xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86 
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114 
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124 
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134 
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148 
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213 
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219 
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225 
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261 
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274 
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278 	0, 0,
279 	},
280 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282 	0, 0,
283 	},
284 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286 	0, 0,
287 	},
288 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290 	0, 0,
291 	},
292 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294 	0, 0,
295 	},
296 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370 	0, 0,
371 	},
372 };
373 
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375 		u32 instance, u32 offset)
376 {
377 	switch (instance) {
378 	case 0:
379 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380 	case 1:
381 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382 	case 2:
383 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384 	case 3:
385 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386 	case 4:
387 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388 	case 5:
389 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390 	case 6:
391 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392 	case 7:
393 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394 	default:
395 		break;
396 	}
397 	return 0;
398 }
399 
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402 	switch (seq_num) {
403 	case 0:
404 		return SOC15_IH_CLIENTID_SDMA0;
405 	case 1:
406 		return SOC15_IH_CLIENTID_SDMA1;
407 	case 2:
408 		return SOC15_IH_CLIENTID_SDMA2;
409 	case 3:
410 		return SOC15_IH_CLIENTID_SDMA3;
411 	case 4:
412 		return SOC15_IH_CLIENTID_SDMA4;
413 	case 5:
414 		return SOC15_IH_CLIENTID_SDMA5;
415 	case 6:
416 		return SOC15_IH_CLIENTID_SDMA6;
417 	case 7:
418 		return SOC15_IH_CLIENTID_SDMA7;
419 	default:
420 		break;
421 	}
422 	return -EINVAL;
423 }
424 
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427 	switch (client_id) {
428 	case SOC15_IH_CLIENTID_SDMA0:
429 		return 0;
430 	case SOC15_IH_CLIENTID_SDMA1:
431 		return 1;
432 	case SOC15_IH_CLIENTID_SDMA2:
433 		return 2;
434 	case SOC15_IH_CLIENTID_SDMA3:
435 		return 3;
436 	case SOC15_IH_CLIENTID_SDMA4:
437 		return 4;
438 	case SOC15_IH_CLIENTID_SDMA5:
439 		return 5;
440 	case SOC15_IH_CLIENTID_SDMA6:
441 		return 6;
442 	case SOC15_IH_CLIENTID_SDMA7:
443 		return 7;
444 	default:
445 		break;
446 	}
447 	return -EINVAL;
448 }
449 
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		soc15_program_register_sequence(adev,
455 						golden_settings_sdma_4,
456 						ARRAY_SIZE(golden_settings_sdma_4));
457 		soc15_program_register_sequence(adev,
458 						golden_settings_sdma_vg10,
459 						ARRAY_SIZE(golden_settings_sdma_vg10));
460 		break;
461 	case CHIP_VEGA12:
462 		soc15_program_register_sequence(adev,
463 						golden_settings_sdma_4,
464 						ARRAY_SIZE(golden_settings_sdma_4));
465 		soc15_program_register_sequence(adev,
466 						golden_settings_sdma_vg12,
467 						ARRAY_SIZE(golden_settings_sdma_vg12));
468 		break;
469 	case CHIP_VEGA20:
470 		soc15_program_register_sequence(adev,
471 						golden_settings_sdma0_4_2_init,
472 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473 		soc15_program_register_sequence(adev,
474 						golden_settings_sdma0_4_2,
475 						ARRAY_SIZE(golden_settings_sdma0_4_2));
476 		soc15_program_register_sequence(adev,
477 						golden_settings_sdma1_4_2,
478 						ARRAY_SIZE(golden_settings_sdma1_4_2));
479 		break;
480 	case CHIP_ARCTURUS:
481 		soc15_program_register_sequence(adev,
482 						golden_settings_sdma_arct,
483 						ARRAY_SIZE(golden_settings_sdma_arct));
484 		break;
485 	case CHIP_RAVEN:
486 		soc15_program_register_sequence(adev,
487 						golden_settings_sdma_4_1,
488 						ARRAY_SIZE(golden_settings_sdma_4_1));
489 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490 			soc15_program_register_sequence(adev,
491 							golden_settings_sdma_rv2,
492 							ARRAY_SIZE(golden_settings_sdma_rv2));
493 		else
494 			soc15_program_register_sequence(adev,
495 							golden_settings_sdma_rv1,
496 							ARRAY_SIZE(golden_settings_sdma_rv1));
497 		break;
498 	case CHIP_RENOIR:
499 		soc15_program_register_sequence(adev,
500 						golden_settings_sdma_4_3,
501 						ARRAY_SIZE(golden_settings_sdma_4_3));
502 		break;
503 	default:
504 		break;
505 	}
506 }
507 
508 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
509 {
510 	int err = 0;
511 	const struct sdma_firmware_header_v1_0 *hdr;
512 
513 	err = amdgpu_ucode_validate(sdma_inst->fw);
514 	if (err)
515 		return err;
516 
517 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
518 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
519 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
520 
521 	if (sdma_inst->feature_version >= 20)
522 		sdma_inst->burst_nop = true;
523 
524 	return 0;
525 }
526 
527 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
528 {
529 	int i;
530 
531 	for (i = 0; i < adev->sdma.num_instances; i++) {
532 		if (adev->sdma.instance[i].fw != NULL)
533 			release_firmware(adev->sdma.instance[i].fw);
534 
535 		/* arcturus shares the same FW memory across
536 		   all SDMA isntances */
537 		if (adev->asic_type == CHIP_ARCTURUS)
538 			break;
539 	}
540 
541 	memset((void*)adev->sdma.instance, 0,
542 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
543 }
544 
545 /**
546  * sdma_v4_0_init_microcode - load ucode images from disk
547  *
548  * @adev: amdgpu_device pointer
549  *
550  * Use the firmware interface to load the ucode images into
551  * the driver (not loaded into hw).
552  * Returns 0 on success, error on failure.
553  */
554 
555 // emulation only, won't work on real chip
556 // vega10 real chip need to use PSP to load firmware
557 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
558 {
559 	const char *chip_name;
560 	char fw_name[30];
561 	int err = 0, i;
562 	struct amdgpu_firmware_info *info = NULL;
563 	const struct common_firmware_header *header = NULL;
564 
565 	DRM_DEBUG("\n");
566 
567 	switch (adev->asic_type) {
568 	case CHIP_VEGA10:
569 		chip_name = "vega10";
570 		break;
571 	case CHIP_VEGA12:
572 		chip_name = "vega12";
573 		break;
574 	case CHIP_VEGA20:
575 		chip_name = "vega20";
576 		break;
577 	case CHIP_RAVEN:
578 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
579 			chip_name = "raven2";
580 		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
581 			chip_name = "picasso";
582 		else
583 			chip_name = "raven";
584 		break;
585 	case CHIP_ARCTURUS:
586 		chip_name = "arcturus";
587 		break;
588 	case CHIP_RENOIR:
589 		chip_name = "renoir";
590 		break;
591 	default:
592 		BUG();
593 	}
594 
595 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
596 
597 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
598 	if (err)
599 		goto out;
600 
601 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
602 	if (err)
603 		goto out;
604 
605 	for (i = 1; i < adev->sdma.num_instances; i++) {
606 		if (adev->asic_type == CHIP_ARCTURUS) {
607 			/* Acturus will leverage the same FW memory
608 			   for every SDMA instance */
609 			memcpy((void*)&adev->sdma.instance[i],
610 			       (void*)&adev->sdma.instance[0],
611 			       sizeof(struct amdgpu_sdma_instance));
612 		}
613 		else {
614 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
615 
616 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
617 			if (err)
618 				goto out;
619 
620 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
621 			if (err)
622 				goto out;
623 		}
624 	}
625 
626 	DRM_DEBUG("psp_load == '%s'\n",
627 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
628 
629 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
630 		for (i = 0; i < adev->sdma.num_instances; i++) {
631 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
632 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
633 			info->fw = adev->sdma.instance[i].fw;
634 			header = (const struct common_firmware_header *)info->fw->data;
635 			adev->firmware.fw_size +=
636 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
637 		}
638 	}
639 
640 out:
641 	if (err) {
642 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
643 		sdma_v4_0_destroy_inst_ctx(adev);
644 	}
645 	return err;
646 }
647 
648 /**
649  * sdma_v4_0_ring_get_rptr - get the current read pointer
650  *
651  * @ring: amdgpu ring pointer
652  *
653  * Get the current rptr from the hardware (VEGA10+).
