1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86 
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114 
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124 
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134 
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148 
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213 
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219 
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225 
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261 
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274 
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278 	0, 0,
279 	},
280 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282 	0, 0,
283 	},
284 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286 	0, 0,
287 	},
288 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290 	0, 0,
291 	},
292 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294 	0, 0,
295 	},
296 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370 	0, 0,
371 	},
372 };
373 
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375 		u32 instance, u32 offset)
376 {
377 	switch (instance) {
378 	case 0:
379 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380 	case 1:
381 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382 	case 2:
383 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384 	case 3:
385 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386 	case 4:
387 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388 	case 5:
389 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390 	case 6:
391 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392 	case 7:
393 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394 	default:
395 		break;
396 	}
397 	return 0;
398 }
399 
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402 	switch (seq_num) {
403 	case 0:
404 		return SOC15_IH_CLIENTID_SDMA0;
405 	case 1:
406 		return SOC15_IH_CLIENTID_SDMA1;
407 	case 2:
408 		return SOC15_IH_CLIENTID_SDMA2;
409 	case 3:
410 		return SOC15_IH_CLIENTID_SDMA3;
411 	case 4:
412 		return SOC15_IH_CLIENTID_SDMA4;
413 	case 5:
414 		return SOC15_IH_CLIENTID_SDMA5;
415 	case 6:
416 		return SOC15_IH_CLIENTID_SDMA6;
417 	case 7:
418 		return SOC15_IH_CLIENTID_SDMA7;
419 	default:
420 		break;
421 	}
422 	return -EINVAL;
423 }
424 
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427 	switch (client_id) {
428 	case SOC15_IH_CLIENTID_SDMA0:
429 		return 0;
430 	case SOC15_IH_CLIENTID_SDMA1:
431 		return 1;
432 	case SOC15_IH_CLIENTID_SDMA2:
433 		return 2;
434 	case SOC15_IH_CLIENTID_SDMA3:
435 		return 3;
436 	case SOC15_IH_CLIENTID_SDMA4:
437 		return 4;
438 	case SOC15_IH_CLIENTID_SDMA5:
439 		return 5;
440 	case SOC15_IH_CLIENTID_SDMA6:
441 		return 6;
442 	case SOC15_IH_CLIENTID_SDMA7:
443 		return 7;
444 	default:
445 		break;
446 	}
447 	return -EINVAL;
448 }
449 
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		soc15_program_register_sequence(adev,
455 						golden_settings_sdma_4,
456 						ARRAY_SIZE(golden_settings_sdma_4));
457 		soc15_program_register_sequence(adev,
458 						golden_settings_sdma_vg10,
459 						ARRAY_SIZE(golden_settings_sdma_vg10));
460 		break;
461 	case CHIP_VEGA12:
462 		soc15_program_register_sequence(adev,
463 						golden_settings_sdma_4,
464 						ARRAY_SIZE(golden_settings_sdma_4));
465 		soc15_program_register_sequence(adev,
466 						golden_settings_sdma_vg12,
467 						ARRAY_SIZE(golden_settings_sdma_vg12));
468 		break;
469 	case CHIP_VEGA20:
470 		soc15_program_register_sequence(adev,
471 						golden_settings_sdma0_4_2_init,
472 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473 		soc15_program_register_sequence(adev,
474 						golden_settings_sdma0_4_2,
475 						ARRAY_SIZE(golden_settings_sdma0_4_2));
476 		soc15_program_register_sequence(adev,
477 						golden_settings_sdma1_4_2,
478 						ARRAY_SIZE(golden_settings_sdma1_4_2));
479 		break;
480 	case CHIP_ARCTURUS:
481 		soc15_program_register_sequence(adev,
482 						golden_settings_sdma_arct,
483 						ARRAY_SIZE(golden_settings_sdma_arct));
484 		break;
485 	case CHIP_RAVEN:
486 		soc15_program_register_sequence(adev,
487 						golden_settings_sdma_4_1,
488 						ARRAY_SIZE(golden_settings_sdma_4_1));
489 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490 			soc15_program_register_sequence(adev,
491 							golden_settings_sdma_rv2,
492 							ARRAY_SIZE(golden_settings_sdma_rv2));
493 		else
494 			soc15_program_register_sequence(adev,
495 							golden_settings_sdma_rv1,
496 							ARRAY_SIZE(golden_settings_sdma_rv1));
497 		break;
498 	case CHIP_RENOIR:
499 		soc15_program_register_sequence(adev,
500 						golden_settings_sdma_4_3,
501 						ARRAY_SIZE(golden_settings_sdma_4_3));
502 		break;
503 	default:
504 		break;
505 	}
506 }
507 
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510 	int i;
511 
512 	/*
513 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
514 	 * Server SKUs take a different hysteresis setting from other SKUs.
515 	 */
516 	switch (adev->asic_type) {
517 	case CHIP_VEGA10:
518 		if (adev->pdev->device == 0x6860)
519 			break;
520 		return;
521 	case CHIP_VEGA20:
522 		if (adev->pdev->device == 0x66a1)
523 			break;
524 		return;
525 	default:
526 		return;
527 	}
528 
529 	for (i = 0; i < adev->sdma.num_instances; i++) {
530 		uint32_t temp;
531 
532 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535 	}
536 }
537 
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540 	int err = 0;
541 	const struct sdma_firmware_header_v1_0 *hdr;
542 
543 	err = amdgpu_ucode_validate(sdma_inst->fw);
544 	if (err)
545 		return err;
546 
547 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550 
551 	if (sdma_inst->feature_version >= 20)
552 		sdma_inst->burst_nop = true;
553 
554 	return 0;
555 }
556 
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559 	int i;
560 
561 	for (i = 0; i < adev->sdma.num_instances; i++) {
562 		release_firmware(adev->sdma.instance[i].fw);
563 		adev->sdma.instance[i].fw = NULL;
564 
565 		/* arcturus shares the same FW memory across
566 		   all SDMA isntances */
567 		if (adev->asic_type == CHIP_ARCTURUS)
568 			break;
569 	}
570 
571 	memset((void*)adev->sdma.instance, 0,
572 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574 
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584 
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589 	const char *chip_name;
590 	char fw_name[30];
591 	int err = 0, i;
592 	struct amdgpu_firmware_info *info = NULL;
593 	const struct common_firmware_header *header = NULL;
594 
595 	if (amdgpu_sriov_vf(adev))
596 		return 0;
597 
598 	DRM_DEBUG("\n");
599 
600 	switch (adev->asic_type) {
601 	case CHIP_VEGA10:
602 		chip_name = "vega10";
603 		break;
604 	case CHIP_VEGA12:
605 		chip_name = "vega12";
606 		break;
607 	case CHIP_VEGA20:
608 		chip_name = "vega20";
609 		break;
610 	case CHIP_RAVEN:
611 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
612 			chip_name = "raven2";
613 		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
614 			chip_name = "picasso";
615 		else
616 			chip_name = "raven";
617 		break;
618 	case CHIP_ARCTURUS:
619 		chip_name = "arcturus";
620 		break;
621 	case CHIP_RENOIR:
622 		chip_name = "renoir";
623 		break;
624 	default:
625 		BUG();
626 	}
627 
628 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
629 
630 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
631 	if (err)
632 		goto out;
633 
634 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
635 	if (err)
636 		goto out;
637 
638 	for (i = 1; i < adev->sdma.num_instances; i++) {
639 		if (adev->asic_type == CHIP_ARCTURUS) {
640 			/* Acturus will leverage the same FW memory
641 			   for every SDMA instance */
642 			memcpy((void*)&adev->sdma.instance[i],
643 			       (void*)&adev->sdma.instance[0],
644 			       sizeof(struct amdgpu_sdma_instance));
645 		}
646 		else {
647 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
648 
649 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
650 			if (err)
651 				goto out;
652 
653 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
654 			if (err)
655 				goto out;
656 		}
657 	}
658 
659 	DRM_DEBUG("psp_load == '%s'\n",
660 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
661 
662 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
663 		for (i = 0; i < adev->sdma.num_instances; i++) {
664 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
665 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
666 			info->fw = adev->sdma.instance[i].fw;
667 			header = (const struct common_firmware_header *)info->fw->data;
668 			adev->firmware.fw_size +=
669 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
670 		}
671 	}
672 
673 out:
674 	if (err) {
675 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
676 		sdma_v4_0_destroy_inst_ctx(adev);
677 	}
678 	return err;
679 }
680 
681 /**
682  * sdma_v4_0_ring_get_rptr - get the current read pointer
683  *
684  * @ring: amdgpu ring pointer
685  *
686  * Get the current rptr from the hardware (VEGA10+).
