1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86 
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114 
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124 
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134 
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148 
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213 
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219 
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225 
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261 
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274 
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278 	0, 0,
279 	},
280 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282 	0, 0,
283 	},
284 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286 	0, 0,
287 	},
288 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290 	0, 0,
291 	},
292 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294 	0, 0,
295 	},
296 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370 	0, 0,
371 	},
372 };
373 
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375 		u32 instance, u32 offset)
376 {
377 	switch (instance) {
378 	case 0:
379 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380 	case 1:
381 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382 	case 2:
383 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384 	case 3:
385 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386 	case 4:
387 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388 	case 5:
389 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390 	case 6:
391 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392 	case 7:
393 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394 	default:
395 		break;
396 	}
397 	return 0;
398 }
399 
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402 	switch (seq_num) {
403 	case 0:
404 		return SOC15_IH_CLIENTID_SDMA0;
405 	case 1:
406 		return SOC15_IH_CLIENTID_SDMA1;
407 	case 2:
408 		return SOC15_IH_CLIENTID_SDMA2;
409 	case 3:
410 		return SOC15_IH_CLIENTID_SDMA3;
411 	case 4:
412 		return SOC15_IH_CLIENTID_SDMA4;
413 	case 5:
414 		return SOC15_IH_CLIENTID_SDMA5;
415 	case 6:
416 		return SOC15_IH_CLIENTID_SDMA6;
417 	case 7:
418 		return SOC15_IH_CLIENTID_SDMA7;
419 	default:
420 		break;
421 	}
422 	return -EINVAL;
423 }
424 
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427 	switch (client_id) {
428 	case SOC15_IH_CLIENTID_SDMA0:
429 		return 0;
430 	case SOC15_IH_CLIENTID_SDMA1:
431 		return 1;
432 	case SOC15_IH_CLIENTID_SDMA2:
433 		return 2;
434 	case SOC15_IH_CLIENTID_SDMA3:
435 		return 3;
436 	case SOC15_IH_CLIENTID_SDMA4:
437 		return 4;
438 	case SOC15_IH_CLIENTID_SDMA5:
439 		return 5;
440 	case SOC15_IH_CLIENTID_SDMA6:
441 		return 6;
442 	case SOC15_IH_CLIENTID_SDMA7:
443 		return 7;
444 	default:
445 		break;
446 	}
447 	return -EINVAL;
448 }
449 
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		soc15_program_register_sequence(adev,
455 						golden_settings_sdma_4,
456 						ARRAY_SIZE(golden_settings_sdma_4));
457 		soc15_program_register_sequence(adev,
458 						golden_settings_sdma_vg10,
459 						ARRAY_SIZE(golden_settings_sdma_vg10));
460 		break;
461 	case CHIP_VEGA12:
462 		soc15_program_register_sequence(adev,
463 						golden_settings_sdma_4,
464 						ARRAY_SIZE(golden_settings_sdma_4));
465 		soc15_program_register_sequence(adev,
466 						golden_settings_sdma_vg12,
467 						ARRAY_SIZE(golden_settings_sdma_vg12));
468 		break;
469 	case CHIP_VEGA20:
470 		soc15_program_register_sequence(adev,
471 						golden_settings_sdma0_4_2_init,
472 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473 		soc15_program_register_sequence(adev,
474 						golden_settings_sdma0_4_2,
475 						ARRAY_SIZE(golden_settings_sdma0_4_2));
476 		soc15_program_register_sequence(adev,
477 						golden_settings_sdma1_4_2,
478 						ARRAY_SIZE(golden_settings_sdma1_4_2));
479 		break;
480 	case CHIP_ARCTURUS:
481 		soc15_program_register_sequence(adev,
482 						golden_settings_sdma_arct,
483 						ARRAY_SIZE(golden_settings_sdma_arct));
484 		break;
485 	case CHIP_RAVEN:
486 		soc15_program_register_sequence(adev,
487 						golden_settings_sdma_4_1,
488 						ARRAY_SIZE(golden_settings_sdma_4_1));
489 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490 			soc15_program_register_sequence(adev,
491 							golden_settings_sdma_rv2,
492 							ARRAY_SIZE(golden_settings_sdma_rv2));
493 		else
494 			soc15_program_register_sequence(adev,
495 							golden_settings_sdma_rv1,
496 							ARRAY_SIZE(golden_settings_sdma_rv1));
497 		break;
498 	case CHIP_RENOIR:
499 		soc15_program_register_sequence(adev,
500 						golden_settings_sdma_4_3,
501 						ARRAY_SIZE(golden_settings_sdma_4_3));
502 		break;
503 	default:
504 		break;
505 	}
506 }
507 
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510 	int i;
511 
512 	/*
513 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
514 	 * Server SKUs take a different hysteresis setting from other SKUs.