654  */
655 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
656 {
657 	u64 *rptr;
658 
659 	/* XXX check if swapping is necessary on BE */
660 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
661 
662 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
663 	return ((*rptr) >> 2);
664 }
665 
666 /**
667  * sdma_v4_0_ring_get_wptr - get the current write pointer
668  *
669  * @ring: amdgpu ring pointer
670  *
671  * Get the current wptr from the hardware (VEGA10+).
672  */
673 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
674 {
675 	struct amdgpu_device *adev = ring->adev;
676 	u64 wptr;
677 
678 	if (ring->use_doorbell) {
679 		/* XXX check if swapping is necessary on BE */
680 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
681 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
682 	} else {
683 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
684 		wptr = wptr << 32;
685 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
686 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
687 				ring->me, wptr);
688 	}
689 
690 	return wptr >> 2;
691 }
692 
693 /**
694  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
695  *
696  * @ring: amdgpu ring pointer
697  *
698  * Write the wptr back to the hardware (VEGA10+).
699  */
700 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
701 {
702 	struct amdgpu_device *adev = ring->adev;
703 
704 	DRM_DEBUG("Setting write pointer\n");
705 	if (ring->use_doorbell) {
706 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
707 
708 		DRM_DEBUG("Using doorbell -- "
709 				"wptr_offs == 0x%08x "
710 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
711 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
712 				ring->wptr_offs,
713 				lower_32_bits(ring->wptr << 2),
714 				upper_32_bits(ring->wptr << 2));
715 		/* XXX check if swapping is necessary on BE */
716 		WRITE_ONCE(*wb, (ring->wptr << 2));
717 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
718 				ring->doorbell_index, ring->wptr << 2);
719 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
720 	} else {
721 		DRM_DEBUG("Not using doorbell -- "
722 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
723 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
724 				ring->me,
725 				lower_32_bits(ring->wptr << 2),
726 				ring->me,
727 				upper_32_bits(ring->wptr << 2));
728 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
729 			    lower_32_bits(ring->wptr << 2));
730 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
731 			    upper_32_bits(ring->wptr << 2));
732 	}
733 }
734 
735 /**
736  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
737  *
738  * @ring: amdgpu ring pointer
739  *
740  * Get the current wptr from the hardware (VEGA10+).
741  */
742 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
743 {
744 	struct amdgpu_device *adev = ring->adev;
745 	u64 wptr;
746 
747 	if (ring->use_doorbell) {
748 		/* XXX check if swapping is necessary on BE */
749 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
750 	} else {
751 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
752 		wptr = wptr << 32;
753 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
754 	}
755 
756 	return wptr >> 2;
757 }
758 
759 /**
760  * sdma_v4_0_ring_set_wptr - commit the write pointer
761  *
762  * @ring: amdgpu ring pointer
763  *
764  * Write the wptr back to the hardware (VEGA10+).
765  */
766 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
767 {
768 	struct amdgpu_device *adev = ring->adev;
769 
770 	if (ring->use_doorbell) {
771 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
772 
773 		/* XXX check if swapping is necessary on BE */
774 		WRITE_ONCE(*wb, (ring->wptr << 2));
775 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
776 	} else {
777 		uint64_t wptr = ring->wptr << 2;
778 
779 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
780 			    lower_32_bits(wptr));
781 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
782 			    upper_32_bits(wptr));
783 	}
784 }
785 
786 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
787 {
788 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
789 	int i;
790 
791 	for (i = 0; i < count; i++)
792 		if (sdma && sdma->burst_nop && (i == 0))
793 			amdgpu_ring_write(ring, ring->funcs->nop |
794 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
795 		else
796 			amdgpu_ring_write(ring, ring->funcs->nop);
797 }
798 
799 /**
800  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
801  *
802  * @ring: amdgpu ring pointer
803  * @ib: IB object to schedule
804  *
805  * Schedule an IB in the DMA ring (VEGA10).
806  */
807 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
808 				   struct amdgpu_job *job,
809 				   struct amdgpu_ib *ib,
810 				   uint32_t flags)
811 {
812 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
813 
814 	/* IB packet must end on a 8 DW boundary */
815 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
816 
817 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
818 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
819 	/* base must be 32 byte aligned */
820 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
821 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
822 	amdgpu_ring_write(ring, ib->length_dw);
823 	amdgpu_ring_write(ring, 0);
824 	amdgpu_ring_write(ring, 0);
825 
826 }
827 
828 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
829 				   int mem_space, int hdp,
830 				   uint32_t addr0, uint32_t addr1,
831 				   uint32_t ref, uint32_t mask,
832 				   uint32_t inv)
833 {
834 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
835 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
836 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
837 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
838 	if (mem_space) {
839 		/* memory */
840 		amdgpu_ring_write(ring, addr0);
841 		amdgpu_ring_write(ring, addr1);
842 	} else {
843 		/* registers */
844 		amdgpu_ring_write(ring, addr0 << 2);
845 		amdgpu_ring_write(ring, addr1 << 2);
846 	}
847 	amdgpu_ring_write(ring, ref); /* reference */
848 	amdgpu_ring_write(ring, mask); /* mask */
849 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
850 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
851 }
852 
853 /**
854  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
855  *
856  * @ring: amdgpu ring pointer
857  *
858  * Emit an hdp flush packet on the requested DMA ring.
859  */
860 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
861 {
862 	struct amdgpu_device *adev = ring->adev;
863 	u32 ref_and_mask = 0;
864 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
865 
866 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
867 
868 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
869 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
870 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
871 			       ref_and_mask, ref_and_mask, 10);
872 }
873 
874 /**
875  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
876  *
877  * @ring: amdgpu ring pointer
878  * @fence: amdgpu fence object
879  *
880  * Add a DMA fence packet to the ring to write
881  * the fence seq number and DMA trap packet to generate
882  * an interrupt if needed (VEGA10).
883  */
884 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
885 				      unsigned flags)
886 {
887 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
888 	/* write the fence */
889 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
890 	/* zero in first two bits */
891 	BUG_ON(addr & 0x3);
892 	amdgpu_ring_write(ring, lower_32_bits(addr));
893 	amdgpu_ring_write(ring, upper_32_bits(addr));
894 	amdgpu_ring_write(ring, lower_32_bits(seq));
895 
896 	/* optionally write high bits as well */
897 	if (write64bit) {
898 		addr += 4;
899 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
900 		/* zero in first two bits */
901 		BUG_ON(addr & 0x3);
902 		amdgpu_ring_write(ring, lower_32_bits(addr));
903 		amdgpu_ring_write(ring, upper_32_bits(addr));
904 		amdgpu_ring_write(ring, upper_32_bits(seq));
905 	}
906 
907 	/* generate an interrupt */
908 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
909 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
910 }
911 
912 
913 /**
914  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
915  *
916  * @adev: amdgpu_device pointer
917  *
918  * Stop the gfx async dma ring buffers (VEGA10).
