async dma engines context switch (VEGA10).
692  */
693 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
694 {
695 	u32 f32_cntl, phase_quantum = 0;
696 	int i;
697 
698 	if (amdgpu_sdma_phase_quantum) {
699 		unsigned value = amdgpu_sdma_phase_quantum;
700 		unsigned unit = 0;
701 
702 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
703 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
704 			value = (value + 1) >> 1;
705 			unit++;
706 		}
707 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
708 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
709 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
710 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
711 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
712 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
713 			WARN_ONCE(1,
714 			"clamping sdma_phase_quantum to %uK clock cycles\n",
715 				  value << unit);
716 		}
717 		phase_quantum =
718 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
719 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
720 	}
721 
722 	for (i = 0; i < adev->sdma.num_instances; i++) {
723 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
724 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
725 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
726 		if (enable && amdgpu_sdma_phase_quantum) {
727 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
728 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
729 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
730 		}
731 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
732 	}
733 
734 }
735 
736 /**
737  * sdma_v4_0_enable - stop the async dma engines
738  *
739  * @adev: amdgpu_device pointer
740  * @enable: enable/disable the DMA MEs.
741  *
742  * Halt or unhalt the async dma engines (VEGA10).
743  */
744 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
745 {
746 	u32 f32_cntl;
747 	int i;
748 
749 	if (enable == false) {
750 		sdma_v4_0_gfx_stop(adev);
751 		sdma_v4_0_rlc_stop(adev);
752 		if (adev->sdma.has_page_queue)
753 			sdma_v4_0_page_stop(adev);
754 	}
755 
756 	for (i = 0; i < adev->sdma.num_instances; i++) {
757 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
758 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
759 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
760 	}
761 }
762 
763 /**
764  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
765  */
766 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
767 {
768 	/* Set ring buffer size in dwords */
769 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
770 
771 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
772 #ifdef __BIG_ENDIAN
773 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
774 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
775 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
776 #endif
777 	return rb_cntl;
778 }
779 
780 /**
781  * sdma_v4_0_gfx_resume - setup and start the async dma engines
782  *
783  * @adev: amdgpu_device pointer
784  * @i: instance to resume
785  *
786  * Set up the gfx DMA ring buffers and enable them (VEGA10).
787  * Returns 0 for success, error for failure.
788  */
789 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
790 {
791 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
792 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
793 	u32 wb_offset;
794 	u32 doorbell;
795 	u32 doorbell_offset;
796 	u64 wptr_gpu_addr;
797 
798 	wb_offset = (ring->rptr_offs * 4);
799 
800 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
801 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
802 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
803 
804 	/* Initialize the ring buffer's read and write pointers */
805 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
806 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
807 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
808 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
809 
810 	/* set the wb address whether it's enabled or not */
811 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
812 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
813 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
814 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
815 
816 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
817 				RPTR_WRITEBACK_ENABLE, 1);
818 
819 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
820 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
821 
822 	ring->wptr = 0;
823 
824 	/* before programing wptr to a less value, need set minor_ptr_update first */
825 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
826 
827 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
828 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
829 
830 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
831 				 ring->use_doorbell);
832 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
833 					SDMA0_GFX_DOORBELL_OFFSET,
834 					OFFSET, ring->doorbell_index);
835 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
836 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
837 
838 	sdma_v4_0_ring_set_wptr(ring);
839 
840 	/* set minor_ptr_update to 0 after wptr programed */
841 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
842 
843 	/* setup the wptr shadow polling */
844 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
845 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
846 		    lower_32_bits(wptr_gpu_addr));
847 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
848 		    upper_32_bits(wptr_gpu_addr));
849 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
850 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
851 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
852 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
853 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
854 
855 	/* enable DMA RB */
856 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
857 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
858 
859 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
860 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
861 #ifdef __BIG_ENDIAN
862 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
863 #endif
864 	/* enable DMA IBs */
865 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
866 
867 	ring->sched.ready = true;
868 }
869 
870 /**
871  * sdma_v4_0_page_resume - setup and start the async dma engines
872  *
873  * @adev: amdgpu_device pointer
874  * @i: instance to resume
875  *
876  * Set up the page DMA ring buffers and enable them (VEGA10).
877  * Returns 0 for success, error for failure.