687  */
688 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
689 {
690 	u64 *rptr;
691 
692 	/* XXX check if swapping is necessary on BE */
693 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
694 
695 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
696 	return ((*rptr) >> 2);
697 }
698 
699 /**
700  * sdma_v4_0_ring_get_wptr - get the current write pointer
701  *
702  * @ring: amdgpu ring pointer
703  *
704  * Get the current wptr from the hardware (VEGA10+).
705  */
706 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
707 {
708 	struct amdgpu_device *adev = ring->adev;
709 	u64 wptr;
710 
711 	if (ring->use_doorbell) {
712 		/* XXX check if swapping is necessary on BE */
713 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
714 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
715 	} else {
716 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
717 		wptr = wptr << 32;
718 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
719 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
720 				ring->me, wptr);
721 	}
722 
723 	return wptr >> 2;
724 }
725 
726 /**
727  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
728  *
729  * @ring: amdgpu ring pointer
730  *
731  * Write the wptr back to the hardware (VEGA10+).
732  */
733 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
734 {
735 	struct amdgpu_device *adev = ring->adev;
736 
737 	DRM_DEBUG("Setting write pointer\n");
738 	if (ring->use_doorbell) {
739 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
740 
741 		DRM_DEBUG("Using doorbell -- "
742 				"wptr_offs == 0x%08x "
743 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
744 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
745 				ring->wptr_offs,
746 				lower_32_bits(ring->wptr << 2),
747 				upper_32_bits(ring->wptr << 2));
748 		/* XXX check if swapping is necessary on BE */
749 		WRITE_ONCE(*wb, (ring->wptr << 2));
750 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
751 				ring->doorbell_index, ring->wptr << 2);
752 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
753 	} else {
754 		DRM_DEBUG("Not using doorbell -- "
755 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
756 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
757 				ring->me,
758 				lower_32_bits(ring->wptr << 2),
759 				ring->me,
760 				upper_32_bits(ring->wptr << 2));
761 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
762 			    lower_32_bits(ring->wptr << 2));
763 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
764 			    upper_32_bits(ring->wptr << 2));
765 	}
766 }
767 
768 /**
769  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
770  *
771  * @ring: amdgpu ring pointer
772  *
773  * Get the current wptr from the hardware (VEGA10+).
774  */
775 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
776 {
777 	struct amdgpu_device *adev = ring->adev;
778 	u64 wptr;
779 
780 	if (ring->use_doorbell) {
781 		/* XXX check if swapping is necessary on BE */
782 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
783 	} else {
784 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
785 		wptr = wptr << 32;
786 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
787 	}
788 
789 	return wptr >> 2;
790 }
791 
792 /**
793  * sdma_v4_0_ring_set_wptr - commit the write pointer
794  *
795  * @ring: amdgpu ring pointer
796  *
797  * Write the wptr back to the hardware (VEGA10+).
798  */
799 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
800 {
801 	struct amdgpu_device *adev = ring->adev;
802 
803 	if (ring->use_doorbell) {
804 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
805 
806 		/* XXX check if swapping is necessary on BE */
807 		WRITE_ONCE(*wb, (ring->wptr << 2));
808 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
809 	} else {
810 		uint64_t wptr = ring->wptr << 2;
811 
812 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
813 			    lower_32_bits(wptr));
814 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
815 			    upper_32_bits(wptr));
816 	}
817 }
818 
819 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
820 {
821 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
822 	int i;
823 
824 	for (i = 0; i < count; i++)
825 		if (sdma && sdma->burst_nop && (i == 0))
826 			amdgpu_ring_write(ring, ring->funcs->nop |
827 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
828 		else
829 			amdgpu_ring_write(ring, ring->funcs->nop);
830 }
831 
832 /**
833  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
834  *
835  * @ring: amdgpu ring pointer
836  * @ib: IB object to schedule
837  *
838  * Schedule an IB in the DMA ring (VEGA10).
839  */
840 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
841 				   struct amdgpu_job *job,
842 				   struct amdgpu_ib *ib,
843 				   uint32_t flags)
844 {
845 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
846 
847 	/* IB packet must end on a 8 DW boundary */
848 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
849 
850 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
851 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
852 	/* base must be 32 byte aligned */
853 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
854 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
855 	amdgpu_ring_write(ring, ib->length_dw);
856 	amdgpu_ring_write(ring, 0);
857 	amdgpu_ring_write(ring, 0);
858 
859 }
860 
861 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
862 				   int mem_space, int hdp,
863 				   uint32_t addr0, uint32_t addr1,
864 				   uint32_t ref, uint32_t mask,
865 				   uint32_t inv)
866 {
867 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
868 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
869 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
870 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
871 	if (mem_space) {
872 		/* memory */
873 		amdgpu_ring_write(ring, addr0);
874 		amdgpu_ring_write(ring, addr1);
875 	} else {
876 		/* registers */
877 		amdgpu_ring_write(ring, addr0 << 2);
878 		amdgpu_ring_write(ring, addr1 << 2);
879 	}
880 	amdgpu_ring_write(ring, ref); /* reference */
881 	amdgpu_ring_write(ring, mask); /* mask */
882 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
883 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
884 }
885 
886 /**
887  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
888  *
889  * @ring: amdgpu ring pointer
890  *
891  * Emit an hdp flush packet on the requested DMA ring.
892  */
893 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
894 {
895 	struct amdgpu_device *adev = ring->adev;
896 	u32 ref_and_mask = 0;
897 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
898 
899 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
900 
901 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
902 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
903 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
904 			       ref_and_mask, ref_and_mask, 10);
905 }
906 
907 /**
908  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
909  *
910  * @ring: amdgpu ring pointer
911  * @fence: amdgpu fence object
912  *
913  * Add a DMA fence packet to the ring to write
914  * the fence seq number and DMA trap packet to generate
915  * an interrupt if needed (VEGA10).
916  */
917 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
918 				      unsigned flags)
919 {
920 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
921 	/* write the fence */
922 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
923 	/* zero in first two bits */
924 	BUG_ON(addr & 0x3);
925 	amdgpu_ring_write(ring, lower_32_bits(addr));
926 	amdgpu_ring_write(ring, upper_32_bits(addr));
927 	amdgpu_ring_write(ring, lower_32_bits(seq));
928 
929 	/* optionally write high bits as well */
930 	if (write64bit) {
931 		addr += 4;
932 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
933 		/* zero in first two bits */
934 		BUG_ON(addr & 0x3);
935 		amdgpu_ring_write(ring, lower_32_bits(addr));
936 		amdgpu_ring_write(ring, upper_32_bits(addr));
937 		amdgpu_ring_write(ring, upper_32_bits(seq));
938 	}
939 
940 	/* generate an interrupt */
941 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
942 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
943 }
944 
945 
946 /**
947  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
948  *
949  * @adev: amdgpu_device pointer
950  *
951  * Stop the gfx async dma ring buffers (VEGA10).