515 	 */
516 	switch (adev->asic_type) {
517 	case CHIP_VEGA10:
518 		if (adev->pdev->device == 0x6860)
519 			break;
520 		return;
521 	case CHIP_VEGA20:
522 		if (adev->pdev->device == 0x66a1)
523 			break;
524 		return;
525 	default:
526 		return;
527 	}
528 
529 	for (i = 0; i < adev->sdma.num_instances; i++) {
530 		uint32_t temp;
531 
532 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535 	}
536 }
537 
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540 	int err = 0;
541 	const struct sdma_firmware_header_v1_0 *hdr;
542 
543 	err = amdgpu_ucode_validate(sdma_inst->fw);
544 	if (err)
545 		return err;
546 
547 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550 
551 	if (sdma_inst->feature_version >= 20)
552 		sdma_inst->burst_nop = true;
553 
554 	return 0;
555 }
556 
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559 	int i;
560 
561 	for (i = 0; i < adev->sdma.num_instances; i++) {
562 		release_firmware(adev->sdma.instance[i].fw);
563 		adev->sdma.instance[i].fw = NULL;
564 
565 		/* arcturus shares the same FW memory across
566 		   all SDMA isntances */
567 		if (adev->asic_type == CHIP_ARCTURUS)
568 			break;
569 	}
570 
571 	memset((void*)adev->sdma.instance, 0,
572 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574 
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584 
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589 	const char *chip_name;
590 	char fw_name[30];
591 	int err = 0, i;
592 	struct amdgpu_firmware_info *info = NULL;
593 	const struct common_firmware_header *header = NULL;
594 
595 	DRM_DEBUG("\n");
596 
597 	switch (adev->asic_type) {
598 	case CHIP_VEGA10:
599 		chip_name = "vega10";
600 		break;
601 	case CHIP_VEGA12:
602 		chip_name = "vega12";
603 		break;
604 	case CHIP_VEGA20:
605 		chip_name = "vega20";
606 		break;
607 	case CHIP_RAVEN:
608 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
609 			chip_name = "raven2";
610 		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
611 			chip_name = "picasso";
612 		else
613 			chip_name = "raven";
614 		break;
615 	case CHIP_ARCTURUS:
616 		chip_name = "arcturus";
617 		break;
618 	case CHIP_RENOIR:
619 		chip_name = "renoir";
620 		break;
621 	default:
622 		BUG();
623 	}
624 
625 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
626 
627 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
628 	if (err)
629 		goto out;
630 
631 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
632 	if (err)
633 		goto out;
634 
635 	for (i = 1; i < adev->sdma.num_instances; i++) {
636 		if (adev->asic_type == CHIP_ARCTURUS) {
637 			/* Acturus will leverage the same FW memory
638 			   for every SDMA instance */
639 			memcpy((void*)&adev->sdma.instance[i],
640 			       (void*)&adev->sdma.instance[0],
641 			       sizeof(struct amdgpu_sdma_instance));
642 		}
643 		else {
644 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
645 
646 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
647 			if (err)
648 				goto out;
649 
650 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
651 			if (err)
652 				goto out;
653 		}
654 	}
655 
656 	DRM_DEBUG("psp_load == '%s'\n",
657 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
658 
659 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
660 		for (i = 0; i < adev->sdma.num_instances; i++) {
661 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
662 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
663 			info->fw = adev->sdma.instance[i].fw;
664 			header = (const struct common_firmware_header *)info->fw->data;
665 			adev->firmware.fw_size +=
666 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
667 		}
668 	}
669 
670 out:
671 	if (err) {
672 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
673 		sdma_v4_0_destroy_inst_ctx(adev);
674 	}
675 	return err;
676 }
677 
678 /**
679  * sdma_v4_0_ring_get_rptr - get the current read pointer
680  *
681  * @ring: amdgpu ring pointer
682  *
683  * Get the current rptr from the hardware (VEGA10+).
684  */
685 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
686 {
687 	u64 *rptr;
688 
689 	/* XXX check if swapping is necessary on BE */
690 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
691 
692 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
693 	return ((*rptr) >> 2);
694 }
695 
696 /**
697  * sdma_v4_0_ring_get_wptr - get the current write pointer
698  *
699  * @ring: amdgpu ring pointer
700  *
701  * Get the current wptr from the hardware (VEGA10+).
702  */
703 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
704 {
705 	struct amdgpu_device *adev = ring->adev;
706 	u64 wptr;
707 
708 	if (ring->use_doorbell) {
709 		/* XXX check if swapping is necessary on BE */
710 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
711 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
712 	} else {
713 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
714 		wptr = wptr << 32;
715 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
716 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
717 				ring->me, wptr);
718 	}
719 
720 	return wptr >> 2;
721 }
722 
723 /**
724  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
725  *
726  * @ring: amdgpu ring pointer
727  *
728  * Write the wptr back to the hardware (VEGA10+).
729  */
730 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
731 {
732 	struct amdgpu_device *adev = ring->adev;
733 
734 	DRM_DEBUG("Setting write pointer\n");
735 	if (ring->use_doorbell) {
736 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
737 
738 		DRM_DEBUG("Using doorbell -- "
739 				"wptr_offs == 0x%08x "
740 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
741 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
742 				ring->wptr_offs,
743 				lower_32_bits(ring->wptr << 2),
744 				upper_32_bits(ring->wptr << 2));
745 		/* XXX check if swapping is necessary on BE */
746 		WRITE_ONCE(*wb, (ring->wptr << 2));
747 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
748 				ring->doorbell_index, ring->wptr << 2);
749 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
750 	} else {
751 		DRM_DEBUG("Not using doorbell -- "
752 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
753 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
754 				ring->me,
755 				lower_32_bits(ring->wptr << 2),
756 				ring->me,
757 				upper_32_bits(ring->wptr << 2));
758 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
759 			    lower_32_bits(ring->wptr << 2));
760 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
761 			    upper_32_bits(ring->wptr << 2));
762 	}
763 }
764 
765 /**
766  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
767  *
768  * @ring: amdgpu ring pointer
769  *
770  * Get the current wptr from the hardware (VEGA10+).
771  */
772 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
773 {
774 	struct amdgpu_device *adev = ring->adev;
775 	u64 wptr;
776 
777 	if (ring->use_doorbell) {
778 		/* XXX check if swapping is necessary on BE */
779 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
780 	} else {
781 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
782 		wptr = wptr << 32;
783 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
784 	}
785 
786 	return wptr >> 2;
787 }
788 
789 /**
790  * sdma_v4_0_ring_set_wptr - commit the write pointer
791  *
792  * @ring: amdgpu ring pointer
793  *
794  * Write the wptr back to the hardware (VEGA10+).
795  */
796 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
797 {
798 	struct amdgpu_device *adev = ring->adev;
799 
800 	if (ring->use_doorbell) {
801 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
802 
803 		/* XXX check if swapping is necessary on BE */
804 		WRITE_ONCE(*wb, (ring->wptr << 2));
805 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
806 	} else {
807 		uint64_t wptr = ring->wptr << 2;
808 
809 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
810 			    lower_32_bits(wptr));
811 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
812 			    upper_32_bits(wptr));
813 	}
814 }
815 
816 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
817 {
818 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
819 	int i;
820 
821 	for (i = 0; i < count; i++)
822 		if (sdma && sdma->burst_nop && (i == 0))
823 			amdgpu_ring_write(ring, ring->funcs->nop |
824 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
825 		else
826 			amdgpu_ring_write(ring, ring->funcs->nop);
827 }
828 
829 /**
830  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
831  *
832  * @ring: amdgpu ring pointer
833  * @ib: IB object to schedule
834  *
835  * Schedule an IB in the DMA ring (VEGA10).