878  */
879 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
880 {
881 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
882 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
883 	u32 wb_offset;
884 	u32 doorbell;
885 	u32 doorbell_offset;
886 	u64 wptr_gpu_addr;
887 
888 	wb_offset = (ring->rptr_offs * 4);
889 
890 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
891 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
892 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
893 
894 	/* Initialize the ring buffer's read and write pointers */
895 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
896 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
897 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
898 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
899 
900 	/* set the wb address whether it's enabled or not */
901 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
902 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
903 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
904 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
905 
906 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
907 				RPTR_WRITEBACK_ENABLE, 1);
908 
909 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
910 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
911 
912 	ring->wptr = 0;
913 
914 	/* before programing wptr to a less value, need set minor_ptr_update first */
915 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
916 
917 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
918 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
919 
920 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
921 				 ring->use_doorbell);
922 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
923 					SDMA0_PAGE_DOORBELL_OFFSET,
924 					OFFSET, ring->doorbell_index);
925 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
926 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
927 
928 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
929 	sdma_v4_0_page_ring_set_wptr(ring);
930 
931 	/* set minor_ptr_update to 0 after wptr programed */
932 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
933 
934 	/* setup the wptr shadow polling */
935 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
936 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
937 		    lower_32_bits(wptr_gpu_addr));
938 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
939 		    upper_32_bits(wptr_gpu_addr));
940 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
941 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
942 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
943 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
944 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
945 
946 	/* enable DMA RB */
947 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
948 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
949 
950 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
951 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
952 #ifdef __BIG_ENDIAN
953 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
954 #endif
955 	/* enable DMA IBs */
956 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
957 
958 	ring->sched.ready = true;
959 }
960 
961 static void
962 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
963 {
964 	uint32_t def, data;
965 
966 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
967 		/* enable idle interrupt */
968 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
969 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
970 
971 		if (data != def)
972 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
973 	} else {
974 		/* disable idle interrupt */
975 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
976 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
977 		if (data != def)
978 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
979 	}
980 }
981 
982 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
983 {
984 	uint32_t def, data;
985 
986 	/* Enable HW based PG. */
987 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
988 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
989 	if (data != def)
990 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
991 
992 	/* enable interrupt */
993 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
994 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
995 	if (data != def)
996 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
997 
998 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
999 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1000 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1001 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1002 	/* Configure switch time for hysteresis purpose. Use default right now */
1003 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1004 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1005 	if(data != def)
1006 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1007 }
1008 
1009 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1010 {
1011 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1012 		return;
1013 
1014 	switch (adev->asic_type) {
1015 	case CHIP_RAVEN:
1016 		sdma_v4_1_init_power_gating(adev);
1017 		sdma_v4_1_update_power_gating(adev, true);
1018 		break;
1019 	default:
1020 		break;
1021 	}
1022 }
1023 
1024 /**
1025  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1026  *
1027  * @adev: amdgpu_device pointer
1028  *
1029  * Set up the compute DMA queues and enable them (VEGA10).
1030  * Returns 0 for success, error for failure.
1031  */
1032 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1033 {
1034 	sdma_v4_0_init_pg(adev);
1035 
1036 	return 0;
1037 }
1038 
1039 /**
1040  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1041  *
1042  * @adev: amdgpu_device pointer
1043  *
1044  * Loads the sDMA0/1 ucode.
1045  * Returns 0 for success, -EINVAL if the ucode is not available.
1046  */
1047 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1048 {
1049 	const struct sdma_firmware_header_v1_0 *hdr;
1050 	const __le32 *fw_data;
1051 	u32 fw_size;
1052 	int i, j;
1053 
1054 	/* halt the MEs */
1055 	sdma_v4_0_enable(adev, false);
1056 
1057 	for (i = 0; i < adev->sdma.num_instances; i++) {
1058 		if (!adev->sdma.instance[i].fw)
1059 			return -EINVAL;
1060 
1061 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1062 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1063 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1064 
1065 		fw_data = (const __le32 *)
1066 			(adev->sdma.instance[i].fw->data +
1067 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1068 
1069 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1070 
1071 		for (j = 0; j < fw_size; j++)
1072 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1073 				    le32_to_cpup(fw_data++));
1074 
1075 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1076 			    adev->sdma.instance[i].fw_version);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /**
1083  * sdma_v4_0_start - setup and start the async dma engines
1084  *
1085  * @adev: amdgpu_device pointer
1086  *
1087  * Set up the DMA engines and enable them (VEGA10).
1088  * Returns 0 for success, error for failure.
1089  */
1090 static int sdma_v4_0_start(struct amdgpu_device *adev)
1091 {
1092 	struct amdgpu_ring *ring;
1093 	int i, r;
1094 
1095 	if (amdgpu_sriov_vf(adev)) {
1096 		sdma_v4_0_ctx_switch_enable(adev, false);
1097 		sdma_v4_0_enable(adev, false);
1098 	} else {
1099 
1100 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1101 			r = sdma_v4_0_load_microcode(adev);
1102 			if (r)
1103 				return r;
1104 		}
1105 
1106 		/* unhalt the MEs */
1107 		sdma_v4_0_enable(adev, true);
1108 		/* enable sdma ring preemption */
1109 		sdma_v4_0_ctx_switch_enable(adev, true);
1110 	}
1111 
1112 	/* start the gfx rings and rlc compute queues */
1113 	for (i = 0; i < adev->sdma.num_instances; i++) {
1114 		uint32_t temp;
1115 
1116 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1117 		sdma_v4_0_gfx_resume(adev, i);
1118 		if (adev->sdma.has_page_queue)
1119 			sdma_v4_0_page_resume(adev, i);
1120 
1121 		/* set utc l1 enable flag always to 1 */
1122 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1123 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1124 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1125 
1126 		if (!amdgpu_sriov_vf(adev)) {
1127 			/* unhalt engine */
1128 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1129 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1130 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1131 		}
1132 	}
1133 
1134 	if (amdgpu_sriov_vf(adev)) {
1135 		sdma_v4_0_ctx_switch_enable(adev, true);
1136 		sdma_v4_0_enable(adev, true);
1137 	} else {
1138 		r = sdma_v4_0_rlc_resume(adev);
1139 		if (r)
1140 			return r;
1141 	}
1142 
1143 	for (i = 0; i < adev->sdma.num_instances; i++) {
1144 		ring = &adev->sdma.instance[i].ring;
1145 
1146 		r = amdgpu_ring_test_helper(ring);
1147 		if (r)
1148 			return r;
1149 
1150 		if (adev->sdma.has_page_queue) {
1151 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1152 
1153 			r = amdgpu_ring_test_helper(page);
1154 			if (r)
1155 				return r;
1156 
1157 			if (adev->mman.buffer_funcs_ring == page)
1158 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1159 		}
1160 
1161 		if (adev->mman.buffer_funcs_ring == ring)
1162 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1163 	}
1164 
1165 	return r;
1166 }
1167 
1168 /**
1169  * sdma_v4_0_ring_test_ring - simple async dma engine test
1170  *
1171  * @ring: amdgpu_ring structure holding ring information
1172  *
1173  * Test the DMA engine by writing using it to write an
1174  * value to memory. (VEGA10).