952  */
953 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
954 {
955 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
956 	u32 rb_cntl, ib_cntl;
957 	int i, unset = 0;
958 
959 	for (i = 0; i < adev->sdma.num_instances; i++) {
960 		sdma[i] = &adev->sdma.instance[i].ring;
961 
962 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
963 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
964 			unset = 1;
965 		}
966 
967 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
968 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
969 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
970 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
971 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
972 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
973 	}
974 }
975 
976 /**
977  * sdma_v4_0_rlc_stop - stop the compute async dma engines
978  *
979  * @adev: amdgpu_device pointer
980  *
981  * Stop the compute async dma queues (VEGA10).
982  */
983 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
984 {
985 	/* XXX todo */
986 }
987 
988 /**
989  * sdma_v4_0_page_stop - stop the page async dma engines
990  *
991  * @adev: amdgpu_device pointer
992  *
993  * Stop the page async dma ring buffers (VEGA10).
994  */
995 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
996 {
997 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
998 	u32 rb_cntl, ib_cntl;
999 	int i;
1000 	bool unset = false;
1001 
1002 	for (i = 0; i < adev->sdma.num_instances; i++) {
1003 		sdma[i] = &adev->sdma.instance[i].page;
1004 
1005 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1006 			(!unset)) {
1007 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1008 			unset = true;
1009 		}
1010 
1011 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1012 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1013 					RB_ENABLE, 0);
1014 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1015 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1016 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1017 					IB_ENABLE, 0);
1018 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1019 	}
1020 }
1021 
1022 /**
1023  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1024  *
1025  * @adev: amdgpu_device pointer
1026  * @enable: enable/disable the DMA MEs context switch.
1027  *
1028  * Halt or unhalt the async dma engines context switch (VEGA10).
1029  */
1030 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1031 {
1032 	u32 f32_cntl, phase_quantum = 0;
1033 	int i;
1034 
1035 	if (amdgpu_sdma_phase_quantum) {
1036 		unsigned value = amdgpu_sdma_phase_quantum;
1037 		unsigned unit = 0;
1038 
1039 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1040 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1041 			value = (value + 1) >> 1;
1042 			unit++;
1043 		}
1044 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1045 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1046 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1047 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1048 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1049 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1050 			WARN_ONCE(1,
1051 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1052 				  value << unit);
1053 		}
1054 		phase_quantum =
1055 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1056 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1057 	}
1058 
1059 	for (i = 0; i < adev->sdma.num_instances; i++) {
1060 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1061 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1062 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1063 		if (enable && amdgpu_sdma_phase_quantum) {
1064 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1065 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1066 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1067 		}
1068 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1069 
1070 		/*
1071 		 * Enable SDMA utilization. Its only supported on
1072 		 * Arcturus for the moment and firmware version 14
1073 		 * and above.
1074 		 */
1075 		if (adev->asic_type == CHIP_ARCTURUS &&
1076 		    adev->sdma.instance[i].fw_version >= 14)
1077 			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1078 	}
1079 
1080 }
1081 
1082 /**
1083  * sdma_v4_0_enable - stop the async dma engines
1084  *
1085  * @adev: amdgpu_device pointer
1086  * @enable: enable/disable the DMA MEs.
1087  *
1088  * Halt or unhalt the async dma engines (VEGA10).
1089  */
1090 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1091 {
1092 	u32 f32_cntl;
1093 	int i;
1094 
1095 	if (!enable) {
1096 		sdma_v4_0_gfx_stop(adev);
1097 		sdma_v4_0_rlc_stop(adev);
1098 		if (adev->sdma.has_page_queue)
1099 			sdma_v4_0_page_stop(adev);
1100 	}
1101 
1102 	for (i = 0; i < adev->sdma.num_instances; i++) {
1103 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1104 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1105 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1106 	}
1107 }
1108 
1109 /**
1110  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1111  */
1112 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1113 {
1114 	/* Set ring buffer size in dwords */
1115 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1116 
1117 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1118 #ifdef __BIG_ENDIAN
1119 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1120 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1121 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1122 #endif
1123 	return rb_cntl;
1124 }
1125 
1126 /**
1127  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1128  *
1129  * @adev: amdgpu_device pointer
1130  * @i: instance to resume
1131  *
1132  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1133  * Returns 0 for success, error for failure.
1134  */
1135 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1136 {
1137 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1138 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1139 	u32 wb_offset;
1140 	u32 doorbell;
1141 	u32 doorbell_offset;
1142 	u64 wptr_gpu_addr;
1143 
1144 	wb_offset = (ring->rptr_offs * 4);
1145 
1146 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1147 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1148 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1149 
1150 	/* Initialize the ring buffer's read and write pointers */
1151 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1152 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1153 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1155 
1156 	/* set the wb address whether it's enabled or not */
1157 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1158 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1159 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1160 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1161 
1162 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1163 				RPTR_WRITEBACK_ENABLE, 1);
1164 
1165 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1166 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1167 
1168 	ring->wptr = 0;
1169 
1170 	/* before programing wptr to a less value, need set minor_ptr_update first */
1171 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1172 
1173 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1174 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1175 
1176 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1177 				 ring->use_doorbell);
1178 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1179 					SDMA0_GFX_DOORBELL_OFFSET,
1180 					OFFSET, ring->doorbell_index);
1181 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1182 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1183 
1184 	sdma_v4_0_ring_set_wptr(ring);
1185 
1186 	/* set minor_ptr_update to 0 after wptr programed */
1187 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1188 
1189 	/* setup the wptr shadow polling */
1190 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1191 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1192 		    lower_32_bits(wptr_gpu_addr));
1193 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1194 		    upper_32_bits(wptr_gpu_addr));
1195 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1196 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1197 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1198 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1199 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1200 
1201 	/* enable DMA RB */
1202 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1203 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1204 
1205 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1206 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1207 #ifdef __BIG_ENDIAN
1208 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1209 #endif
1210 	/* enable DMA IBs */
1211 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1212 
1213 	ring->sched.ready = true;
1214 }
1215 
1216 /**
1217  * sdma_v4_0_page_resume - setup and start the async dma engines
1218  *
1219  * @adev: amdgpu_device pointer
1220  * @i: instance to resume
1221  *
1222  * Set up the page DMA ring buffers and enable them (VEGA10).
1223  * Returns 0 for success, error for failure.