836  */
837 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
838 				   struct amdgpu_job *job,
839 				   struct amdgpu_ib *ib,
840 				   uint32_t flags)
841 {
842 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
843 
844 	/* IB packet must end on a 8 DW boundary */
845 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
846 
847 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
848 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
849 	/* base must be 32 byte aligned */
850 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
851 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
852 	amdgpu_ring_write(ring, ib->length_dw);
853 	amdgpu_ring_write(ring, 0);
854 	amdgpu_ring_write(ring, 0);
855 
856 }
857 
858 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
859 				   int mem_space, int hdp,
860 				   uint32_t addr0, uint32_t addr1,
861 				   uint32_t ref, uint32_t mask,
862 				   uint32_t inv)
863 {
864 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
865 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
866 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
867 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
868 	if (mem_space) {
869 		/* memory */
870 		amdgpu_ring_write(ring, addr0);
871 		amdgpu_ring_write(ring, addr1);
872 	} else {
873 		/* registers */
874 		amdgpu_ring_write(ring, addr0 << 2);
875 		amdgpu_ring_write(ring, addr1 << 2);
876 	}
877 	amdgpu_ring_write(ring, ref); /* reference */
878 	amdgpu_ring_write(ring, mask); /* mask */
879 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
880 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
881 }
882 
883 /**
884  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
885  *
886  * @ring: amdgpu ring pointer
887  *
888  * Emit an hdp flush packet on the requested DMA ring.
889  */
890 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
891 {
892 	struct amdgpu_device *adev = ring->adev;
893 	u32 ref_and_mask = 0;
894 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
895 
896 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
897 
898 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
899 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
900 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
901 			       ref_and_mask, ref_and_mask, 10);
902 }
903 
904 /**
905  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
906  *
907  * @ring: amdgpu ring pointer
908  * @fence: amdgpu fence object
909  *
910  * Add a DMA fence packet to the ring to write
911  * the fence seq number and DMA trap packet to generate
912  * an interrupt if needed (VEGA10).
913  */
914 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
915 				      unsigned flags)
916 {
917 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
918 	/* write the fence */
919 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
920 	/* zero in first two bits */
921 	BUG_ON(addr & 0x3);
922 	amdgpu_ring_write(ring, lower_32_bits(addr));
923 	amdgpu_ring_write(ring, upper_32_bits(addr));
924 	amdgpu_ring_write(ring, lower_32_bits(seq));
925 
926 	/* optionally write high bits as well */
927 	if (write64bit) {
928 		addr += 4;
929 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
930 		/* zero in first two bits */
931 		BUG_ON(addr & 0x3);
932 		amdgpu_ring_write(ring, lower_32_bits(addr));
933 		amdgpu_ring_write(ring, upper_32_bits(addr));
934 		amdgpu_ring_write(ring, upper_32_bits(seq));
935 	}
936 
937 	/* generate an interrupt */
938 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
939 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
940 }
941 
942 
943 /**
944  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
945  *
946  * @adev: amdgpu_device pointer
947  *
948  * Stop the gfx async dma ring buffers (VEGA10).
949  */
950 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
951 {
952 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
953 	u32 rb_cntl, ib_cntl;
954 	int i, unset = 0;
955 
956 	for (i = 0; i < adev->sdma.num_instances; i++) {
957 		sdma[i] = &adev->sdma.instance[i].ring;
958 
959 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
960 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
961 			unset = 1;
962 		}
963 
964 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
965 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
966 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
967 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
968 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
969 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
970 	}
971 }
972 
973 /**
974  * sdma_v4_0_rlc_stop - stop the compute async dma engines
975  *
976  * @adev: amdgpu_device pointer
977  *
978  * Stop the compute async dma queues (VEGA10).
979  */
980 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
981 {
982 	/* XXX todo */
983 }
984 
985 /**
986  * sdma_v4_0_page_stop - stop the page async dma engines
987  *
988  * @adev: amdgpu_device pointer
989  *
990  * Stop the page async dma ring buffers (VEGA10).
991  */
992 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
993 {
994 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
995 	u32 rb_cntl, ib_cntl;
996 	int i;
997 	bool unset = false;
998 
999 	for (i = 0; i < adev->sdma.num_instances; i++) {
1000 		sdma[i] = &adev->sdma.instance[i].page;
1001 
1002 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1003 			(unset == false)) {
1004 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1005 			unset = true;
1006 		}
1007 
1008 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1009 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1010 					RB_ENABLE, 0);
1011 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1012 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1013 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1014 					IB_ENABLE, 0);
1015 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1016 	}
1017 }
1018 
1019 /**
1020  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1021  *
1022  * @adev: amdgpu_device pointer
1023  * @enable: enable/disable the DMA MEs context switch.
1024  *
1025  * Halt or unhalt the async dma engines context switch (VEGA10).
1026  */
1027 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1028 {
1029 	u32 f32_cntl, phase_quantum = 0;
1030 	int i;
1031 
1032 	if (amdgpu_sdma_phase_quantum) {
1033 		unsigned value = amdgpu_sdma_phase_quantum;
1034 		unsigned unit = 0;
1035 
1036 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1037 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1038 			value = (value + 1) >> 1;
1039 			unit++;
1040 		}
1041 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1042 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1043 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1044 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1045 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1046 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1047 			WARN_ONCE(1,
1048 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1049 				  value << unit);
1050 		}
1051 		phase_quantum =
1052 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1053 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1054 	}
1055 
1056 	for (i = 0; i < adev->sdma.num_instances; i++) {
1057 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1058 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1059 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1060 		if (enable && amdgpu_sdma_phase_quantum) {
1061 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1062 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1063 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1064 		}
1065 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1066 	}
1067 
1068 }
1069 
1070 /**
1071  * sdma_v4_0_enable - stop the async dma engines
1072  *
1073  * @adev: amdgpu_device pointer
1074  * @enable: enable/disable the DMA MEs.
1075  *
1076  * Halt or unhalt the async dma engines (VEGA10).