1175  * Returns 0 for success, error for failure.
1176  */
1177 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1178 {
1179 	struct amdgpu_device *adev = ring->adev;
1180 	unsigned i;
1181 	unsigned index;
1182 	int r;
1183 	u32 tmp;
1184 	u64 gpu_addr;
1185 
1186 	r = amdgpu_device_wb_get(adev, &index);
1187 	if (r)
1188 		return r;
1189 
1190 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1191 	tmp = 0xCAFEDEAD;
1192 	adev->wb.wb[index] = cpu_to_le32(tmp);
1193 
1194 	r = amdgpu_ring_alloc(ring, 5);
1195 	if (r)
1196 		goto error_free_wb;
1197 
1198 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1199 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1200 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1201 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1202 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1203 	amdgpu_ring_write(ring, 0xDEADBEEF);
1204 	amdgpu_ring_commit(ring);
1205 
1206 	for (i = 0; i < adev->usec_timeout; i++) {
1207 		tmp = le32_to_cpu(adev->wb.wb[index]);
1208 		if (tmp == 0xDEADBEEF)
1209 			break;
1210 		DRM_UDELAY(1);
1211 	}
1212 
1213 	if (i >= adev->usec_timeout)
1214 		r = -ETIMEDOUT;
1215 
1216 error_free_wb:
1217 	amdgpu_device_wb_free(adev, index);
1218 	return r;
1219 }
1220 
1221 /**
1222  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1223  *
1224  * @ring: amdgpu_ring structure holding ring information
1225  *
1226  * Test a simple IB in the DMA ring (VEGA10).
1227  * Returns 0 on success, error on failure.
1228  */
1229 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1230 {
1231 	struct amdgpu_device *adev = ring->adev;
1232 	struct amdgpu_ib ib;
1233 	struct dma_fence *f = NULL;
1234 	unsigned index;
1235 	long r;
1236 	u32 tmp = 0;
1237 	u64 gpu_addr;
1238 
1239 	r = amdgpu_device_wb_get(adev, &index);
1240 	if (r)
1241 		return r;
1242 
1243 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1244 	tmp = 0xCAFEDEAD;
1245 	adev->wb.wb[index] = cpu_to_le32(tmp);
1246 	memset(&ib, 0, sizeof(ib));
1247 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1248 	if (r)
1249 		goto err0;
1250 
1251 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1252 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1253 	ib.ptr[1] = lower_32_bits(gpu_addr);
1254 	ib.ptr[2] = upper_32_bits(gpu_addr);
1255 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1256 	ib.ptr[4] = 0xDEADBEEF;
1257 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1258 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1259 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260 	ib.length_dw = 8;
1261 
1262 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1263 	if (r)
1264 		goto err1;
1265 
1266 	r = dma_fence_wait_timeout(f, false, timeout);
1267 	if (r == 0) {
1268 		r = -ETIMEDOUT;
1269 		goto err1;
1270 	} else if (r < 0) {
1271 		goto err1;
1272 	}
1273 	tmp = le32_to_cpu(adev->wb.wb[index]);
1274 	if (tmp == 0xDEADBEEF)
1275 		r = 0;
1276 	else
1277 		r = -EINVAL;
1278 
1279 err1:
1280 	amdgpu_ib_free(adev, &ib, NULL);
1281 	dma_fence_put(f);
1282 err0:
1283 	amdgpu_device_wb_free(adev, index);
1284 	return r;
1285 }
1286 
1287 
1288 /**
1289  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1290  *
1291  * @ib: indirect buffer to fill with commands
1292  * @pe: addr of the page entry
1293  * @src: src addr to copy from
1294  * @count: number of page entries to update
1295  *
1296  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1297  */
1298 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1299 				  uint64_t pe, uint64_t src,
1300 				  unsigned count)
1301 {
1302 	unsigned bytes = count * 8;
1303 
1304 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1305 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1306 	ib->ptr[ib->length_dw++] = bytes - 1;
1307 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1308 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1309 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1310 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1311 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1312 
1313 }
1314 
1315 /**
1316  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1317  *
1318  * @ib: indirect buffer to fill with commands
1319  * @pe: addr of the page entry
1320  * @addr: dst addr to write into pe
1321  * @count: number of page entries to update
1322  * @incr: increase next addr by incr bytes
1323  * @flags: access flags
1324  *
1325  * Update PTEs by writing them manually using sDMA (VEGA10).