1224  */
1225 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1226 {
1227 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1228 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1229 	u32 wb_offset;
1230 	u32 doorbell;
1231 	u32 doorbell_offset;
1232 	u64 wptr_gpu_addr;
1233 
1234 	wb_offset = (ring->rptr_offs * 4);
1235 
1236 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1237 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1238 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1239 
1240 	/* Initialize the ring buffer's read and write pointers */
1241 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1242 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1243 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1244 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1245 
1246 	/* set the wb address whether it's enabled or not */
1247 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1248 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1249 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1250 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1251 
1252 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1253 				RPTR_WRITEBACK_ENABLE, 1);
1254 
1255 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1256 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1257 
1258 	ring->wptr = 0;
1259 
1260 	/* before programing wptr to a less value, need set minor_ptr_update first */
1261 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1262 
1263 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1264 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1265 
1266 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1267 				 ring->use_doorbell);
1268 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1269 					SDMA0_PAGE_DOORBELL_OFFSET,
1270 					OFFSET, ring->doorbell_index);
1271 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1272 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1273 
1274 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1275 	sdma_v4_0_page_ring_set_wptr(ring);
1276 
1277 	/* set minor_ptr_update to 0 after wptr programed */
1278 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1279 
1280 	/* setup the wptr shadow polling */
1281 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1282 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1283 		    lower_32_bits(wptr_gpu_addr));
1284 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1285 		    upper_32_bits(wptr_gpu_addr));
1286 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1287 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1288 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1289 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1290 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1291 
1292 	/* enable DMA RB */
1293 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1294 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1295 
1296 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1297 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1298 #ifdef __BIG_ENDIAN
1299 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1300 #endif
1301 	/* enable DMA IBs */
1302 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1303 
1304 	ring->sched.ready = true;
1305 }
1306 
1307 static void
1308 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1309 {
1310 	uint32_t def, data;
1311 
1312 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1313 		/* enable idle interrupt */
1314 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1315 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1316 
1317 		if (data != def)
1318 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1319 	} else {
1320 		/* disable idle interrupt */
1321 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1322 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1323 		if (data != def)
1324 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1325 	}
1326 }
1327 
1328 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1329 {
1330 	uint32_t def, data;
1331 
1332 	/* Enable HW based PG. */
1333 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1334 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1335 	if (data != def)
1336 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1337 
1338 	/* enable interrupt */
1339 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1340 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1341 	if (data != def)
1342 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1343 
1344 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1345 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1346 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1347 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1348 	/* Configure switch time for hysteresis purpose. Use default right now */
1349 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1350 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1351 	if(data != def)
1352 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1353 }
1354 
1355 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1356 {
1357 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1358 		return;
1359 
1360 	switch (adev->asic_type) {
1361 	case CHIP_RAVEN:
1362 	case CHIP_RENOIR:
1363 		sdma_v4_1_init_power_gating(adev);
1364 		sdma_v4_1_update_power_gating(adev, true);
1365 		break;
1366 	default:
1367 		break;
1368 	}
1369 }
1370 
1371 /**
1372  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1373  *
1374  * @adev: amdgpu_device pointer
1375  *
1376  * Set up the compute DMA queues and enable them (VEGA10).
1377  * Returns 0 for success, error for failure.
1378  */
1379 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1380 {
1381 	sdma_v4_0_init_pg(adev);
1382 
1383 	return 0;
1384 }
1385 
1386 /**
1387  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1388  *
1389  * @adev: amdgpu_device pointer
1390  *
1391  * Loads the sDMA0/1 ucode.
1392  * Returns 0 for success, -EINVAL if the ucode is not available.
1393  */
1394 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1395 {
1396 	const struct sdma_firmware_header_v1_0 *hdr;
1397 	const __le32 *fw_data;
1398 	u32 fw_size;
1399 	int i, j;
1400 
1401 	/* halt the MEs */
1402 	sdma_v4_0_enable(adev, false);
1403 
1404 	for (i = 0; i < adev->sdma.num_instances; i++) {
1405 		if (!adev->sdma.instance[i].fw)
1406 			return -EINVAL;
1407 
1408 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1409 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1410 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1411 
1412 		fw_data = (const __le32 *)
1413 			(adev->sdma.instance[i].fw->data +
1414 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1415 
1416 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1417 
1418 		for (j = 0; j < fw_size; j++)
1419 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1420 				    le32_to_cpup(fw_data++));
1421 
1422 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1423 			    adev->sdma.instance[i].fw_version);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * sdma_v4_0_start - setup and start the async dma engines
1431  *
1432  * @adev: amdgpu_device pointer
1433  *
1434  * Set up the DMA engines and enable them (VEGA10).
1435  * Returns 0 for success, error for failure.
1436  */
1437 static int sdma_v4_0_start(struct amdgpu_device *adev)
1438 {
1439 	struct amdgpu_ring *ring;
1440 	int i, r = 0;
1441 
1442 	if (amdgpu_sriov_vf(adev)) {
1443 		sdma_v4_0_ctx_switch_enable(adev, false);
1444 		sdma_v4_0_enable(adev, false);
1445 	} else {
1446 
1447 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1448 			r = sdma_v4_0_load_microcode(adev);
1449 			if (r)
1450 				return r;
1451 		}
1452 
1453 		/* unhalt the MEs */
1454 		sdma_v4_0_enable(adev, true);
1455 		/* enable sdma ring preemption */
1456 		sdma_v4_0_ctx_switch_enable(adev, true);
1457 	}
1458 
1459 	/* start the gfx rings and rlc compute queues */
1460 	for (i = 0; i < adev->sdma.num_instances; i++) {
1461 		uint32_t temp;
1462 
1463 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1464 		sdma_v4_0_gfx_resume(adev, i);
1465 		if (adev->sdma.has_page_queue)
1466 			sdma_v4_0_page_resume(adev, i);
1467 
1468 		/* set utc l1 enable flag always to 1 */
1469 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1470 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1471 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1472 
1473 		if (!amdgpu_sriov_vf(adev)) {
1474 			/* unhalt engine */
1475 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1476 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1477 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1478 		}
1479 	}
1480 
1481 	if (amdgpu_sriov_vf(adev)) {
1482 		sdma_v4_0_ctx_switch_enable(adev, true);
1483 		sdma_v4_0_enable(adev, true);
1484 	} else {
1485 		r = sdma_v4_0_rlc_resume(adev);
1486 		if (r)
1487 			return r;
1488 	}
1489 
1490 	for (i = 0; i < adev->sdma.num_instances; i++) {
1491 		ring = &adev->sdma.instance[i].ring;
1492 
1493 		r = amdgpu_ring_test_helper(ring);
1494 		if (r)
1495 			return r;
1496 
1497 		if (adev->sdma.has_page_queue) {
1498 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1499 
1500 			r = amdgpu_ring_test_helper(page);
1501 			if (r)
1502 				return r;
1503 
1504 			if (adev->mman.buffer_funcs_ring == page)
1505 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1506 		}
1507 
1508 		if (adev->mman.buffer_funcs_ring == ring)
1509 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1510 	}
1511 
1512 	return r;
1513 }
1514 
1515 /**
1516  * sdma_v4_0_ring_test_ring - simple async dma engine test
1517  *
1518  * @ring: amdgpu_ring structure holding ring information
1519  *
1520  * Test the DMA engine by writing using it to write an
1521  * value to memory. (VEGA10).
1522  * Returns 0 for success, error for failure.
1523  */
1524 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1525 {
1526 	struct amdgpu_device *adev = ring->adev;
1527 	unsigned i;
1528 	unsigned index;
1529 	int r;
1530 	u32 tmp;
1531 	u64 gpu_addr;
1532 
1533 	r = amdgpu_device_wb_get(adev, &index);
1534 	if (r)
1535 		return r;
1536 
1537 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1538 	tmp = 0xCAFEDEAD;
1539 	adev->wb.wb[index] = cpu_to_le32(tmp);
1540 
1541 	r = amdgpu_ring_alloc(ring, 5);
1542 	if (r)
1543 		goto error_free_wb;
1544 
1545 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1546 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1547 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1548 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1549 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1550 	amdgpu_ring_write(ring, 0xDEADBEEF);
1551 	amdgpu_ring_commit(ring);
1552 
1553 	for (i = 0; i < adev->usec_timeout; i++) {
1554 		tmp = le32_to_cpu(adev->wb.wb[index]);
1555 		if (tmp == 0xDEADBEEF)
1556 			break;
1557 		udelay(1);
1558 	}
1559 
1560 	if (i >= adev->usec_timeout)
1561 		r = -ETIMEDOUT;
1562 
1563 error_free_wb:
1564 	amdgpu_device_wb_free(adev, index);
1565 	return r;
1566 }
1567 
1568 /**
1569  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1570  *
1571  * @ring: amdgpu_ring structure holding ring information
1572  *
1573  * Test a simple IB in the DMA ring (VEGA10).