1077  */
1078 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1079 {
1080 	u32 f32_cntl;
1081 	int i;
1082 
1083 	if (enable == false) {
1084 		sdma_v4_0_gfx_stop(adev);
1085 		sdma_v4_0_rlc_stop(adev);
1086 		if (adev->sdma.has_page_queue)
1087 			sdma_v4_0_page_stop(adev);
1088 	}
1089 
1090 	for (i = 0; i < adev->sdma.num_instances; i++) {
1091 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1092 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1093 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1094 	}
1095 }
1096 
1097 /**
1098  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1099  */
1100 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1101 {
1102 	/* Set ring buffer size in dwords */
1103 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1104 
1105 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1106 #ifdef __BIG_ENDIAN
1107 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1108 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1109 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1110 #endif
1111 	return rb_cntl;
1112 }
1113 
1114 /**
1115  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1116  *
1117  * @adev: amdgpu_device pointer
1118  * @i: instance to resume
1119  *
1120  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1121  * Returns 0 for success, error for failure.
1122  */
1123 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1124 {
1125 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1126 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1127 	u32 wb_offset;
1128 	u32 doorbell;
1129 	u32 doorbell_offset;
1130 	u64 wptr_gpu_addr;
1131 
1132 	wb_offset = (ring->rptr_offs * 4);
1133 
1134 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1135 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1136 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1137 
1138 	/* Initialize the ring buffer's read and write pointers */
1139 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1140 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1141 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1142 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1143 
1144 	/* set the wb address whether it's enabled or not */
1145 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1146 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1147 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1148 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1149 
1150 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1151 				RPTR_WRITEBACK_ENABLE, 1);
1152 
1153 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1155 
1156 	ring->wptr = 0;
1157 
1158 	/* before programing wptr to a less value, need set minor_ptr_update first */
1159 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1160 
1161 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1162 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1163 
1164 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1165 				 ring->use_doorbell);
1166 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1167 					SDMA0_GFX_DOORBELL_OFFSET,
1168 					OFFSET, ring->doorbell_index);
1169 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1170 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1171 
1172 	sdma_v4_0_ring_set_wptr(ring);
1173 
1174 	/* set minor_ptr_update to 0 after wptr programed */
1175 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1176 
1177 	/* setup the wptr shadow polling */
1178 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1179 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1180 		    lower_32_bits(wptr_gpu_addr));
1181 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1182 		    upper_32_bits(wptr_gpu_addr));
1183 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1184 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1185 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1186 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1187 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1188 
1189 	/* enable DMA RB */
1190 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1191 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1192 
1193 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1194 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1195 #ifdef __BIG_ENDIAN
1196 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1197 #endif
1198 	/* enable DMA IBs */
1199 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1200 
1201 	ring->sched.ready = true;
1202 }
1203 
1204 /**
1205  * sdma_v4_0_page_resume - setup and start the async dma engines
1206  *
1207  * @adev: amdgpu_device pointer
1208  * @i: instance to resume
1209  *
1210  * Set up the page DMA ring buffers and enable them (VEGA10).
1211  * Returns 0 for success, error for failure.
1212  */
1213 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1214 {
1215 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1216 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1217 	u32 wb_offset;
1218 	u32 doorbell;
1219 	u32 doorbell_offset;
1220 	u64 wptr_gpu_addr;
1221 
1222 	wb_offset = (ring->rptr_offs * 4);
1223 
1224 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1225 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1226 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1227 
1228 	/* Initialize the ring buffer's read and write pointers */
1229 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1230 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1231 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1232 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1233 
1234 	/* set the wb address whether it's enabled or not */
1235 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1236 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1237 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1238 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1239 
1240 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1241 				RPTR_WRITEBACK_ENABLE, 1);
1242 
1243 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1244 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1245 
1246 	ring->wptr = 0;
1247 
1248 	/* before programing wptr to a less value, need set minor_ptr_update first */
1249 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1250 
1251 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1252 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1253 
1254 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1255 				 ring->use_doorbell);
1256 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1257 					SDMA0_PAGE_DOORBELL_OFFSET,
1258 					OFFSET, ring->doorbell_index);
1259 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1260 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1261 
1262 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1263 	sdma_v4_0_page_ring_set_wptr(ring);
1264 
1265 	/* set minor_ptr_update to 0 after wptr programed */
1266 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1267 
1268 	/* setup the wptr shadow polling */
1269 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1270 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1271 		    lower_32_bits(wptr_gpu_addr));
1272 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1273 		    upper_32_bits(wptr_gpu_addr));
1274 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1275 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1276 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1277 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1278 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1279 
1280 	/* enable DMA RB */
1281 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1282 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1283 
1284 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1285 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1286 #ifdef __BIG_ENDIAN
1287 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1288 #endif
1289 	/* enable DMA IBs */
1290 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1291 
1292 	ring->sched.ready = true;
1293 }
1294 
1295 static void
1296 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1297 {
1298 	uint32_t def, data;
1299 
1300 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1301 		/* enable idle interrupt */
1302 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1303 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1304 
1305 		if (data != def)
1306 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1307 	} else {
1308 		/* disable idle interrupt */
1309 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1310 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1311 		if (data != def)
1312 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1313 	}
1314 }
1315 
1316 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1317 {
1318 	uint32_t def, data;
1319 
1320 	/* Enable HW based PG. */
1321 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1322 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1323 	if (data != def)
1324 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1325 
1326 	/* enable interrupt */
1327 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1328 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1329 	if (data != def)
1330 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1331 
1332 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1333 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1334 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1335 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1336 	/* Configure switch time for hysteresis purpose. Use default right now */
1337 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1338 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1339 	if(data != def)
1340 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1341 }
1342 
1343 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1344 {
1345 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1346 		return;
1347 
1348 	switch (adev->asic_type) {
1349 	case CHIP_RAVEN:
1350 	case CHIP_RENOIR:
1351 		sdma_v4_1_init_power_gating(adev);
1352 		sdma_v4_1_update_power_gating(adev, true);
1353 		break;
1354 	default:
1355 		break;
1356 	}
1357 }
1358 
1359 /**
1360  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1361  *
1362  * @adev: amdgpu_device pointer
1363  *
1364  * Set up the compute DMA queues and enable them (VEGA10).
1365  * Returns 0 for success, error for failure.
1366  */
1367 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1368 {
1369 	sdma_v4_0_init_pg(adev);
1370 
1371 	return 0;
1372 }
1373 
1374 /**
1375  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1376  *
1377  * @adev: amdgpu_device pointer
1378  *
1379  * Loads the sDMA0/1 ucode.
1380  * Returns 0 for success, -EINVAL if the ucode is not available.