1326  */
1327 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1328 				   uint64_t value, unsigned count,
1329 				   uint32_t incr)
1330 {
1331 	unsigned ndw = count * 2;
1332 
1333 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1334 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1335 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1336 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1337 	ib->ptr[ib->length_dw++] = ndw - 1;
1338 	for (; ndw > 0; ndw -= 2) {
1339 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1340 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1341 		value += incr;
1342 	}
1343 }
1344 
1345 /**
1346  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1347  *
1348  * @ib: indirect buffer to fill with commands
1349  * @pe: addr of the page entry
1350  * @addr: dst addr to write into pe
1351  * @count: number of page entries to update
1352  * @incr: increase next addr by incr bytes
1353  * @flags: access flags
1354  *
1355  * Update the page tables using sDMA (VEGA10).
1356  */
1357 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1358 				     uint64_t pe,
1359 				     uint64_t addr, unsigned count,
1360 				     uint32_t incr, uint64_t flags)
1361 {
1362 	/* for physically contiguous pages (vram) */
1363 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1364 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1365 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1366 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1367 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1368 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1369 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1370 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1371 	ib->ptr[ib->length_dw++] = 0;
1372 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1373 }
1374 
1375 /**
1376  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1377  *
1378  * @ib: indirect buffer to fill with padding
1379  *
1380  */
1381 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1382 {
1383 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1384 	u32 pad_count;
1385 	int i;
1386 
1387 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1388 	for (i = 0; i < pad_count; i++)
1389 		if (sdma && sdma->burst_nop && (i == 0))
1390 			ib->ptr[ib->length_dw++] =
1391 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1392 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1393 		else
1394 			ib->ptr[ib->length_dw++] =
1395 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1396 }
1397 
1398 
1399 /**
1400  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1401  *
1402  * @ring: amdgpu_ring pointer
1403  *
1404  * Make sure all previous operations are completed (CIK).
1405  */
1406 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1407 {
1408 	uint32_t seq = ring->fence_drv.sync_seq;
1409 	uint64_t addr = ring->fence_drv.gpu_addr;
1410 
1411 	/* wait for idle */
1412 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1413 			       addr & 0xfffffffc,
1414 			       upper_32_bits(addr) & 0xffffffff,
1415 			       seq, 0xffffffff, 4);
1416 }
1417 
1418 
1419 /**
1420  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1421  *
1422  * @ring: amdgpu_ring pointer
1423  * @vm: amdgpu_vm pointer
1424  *
1425  * Update the page table base and flush the VM TLB
1426  * using sDMA (VEGA10).
1427  */
1428 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1429 					 unsigned vmid, uint64_t pd_addr)
1430 {
1431 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1432 }
1433 
1434 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1435 				     uint32_t reg, uint32_t val)
1436 {
1437 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1438 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1439 	amdgpu_ring_write(ring, reg);
1440 	amdgpu_ring_write(ring, val);
1441 }
1442 
1443 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1444 					 uint32_t val, uint32_t mask)
1445 {
1446 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1447 }
1448 
1449 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1450 {
1451 	uint fw_version = adev->sdma.instance[0].fw_version;
1452 
1453 	switch (adev->asic_type) {
1454 	case CHIP_VEGA10:
1455 		return fw_version >= 430;
1456 	case CHIP_VEGA12:
1457 		/*return fw_version >= 31;*/
1458 		return false;
1459 	case CHIP_VEGA20:
1460 		return fw_version >= 123;
1461 	default:
1462 		return false;
1463 	}
1464 }
1465 
1466 static int sdma_v4_0_early_init(void *handle)
1467 {
1468 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1469 	int r;
1470 
1471 	if (adev->asic_type == CHIP_RAVEN)
1472 		adev->sdma.num_instances = 1;
1473 	else
1474 		adev->sdma.num_instances = 2;
1475 
1476 	r = sdma_v4_0_init_microcode(adev);
1477 	if (r) {
1478 		DRM_ERROR("Failed to load sdma firmware!\n");
1479 		return r;
1480 	}
1481 
1482 	/* TODO: Page queue breaks driver reload under SRIOV */
1483 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1484 		adev->sdma.has_page_queue = false;
1485 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1486 		adev->sdma.has_page_queue = true;
1487 
1488 	sdma_v4_0_set_ring_funcs(adev);
1489 	sdma_v4_0_set_buffer_funcs(adev);
1490 	sdma_v4_0_set_vm_pte_funcs(adev);
1491 	sdma_v4_0_set_irq_funcs(adev);
1492 
1493 	return 0;
1494 }
1495 
1496 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1497 		struct amdgpu_iv_entry *entry);
1498 
1499 static int sdma_v4_0_late_init(void *handle)
1500 {
1501 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1502 	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1503 	struct ras_ih_if ih_info = {
1504 		.cb = sdma_v4_0_process_ras_data_cb,
1505 	};
1506 	struct ras_fs_if fs_info = {
1507 		.sysfs_name = "sdma_err_count",
1508 		.debugfs_name = "sdma_err_inject",
1509 	};
1510 	struct ras_common_if ras_block = {
1511 		.block = AMDGPU_RAS_BLOCK__SDMA,
1512 		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1513 		.sub_block_index = 0,
1514 		.name = "sdma",
1515 	};
1516 	int r;
1517 
1518 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1519 		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1520 		return 0;
1521 	}
1522 
1523 	/* handle resume path. */
1524 	if (*ras_if)
1525 		goto resume;
1526 
1527 	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1528 	if (!*ras_if)