919  */
920 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
921 {
922 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
923 	u32 rb_cntl, ib_cntl;
924 	int i, unset = 0;
925 
926 	for (i = 0; i < adev->sdma.num_instances; i++) {
927 		sdma[i] = &adev->sdma.instance[i].ring;
928 
929 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
930 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
931 			unset = 1;
932 		}
933 
934 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
935 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
936 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
937 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
938 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
939 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
940 	}
941 }
942 
943 /**
944  * sdma_v4_0_rlc_stop - stop the compute async dma engines
945  *
946  * @adev: amdgpu_device pointer
947  *
948  * Stop the compute async dma queues (VEGA10).
949  */
950 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
951 {
952 	/* XXX todo */
953 }
954 
955 /**
956  * sdma_v4_0_page_stop - stop the page async dma engines
957  *
958  * @adev: amdgpu_device pointer
959  *
960  * Stop the page async dma ring buffers (VEGA10).
961  */
962 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
963 {
964 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
965 	u32 rb_cntl, ib_cntl;
966 	int i;
967 	bool unset = false;
968 
969 	for (i = 0; i < adev->sdma.num_instances; i++) {
970 		sdma[i] = &adev->sdma.instance[i].page;
971 
972 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
973 			(unset == false)) {
974 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
975 			unset = true;
976 		}
977 
978 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
979 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
980 					RB_ENABLE, 0);
981 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
982 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
983 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
984 					IB_ENABLE, 0);
985 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
986 	}
987 }
988 
989 /**
990  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
991  *
992  * @adev: amdgpu_device pointer
993  * @enable: enable/disable the DMA MEs context switch.
994  *
995  * Halt or unhalt the async dma engines context switch (VEGA10).
996  */
997 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
998 {
999 	u32 f32_cntl, phase_quantum = 0;
1000 	int i;
1001 
1002 	if (amdgpu_sdma_phase_quantum) {
1003 		unsigned value = amdgpu_sdma_phase_quantum;
1004 		unsigned unit = 0;
1005 
1006 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1007 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1008 			value = (value + 1) >> 1;
1009 			unit++;
1010 		}
1011 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1012 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1013 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1014 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1015 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1016 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1017 			WARN_ONCE(1,
1018 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1019 				  value << unit);
1020 		}
1021 		phase_quantum =
1022 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1023 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1024 	}
1025 
1026 	for (i = 0; i < adev->sdma.num_instances; i++) {
1027 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1028 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1029 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1030 		if (enable && amdgpu_sdma_phase_quantum) {
1031 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1032 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1033 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1034 		}
1035 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1036 	}
1037 
1038 }
1039 
1040 /**
1041  * sdma_v4_0_enable - stop the async dma engines
1042  *
1043  * @adev: amdgpu_device pointer
1044  * @enable: enable/disable the DMA MEs.
1045  *
1046  * Halt or unhalt the async dma engines (VEGA10).
1047  */
1048 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1049 {
1050 	u32 f32_cntl;
1051 	int i;
1052 
1053 	if (enable == false) {
1054 		sdma_v4_0_gfx_stop(adev);
1055 		sdma_v4_0_rlc_stop(adev);
1056 		if (adev->sdma.has_page_queue)
1057 			sdma_v4_0_page_stop(adev);
1058 	}
1059 
1060 	for (i = 0; i < adev->sdma.num_instances; i++) {
1061 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1062 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1063 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1064 	}
1065 }
1066 
1067 /**
1068  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1069  */
1070 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1071 {
1072 	/* Set ring buffer size in dwords */
1073 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1074 
1075 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1076 #ifdef __BIG_ENDIAN
1077 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1078 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1079 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1080 #endif
1081 	return rb_cntl;
1082 }
1083 
1084 /**
1085  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1086  *
1087  * @adev: amdgpu_device pointer
1088  * @i: instance to resume
1089  *
1090  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1091  * Returns 0 for success, error for failure.
1092  */
1093 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1094 {
1095 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1096 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1097 	u32 wb_offset;
1098 	u32 doorbell;
1099 	u32 doorbell_offset;
1100 	u64 wptr_gpu_addr;
1101 
1102 	wb_offset = (ring->rptr_offs * 4);
1103 
1104 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1105 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1106 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1107 
1108 	/* Initialize the ring buffer's read and write pointers */
1109 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1110 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1111 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1112 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1113 
1114 	/* set the wb address whether it's enabled or not */
1115 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1116 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1117 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1118 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1119 
1120 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1121 				RPTR_WRITEBACK_ENABLE, 1);
1122 
1123 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1124 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1125 
1126 	ring->wptr = 0;
1127 
1128 	/* before programing wptr to a less value, need set minor_ptr_update first */
1129 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1130 
1131 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1132 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1133 
1134 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1135 				 ring->use_doorbell);
1136 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1137 					SDMA0_GFX_DOORBELL_OFFSET,
1138 					OFFSET, ring->doorbell_index);
1139 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1140 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1141 
1142 	sdma_v4_0_ring_set_wptr(ring);
1143 
1144 	/* set minor_ptr_update to 0 after wptr programed */
1145 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1146 
1147 	/* setup the wptr shadow polling */
1148 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1149 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1150 		    lower_32_bits(wptr_gpu_addr));
1151 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1152 		    upper_32_bits(wptr_gpu_addr));
1153 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1154 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1155 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1156 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1157 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1158 
1159 	/* enable DMA RB */
1160 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1161 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1162 
1163 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1164 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1165 #ifdef __BIG_ENDIAN
1166 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1167 #endif
1168 	/* enable DMA IBs */
1169 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1170 
1171 	ring->sched.ready = true;
1172 }
1173 
1174 /**
1175  * sdma_v4_0_page_resume - setup and start the async dma engines
1176  *
1177  * @adev: amdgpu_device pointer
1178  * @i: instance to resume
1179  *
1180  * Set up the page DMA ring buffers and enable them (VEGA10).
1181  * Returns 0 for success, error for failure.