1381  */
1382 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1383 {
1384 	const struct sdma_firmware_header_v1_0 *hdr;
1385 	const __le32 *fw_data;
1386 	u32 fw_size;
1387 	int i, j;
1388 
1389 	/* halt the MEs */
1390 	sdma_v4_0_enable(adev, false);
1391 
1392 	for (i = 0; i < adev->sdma.num_instances; i++) {
1393 		if (!adev->sdma.instance[i].fw)
1394 			return -EINVAL;
1395 
1396 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1397 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1398 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1399 
1400 		fw_data = (const __le32 *)
1401 			(adev->sdma.instance[i].fw->data +
1402 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1403 
1404 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1405 
1406 		for (j = 0; j < fw_size; j++)
1407 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1408 				    le32_to_cpup(fw_data++));
1409 
1410 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1411 			    adev->sdma.instance[i].fw_version);
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * sdma_v4_0_start - setup and start the async dma engines
1419  *
1420  * @adev: amdgpu_device pointer
1421  *
1422  * Set up the DMA engines and enable them (VEGA10).
1423  * Returns 0 for success, error for failure.
1424  */
1425 static int sdma_v4_0_start(struct amdgpu_device *adev)
1426 {
1427 	struct amdgpu_ring *ring;
1428 	int i, r = 0;
1429 
1430 	if (amdgpu_sriov_vf(adev)) {
1431 		sdma_v4_0_ctx_switch_enable(adev, false);
1432 		sdma_v4_0_enable(adev, false);
1433 	} else {
1434 
1435 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1436 			r = sdma_v4_0_load_microcode(adev);
1437 			if (r)
1438 				return r;
1439 		}
1440 
1441 		/* unhalt the MEs */
1442 		sdma_v4_0_enable(adev, true);
1443 		/* enable sdma ring preemption */
1444 		sdma_v4_0_ctx_switch_enable(adev, true);
1445 	}
1446 
1447 	/* start the gfx rings and rlc compute queues */
1448 	for (i = 0; i < adev->sdma.num_instances; i++) {
1449 		uint32_t temp;
1450 
1451 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1452 		sdma_v4_0_gfx_resume(adev, i);
1453 		if (adev->sdma.has_page_queue)
1454 			sdma_v4_0_page_resume(adev, i);
1455 
1456 		/* set utc l1 enable flag always to 1 */
1457 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1458 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1459 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1460 
1461 		if (!amdgpu_sriov_vf(adev)) {
1462 			/* unhalt engine */
1463 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1464 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1465 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1466 		}
1467 	}
1468 
1469 	if (amdgpu_sriov_vf(adev)) {
1470 		sdma_v4_0_ctx_switch_enable(adev, true);
1471 		sdma_v4_0_enable(adev, true);
1472 	} else {
1473 		r = sdma_v4_0_rlc_resume(adev);
1474 		if (r)
1475 			return r;
1476 	}
1477 
1478 	for (i = 0; i < adev->sdma.num_instances; i++) {
1479 		ring = &adev->sdma.instance[i].ring;
1480 
1481 		r = amdgpu_ring_test_helper(ring);
1482 		if (r)
1483 			return r;
1484 
1485 		if (adev->sdma.has_page_queue) {
1486 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1487 
1488 			r = amdgpu_ring_test_helper(page);
1489 			if (r)
1490 				return r;
1491 
1492 			if (adev->mman.buffer_funcs_ring == page)
1493 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1494 		}
1495 
1496 		if (adev->mman.buffer_funcs_ring == ring)
1497 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1498 	}
1499 
1500 	return r;
1501 }
1502 
1503 /**
1504  * sdma_v4_0_ring_test_ring - simple async dma engine test
1505  *
1506  * @ring: amdgpu_ring structure holding ring information
1507  *
1508  * Test the DMA engine by writing using it to write an
1509  * value to memory. (VEGA10).
1510  * Returns 0 for success, error for failure.
1511  */
1512 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1513 {
1514 	struct amdgpu_device *adev = ring->adev;
1515 	unsigned i;
1516 	unsigned index;
1517 	int r;
1518 	u32 tmp;
1519 	u64 gpu_addr;
1520 
1521 	r = amdgpu_device_wb_get(adev, &index);
1522 	if (r)
1523 		return r;
1524 
1525 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1526 	tmp = 0xCAFEDEAD;
1527 	adev->wb.wb[index] = cpu_to_le32(tmp);
1528 
1529 	r = amdgpu_ring_alloc(ring, 5);
1530 	if (r)
1531 		goto error_free_wb;
1532 
1533 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1534 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1535 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1536 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1537 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1538 	amdgpu_ring_write(ring, 0xDEADBEEF);
1539 	amdgpu_ring_commit(ring);
1540 
1541 	for (i = 0; i < adev->usec_timeout; i++) {
1542 		tmp = le32_to_cpu(adev->wb.wb[index]);
1543 		if (tmp == 0xDEADBEEF)
1544 			break;
1545 		udelay(1);
1546 	}
1547 
1548 	if (i >= adev->usec_timeout)
1549 		r = -ETIMEDOUT;
1550 
1551 error_free_wb:
1552 	amdgpu_device_wb_free(adev, index);
1553 	return r;
1554 }
1555 
1556 /**
1557  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1558  *
1559  * @ring: amdgpu_ring structure holding ring information
1560  *
1561  * Test a simple IB in the DMA ring (VEGA10).
1562  * Returns 0 on success, error on failure.