1574  * Returns 0 on success, error on failure.
1575  */
1576 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1577 {
1578 	struct amdgpu_device *adev = ring->adev;
1579 	struct amdgpu_ib ib;
1580 	struct dma_fence *f = NULL;
1581 	unsigned index;
1582 	long r;
1583 	u32 tmp = 0;
1584 	u64 gpu_addr;
1585 
1586 	r = amdgpu_device_wb_get(adev, &index);
1587 	if (r)
1588 		return r;
1589 
1590 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1591 	tmp = 0xCAFEDEAD;
1592 	adev->wb.wb[index] = cpu_to_le32(tmp);
1593 	memset(&ib, 0, sizeof(ib));
1594 	r = amdgpu_ib_get(adev, NULL, 256,
1595 					AMDGPU_IB_POOL_DIRECT, &ib);
1596 	if (r)
1597 		goto err0;
1598 
1599 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1600 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1601 	ib.ptr[1] = lower_32_bits(gpu_addr);
1602 	ib.ptr[2] = upper_32_bits(gpu_addr);
1603 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1604 	ib.ptr[4] = 0xDEADBEEF;
1605 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1606 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1607 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1608 	ib.length_dw = 8;
1609 
1610 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1611 	if (r)
1612 		goto err1;
1613 
1614 	r = dma_fence_wait_timeout(f, false, timeout);
1615 	if (r == 0) {
1616 		r = -ETIMEDOUT;
1617 		goto err1;
1618 	} else if (r < 0) {
1619 		goto err1;
1620 	}
1621 	tmp = le32_to_cpu(adev->wb.wb[index]);
1622 	if (tmp == 0xDEADBEEF)
1623 		r = 0;
1624 	else
1625 		r = -EINVAL;
1626 
1627 err1:
1628 	amdgpu_ib_free(adev, &ib, NULL);
1629 	dma_fence_put(f);
1630 err0:
1631 	amdgpu_device_wb_free(adev, index);
1632 	return r;
1633 }
1634 
1635 
1636 /**
1637  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1638  *
1639  * @ib: indirect buffer to fill with commands
1640  * @pe: addr of the page entry
1641  * @src: src addr to copy from
1642  * @count: number of page entries to update
1643  *
1644  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1645  */
1646 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1647 				  uint64_t pe, uint64_t src,
1648 				  unsigned count)
1649 {
1650 	unsigned bytes = count * 8;
1651 
1652 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1653 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1654 	ib->ptr[ib->length_dw++] = bytes - 1;
1655 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1656 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1657 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1658 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1659 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1660 
1661 }
1662 
1663 /**
1664  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1665  *
1666  * @ib: indirect buffer to fill with commands
1667  * @pe: addr of the page entry
1668  * @addr: dst addr to write into pe
1669  * @count: number of page entries to update
1670  * @incr: increase next addr by incr bytes
1671  * @flags: access flags
1672  *
1673  * Update PTEs by writing them manually using sDMA (VEGA10).
1674  */
1675 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1676 				   uint64_t value, unsigned count,
1677 				   uint32_t incr)
1678 {
1679 	unsigned ndw = count * 2;
1680 
1681 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1682 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1683 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1684 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1685 	ib->ptr[ib->length_dw++] = ndw - 1;
1686 	for (; ndw > 0; ndw -= 2) {
1687 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1688 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1689 		value += incr;
1690 	}
1691 }
1692 
1693 /**
1694  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1695  *
1696  * @ib: indirect buffer to fill with commands
1697  * @pe: addr of the page entry
1698  * @addr: dst addr to write into pe
1699  * @count: number of page entries to update
1700  * @incr: increase next addr by incr bytes
1701  * @flags: access flags
1702  *
1703  * Update the page tables using sDMA (VEGA10).
1704  */
1705 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1706 				     uint64_t pe,
1707 				     uint64_t addr, unsigned count,
1708 				     uint32_t incr, uint64_t flags)
1709 {
1710 	/* for physically contiguous pages (vram) */
1711 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1712 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1713 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1714 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1715 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1716 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1717 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1718 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1719 	ib->ptr[ib->length_dw++] = 0;
1720 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1721 }
1722 
1723 /**
1724  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1725  *
1726  * @ib: indirect buffer to fill with padding
1727  *
1728  */
1729 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1730 {
1731 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1732 	u32 pad_count;
1733 	int i;
1734 
1735 	pad_count = (-ib->length_dw) & 7;
1736 	for (i = 0; i < pad_count; i++)
1737 		if (sdma && sdma->burst_nop && (i == 0))
1738 			ib->ptr[ib->length_dw++] =
1739 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1740 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1741 		else
1742 			ib->ptr[ib->length_dw++] =
1743 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1744 }
1745 
1746 
1747 /**
1748  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1749  *
1750  * @ring: amdgpu_ring pointer
1751  *
1752  * Make sure all previous operations are completed (CIK).
1753  */
1754 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1755 {
1756 	uint32_t seq = ring->fence_drv.sync_seq;
1757 	uint64_t addr = ring->fence_drv.gpu_addr;
1758 
1759 	/* wait for idle */
1760 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1761 			       addr & 0xfffffffc,
1762 			       upper_32_bits(addr) & 0xffffffff,
1763 			       seq, 0xffffffff, 4);
1764 }
1765 
1766 
1767 /**
1768  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1769  *
1770  * @ring: amdgpu_ring pointer
1771  * @vm: amdgpu_vm pointer
1772  *
1773  * Update the page table base and flush the VM TLB
1774  * using sDMA (VEGA10).