1182  */
1183 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1184 {
1185 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1186 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1187 	u32 wb_offset;
1188 	u32 doorbell;
1189 	u32 doorbell_offset;
1190 	u64 wptr_gpu_addr;
1191 
1192 	wb_offset = (ring->rptr_offs * 4);
1193 
1194 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1195 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1196 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1197 
1198 	/* Initialize the ring buffer's read and write pointers */
1199 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1200 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1201 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1202 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1203 
1204 	/* set the wb address whether it's enabled or not */
1205 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1206 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1207 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1208 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1209 
1210 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1211 				RPTR_WRITEBACK_ENABLE, 1);
1212 
1213 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1214 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1215 
1216 	ring->wptr = 0;
1217 
1218 	/* before programing wptr to a less value, need set minor_ptr_update first */
1219 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1220 
1221 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1222 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1223 
1224 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1225 				 ring->use_doorbell);
1226 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1227 					SDMA0_PAGE_DOORBELL_OFFSET,
1228 					OFFSET, ring->doorbell_index);
1229 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1230 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1231 
1232 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1233 	sdma_v4_0_page_ring_set_wptr(ring);
1234 
1235 	/* set minor_ptr_update to 0 after wptr programed */
1236 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1237 
1238 	/* setup the wptr shadow polling */
1239 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1240 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1241 		    lower_32_bits(wptr_gpu_addr));
1242 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1243 		    upper_32_bits(wptr_gpu_addr));
1244 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1245 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1246 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1247 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1248 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1249 
1250 	/* enable DMA RB */
1251 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1252 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1253 
1254 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1255 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1256 #ifdef __BIG_ENDIAN
1257 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1258 #endif
1259 	/* enable DMA IBs */
1260 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1261 
1262 	ring->sched.ready = true;
1263 }
1264 
1265 static void
1266 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1267 {
1268 	uint32_t def, data;
1269 
1270 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1271 		/* enable idle interrupt */
1272 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1273 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1274 
1275 		if (data != def)
1276 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1277 	} else {
1278 		/* disable idle interrupt */
1279 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1280 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1281 		if (data != def)
1282 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1283 	}
1284 }
1285 
1286 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1287 {
1288 	uint32_t def, data;
1289 
1290 	/* Enable HW based PG. */
1291 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1292 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1293 	if (data != def)
1294 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1295 
1296 	/* enable interrupt */
1297 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1298 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1299 	if (data != def)
1300 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1301 
1302 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1303 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1304 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1305 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1306 	/* Configure switch time for hysteresis purpose. Use default right now */
1307 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1308 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1309 	if(data != def)
1310 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1311 }
1312 
1313 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1314 {
1315 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1316 		return;
1317 
1318 	switch (adev->asic_type) {
1319 	case CHIP_RAVEN:
1320 	case CHIP_RENOIR:
1321 		sdma_v4_1_init_power_gating(adev);
1322 		sdma_v4_1_update_power_gating(adev, true);
1323 		break;
1324 	default:
1325 		break;
1326 	}
1327 }
1328 
1329 /**
1330  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1331  *
1332  * @adev: amdgpu_device pointer
1333  *
1334  * Set up the compute DMA queues and enable them (VEGA10).
1335  * Returns 0 for success, error for failure.
1336  */
1337 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1338 {
1339 	sdma_v4_0_init_pg(adev);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1346  *
1347  * @adev: amdgpu_device pointer
1348  *
1349  * Loads the sDMA0/1 ucode.
1350  * Returns 0 for success, -EINVAL if the ucode is not available.
1351  */
1352 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1353 {
1354 	const struct sdma_firmware_header_v1_0 *hdr;
1355 	const __le32 *fw_data;
1356 	u32 fw_size;
1357 	int i, j;
1358 
1359 	/* halt the MEs */
1360 	sdma_v4_0_enable(adev, false);
1361 
1362 	for (i = 0; i < adev->sdma.num_instances; i++) {
1363 		if (!adev->sdma.instance[i].fw)
1364 			return -EINVAL;
1365 
1366 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1367 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1368 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1369 
1370 		fw_data = (const __le32 *)
1371 			(adev->sdma.instance[i].fw->data +
1372 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1373 
1374 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1375 
1376 		for (j = 0; j < fw_size; j++)
1377 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1378 				    le32_to_cpup(fw_data++));
1379 
1380 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1381 			    adev->sdma.instance[i].fw_version);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  * sdma_v4_0_start - setup and start the async dma engines
1389  *
1390  * @adev: amdgpu_device pointer
1391  *
1392  * Set up the DMA engines and enable them (VEGA10).
1393  * Returns 0 for success, error for failure.
1394  */
1395 static int sdma_v4_0_start(struct amdgpu_device *adev)
1396 {
1397 	struct amdgpu_ring *ring;
1398 	int i, r = 0;
1399 
1400 	if (amdgpu_sriov_vf(adev)) {
1401 		sdma_v4_0_ctx_switch_enable(adev, false);
1402 		sdma_v4_0_enable(adev, false);
1403 	} else {
1404 
1405 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1406 			r = sdma_v4_0_load_microcode(adev);
1407 			if (r)
1408 				return r;
1409 		}
1410 
1411 		/* unhalt the MEs */
1412 		sdma_v4_0_enable(adev, true);
1413 		/* enable sdma ring preemption */
1414 		sdma_v4_0_ctx_switch_enable(adev, true);
1415 	}
1416 
1417 	/* start the gfx rings and rlc compute queues */
1418 	for (i = 0; i < adev->sdma.num_instances; i++) {
1419 		uint32_t temp;
1420 
1421 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1422 		sdma_v4_0_gfx_resume(adev, i);
1423 		if (adev->sdma.has_page_queue)
1424 			sdma_v4_0_page_resume(adev, i);
1425 
1426 		/* set utc l1 enable flag always to 1 */
1427 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1428 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1429 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1430 
1431 		if (!amdgpu_sriov_vf(adev)) {
1432 			/* unhalt engine */
1433 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1434 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1435 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1436 		}
1437 	}
1438 
1439 	if (amdgpu_sriov_vf(adev)) {
1440 		sdma_v4_0_ctx_switch_enable(adev, true);
1441 		sdma_v4_0_enable(adev, true);
1442 	} else {
1443 		r = sdma_v4_0_rlc_resume(adev);
1444 		if (r)
1445 			return r;
1446 	}
1447 
1448 	for (i = 0; i < adev->sdma.num_instances; i++) {
1449 		ring = &adev->sdma.instance[i].ring;
1450 
1451 		r = amdgpu_ring_test_helper(ring);
1452 		if (r)
1453 			return r;
1454 
1455 		if (adev->sdma.has_page_queue) {
1456 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1457 
1458 			r = amdgpu_ring_test_helper(page);
1459 			if (r)
1460 				return r;
1461 
1462 			if (adev->mman.buffer_funcs_ring == page)
1463 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1464 		}
1465 
1466 		if (adev->mman.buffer_funcs_ring == ring)
1467 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1468 	}
1469 
1470 	return r;
1471 }
1472 
1473 /**
1474  * sdma_v4_0_ring_test_ring - simple async dma engine test
1475  *
1476  * @ring: amdgpu_ring structure holding ring information
1477  *
1478  * Test the DMA engine by writing using it to write an
1479  * value to memory. (VEGA10).
1480  * Returns 0 for success, error for failure.
1481  */
1482 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1483 {
1484 	struct amdgpu_device *adev = ring->adev;
1485 	unsigned i;
1486 	unsigned index;
1487 	int r;
1488 	u32 tmp;
1489 	u64 gpu_addr;
1490 
1491 	r = amdgpu_device_wb_get(adev, &index);
1492 	if (r)
1493 		return r;
1494 
1495 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1496 	tmp = 0xCAFEDEAD;
1497 	adev->wb.wb[index] = cpu_to_le32(tmp);
1498 
1499 	r = amdgpu_ring_alloc(ring, 5);
1500 	if (r)
1501 		goto error_free_wb;
1502 
1503 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1504 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1505 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1506 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1507 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1508 	amdgpu_ring_write(ring, 0xDEADBEEF);
1509 	amdgpu_ring_commit(ring);
1510 
1511 	for (i = 0; i < adev->usec_timeout; i++) {
1512 		tmp = le32_to_cpu(adev->wb.wb[index]);
1513 		if (tmp == 0xDEADBEEF)
1514 			break;
1515 		udelay(1);
1516 	}
1517 
1518 	if (i >= adev->usec_timeout)
1519 		r = -ETIMEDOUT;
1520 
1521 error_free_wb:
1522 	amdgpu_device_wb_free(adev, index);
1523 	return r;
1524 }
1525 
1526 /**
1527  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1528  *
1529  * @ring: amdgpu_ring structure holding ring information
1530  *
1531  * Test a simple IB in the DMA ring (VEGA10).