1563  */
1564 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1565 {
1566 	struct amdgpu_device *adev = ring->adev;
1567 	struct amdgpu_ib ib;
1568 	struct dma_fence *f = NULL;
1569 	unsigned index;
1570 	long r;
1571 	u32 tmp = 0;
1572 	u64 gpu_addr;
1573 
1574 	r = amdgpu_device_wb_get(adev, &index);
1575 	if (r)
1576 		return r;
1577 
1578 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1579 	tmp = 0xCAFEDEAD;
1580 	adev->wb.wb[index] = cpu_to_le32(tmp);
1581 	memset(&ib, 0, sizeof(ib));
1582 	r = amdgpu_ib_get(adev, NULL, 256,
1583 					AMDGPU_IB_POOL_DIRECT, &ib);
1584 	if (r)
1585 		goto err0;
1586 
1587 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1588 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1589 	ib.ptr[1] = lower_32_bits(gpu_addr);
1590 	ib.ptr[2] = upper_32_bits(gpu_addr);
1591 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1592 	ib.ptr[4] = 0xDEADBEEF;
1593 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1594 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1595 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1596 	ib.length_dw = 8;
1597 
1598 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1599 	if (r)
1600 		goto err1;
1601 
1602 	r = dma_fence_wait_timeout(f, false, timeout);
1603 	if (r == 0) {
1604 		r = -ETIMEDOUT;
1605 		goto err1;
1606 	} else if (r < 0) {
1607 		goto err1;
1608 	}
1609 	tmp = le32_to_cpu(adev->wb.wb[index]);
1610 	if (tmp == 0xDEADBEEF)
1611 		r = 0;
1612 	else
1613 		r = -EINVAL;
1614 
1615 err1:
1616 	amdgpu_ib_free(adev, &ib, NULL);
1617 	dma_fence_put(f);
1618 err0:
1619 	amdgpu_device_wb_free(adev, index);
1620 	return r;
1621 }
1622 
1623 
1624 /**
1625  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1626  *
1627  * @ib: indirect buffer to fill with commands
1628  * @pe: addr of the page entry
1629  * @src: src addr to copy from
1630  * @count: number of page entries to update
1631  *
1632  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1633  */
1634 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1635 				  uint64_t pe, uint64_t src,
1636 				  unsigned count)
1637 {
1638 	unsigned bytes = count * 8;
1639 
1640 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1641 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1642 	ib->ptr[ib->length_dw++] = bytes - 1;
1643 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1644 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1645 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1646 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1647 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1648 
1649 }
1650 
1651 /**
1652  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1653  *
1654  * @ib: indirect buffer to fill with commands
1655  * @pe: addr of the page entry
1656  * @addr: dst addr to write into pe
1657  * @count: number of page entries to update
1658  * @incr: increase next addr by incr bytes
1659  * @flags: access flags
1660  *
1661  * Update PTEs by writing them manually using sDMA (VEGA10).
1662  */
1663 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1664 				   uint64_t value, unsigned count,
1665 				   uint32_t incr)
1666 {
1667 	unsigned ndw = count * 2;
1668 
1669 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1670 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1671 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1672 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1673 	ib->ptr[ib->length_dw++] = ndw - 1;
1674 	for (; ndw > 0; ndw -= 2) {
1675 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1676 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1677 		value += incr;
1678 	}
1679 }
1680 
1681 /**
1682  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1683  *
1684  * @ib: indirect buffer to fill with commands
1685  * @pe: addr of the page entry
1686  * @addr: dst addr to write into pe
1687  * @count: number of page entries to update
1688  * @incr: increase next addr by incr bytes
1689  * @flags: access flags
1690  *
1691  * Update the page tables using sDMA (VEGA10).
1692  */
1693 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1694 				     uint64_t pe,
1695 				     uint64_t addr, unsigned count,
1696 				     uint32_t incr, uint64_t flags)
1697 {
1698 	/* for physically contiguous pages (vram) */
1699 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1700 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1701 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1702 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1703 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1704 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1705 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1706 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1707 	ib->ptr[ib->length_dw++] = 0;
1708 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1709 }
1710 
1711 /**
1712  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1713  *
1714  * @ib: indirect buffer to fill with padding
1715  *
1716  */
1717 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1718 {
1719 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1720 	u32 pad_count;
1721 	int i;
1722 
1723 	pad_count = (-ib->length_dw) & 7;
1724 	for (i = 0; i < pad_count; i++)
1725 		if (sdma && sdma->burst_nop && (i == 0))
1726 			ib->ptr[ib->length_dw++] =
1727 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1728 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1729 		else
1730 			ib->ptr[ib->length_dw++] =
1731 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1732 }
1733 
1734 
1735 /**
1736  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1737  *
1738  * @ring: amdgpu_ring pointer
1739  *
1740  * Make sure all previous operations are completed (CIK).
1741  */
1742 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1743 {
1744 	uint32_t seq = ring->fence_drv.sync_seq;
1745 	uint64_t addr = ring->fence_drv.gpu_addr;
1746 
1747 	/* wait for idle */
1748 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1749 			       addr & 0xfffffffc,
1750 			       upper_32_bits(addr) & 0xffffffff,
1751 			       seq, 0xffffffff, 4);
1752 }
1753 
1754 
1755 /**
1756  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1757  *
1758  * @ring: amdgpu_ring pointer
1759  * @vm: amdgpu_vm pointer
1760  *
1761  * Update the page table base and flush the VM TLB
1762  * using sDMA (VEGA10).