1529 		return -ENOMEM;
1530 
1531 	**ras_if = ras_block;
1532 
1533 	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1534 	if (r)
1535 		goto feature;
1536 
1537 	ih_info.head = **ras_if;
1538 	fs_info.head = **ras_if;
1539 
1540 	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1541 	if (r)
1542 		goto interrupt;
1543 
1544 	r = amdgpu_ras_debugfs_create(adev, &fs_info);
1545 	if (r)
1546 		goto debugfs;
1547 
1548 	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1549 	if (r)
1550 		goto sysfs;
1551 resume:
1552 	r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1553 	if (r)
1554 		goto irq;
1555 
1556 	r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1557 	if (r) {
1558 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1559 		goto irq;
1560 	}
1561 
1562 	return 0;
1563 irq:
1564 	amdgpu_ras_sysfs_remove(adev, *ras_if);
1565 sysfs:
1566 	amdgpu_ras_debugfs_remove(adev, *ras_if);
1567 debugfs:
1568 	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1569 interrupt:
1570 	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1571 feature:
1572 	kfree(*ras_if);
1573 	*ras_if = NULL;
1574 	return -EINVAL;
1575 }
1576 
1577 static int sdma_v4_0_sw_init(void *handle)
1578 {
1579 	struct amdgpu_ring *ring;
1580 	int r, i;
1581 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1582 
1583 	/* SDMA trap event */
1584 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1585 			      &adev->sdma.trap_irq);
1586 	if (r)
1587 		return r;
1588 
1589 	/* SDMA trap event */
1590 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1591 			      &adev->sdma.trap_irq);
1592 	if (r)
1593 		return r;
1594 
1595 	/* SDMA SRAM ECC event */
1596 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1597 			&adev->sdma.ecc_irq);
1598 	if (r)
1599 		return r;
1600 
1601 	/* SDMA SRAM ECC event */
1602 	r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_SRAM_ECC,
1603 			&adev->sdma.ecc_irq);
1604 	if (r)
1605 		return r;
1606 
1607 	for (i = 0; i < adev->sdma.num_instances; i++) {
1608 		ring = &adev->sdma.instance[i].ring;
1609 		ring->ring_obj = NULL;
1610 		ring->use_doorbell = true;
1611 
1612 		DRM_INFO("use_doorbell being set to: [%s]\n",
1613 				ring->use_doorbell?"true":"false");
1614 
1615 		/* doorbell size is 2 dwords, get DWORD offset */
1616 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1617 
1618 		sprintf(ring->name, "sdma%d", i);
1619 		r = amdgpu_ring_init(adev, ring, 1024,
1620 				     &adev->sdma.trap_irq,
1621 				     (i == 0) ?
1622 				     AMDGPU_SDMA_IRQ_INSTANCE0 :
1623 				     AMDGPU_SDMA_IRQ_INSTANCE1);
1624 		if (r)
1625 			return r;
1626 
1627 		if (adev->sdma.has_page_queue) {
1628 			ring = &adev->sdma.instance[i].page;
1629 			ring->ring_obj = NULL;
1630 			ring->use_doorbell = true;
1631 
1632 			/* paging queue use same doorbell index/routing as gfx queue
1633 			 * with 0x400 (4096 dwords) offset on second doorbell page
1634 			 */
1635 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1636 			ring->doorbell_index += 0x400;
1637 
1638 			sprintf(ring->name, "page%d", i);
1639 			r = amdgpu_ring_init(adev, ring, 1024,
1640 					     &adev->sdma.trap_irq,
1641 					     (i == 0) ?
1642 					     AMDGPU_SDMA_IRQ_INSTANCE0 :
1643 					     AMDGPU_SDMA_IRQ_INSTANCE1);
1644 			if (r)
1645 				return r;
1646 		}
1647 	}
1648 
1649 	return r;
1650 }
1651 
1652 static int sdma_v4_0_sw_fini(void *handle)
1653 {
1654 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1655 	int i;
1656 
1657 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1658 			adev->sdma.ras_if) {
1659 		struct ras_common_if *ras_if = adev->sdma.ras_if;
1660 		struct ras_ih_if ih_info = {
1661 			.head = *ras_if,
1662 		};
1663 
1664 		/*remove fs first*/
1665 		amdgpu_ras_debugfs_remove(adev, ras_if);
1666 		amdgpu_ras_sysfs_remove(adev, ras_if);
1667 		/*remove the IH*/
1668 		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1669 		amdgpu_ras_feature_enable(adev, ras_if, 0);
1670 		kfree(ras_if);
1671 	}
1672 
1673 	for (i = 0; i < adev->sdma.num_instances; i++) {
1674 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1675 		if (adev->sdma.has_page_queue)
1676 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1677 	}
1678 
1679 	for (i = 0; i < adev->sdma.num_instances; i++) {
1680 		release_firmware(adev->sdma.instance[i].fw);
1681 		adev->sdma.instance[i].fw = NULL;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int sdma_v4_0_hw_init(void *handle)
1688 {
1689 	int r;
1690 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1691 
1692 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1693 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1694 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1695 
1696 	sdma_v4_0_init_golden_registers(adev);
1697 
1698 	r = sdma_v4_0_start(adev);
1699 
1700 	return r;
1701 }
1702 
1703 static int sdma_v4_0_hw_fini(void *handle)
1704 {
1705 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1706 
1707 	if (amdgpu_sriov_vf(adev))
1708 		return 0;
1709 
1710 	amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0);
1711 	amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE1);
1712 
1713 	sdma_v4_0_ctx_switch_enable(adev, false);
1714 	sdma_v4_0_enable(adev, false);
1715 
1716 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1717 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1718 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1719 
1720 	return 0;
1721 }
1722 
1723 static int sdma_v4_0_suspend(void *handle)
1724 {
1725 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1726 
1727 	return sdma_v4_0_hw_fini(adev);
1728 }
1729 
1730 static int sdma_v4_0_resume(void *handle)
1731 {
1732 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1733 
1734 	return sdma_v4_0_hw_init(adev);
1735 }
1736 
1737 static bool sdma_v4_0_is_idle(void *handle)
1738 {
1739 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1740 	u32 i;
1741 
1742 	for (i = 0; i < adev->sdma.num_instances; i++) {
1743 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1744 
1745 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1746 			return false;
1747 	}
1748 
1749 	return true;
1750 }
1751 
1752 static int sdma_v4_0_wait_for_idle(void *handle)
1753 {
1754 	unsigned i;
1755 	u32 sdma0, sdma1;
1756 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1757 