1532  * Returns 0 on success, error on failure.
1533  */
1534 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1535 {
1536 	struct amdgpu_device *adev = ring->adev;
1537 	struct amdgpu_ib ib;
1538 	struct dma_fence *f = NULL;
1539 	unsigned index;
1540 	long r;
1541 	u32 tmp = 0;
1542 	u64 gpu_addr;
1543 
1544 	r = amdgpu_device_wb_get(adev, &index);
1545 	if (r)
1546 		return r;
1547 
1548 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1549 	tmp = 0xCAFEDEAD;
1550 	adev->wb.wb[index] = cpu_to_le32(tmp);
1551 	memset(&ib, 0, sizeof(ib));
1552 	r = amdgpu_ib_get(adev, NULL, 256,
1553 					AMDGPU_IB_POOL_DIRECT, &ib);
1554 	if (r)
1555 		goto err0;
1556 
1557 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1558 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1559 	ib.ptr[1] = lower_32_bits(gpu_addr);
1560 	ib.ptr[2] = upper_32_bits(gpu_addr);
1561 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1562 	ib.ptr[4] = 0xDEADBEEF;
1563 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1564 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1565 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1566 	ib.length_dw = 8;
1567 
1568 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1569 	if (r)
1570 		goto err1;
1571 
1572 	r = dma_fence_wait_timeout(f, false, timeout);
1573 	if (r == 0) {
1574 		r = -ETIMEDOUT;
1575 		goto err1;
1576 	} else if (r < 0) {
1577 		goto err1;
1578 	}
1579 	tmp = le32_to_cpu(adev->wb.wb[index]);
1580 	if (tmp == 0xDEADBEEF)
1581 		r = 0;
1582 	else
1583 		r = -EINVAL;
1584 
1585 err1:
1586 	amdgpu_ib_free(adev, &ib, NULL);
1587 	dma_fence_put(f);
1588 err0:
1589 	amdgpu_device_wb_free(adev, index);
1590 	return r;
1591 }
1592 
1593 
1594 /**
1595  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1596  *
1597  * @ib: indirect buffer to fill with commands
1598  * @pe: addr of the page entry
1599  * @src: src addr to copy from
1600  * @count: number of page entries to update
1601  *
1602  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1603  */
1604 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1605 				  uint64_t pe, uint64_t src,
1606 				  unsigned count)
1607 {
1608 	unsigned bytes = count * 8;
1609 
1610 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1611 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1612 	ib->ptr[ib->length_dw++] = bytes - 1;
1613 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1614 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1615 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1616 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1617 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1618 
1619 }
1620 
1621 /**
1622  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1623  *
1624  * @ib: indirect buffer to fill with commands
1625  * @pe: addr of the page entry
1626  * @addr: dst addr to write into pe
1627  * @count: number of page entries to update
1628  * @incr: increase next addr by incr bytes
1629  * @flags: access flags
1630  *
1631  * Update PTEs by writing them manually using sDMA (VEGA10).
1632  */
1633 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1634 				   uint64_t value, unsigned count,
1635 				   uint32_t incr)
1636 {
1637 	unsigned ndw = count * 2;
1638 
1639 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1640 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1641 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1642 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1643 	ib->ptr[ib->length_dw++] = ndw - 1;
1644 	for (; ndw > 0; ndw -= 2) {
1645 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1646 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1647 		value += incr;
1648 	}
1649 }
1650 
1651 /**
1652  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1653  *
1654  * @ib: indirect buffer to fill with commands
1655  * @pe: addr of the page entry
1656  * @addr: dst addr to write into pe
1657  * @count: number of page entries to update
1658  * @incr: increase next addr by incr bytes
1659  * @flags: access flags
1660  *
1661  * Update the page tables using sDMA (VEGA10).
1662  */
1663 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1664 				     uint64_t pe,
1665 				     uint64_t addr, unsigned count,
1666 				     uint32_t incr, uint64_t flags)
1667 {
1668 	/* for physically contiguous pages (vram) */
1669 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1670 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1671 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1672 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1673 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1674 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1675 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1676 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1677 	ib->ptr[ib->length_dw++] = 0;
1678 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1679 }
1680 
1681 /**
1682  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1683  *
1684  * @ib: indirect buffer to fill with padding
1685  *
1686  */
1687 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1688 {
1689 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1690 	u32 pad_count;
1691 	int i;
1692 
1693 	pad_count = (-ib->length_dw) & 7;
1694 	for (i = 0; i < pad_count; i++)
1695 		if (sdma && sdma->burst_nop && (i == 0))
1696 			ib->ptr[ib->length_dw++] =
1697 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1698 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1699 		else
1700 			ib->ptr[ib->length_dw++] =
1701 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1702 }
1703 
1704 
1705 /**
1706  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1707  *
1708  * @ring: amdgpu_ring pointer
1709  *
1710  * Make sure all previous operations are completed (CIK).
1711  */
1712 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1713 {
1714 	uint32_t seq = ring->fence_drv.sync_seq;
1715 	uint64_t addr = ring->fence_drv.gpu_addr;
1716 
1717 	/* wait for idle */
1718 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1719 			       addr & 0xfffffffc,
1720 			       upper_32_bits(addr) & 0xffffffff,
1721 			       seq, 0xffffffff, 4);
1722 }
1723 
1724 
1725 /**
1726  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1727  *
1728  * @ring: amdgpu_ring pointer
1729  * @vm: amdgpu_vm pointer
1730  *
1731  * Update the page table base and flush the VM TLB
1732  * using sDMA (VEGA10).