1763  */
1764 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1765 					 unsigned vmid, uint64_t pd_addr)
1766 {
1767 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1768 }
1769 
1770 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1771 				     uint32_t reg, uint32_t val)
1772 {
1773 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1774 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1775 	amdgpu_ring_write(ring, reg);
1776 	amdgpu_ring_write(ring, val);
1777 }
1778 
1779 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1780 					 uint32_t val, uint32_t mask)
1781 {
1782 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1783 }
1784 
1785 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1786 {
1787 	uint fw_version = adev->sdma.instance[0].fw_version;
1788 
1789 	switch (adev->asic_type) {
1790 	case CHIP_VEGA10:
1791 		return fw_version >= 430;
1792 	case CHIP_VEGA12:
1793 		/*return fw_version >= 31;*/
1794 		return false;
1795 	case CHIP_VEGA20:
1796 		return fw_version >= 123;
1797 	default:
1798 		return false;
1799 	}
1800 }
1801 
1802 static int sdma_v4_0_early_init(void *handle)
1803 {
1804 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1805 	int r;
1806 
1807 	if (adev->flags & AMD_IS_APU)
1808 		adev->sdma.num_instances = 1;
1809 	else if (adev->asic_type == CHIP_ARCTURUS)
1810 		adev->sdma.num_instances = 8;
1811 	else
1812 		adev->sdma.num_instances = 2;
1813 
1814 	r = sdma_v4_0_init_microcode(adev);
1815 	if (r) {
1816 		DRM_ERROR("Failed to load sdma firmware!\n");
1817 		return r;
1818 	}
1819 
1820 	/* TODO: Page queue breaks driver reload under SRIOV */
1821 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1822 		adev->sdma.has_page_queue = false;
1823 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1824 		adev->sdma.has_page_queue = true;
1825 
1826 	sdma_v4_0_set_ring_funcs(adev);
1827 	sdma_v4_0_set_buffer_funcs(adev);
1828 	sdma_v4_0_set_vm_pte_funcs(adev);
1829 	sdma_v4_0_set_irq_funcs(adev);
1830 	sdma_v4_0_set_ras_funcs(adev);
1831 
1832 	return 0;
1833 }
1834 
1835 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1836 		void *err_data,
1837 		struct amdgpu_iv_entry *entry);
1838 
1839 static int sdma_v4_0_late_init(void *handle)
1840 {
1841 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1842 	struct ras_ih_if ih_info = {
1843 		.cb = sdma_v4_0_process_ras_data_cb,
1844 	};
1845 
1846 	sdma_v4_0_setup_ulv(adev);
1847 
1848 	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1849 		adev->sdma.funcs->reset_ras_error_count(adev);
1850 
1851 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1852 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1853 	else
1854 		return 0;
1855 }
1856 
1857 static int sdma_v4_0_sw_init(void *handle)
1858 {
1859 	struct amdgpu_ring *ring;
1860 	int r, i;
1861 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1862 
1863 	/* SDMA trap event */
1864 	for (i = 0; i < adev->sdma.num_instances; i++) {
1865 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1866 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1867 				      &adev->sdma.trap_irq);
1868 		if (r)
1869 			return r;
1870 	}
1871 
1872 	/* SDMA SRAM ECC event */
1873 	for (i = 0; i < adev->sdma.num_instances; i++) {
1874 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1875 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1876 				      &adev->sdma.ecc_irq);
1877 		if (r)
1878 			return r;
1879 	}
1880 
1881 	for (i = 0; i < adev->sdma.num_instances; i++) {
1882 		ring = &adev->sdma.instance[i].ring;
1883 		ring->ring_obj = NULL;
1884 		ring->use_doorbell = true;
1885 
1886 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1887 				ring->use_doorbell?"true":"false");
1888 
1889 		/* doorbell size is 2 dwords, get DWORD offset */
1890 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1891 
1892 		sprintf(ring->name, "sdma%d", i);
1893 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1894 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1895 				     AMDGPU_RING_PRIO_DEFAULT);
1896 		if (r)
1897 			return r;
1898 
1899 		if (adev->sdma.has_page_queue) {
1900 			ring = &adev->sdma.instance[i].page;
1901 			ring->ring_obj = NULL;
1902 			ring->use_doorbell = true;
1903 
1904 			/* paging queue use same doorbell index/routing as gfx queue
1905 			 * with 0x400 (4096 dwords) offset on second doorbell page
1906 			 */
1907 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1908 			ring->doorbell_index += 0x400;
1909 
1910 			sprintf(ring->name, "page%d", i);
1911 			r = amdgpu_ring_init(adev, ring, 1024,
1912 					     &adev->sdma.trap_irq,
1913 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1914 					     AMDGPU_RING_PRIO_DEFAULT);
1915 			if (r)
1916 				return r;
1917 		}
1918 	}
1919 
1920 	return r;
1921 }
1922 
1923 static int sdma_v4_0_sw_fini(void *handle)
1924 {
1925 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1926 	int i;
1927 
1928 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1929 		adev->sdma.funcs->ras_fini(adev);
1930 
1931 	for (i = 0; i < adev->sdma.num_instances; i++) {
1932 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1933 		if (adev->sdma.has_page_queue)
1934 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1935 	}
1936 
1937 	sdma_v4_0_destroy_inst_ctx(adev);
1938 
1939 	return 0;
1940 }
1941 
1942 static int sdma_v4_0_hw_init(void *handle)
1943 {
1944 	int r;
1945 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1946 
1947 	if (adev->flags & AMD_IS_APU)
1948 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1949 
1950 	if (!amdgpu_sriov_vf(adev))
1951 		sdma_v4_0_init_golden_registers(adev);
1952 
1953 	r = sdma_v4_0_start(adev);
1954 
1955 	return r;
1956 }
1957 
1958 static int sdma_v4_0_hw_fini(void *handle)
1959 {
1960 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1961 	int i;
1962 
1963 	if (amdgpu_sriov_vf(adev))
1964 		return 0;
1965 
1966 	for (i = 0; i < adev->sdma.num_instances; i++) {
1967 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1968 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1969 	}
1970 
1971 	sdma_v4_0_ctx_switch_enable(adev, false);
1972 	sdma_v4_0_enable(adev, false);
1973 
1974 	if (adev->flags & AMD_IS_APU)
1975 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1976 
1977 	return 0;
1978 }
1979 
1980 static int sdma_v4_0_suspend(void *handle)
1981 {
1982 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1983 
1984 	return sdma_v4_0_hw_fini(adev);
1985 }
1986 
1987 static int sdma_v4_0_resume(void *handle)
1988 {
1989 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1990 
1991 	return sdma_v4_0_hw_init(adev);
1992 }
1993 
1994 static bool sdma_v4_0_is_idle(void *handle)
1995 {
1996 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1997 	u32 i;
1998 
1999 	for (i = 0; i < adev->sdma.num_instances; i++) {
2000 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2001 
2002 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2003 			return false;
2004 	}
2005 
2006 	return true;
2007 }
2008 
2009 static int sdma_v4_0_wait_for_idle(void *handle)
2010 {
2011 	unsigned i, j;
2012 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2013 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2014 
2015 	for (i = 0; i < adev->usec_timeout; i++) {
2016 		for (j = 0; j < adev->sdma.num_instances; j++) {
2017 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2018 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2019 				break;
2020 		}
2021 		if (j == adev->sdma.num_instances)
2022 			return 0;
2023 		udelay(1);
2024 	}
2025 	return -ETIMEDOUT;
2026 }
2027 
2028 static int sdma_v4_0_soft_reset(void *handle)
2029 {
2030 	/* todo */
2031 
2032 	return 0;
2033 }
2034 
2035 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2036 					struct amdgpu_irq_src *source,
2037 					unsigned type,
2038 					enum amdgpu_interrupt_state state)
2039 {
2040 	u32 sdma_cntl;
2041 