1758 	for (i = 0; i < adev->usec_timeout; i++) {
1759 		sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1760 		sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1761 
1762 		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1763 			return 0;
1764 		udelay(1);
1765 	}
1766 	return -ETIMEDOUT;
1767 }
1768 
1769 static int sdma_v4_0_soft_reset(void *handle)
1770 {
1771 	/* todo */
1772 
1773 	return 0;
1774 }
1775 
1776 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1777 					struct amdgpu_irq_src *source,
1778 					unsigned type,
1779 					enum amdgpu_interrupt_state state)
1780 {
1781 	u32 sdma_cntl;
1782 
1783 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1784 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1785 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1786 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1787 
1788 	return 0;
1789 }
1790 
1791 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1792 				      struct amdgpu_irq_src *source,
1793 				      struct amdgpu_iv_entry *entry)
1794 {
1795 	uint32_t instance;
1796 
1797 	DRM_DEBUG("IH: SDMA trap\n");
1798 	switch (entry->client_id) {
1799 	case SOC15_IH_CLIENTID_SDMA0:
1800 		instance = 0;
1801 		break;
1802 	case SOC15_IH_CLIENTID_SDMA1:
1803 		instance = 1;
1804 		break;
1805 	default:
1806 		return 0;
1807 	}
1808 
1809 	switch (entry->ring_id) {
1810 	case 0:
1811 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1812 		break;
1813 	case 1:
1814 		if (adev->asic_type == CHIP_VEGA20)
1815 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1816 		break;
1817 	case 2:
1818 		/* XXX compute */
1819 		break;
1820 	case 3:
1821 		if (adev->asic_type != CHIP_VEGA20)
1822 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1823 		break;
1824 	}
1825 	return 0;
1826 }
1827 
1828 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1829 		struct amdgpu_iv_entry *entry)
1830 {
1831 	uint32_t instance, err_source;
1832 
1833 	switch (entry->client_id) {
1834 	case SOC15_IH_CLIENTID_SDMA0:
1835 		instance = 0;
1836 		break;
1837 	case SOC15_IH_CLIENTID_SDMA1:
1838 		instance = 1;
1839 		break;
1840 	default:
1841 		return 0;
1842 	}
1843 
1844 	switch (entry->src_id) {
1845 	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
1846 		err_source = 0;
1847 		break;
1848 	case SDMA0_4_0__SRCID__SDMA_ECC:
1849 		err_source = 1;
1850 		break;
1851 	default:
1852 		return 0;
1853 	}
1854 
1855 	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1856 
1857 	amdgpu_ras_reset_gpu(adev, 0);
1858 
1859 	return AMDGPU_RAS_UE;
1860 }
1861 
1862 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
1863 				      struct amdgpu_irq_src *source,
1864 				      struct amdgpu_iv_entry *entry)
1865 {
1866 	struct ras_common_if *ras_if = adev->sdma.ras_if;
1867 	struct ras_dispatch_if ih_data = {
1868 		.entry = entry,
1869 	};
1870 
1871 	if (!ras_if)
1872 		return 0;
1873 
1874 	ih_data.head = *ras_if;
1875 
1876 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1877 	return 0;
1878 }
1879 
1880 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1881 					      struct amdgpu_irq_src *source,
1882 					      struct amdgpu_iv_entry *entry)
1883 {
1884 	int instance;
1885 
1886 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1887 
1888 	switch (entry->client_id) {
1889 	case SOC15_IH_CLIENTID_SDMA0:
1890 		instance = 0;
1891 		break;
1892 	case SOC15_IH_CLIENTID_SDMA1:
1893 		instance = 1;
1894 		break;
1895 	default:
1896 		return 0;
1897 	}
1898 
1899 	switch (entry->ring_id) {
1900 	case 0:
1901 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1902 		break;
1903 	}
1904 	return 0;
1905 }
1906 
1907 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
1908 					struct amdgpu_irq_src *source,
1909 					unsigned type,
1910 					enum amdgpu_interrupt_state state)
1911 {
1912 	u32 sdma_edc_config;
1913 
1914 	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1915 		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_EDC_CONFIG) :
1916 		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_EDC_CONFIG);
1917 
1918 	sdma_edc_config = RREG32(reg_offset);
1919 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
1920 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1921 	WREG32(reg_offset, sdma_edc_config);
1922 
1923 	return 0;
1924 }
1925 
1926 static void sdma_v4_0_update_medium_grain_clock_gating(
1927 		struct amdgpu_device *adev,
1928 		bool enable)
1929 {
1930 	uint32_t data, def;
1931 
1932 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1933 		/* enable sdma0 clock gating */
1934 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1935 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1936 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1937 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1938 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1939 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1940 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1941 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1942 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1943 		if (def != data)
1944 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1945 
1946 		if (adev->sdma.num_instances > 1) {
1947 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1948 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1949 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1950 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1951 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1952 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1953 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1954 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1955 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1956 			if (def != data)
1957 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1958 		}
1959 	} else {
1960 		/* disable sdma0 clock gating */
1961 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1962 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1963 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1964 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1965 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1966 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1967 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1968 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1969 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1970 