1733  */
1734 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1735 					 unsigned vmid, uint64_t pd_addr)
1736 {
1737 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1738 }
1739 
1740 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1741 				     uint32_t reg, uint32_t val)
1742 {
1743 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1744 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1745 	amdgpu_ring_write(ring, reg);
1746 	amdgpu_ring_write(ring, val);
1747 }
1748 
1749 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1750 					 uint32_t val, uint32_t mask)
1751 {
1752 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1753 }
1754 
1755 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1756 {
1757 	uint fw_version = adev->sdma.instance[0].fw_version;
1758 
1759 	switch (adev->asic_type) {
1760 	case CHIP_VEGA10:
1761 		return fw_version >= 430;
1762 	case CHIP_VEGA12:
1763 		/*return fw_version >= 31;*/
1764 		return false;
1765 	case CHIP_VEGA20:
1766 		return fw_version >= 123;
1767 	default:
1768 		return false;
1769 	}
1770 }
1771 
1772 static int sdma_v4_0_early_init(void *handle)
1773 {
1774 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1775 	int r;
1776 
1777 	if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1778 		adev->sdma.num_instances = 1;
1779 	else if (adev->asic_type == CHIP_ARCTURUS)
1780 		adev->sdma.num_instances = 8;
1781 	else
1782 		adev->sdma.num_instances = 2;
1783 
1784 	r = sdma_v4_0_init_microcode(adev);
1785 	if (r) {
1786 		DRM_ERROR("Failed to load sdma firmware!\n");
1787 		return r;
1788 	}
1789 
1790 	/* TODO: Page queue breaks driver reload under SRIOV */
1791 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1792 		adev->sdma.has_page_queue = false;
1793 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1794 		adev->sdma.has_page_queue = true;
1795 
1796 	sdma_v4_0_set_ring_funcs(adev);
1797 	sdma_v4_0_set_buffer_funcs(adev);
1798 	sdma_v4_0_set_vm_pte_funcs(adev);
1799 	sdma_v4_0_set_irq_funcs(adev);
1800 	sdma_v4_0_set_ras_funcs(adev);
1801 
1802 	return 0;
1803 }
1804 
1805 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1806 		void *err_data,
1807 		struct amdgpu_iv_entry *entry);
1808 
1809 static int sdma_v4_0_late_init(void *handle)
1810 {
1811 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1812 	struct ras_ih_if ih_info = {
1813 		.cb = sdma_v4_0_process_ras_data_cb,
1814 	};
1815 
1816 	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1817 		adev->sdma.funcs->reset_ras_error_count(adev);
1818 
1819 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1820 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1821 	else
1822 		return 0;
1823 }
1824 
1825 static int sdma_v4_0_sw_init(void *handle)
1826 {
1827 	struct amdgpu_ring *ring;
1828 	int r, i;
1829 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1830 
1831 	/* SDMA trap event */
1832 	for (i = 0; i < adev->sdma.num_instances; i++) {
1833 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1834 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1835 				      &adev->sdma.trap_irq);
1836 		if (r)
1837 			return r;
1838 	}
1839 
1840 	/* SDMA SRAM ECC event */
1841 	for (i = 0; i < adev->sdma.num_instances; i++) {
1842 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1843 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1844 				      &adev->sdma.ecc_irq);
1845 		if (r)
1846 			return r;
1847 	}
1848 
1849 	for (i = 0; i < adev->sdma.num_instances; i++) {
1850 		ring = &adev->sdma.instance[i].ring;
1851 		ring->ring_obj = NULL;
1852 		ring->use_doorbell = true;
1853 
1854 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1855 				ring->use_doorbell?"true":"false");
1856 
1857 		/* doorbell size is 2 dwords, get DWORD offset */
1858 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1859 
1860 		sprintf(ring->name, "sdma%d", i);
1861 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1862 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1863 				     AMDGPU_RING_PRIO_DEFAULT);
1864 		if (r)
1865 			return r;
1866 
1867 		if (adev->sdma.has_page_queue) {
1868 			ring = &adev->sdma.instance[i].page;
1869 			ring->ring_obj = NULL;
1870 			ring->use_doorbell = true;
1871 
1872 			/* paging queue use same doorbell index/routing as gfx queue
1873 			 * with 0x400 (4096 dwords) offset on second doorbell page
1874 			 */
1875 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1876 			ring->doorbell_index += 0x400;
1877 
1878 			sprintf(ring->name, "page%d", i);
1879 			r = amdgpu_ring_init(adev, ring, 1024,
1880 					     &adev->sdma.trap_irq,
1881 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1882 					     AMDGPU_RING_PRIO_DEFAULT);
1883 			if (r)
1884 				return r;
1885 		}
1886 	}
1887 
1888 	return r;
1889 }
1890 
1891 static int sdma_v4_0_sw_fini(void *handle)
1892 {
1893 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1894 	int i;
1895 
1896 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1897 		adev->sdma.funcs->ras_fini(adev);
1898 
1899 	for (i = 0; i < adev->sdma.num_instances; i++) {
1900 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1901 		if (adev->sdma.has_page_queue)
1902 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1903 	}
1904 
1905 	sdma_v4_0_destroy_inst_ctx(adev);
1906 
1907 	return 0;
1908 }
1909 
1910 static int sdma_v4_0_hw_init(void *handle)
1911 {
1912 	int r;
1913 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1914 
1915 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1916 			adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1917 			(adev->asic_type == CHIP_RENOIR && !adev->in_gpu_reset))
1918 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1919 
1920 	if (!amdgpu_sriov_vf(adev))
1921 		sdma_v4_0_init_golden_registers(adev);
1922 
1923 	r = sdma_v4_0_start(adev);
1924 
1925 	return r;
1926 }
1927 
1928 static int sdma_v4_0_hw_fini(void *handle)
1929 {
1930 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1931 	int i;
1932 
1933 	if (amdgpu_sriov_vf(adev))
1934 		return 0;
1935 
1936 	for (i = 0; i < adev->sdma.num_instances; i++) {
1937 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1938 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1939 	}
1940 
1941 	sdma_v4_0_ctx_switch_enable(adev, false);
1942 	sdma_v4_0_enable(adev, false);
1943 
1944 	if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1945 			&& adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1946 			adev->asic_type == CHIP_RENOIR)
1947 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1948 
1949 	return 0;
1950 }
1951 
1952 static int sdma_v4_0_suspend(void *handle)
1953 {
1954 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1955 
1956 	return sdma_v4_0_hw_fini(adev);
1957 }
1958 
1959 static int sdma_v4_0_resume(void *handle)
1960 {
1961 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1962 
1963 	return sdma_v4_0_hw_init(adev);
1964 }
1965 
1966 static bool sdma_v4_0_is_idle(void *handle)
1967 {
1968 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1969 	u32 i;
1970 
1971 	for (i = 0; i < adev->sdma.num_instances; i++) {
1972 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1973 
1974 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1975 			return false;
1976 	}
1977 
1978 	return true;
1979 }
1980 
1981 static int sdma_v4_0_wait_for_idle(void *handle)
1982 {
1983 	unsigned i, j;
1984 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1985 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1986 
1987 	for (i = 0; i < adev->usec_timeout; i++) {
1988 		for (j = 0; j < adev->sdma.num_instances; j++) {
1989 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1990 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1991 				break;
1992 		}
1993 		if (j == adev->sdma.num_instances)
1994 			return 0;
1995 		udelay(1);
1996 	}
1997 	return -ETIMEDOUT;
1998 }
1999 
2000 static int sdma_v4_0_soft_reset(void *handle)
2001 {
2002 	/* todo */
2003 
2004 	return 0;
2005 }
2006 
2007 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2008 					struct amdgpu_irq_src *source,
2009 					unsigned type,
2010 					enum amdgpu_interrupt_state state)
2011 {
2012 	u32 sdma_cntl;
2013 
2014 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2015 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2016 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2017 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2018 
2019 	return 0;
2020 }
2021 
2022 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2023 				      struct amdgpu_irq_src *source,
2024 				      struct amdgpu_iv_entry *entry)
2025 {
2026 	uint32_t instance;
2027 
2028 	DRM_DEBUG("IH: SDMA trap\n");
2029 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2030 	switch (entry->ring_id) {
2031 	case 0:
2032 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2033 		break;
2034 	case 1:
2035 		if (adev->asic_type == CHIP_VEGA20)
2036 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2037 		break;
2038 	case 2:
2039 		/* XXX compute */
2040 		break;
2041 	case 3:
2042 		if (adev->asic_type != CHIP_VEGA20)
2043 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2044 		break;
2045 	}
2046 	return 0;
2047 }
2048 
2049 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2050 		void *err_data,
2051 		struct amdgpu_iv_entry *entry)
2052 {
2053 	int instance;
2054 
2055 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2056 	 * be disabled and the driver should only look for the aggregated
2057 	 * interrupt via sync flood
2058 	 */
2059 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2060 		goto out;
2061 
2062 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2063 	if (instance < 0)
2064 		goto out;
2065 
2066 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2067 
2068 out:
2069 	return AMDGPU_RAS_SUCCESS;
2070 }
2071 