1775  */
1776 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1777 					 unsigned vmid, uint64_t pd_addr)
1778 {
1779 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1780 }
1781 
1782 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1783 				     uint32_t reg, uint32_t val)
1784 {
1785 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1786 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1787 	amdgpu_ring_write(ring, reg);
1788 	amdgpu_ring_write(ring, val);
1789 }
1790 
1791 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1792 					 uint32_t val, uint32_t mask)
1793 {
1794 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1795 }
1796 
1797 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1798 {
1799 	uint fw_version = adev->sdma.instance[0].fw_version;
1800 
1801 	switch (adev->asic_type) {
1802 	case CHIP_VEGA10:
1803 		return fw_version >= 430;
1804 	case CHIP_VEGA12:
1805 		/*return fw_version >= 31;*/
1806 		return false;
1807 	case CHIP_VEGA20:
1808 		return fw_version >= 123;
1809 	default:
1810 		return false;
1811 	}
1812 }
1813 
1814 static int sdma_v4_0_early_init(void *handle)
1815 {
1816 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1817 	int r;
1818 
1819 	if (adev->flags & AMD_IS_APU)
1820 		adev->sdma.num_instances = 1;
1821 	else if (adev->asic_type == CHIP_ARCTURUS)
1822 		adev->sdma.num_instances = 8;
1823 	else
1824 		adev->sdma.num_instances = 2;
1825 
1826 	r = sdma_v4_0_init_microcode(adev);
1827 	if (r) {
1828 		DRM_ERROR("Failed to load sdma firmware!\n");
1829 		return r;
1830 	}
1831 
1832 	/* TODO: Page queue breaks driver reload under SRIOV */
1833 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1834 		adev->sdma.has_page_queue = false;
1835 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1836 		adev->sdma.has_page_queue = true;
1837 
1838 	sdma_v4_0_set_ring_funcs(adev);
1839 	sdma_v4_0_set_buffer_funcs(adev);
1840 	sdma_v4_0_set_vm_pte_funcs(adev);
1841 	sdma_v4_0_set_irq_funcs(adev);
1842 	sdma_v4_0_set_ras_funcs(adev);
1843 
1844 	return 0;
1845 }
1846 
1847 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1848 		void *err_data,
1849 		struct amdgpu_iv_entry *entry);
1850 
1851 static int sdma_v4_0_late_init(void *handle)
1852 {
1853 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1854 	struct ras_ih_if ih_info = {
1855 		.cb = sdma_v4_0_process_ras_data_cb,
1856 	};
1857 
1858 	sdma_v4_0_setup_ulv(adev);
1859 
1860 	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1861 		adev->sdma.funcs->reset_ras_error_count(adev);
1862 
1863 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1864 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1865 	else
1866 		return 0;
1867 }
1868 
1869 static int sdma_v4_0_sw_init(void *handle)
1870 {
1871 	struct amdgpu_ring *ring;
1872 	int r, i;
1873 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1874 
1875 	/* SDMA trap event */
1876 	for (i = 0; i < adev->sdma.num_instances; i++) {
1877 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1878 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1879 				      &adev->sdma.trap_irq);
1880 		if (r)
1881 			return r;
1882 	}
1883 
1884 	/* SDMA SRAM ECC event */
1885 	for (i = 0; i < adev->sdma.num_instances; i++) {
1886 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1887 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1888 				      &adev->sdma.ecc_irq);
1889 		if (r)
1890 			return r;
1891 	}
1892 
1893 	for (i = 0; i < adev->sdma.num_instances; i++) {
1894 		ring = &adev->sdma.instance[i].ring;
1895 		ring->ring_obj = NULL;
1896 		ring->use_doorbell = true;
1897 
1898 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1899 				ring->use_doorbell?"true":"false");
1900 
1901 		/* doorbell size is 2 dwords, get DWORD offset */
1902 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1903 
1904 		sprintf(ring->name, "sdma%d", i);
1905 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1906 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1907 				     AMDGPU_RING_PRIO_DEFAULT);
1908 		if (r)
1909 			return r;
1910 
1911 		if (adev->sdma.has_page_queue) {
1912 			ring = &adev->sdma.instance[i].page;
1913 			ring->ring_obj = NULL;
1914 			ring->use_doorbell = true;
1915 
1916 			/* paging queue use same doorbell index/routing as gfx queue
1917 			 * with 0x400 (4096 dwords) offset on second doorbell page
1918 			 */
1919 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1920 			ring->doorbell_index += 0x400;
1921 
1922 			sprintf(ring->name, "page%d", i);
1923 			r = amdgpu_ring_init(adev, ring, 1024,
1924 					     &adev->sdma.trap_irq,
1925 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1926 					     AMDGPU_RING_PRIO_DEFAULT);
1927 			if (r)
1928 				return r;
1929 		}
1930 	}
1931 
1932 	return r;
1933 }
1934 
1935 static int sdma_v4_0_sw_fini(void *handle)
1936 {
1937 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1938 	int i;
1939 
1940 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1941 		adev->sdma.funcs->ras_fini(adev);
1942 
1943 	for (i = 0; i < adev->sdma.num_instances; i++) {
1944 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1945 		if (adev->sdma.has_page_queue)
1946 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1947 	}
1948 
1949 	sdma_v4_0_destroy_inst_ctx(adev);
1950 
1951 	return 0;
1952 }
1953 
1954 static int sdma_v4_0_hw_init(void *handle)
1955 {
1956 	int r;
1957 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1958 
1959 	if (adev->flags & AMD_IS_APU)
1960 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1961 
1962 	if (!amdgpu_sriov_vf(adev))
1963 		sdma_v4_0_init_golden_registers(adev);
1964 
1965 	r = sdma_v4_0_start(adev);
1966 
1967 	return r;
1968 }
1969 
1970 static int sdma_v4_0_hw_fini(void *handle)
1971 {
1972 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1973 	int i;
1974 
1975 	if (amdgpu_sriov_vf(adev))
1976 		return 0;
1977 
1978 	for (i = 0; i < adev->sdma.num_instances; i++) {
1979 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1980 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1981 	}
1982 
1983 	sdma_v4_0_ctx_switch_enable(adev, false);
1984 	sdma_v4_0_enable(adev, false);
1985 
1986 	if (adev->flags & AMD_IS_APU)
1987 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1988 
1989 	return 0;
1990 }
1991 
1992 static int sdma_v4_0_suspend(void *handle)
1993 {
1994 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1995 
1996 	return sdma_v4_0_hw_fini(adev);
1997 }
1998 
1999 static int sdma_v4_0_resume(void *handle)
2000 {
2001 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2002 
2003 	return sdma_v4_0_hw_init(adev);
2004 }
2005 
2006 static bool sdma_v4_0_is_idle(void *handle)
2007 {
2008 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2009 	u32 i;
2010 
2011 	for (i = 0; i < adev->sdma.num_instances; i++) {
2012 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2013 
2014 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2015 			return false;
2016 	}
2017 
2018 	return true;
2019 }
2020 
2021 static int sdma_v4_0_wait_for_idle(void *handle)
2022 {
2023 	unsigned i, j;
2024 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2025 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2026 
2027 	for (i = 0; i < adev->usec_timeout; i++) {
2028 		for (j = 0; j < adev->sdma.num_instances; j++) {
2029 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2030 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2031 				break;
2032 		}
2033 		if (j == adev->sdma.num_instances)
2034 			return 0;
2035 		udelay(1);
2036 	}
2037 	return -ETIMEDOUT;
2038 }
2039 
2040 static int sdma_v4_0_soft_reset(void *handle)
2041 {
2042 	/* todo */
2043 
2044 	return 0;
2045 }
2046 
2047 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2048 					struct amdgpu_irq_src *source,
2049 					unsigned type,
2050 					enum amdgpu_interrupt_state state)
2051 {
2052 	u32 sdma_cntl;
2053 
2054 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2055 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2056 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2057 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2058 
2059 	return 0;
2060 }
2061 
2062 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2063 				      struct amdgpu_irq_src *source,
2064 				      struct amdgpu_iv_entry *entry)
2065 {
2066 	uint32_t instance;
2067 
2068 	DRM_DEBUG("IH: SDMA trap\n");
2069 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2070 	switch (entry->ring_id) {
2071 	case 0:
2072 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2073 		break;
2074 	case 1:
2075 		if (adev->asic_type == CHIP_VEGA20)
2076 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2077 		break;
2078 	case 2:
2079 		/* XXX compute */
2080 		break;
2081 	case 3:
2082 		if (adev->asic_type != CHIP_VEGA20)
2083 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2084 		break;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2090 		void *err_data,
2091 		struct amdgpu_iv_entry *entry)
2092 {
2093 	int instance;
2094 
2095 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2096 	 * be disabled and the driver should only look for the aggregated
2097 	 * interrupt via sync flood
2098 	 */
2099 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2100 		goto out;
2101 
2102 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2103 	if (instance < 0)
2104 		goto out;
2105 
2106 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2107 
2108 out:
2109 	return AMDGPU_RAS_SUCCESS;
2110 }
2111 
2112 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2113 					      struct amdgpu_irq_src *source,
2114 					      struct amdgpu_iv_entry *entry)
2115 {
2116 	int instance;
2117 
2118 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2119 
2120 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2121 	if (instance < 0)
2122 		return 0;
2123 
2124 	switch (entry->ring_id) {
2125 	case 0:
2126 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2127 		break;
2128 	}
2129 	return 0;
2130 }
2131 
2132 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2133 					struct amdgpu_irq_src *source,
2134 					unsigned type,
2135 					enum amdgpu_interrupt_state state)
2136 {
2137 	u32 sdma_edc_config;
2138 
2139 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2140 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2141 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2142 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2143 
2144 	return 0;
2145 }
2146 
2147 static void sdma_v4_0_update_medium_grain_clock_gating(
2148 		struct amdgpu_device *adev,
2149 		bool enable)
2150 {
2151 	uint32_t data, def;
2152 	int i;
2153 
2154 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2155 		for (i = 0; i < adev->sdma.num_instances; i++) {
2156 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2157 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2158 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2159 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2160 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2161 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2162 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2163 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2164 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2165 			if (def != data)
2166 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2167 		}
2168 	} else {
2169 		for (i = 0; i < adev->sdma.num_instances; i++) {
2170 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2171 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2172 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2173 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2174 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2175 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2176 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2177 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2178 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2179 			if (def != data)
2180 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2181 		}
2182 	}
2183 }
2184 
2185 
2186 static void sdma_v4_0_update_medium_grain_light_sleep(
2187 		struct amdgpu_device *adev,
2188 		bool enable)
2189 {
2190 	uint32_t data, def;
2191 	int i;
2192 
2193 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2194 		for (i = 0; i < adev->sdma.num_instances; i++) {
2195 			/* 1-not override: enable sdma mem light sleep */
2196 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2197 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2198 			if (def != data)
2199 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2200 		}
2201 	} else {
2202 		for (i = 0; i < adev->sdma.num_instances; i++) {
2203 		/* 0-override:disable sdma mem light sleep */
2204 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2205 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2206 			if (def != data)
2207 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2208 		}
2209 	}
2210 }
2211 
2212 static int sdma_v4_0_set_clockgating_state(void *handle,
2213 					  enum amd_clockgating_state state)
2214 {
2215 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2216 
2217 	if (amdgpu_sriov_vf(adev))
2218 		return 0;
2219 
2220 	switch (adev->asic_type) {
2221 	case CHIP_VEGA10:
2222 	case CHIP_VEGA12:
2223 	case CHIP_VEGA20:
2224 	case CHIP_RAVEN:
2225 	case CHIP_ARCTURUS:
2226 	case CHIP_RENOIR:
2227 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2228 				state == AMD_CG_STATE_GATE);
2229 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2230 				state == AMD_CG_STATE_GATE);
2231 		break;
2232 	default:
2233 		break;
2234 	}
2235 	return 0;
2236 }
2237 
2238 static int sdma_v4_0_set_powergating_state(void *handle,
2239 					  enum amd_powergating_state state)
2240 {
2241 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2242 
2243 	switch (adev->asic_type) {
2244 	case CHIP_RAVEN:
2245 	case CHIP_RENOIR:
2246 		sdma_v4_1_update_power_gating(adev,
2247 				state == AMD_PG_STATE_GATE ? true : false);
2248 		break;
2249 	default:
2250 		break;
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2257 {
2258 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2259 	int data;
2260 
2261 	if (amdgpu_sriov_vf(adev))
2262 		*flags = 0;
2263 
2264 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2265 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2266 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2267 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2268 
2269 	/* AMD_CG_SUPPORT_SDMA_LS */
2270 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2271 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2272 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2273 }
2274 
2275 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2276 	.name = "sdma_v4_0",
2277 	.early_init = sdma_v4_0_early_init,
2278 	.late_init = sdma_v4_0_late_init,
2279 	.sw_init = sdma_v4_0_sw_init,
2280 	.sw_fini = sdma_v4_0_sw_fini,
2281 	.hw_init = sdma_v4_0_hw_init,
2282 	.hw_fini = sdma_v4_0_hw_fini,
2283 	.suspend = sdma_v4_0_suspend,
2284 	.resume = sdma_v4_0_resume,
2285 	.is_idle = sdma_v4_0_is_idle,
2286 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2287 	.soft_reset = sdma_v4_0_soft_reset,
2288 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2289 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2290 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2291 };
2292 
2293 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2294 	.type = AMDGPU_RING_TYPE_SDMA,
2295 	.align_mask = 0xf,
2296 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2297 	.support_64bit_ptrs = true,
2298 	.vmhub = AMDGPU_MMHUB_0,
2299 	.get_rptr = sdma_v4_0_ring_get_rptr,
2300 	.get_wptr = sdma_v4_0_ring_get_wptr,
2301 	.set_wptr = sdma_v4_0_ring_set_wptr,
2302 	.emit_frame_size =
2303 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2304 		3 + /* hdp invalidate */
2305 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2306 		/* sdma_v4_0_ring_emit_vm_flush */
2307 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2308 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2309 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2310 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2311 	.emit_ib = sdma_v4_0_ring_emit_ib,
2312 	.emit_fence = sdma_v4_0_ring_emit_fence,
2313 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2314 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2315 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2316 	.test_ring = sdma_v4_0_ring_test_ring,
2317 	.test_ib = sdma_v4_0_ring_test_ib,
2318 	.insert_nop = sdma_v4_0_ring_insert_nop,
2319 	.pad_ib = sdma_v4_0_ring_pad_ib,
2320 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2321 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2322 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2323 };
2324 
2325 /*
2326  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2327  * So create a individual constant ring_funcs for those instances.