1971 		if (def != data)
1972 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1973 
1974 		if (adev->sdma.num_instances > 1) {
1975 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1976 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1977 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1978 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1979 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1980 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1981 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1982 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1983 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1984 			if (def != data)
1985 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1986 		}
1987 	}
1988 }
1989 
1990 
1991 static void sdma_v4_0_update_medium_grain_light_sleep(
1992 		struct amdgpu_device *adev,
1993 		bool enable)
1994 {
1995 	uint32_t data, def;
1996 
1997 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1998 		/* 1-not override: enable sdma0 mem light sleep */
1999 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2000 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2001 		if (def != data)
2002 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2003 
2004 		/* 1-not override: enable sdma1 mem light sleep */
2005 		if (adev->sdma.num_instances > 1) {
2006 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2007 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2008 			if (def != data)
2009 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2010 		}
2011 	} else {
2012 		/* 0-override:disable sdma0 mem light sleep */
2013 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2014 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2015 		if (def != data)
2016 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2017 
2018 		/* 0-override:disable sdma1 mem light sleep */
2019 		if (adev->sdma.num_instances > 1) {
2020 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2021 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2022 			if (def != data)
2023 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2024 		}
2025 	}
2026 }
2027 
2028 static int sdma_v4_0_set_clockgating_state(void *handle,
2029 					  enum amd_clockgating_state state)
2030 {
2031 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2032 
2033 	if (amdgpu_sriov_vf(adev))
2034 		return 0;
2035 
2036 	switch (adev->asic_type) {
2037 	case CHIP_VEGA10:
2038 	case CHIP_VEGA12:
2039 	case CHIP_VEGA20:
2040 	case CHIP_RAVEN:
2041 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2042 				state == AMD_CG_STATE_GATE ? true : false);
2043 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2044 				state == AMD_CG_STATE_GATE ? true : false);
2045 		break;
2046 	default:
2047 		break;
2048 	}
2049 	return 0;
2050 }
2051 
2052 static int sdma_v4_0_set_powergating_state(void *handle,
2053 					  enum amd_powergating_state state)
2054 {
2055 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2056 
2057 	switch (adev->asic_type) {
2058 	case CHIP_RAVEN:
2059 		sdma_v4_1_update_power_gating(adev,
2060 				state == AMD_PG_STATE_GATE ? true : false);
2061 		break;
2062 	default:
2063 		break;
2064 	}
2065 
2066 	return 0;
2067 }
2068 
2069 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2070 {
2071 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2072 	int data;
2073 
2074 	if (amdgpu_sriov_vf(adev))
2075 		*flags = 0;
2076 
2077 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2078 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2079 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2080 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2081 
2082 	/* AMD_CG_SUPPORT_SDMA_LS */
2083 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2084 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2085 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2086 }
2087 
2088 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2089 	.name = "sdma_v4_0",
2090 	.early_init = sdma_v4_0_early_init,
2091 	.late_init = sdma_v4_0_late_init,
2092 	.sw_init = sdma_v4_0_sw_init,
2093 	.sw_fini = sdma_v4_0_sw_fini,
2094 	.hw_init = sdma_v4_0_hw_init,
2095 	.hw_fini = sdma_v4_0_hw_fini,
2096 	.suspend = sdma_v4_0_suspend,
2097 	.resume = sdma_v4_0_resume,
2098 	.is_idle = sdma_v4_0_is_idle,
2099 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2100 	.soft_reset = sdma_v4_0_soft_reset,
2101 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2102 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2103 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2104 };
2105 
2106 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2107 	.type = AMDGPU_RING_TYPE_SDMA,
2108 	.align_mask = 0xf,
2109 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2110 	.support_64bit_ptrs = true,
2111 	.vmhub = AMDGPU_MMHUB,
2112 	.get_rptr = sdma_v4_0_ring_get_rptr,
2113 	.get_wptr = sdma_v4_0_ring_get_wptr,
2114 	.set_wptr = sdma_v4_0_ring_set_wptr,
2115 	.emit_frame_size =
2116 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2117 		3 + /* hdp invalidate */
2118 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2119 		/* sdma_v4_0_ring_emit_vm_flush */
2120 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2121 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2122 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2123 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2124 	.emit_ib = sdma_v4_0_ring_emit_ib,
2125 	.emit_fence = sdma_v4_0_ring_emit_fence,
2126 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2127 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2128 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2129 	.test_ring = sdma_v4_0_ring_test_ring,
2130 	.test_ib = sdma_v4_0_ring_test_ib,
2131 	.insert_nop = sdma_v4_0_ring_insert_nop,
2132 	.pad_ib = sdma_v4_0_ring_pad_ib,
2133 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2134 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2135 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2136 };
2137 
2138 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2139 	.type = AMDGPU_RING_TYPE_SDMA,
2140 	.align_mask = 0xf,
2141 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2142 	.support_64bit_ptrs = true,
2143 	.vmhub = AMDGPU_MMHUB,