2072 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2073 					      struct amdgpu_irq_src *source,
2074 					      struct amdgpu_iv_entry *entry)
2075 {
2076 	int instance;
2077 
2078 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2079 
2080 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2081 	if (instance < 0)
2082 		return 0;
2083 
2084 	switch (entry->ring_id) {
2085 	case 0:
2086 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2087 		break;
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2093 					struct amdgpu_irq_src *source,
2094 					unsigned type,
2095 					enum amdgpu_interrupt_state state)
2096 {
2097 	u32 sdma_edc_config;
2098 
2099 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2100 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2101 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2102 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2103 
2104 	return 0;
2105 }
2106 
2107 static void sdma_v4_0_update_medium_grain_clock_gating(
2108 		struct amdgpu_device *adev,
2109 		bool enable)
2110 {
2111 	uint32_t data, def;
2112 	int i;
2113 
2114 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2115 		for (i = 0; i < adev->sdma.num_instances; i++) {
2116 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2117 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2118 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2119 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2120 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2121 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2122 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2123 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2124 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2125 			if (def != data)
2126 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2127 		}
2128 	} else {
2129 		for (i = 0; i < adev->sdma.num_instances; i++) {
2130 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2131 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2132 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2133 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2134 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2135 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2136 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2137 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2138 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2139 			if (def != data)
2140 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2141 		}
2142 	}
2143 }
2144 
2145 
2146 static void sdma_v4_0_update_medium_grain_light_sleep(
2147 		struct amdgpu_device *adev,
2148 		bool enable)
2149 {
2150 	uint32_t data, def;
2151 	int i;
2152 
2153 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2154 		for (i = 0; i < adev->sdma.num_instances; i++) {
2155 			/* 1-not override: enable sdma mem light sleep */
2156 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2157 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2158 			if (def != data)
2159 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2160 		}
2161 	} else {
2162 		for (i = 0; i < adev->sdma.num_instances; i++) {
2163 		/* 0-override:disable sdma mem light sleep */
2164 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2165 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2166 			if (def != data)
2167 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2168 		}
2169 	}
2170 }
2171 
2172 static int sdma_v4_0_set_clockgating_state(void *handle,
2173 					  enum amd_clockgating_state state)
2174 {
2175 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2176 
2177 	if (amdgpu_sriov_vf(adev))
2178 		return 0;
2179 
2180 	switch (adev->asic_type) {
2181 	case CHIP_VEGA10:
2182 	case CHIP_VEGA12:
2183 	case CHIP_VEGA20:
2184 	case CHIP_RAVEN:
2185 	case CHIP_ARCTURUS:
2186 	case CHIP_RENOIR:
2187 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2188 				state == AMD_CG_STATE_GATE);
2189 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2190 				state == AMD_CG_STATE_GATE);
2191 		break;
2192 	default:
2193 		break;
2194 	}
2195 	return 0;
2196 }
2197 
2198 static int sdma_v4_0_set_powergating_state(void *handle,
2199 					  enum amd_powergating_state state)
2200 {
2201 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2202 
2203 	switch (adev->asic_type) {
2204 	case CHIP_RAVEN:
2205 		sdma_v4_1_update_power_gating(adev,
2206 				state == AMD_PG_STATE_GATE ? true : false);
2207 		break;
2208 	default:
2209 		break;
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2216 {
2217 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2218 	int data;
2219 
2220 	if (amdgpu_sriov_vf(adev))
2221 		*flags = 0;
2222 
2223 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2224 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2225 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2226 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2227 
2228 	/* AMD_CG_SUPPORT_SDMA_LS */
2229 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2230 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2231 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2232 }
2233 
2234 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2235 	.name = "sdma_v4_0",
2236 	.early_init = sdma_v4_0_early_init,
2237 	.late_init = sdma_v4_0_late_init,
2238 	.sw_init = sdma_v4_0_sw_init,
2239 	.sw_fini = sdma_v4_0_sw_fini,
2240 	.hw_init = sdma_v4_0_hw_init,
2241 	.hw_fini = sdma_v4_0_hw_fini,
2242 	.suspend = sdma_v4_0_suspend,
2243 	.resume = sdma_v4_0_resume,
2244 	.is_idle = sdma_v4_0_is_idle,
2245 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2246 	.soft_reset = sdma_v4_0_soft_reset,
2247 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2248 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2249 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2250 };
2251 
2252 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2253 	.type = AMDGPU_RING_TYPE_SDMA,
2254 	.align_mask = 0xf,
2255 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2256 	.support_64bit_ptrs = true,
2257 	.vmhub = AMDGPU_MMHUB_0,
2258 	.get_rptr = sdma_v4_0_ring_get_rptr,
2259 	.get_wptr = sdma_v4_0_ring_get_wptr,
2260 	.set_wptr = sdma_v4_0_ring_set_wptr,
2261 	.emit_frame_size =
2262 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2263 		3 + /* hdp invalidate */
2264 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2265 		/* sdma_v4_0_ring_emit_vm_flush */
2266 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2267 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2268 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2269 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2270 	.emit_ib = sdma_v4_0_ring_emit_ib,
2271 	.emit_fence = sdma_v4_0_ring_emit_fence,
2272 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2273 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2274 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2275 	.test_ring = sdma_v4_0_ring_test_ring,
2276 	.test_ib = sdma_v4_0_ring_test_ib,
2277 	.insert_nop = sdma_v4_0_ring_insert_nop,
2278 	.pad_ib = sdma_v4_0_ring_pad_ib,
2279 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2280 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2281 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2282 };
2283 
2284 /*
2285  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2286  * So create a individual constant ring_funcs for those instances.
2287  */
2288 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2289 	.type = AMDGPU_RING_TYPE_SDMA,
2290 	.align_mask = 0xf,
2291 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2292 	.support_64bit_ptrs = true,
2293 	.vmhub = AMDGPU_MMHUB_1,
2294 	.get_rptr = sdma_v4_0_ring_get_rptr,
2295 	.get_wptr = sdma_v4_0_ring_get_wptr,
2296 	.set_wptr = sdma_v4_0_ring_set_wptr,
2297 	.emit_frame_size =
2298 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2299 		3 + /* hdp invalidate */
2300 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2301 		/* sdma_v4_0_ring_emit_vm_flush */
2302 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2303 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2304 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2305 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2306 	.emit_ib = sdma_v4_0_ring_emit_ib,
2307 	.emit_fence = sdma_v4_0_ring_emit_fence,
2308 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2309 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2310 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2311 	.test_ring = sdma_v4_0_ring_test_ring,
2312 	.test_ib = sdma_v4_0_ring_test_ib,
2313 	.insert_nop = sdma_v4_0_ring_insert_nop,
2314 	.pad_ib = sdma_v4_0_ring_pad_ib,
2315 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2316 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2317 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2318 };
2319 
2320 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2321 	.type = AMDGPU_RING_TYPE_SDMA,
2322 	.align_mask = 0xf,
2323 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2324 	.support_64bit_ptrs = true,
2325 	.vmhub = AMDGPU_MMHUB_0,
2326 	.get_rptr = sdma_v4_0_ring_get_rptr,
2327 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2328 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2329 	.emit_frame_size =
2330 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2331 		3 + /* hdp invalidate */
2332 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2333 		/* sdma_v4_0_ring_emit_vm_flush */
2334 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2335 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2336 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2337 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2338 	.emit_ib = sdma_v4_0_ring_emit_ib,
2339 	.emit_fence = sdma_v4_0_ring_emit_fence,