2328  */
2329 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2330 	.type = AMDGPU_RING_TYPE_SDMA,
2331 	.align_mask = 0xf,
2332 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2333 	.support_64bit_ptrs = true,
2334 	.vmhub = AMDGPU_MMHUB_1,
2335 	.get_rptr = sdma_v4_0_ring_get_rptr,
2336 	.get_wptr = sdma_v4_0_ring_get_wptr,
2337 	.set_wptr = sdma_v4_0_ring_set_wptr,
2338 	.emit_frame_size =
2339 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2340 		3 + /* hdp invalidate */
2341 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2342 		/* sdma_v4_0_ring_emit_vm_flush */
2343 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2344 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2345 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2346 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2347 	.emit_ib = sdma_v4_0_ring_emit_ib,
2348 	.emit_fence = sdma_v4_0_ring_emit_fence,
2349 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2350 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2351 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2352 	.test_ring = sdma_v4_0_ring_test_ring,
2353 	.test_ib = sdma_v4_0_ring_test_ib,
2354 	.insert_nop = sdma_v4_0_ring_insert_nop,
2355 	.pad_ib = sdma_v4_0_ring_pad_ib,
2356 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2357 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2358 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2359 };
2360 
2361 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2362 	.type = AMDGPU_RING_TYPE_SDMA,
2363 	.align_mask = 0xf,
2364 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2365 	.support_64bit_ptrs = true,
2366 	.vmhub = AMDGPU_MMHUB_0,
2367 	.get_rptr = sdma_v4_0_ring_get_rptr,
2368 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2369 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2370 	.emit_frame_size =
2371 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2372 		3 + /* hdp invalidate */
2373 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2374 		/* sdma_v4_0_ring_emit_vm_flush */
2375 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2376 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2377 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2378 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2379 	.emit_ib = sdma_v4_0_ring_emit_ib,
2380 	.emit_fence = sdma_v4_0_ring_emit_fence,
2381 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2382 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2383 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2384 	.test_ring = sdma_v4_0_ring_test_ring,
2385 	.test_ib = sdma_v4_0_ring_test_ib,
2386 	.insert_nop = sdma_v4_0_ring_insert_nop,
2387 	.pad_ib = sdma_v4_0_ring_pad_ib,
2388 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2389 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2390 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2391 };
2392 
2393 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2394 	.type = AMDGPU_RING_TYPE_SDMA,
2395 	.align_mask = 0xf,
2396 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2397 	.support_64bit_ptrs = true,
2398 	.vmhub = AMDGPU_MMHUB_1,
2399 	.get_rptr = sdma_v4_0_ring_get_rptr,
2400 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2401 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2402 	.emit_frame_size =
2403 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2404 		3 + /* hdp invalidate */
2405 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2406 		/* sdma_v4_0_ring_emit_vm_flush */
2407 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2408 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2409 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2410 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2411 	.emit_ib = sdma_v4_0_ring_emit_ib,
2412 	.emit_fence = sdma_v4_0_ring_emit_fence,
2413 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2414 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2415 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2416 	.test_ring = sdma_v4_0_ring_test_ring,
2417 	.test_ib = sdma_v4_0_ring_test_ib,
2418 	.insert_nop = sdma_v4_0_ring_insert_nop,
2419 	.pad_ib = sdma_v4_0_ring_pad_ib,
2420 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2421 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2422 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2423 };
2424 
2425 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2426 {
2427 	int i;
2428 
2429 	for (i = 0; i < adev->sdma.num_instances; i++) {
2430 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2431 			adev->sdma.instance[i].ring.funcs =
2432 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2433 		else
2434 			adev->sdma.instance[i].ring.funcs =
2435 					&sdma_v4_0_ring_funcs;
2436 		adev->sdma.instance[i].ring.me = i;
2437 		if (adev->sdma.has_page_queue) {
2438 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2439 				adev->sdma.instance[i].page.funcs =
2440 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2441 			else
2442 				adev->sdma.instance[i].page.funcs =
2443 					&sdma_v4_0_page_ring_funcs;
2444 			adev->sdma.instance[i].page.me = i;
2445 		}
2446 	}
2447 }
2448 
2449 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2450 	.set = sdma_v4_0_set_trap_irq_state,
2451 	.process = sdma_v4_0_process_trap_irq,
2452 };
2453 
2454 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2455 	.process = sdma_v4_0_process_illegal_inst_irq,
2456 };
2457 
2458 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2459 	.set = sdma_v4_0_set_ecc_irq_state,
2460 	.process = amdgpu_sdma_process_ecc_irq,
2461 };
2462 
2463 
2464 
2465 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2466 {
2467 	switch (adev->sdma.num_instances) {
2468 	case 1:
2469 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2470 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2471 		break;
2472 	case 8:
2473 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2474 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2475 		break;
2476 	case 2:
2477 	default:
2478 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2479 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2480 		break;
2481 	}
2482 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2483 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2484 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2485 }
2486 
2487 /**
2488  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2489  *
2490  * @ring: amdgpu_ring structure holding ring information
2491  * @src_offset: src GPU address
2492  * @dst_offset: dst GPU address
2493  * @byte_count: number of bytes to xfer
2494  *
2495  * Copy GPU buffers using the DMA engine (VEGA10/12).
2496  * Used by the amdgpu ttm implementation to move pages if
2497  * registered as the asic copy callback.
2498  */
2499 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2500 				       uint64_t src_offset,
2501 				       uint64_t dst_offset,
2502 				       uint32_t byte_count,
2503 				       bool tmz)
2504 {
2505 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2506 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2507 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2508 	ib->ptr[ib->length_dw++] = byte_count - 1;
2509 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2510 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2511 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2512 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2513 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2514 }
2515 
2516 /**
2517  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2518  *
2519  * @ring: amdgpu_ring structure holding ring information
2520  * @src_data: value to write to buffer
2521  * @dst_offset: dst GPU address
2522  * @byte_count: number of bytes to xfer
2523  *
2524  * Fill GPU buffers using the DMA engine (VEGA10/12).
2525  */
2526 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2527 				       uint32_t src_data,
2528 				       uint64_t dst_offset,
2529 				       uint32_t byte_count)
2530 {
2531 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2532 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2533 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2534 	ib->ptr[ib->length_dw++] = src_data;
2535 	ib->ptr[ib->length_dw++] = byte_count - 1;
2536 }
2537 
2538 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2539 	.copy_max_bytes = 0x400000,
2540 	.copy_num_dw = 7,
2541 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2542 
2543 	.fill_max_bytes = 0x400000,
2544 	.fill_num_dw = 5,
2545 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2546 };
2547 
2548 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2549 {
2550 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2551 	if (adev->sdma.has_page_queue)
2552 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2553 	else
2554 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2555 }
2556 
2557 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2558 	.copy_pte_num_dw = 7,
2559 	.copy_pte = sdma_v4_0_vm_copy_pte,
2560 
2561 	.write_pte = sdma_v4_0_vm_write_pte,
2562 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2563 };
2564 
2565 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2566 {
2567 	struct drm_gpu_scheduler *sched;
2568 	unsigned i;
2569 
2570 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2571 	for (i = 0; i < adev->sdma.num_instances; i++) {
2572 		if (adev->sdma.has_page_queue)
2573 			sched = &adev->sdma.instance[i].page.sched;
2574 		else
2575 			sched = &adev->sdma.instance[i].ring.sched;
2576 		adev->vm_manager.vm_pte_scheds[i] = sched;
2577 	}
2578 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2579 }
2580 
2581 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2582 					uint32_t instance,
2583 					uint32_t *sec_count)
2584 {
2585 	uint32_t i;
2586 	uint32_t sec_cnt;
2587 
2588 	/* double bits error (multiple bits) error detection is not supported */
2589 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2590 		/* the SDMA_EDC_COUNTER register in each sdma instance
2591 		 * shares the same sed shift_mask
2592 		 * */
2593 		sec_cnt = (value &
2594 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2595 			sdma_v4_0_ras_fields[i].sec_count_shift;
2596 		if (sec_cnt) {
2597 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2598 				sdma_v4_0_ras_fields[i].name,
2599 				instance, sec_cnt);
2600 			*sec_count += sec_cnt;
2601 		}
2602 	}
2603 }
2604 
2605 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2606 			uint32_t instance, void *ras_error_status)
2607 {
2608 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2609 	uint32_t sec_count = 0;
2610 	uint32_t reg_value = 0;
2611 
2612 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2613 	/* double bit error is not supported */
2614 	if (reg_value)
2615 		sdma_v4_0_get_ras_error_count(reg_value,
2616 				instance, &sec_count);
2617 	/* err_data->ce_count should be initialized to 0
2618 	 * before calling into this function */
2619 	err_data->ce_count += sec_count;
2620 	/* double bit error is not supported
2621 	 * set ue count to 0 */
2622 	err_data->ue_count = 0;
2623 
2624 	return 0;
2625 };
2626 
2627 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2628 {
2629 	int i;
2630 
2631 	/* read back edc counter registers to clear the counters */
2632 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2633 		for (i = 0; i < adev->sdma.num_instances; i++)
2634 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2635 	}
2636 }
2637 
2638 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2639 	.ras_late_init = amdgpu_sdma_ras_late_init,
2640 	.ras_fini = amdgpu_sdma_ras_fini,
2641 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2642 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2643 };
2644 
2645 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2646 {
2647 	switch (adev->asic_type) {
2648 	case CHIP_VEGA20:
2649 	case CHIP_ARCTURUS:
2650 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2651 		break;
2652 	default:
2653 		break;
2654 	}
2655 }
2656 
2657 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2658 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2659 	.major = 4,
2660 	.minor = 0,
2661 	.rev = 0,
2662 	.funcs = &sdma_v4_0_ip_funcs,
2663 };
2664