2144 	.get_rptr = sdma_v4_0_ring_get_rptr,
2145 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2146 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2147 	.emit_frame_size =
2148 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2149 		3 + /* hdp invalidate */
2150 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2151 		/* sdma_v4_0_ring_emit_vm_flush */
2152 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2153 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2154 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2155 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2156 	.emit_ib = sdma_v4_0_ring_emit_ib,
2157 	.emit_fence = sdma_v4_0_ring_emit_fence,
2158 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2159 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2160 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2161 	.test_ring = sdma_v4_0_ring_test_ring,
2162 	.test_ib = sdma_v4_0_ring_test_ib,
2163 	.insert_nop = sdma_v4_0_ring_insert_nop,
2164 	.pad_ib = sdma_v4_0_ring_pad_ib,
2165 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2166 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2167 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2168 };
2169 
2170 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2171 {
2172 	int i;
2173 
2174 	for (i = 0; i < adev->sdma.num_instances; i++) {
2175 		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2176 		adev->sdma.instance[i].ring.me = i;
2177 		if (adev->sdma.has_page_queue) {
2178 			adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
2179 			adev->sdma.instance[i].page.me = i;
2180 		}
2181 	}
2182 }
2183 
2184 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2185 	.set = sdma_v4_0_set_trap_irq_state,
2186 	.process = sdma_v4_0_process_trap_irq,
2187 };
2188 
2189 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2190 	.process = sdma_v4_0_process_illegal_inst_irq,
2191 };
2192 
2193 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2194 	.set = sdma_v4_0_set_ecc_irq_state,
2195 	.process = sdma_v4_0_process_ecc_irq,
2196 };
2197 
2198 
2199 
2200 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2201 {
2202 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2203 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2204 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2205 	adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2206 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2207 }
2208 
2209 /**
2210  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2211  *
2212  * @ring: amdgpu_ring structure holding ring information
2213  * @src_offset: src GPU address
2214  * @dst_offset: dst GPU address
2215  * @byte_count: number of bytes to xfer
2216  *
2217  * Copy GPU buffers using the DMA engine (VEGA10/12).
2218  * Used by the amdgpu ttm implementation to move pages if
2219  * registered as the asic copy callback.
2220  */
2221 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2222 				       uint64_t src_offset,
2223 				       uint64_t dst_offset,
2224 				       uint32_t byte_count)
2225 {
2226 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2227 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2228 	ib->ptr[ib->length_dw++] = byte_count - 1;
2229 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2230 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2231 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2232 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2233 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2234 }
2235 
2236 /**
2237  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2238  *
2239  * @ring: amdgpu_ring structure holding ring information
2240  * @src_data: value to write to buffer
2241  * @dst_offset: dst GPU address
2242  * @byte_count: number of bytes to xfer
2243  *
2244  * Fill GPU buffers using the DMA engine (VEGA10/12).
2245  */
2246 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2247 				       uint32_t src_data,
2248 				       uint64_t dst_offset,
2249 				       uint32_t byte_count)
2250 {
2251 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2252 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2253 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2254 	ib->ptr[ib->length_dw++] = src_data;
2255 	ib->ptr[ib->length_dw++] = byte_count - 1;
2256 }
2257 
2258 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2259 	.copy_max_bytes = 0x400000,
2260 	.copy_num_dw = 7,
2261 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2262 
2263 	.fill_max_bytes = 0x400000,
2264 	.fill_num_dw = 5,
2265 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2266 };
2267 
2268 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2269 {
2270 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2271 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2272 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2273 	else
2274 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2275 }
2276 
2277 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2278 	.copy_pte_num_dw = 7,
2279 	.copy_pte = sdma_v4_0_vm_copy_pte,
2280 
2281 	.write_pte = sdma_v4_0_vm_write_pte,
2282 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2283 };
2284 
2285 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2286 {
2287 	struct drm_gpu_scheduler *sched;
2288 	unsigned i;
2289 
2290 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2291 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2292 		for (i = 1; i < adev->sdma.num_instances; i++) {
2293 			sched = &adev->sdma.instance[i].page.sched;
2294 			adev->vm_manager.vm_pte_rqs[i - 1] =
2295 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2296 		}
2297 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2298 		adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2299 	} else {
2300 		for (i = 0; i < adev->sdma.num_instances; i++) {
2301 			sched = &adev->sdma.instance[i].ring.sched;
2302 			adev->vm_manager.vm_pte_rqs[i] =
2303 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2304 		}
2305 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2306 	}
2307 }
2308 
2309 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2310 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2311 	.major = 4,
2312 	.minor = 0,
2313 	.rev = 0,
2314 	.funcs = &sdma_v4_0_ip_funcs,
2315 };
2316