2340 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2341 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2342 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2343 	.test_ring = sdma_v4_0_ring_test_ring,
2344 	.test_ib = sdma_v4_0_ring_test_ib,
2345 	.insert_nop = sdma_v4_0_ring_insert_nop,
2346 	.pad_ib = sdma_v4_0_ring_pad_ib,
2347 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2348 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2349 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2350 };
2351 
2352 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2353 	.type = AMDGPU_RING_TYPE_SDMA,
2354 	.align_mask = 0xf,
2355 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2356 	.support_64bit_ptrs = true,
2357 	.vmhub = AMDGPU_MMHUB_1,
2358 	.get_rptr = sdma_v4_0_ring_get_rptr,
2359 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2360 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2361 	.emit_frame_size =
2362 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2363 		3 + /* hdp invalidate */
2364 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2365 		/* sdma_v4_0_ring_emit_vm_flush */
2366 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2367 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2368 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2369 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2370 	.emit_ib = sdma_v4_0_ring_emit_ib,
2371 	.emit_fence = sdma_v4_0_ring_emit_fence,
2372 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2373 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2374 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2375 	.test_ring = sdma_v4_0_ring_test_ring,
2376 	.test_ib = sdma_v4_0_ring_test_ib,
2377 	.insert_nop = sdma_v4_0_ring_insert_nop,
2378 	.pad_ib = sdma_v4_0_ring_pad_ib,
2379 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2380 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2381 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2382 };
2383 
2384 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2385 {
2386 	int i;
2387 
2388 	for (i = 0; i < adev->sdma.num_instances; i++) {
2389 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2390 			adev->sdma.instance[i].ring.funcs =
2391 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2392 		else
2393 			adev->sdma.instance[i].ring.funcs =
2394 					&sdma_v4_0_ring_funcs;
2395 		adev->sdma.instance[i].ring.me = i;
2396 		if (adev->sdma.has_page_queue) {
2397 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2398 				adev->sdma.instance[i].page.funcs =
2399 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2400 			else
2401 				adev->sdma.instance[i].page.funcs =
2402 					&sdma_v4_0_page_ring_funcs;
2403 			adev->sdma.instance[i].page.me = i;
2404 		}
2405 	}
2406 }
2407 
2408 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2409 	.set = sdma_v4_0_set_trap_irq_state,
2410 	.process = sdma_v4_0_process_trap_irq,
2411 };
2412 
2413 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2414 	.process = sdma_v4_0_process_illegal_inst_irq,
2415 };
2416 
2417 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2418 	.set = sdma_v4_0_set_ecc_irq_state,
2419 	.process = amdgpu_sdma_process_ecc_irq,
2420 };
2421 
2422 
2423 
2424 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2425 {
2426 	switch (adev->sdma.num_instances) {
2427 	case 1:
2428 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2429 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2430 		break;
2431 	case 8:
2432 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2433 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2434 		break;
2435 	case 2:
2436 	default:
2437 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2438 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2439 		break;
2440 	}
2441 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2442 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2443 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2444 }
2445 
2446 /**
2447  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2448  *
2449  * @ring: amdgpu_ring structure holding ring information
2450  * @src_offset: src GPU address
2451  * @dst_offset: dst GPU address
2452  * @byte_count: number of bytes to xfer
2453  *
2454  * Copy GPU buffers using the DMA engine (VEGA10/12).
2455  * Used by the amdgpu ttm implementation to move pages if
2456  * registered as the asic copy callback.
2457  */
2458 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2459 				       uint64_t src_offset,
2460 				       uint64_t dst_offset,
2461 				       uint32_t byte_count,
2462 				       bool tmz)
2463 {
2464 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2465 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2466 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2467 	ib->ptr[ib->length_dw++] = byte_count - 1;
2468 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2469 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2470 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2471 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2472 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2473 }
2474 
2475 /**
2476  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2477  *
2478  * @ring: amdgpu_ring structure holding ring information
2479  * @src_data: value to write to buffer
2480  * @dst_offset: dst GPU address
2481  * @byte_count: number of bytes to xfer
2482  *
2483  * Fill GPU buffers using the DMA engine (VEGA10/12).
2484  */
2485 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2486 				       uint32_t src_data,
2487 				       uint64_t dst_offset,
2488 				       uint32_t byte_count)
2489 {
2490 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2491 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2492 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2493 	ib->ptr[ib->length_dw++] = src_data;
2494 	ib->ptr[ib->length_dw++] = byte_count - 1;
2495 }
2496 
2497 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2498 	.copy_max_bytes = 0x400000,
2499 	.copy_num_dw = 7,
2500 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2501 
2502 	.fill_max_bytes = 0x400000,
2503 	.fill_num_dw = 5,
2504 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2505 };
2506 
2507 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2508 {
2509 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2510 	if (adev->sdma.has_page_queue)
2511 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2512 	else
2513 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2514 }
2515 
2516 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2517 	.copy_pte_num_dw = 7,
2518 	.copy_pte = sdma_v4_0_vm_copy_pte,
2519 
2520 	.write_pte = sdma_v4_0_vm_write_pte,
2521 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2522 };
2523 
2524 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2525 {
2526 	struct drm_gpu_scheduler *sched;
2527 	unsigned i;
2528 
2529 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2530 	for (i = 0; i < adev->sdma.num_instances; i++) {
2531 		if (adev->sdma.has_page_queue)
2532 			sched = &adev->sdma.instance[i].page.sched;
2533 		else
2534 			sched = &adev->sdma.instance[i].ring.sched;
2535 		adev->vm_manager.vm_pte_scheds[i] = sched;
2536 	}
2537 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2538 }
2539 
2540 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2541 					uint32_t instance,
2542 					uint32_t *sec_count)
2543 {
2544 	uint32_t i;
2545 	uint32_t sec_cnt;
2546 
2547 	/* double bits error (multiple bits) error detection is not supported */
2548 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2549 		/* the SDMA_EDC_COUNTER register in each sdma instance
2550 		 * shares the same sed shift_mask
2551 		 * */
2552 		sec_cnt = (value &
2553 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2554 			sdma_v4_0_ras_fields[i].sec_count_shift;
2555 		if (sec_cnt) {
2556 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2557 				sdma_v4_0_ras_fields[i].name,
2558 				instance, sec_cnt);
2559 			*sec_count += sec_cnt;
2560 		}
2561 	}
2562 }
2563 
2564 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2565 			uint32_t instance, void *ras_error_status)
2566 {
2567 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2568 	uint32_t sec_count = 0;
2569 	uint32_t reg_value = 0;
2570 
2571 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2572 	/* double bit error is not supported */
2573 	if (reg_value)
2574 		sdma_v4_0_get_ras_error_count(reg_value,
2575 				instance, &sec_count);
2576 	/* err_data->ce_count should be initialized to 0
2577 	 * before calling into this function */
2578 	err_data->ce_count += sec_count;
2579 	/* double bit error is not supported
2580 	 * set ue count to 0 */
2581 	err_data->ue_count = 0;
2582 
2583 	return 0;
2584 };
2585 
2586 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2587 {
2588 	int i;
2589 
2590 	/* read back edc counter registers to clear the counters */
2591 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2592 		for (i = 0; i < adev->sdma.num_instances; i++)
2593 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2594 	}
2595 }
2596 
2597 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2598 	.ras_late_init = amdgpu_sdma_ras_late_init,
2599 	.ras_fini = amdgpu_sdma_ras_fini,
2600 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2601 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2602 };
2603 
2604 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2605 {
2606 	switch (adev->asic_type) {
2607 	case CHIP_VEGA20:
2608 	case CHIP_ARCTURUS:
2609 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2610 		break;
2611 	default:
2612 		break;
2613 	}
2614 }
2615 
2616 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2617 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2618 	.major = 4,
2619 	.minor = 0,
2620 	.rev = 0,
2621 	.funcs = &sdma_v4_0_ip_funcs,
2622 };
2623