2042 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2043 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2044 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2045 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2046 
2047 	return 0;
2048 }
2049 
2050 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2051 				      struct amdgpu_irq_src *source,
2052 				      struct amdgpu_iv_entry *entry)
2053 {
2054 	uint32_t instance;
2055 
2056 	DRM_DEBUG("IH: SDMA trap\n");
2057 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2058 	switch (entry->ring_id) {
2059 	case 0:
2060 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2061 		break;
2062 	case 1:
2063 		if (adev->asic_type == CHIP_VEGA20)
2064 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2065 		break;
2066 	case 2:
2067 		/* XXX compute */
2068 		break;
2069 	case 3:
2070 		if (adev->asic_type != CHIP_VEGA20)
2071 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2072 		break;
2073 	}
2074 	return 0;
2075 }
2076 
2077 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2078 		void *err_data,
2079 		struct amdgpu_iv_entry *entry)
2080 {
2081 	int instance;
2082 
2083 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2084 	 * be disabled and the driver should only look for the aggregated
2085 	 * interrupt via sync flood
2086 	 */
2087 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2088 		goto out;
2089 
2090 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2091 	if (instance < 0)
2092 		goto out;
2093 
2094 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2095 
2096 out:
2097 	return AMDGPU_RAS_SUCCESS;
2098 }
2099 
2100 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2101 					      struct amdgpu_irq_src *source,
2102 					      struct amdgpu_iv_entry *entry)
2103 {
2104 	int instance;
2105 
2106 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2107 
2108 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2109 	if (instance < 0)
2110 		return 0;
2111 
2112 	switch (entry->ring_id) {
2113 	case 0:
2114 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2115 		break;
2116 	}
2117 	return 0;
2118 }
2119 
2120 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2121 					struct amdgpu_irq_src *source,
2122 					unsigned type,
2123 					enum amdgpu_interrupt_state state)
2124 {
2125 	u32 sdma_edc_config;
2126 
2127 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2128 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2129 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2130 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2131 
2132 	return 0;
2133 }
2134 
2135 static void sdma_v4_0_update_medium_grain_clock_gating(
2136 		struct amdgpu_device *adev,
2137 		bool enable)
2138 {
2139 	uint32_t data, def;
2140 	int i;
2141 
2142 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2143 		for (i = 0; i < adev->sdma.num_instances; i++) {
2144 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2145 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2146 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2147 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2148 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2149 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2150 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2151 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2152 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2153 			if (def != data)
2154 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2155 		}
2156 	} else {
2157 		for (i = 0; i < adev->sdma.num_instances; i++) {
2158 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2159 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2160 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2161 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2162 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2163 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2164 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2165 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2166 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2167 			if (def != data)
2168 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2169 		}
2170 	}
2171 }
2172 
2173 
2174 static void sdma_v4_0_update_medium_grain_light_sleep(
2175 		struct amdgpu_device *adev,
2176 		bool enable)
2177 {
2178 	uint32_t data, def;
2179 	int i;
2180 
2181 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2182 		for (i = 0; i < adev->sdma.num_instances; i++) {
2183 			/* 1-not override: enable sdma mem light sleep */
2184 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2185 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2186 			if (def != data)
2187 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2188 		}
2189 	} else {
2190 		for (i = 0; i < adev->sdma.num_instances; i++) {
2191 		/* 0-override:disable sdma mem light sleep */
2192 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2193 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2194 			if (def != data)
2195 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2196 		}
2197 	}
2198 }
2199 
2200 static int sdma_v4_0_set_clockgating_state(void *handle,
2201 					  enum amd_clockgating_state state)
2202 {
2203 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2204 
2205 	if (amdgpu_sriov_vf(adev))
2206 		return 0;
2207 
2208 	switch (adev->asic_type) {
2209 	case CHIP_VEGA10:
2210 	case CHIP_VEGA12:
2211 	case CHIP_VEGA20:
2212 	case CHIP_RAVEN:
2213 	case CHIP_ARCTURUS:
2214 	case CHIP_RENOIR:
2215 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2216 				state == AMD_CG_STATE_GATE);
2217 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2218 				state == AMD_CG_STATE_GATE);
2219 		break;
2220 	default:
2221 		break;
2222 	}
2223 	return 0;
2224 }
2225 
2226 static int sdma_v4_0_set_powergating_state(void *handle,
2227 					  enum amd_powergating_state state)
2228 {
2229 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2230 
2231 	switch (adev->asic_type) {
2232 	case CHIP_RAVEN:
2233 	case CHIP_RENOIR:
2234 		sdma_v4_1_update_power_gating(adev,
2235 				state == AMD_PG_STATE_GATE ? true : false);
2236 		break;
2237 	default:
2238 		break;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2245 {
2246 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2247 	int data;
2248 
2249 	if (amdgpu_sriov_vf(adev))
2250 		*flags = 0;
2251 
2252 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2253 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2254 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2255 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2256 
2257 	/* AMD_CG_SUPPORT_SDMA_LS */
2258 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2259 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2260 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2261 }
2262 
2263 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2264 	.name = "sdma_v4_0",
2265 	.early_init = sdma_v4_0_early_init,
2266 	.late_init = sdma_v4_0_late_init,
2267 	.sw_init = sdma_v4_0_sw_init,
2268 	.sw_fini = sdma_v4_0_sw_fini,
2269 	.hw_init = sdma_v4_0_hw_init,
2270 	.hw_fini = sdma_v4_0_hw_fini,
2271 	.suspend = sdma_v4_0_suspend,
2272 	.resume = sdma_v4_0_resume,
2273 	.is_idle = sdma_v4_0_is_idle,
2274 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2275 	.soft_reset = sdma_v4_0_soft_reset,
2276 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2277 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2278 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2279 };
2280 
2281 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2282 	.type = AMDGPU_RING_TYPE_SDMA,
2283 	.align_mask = 0xf,
2284 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2285 	.support_64bit_ptrs = true,
2286 	.vmhub = AMDGPU_MMHUB_0,
2287 	.get_rptr = sdma_v4_0_ring_get_rptr,
2288 	.get_wptr = sdma_v4_0_ring_get_wptr,
2289 	.set_wptr = sdma_v4_0_ring_set_wptr,
2290 	.emit_frame_size =
2291 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2292 		3 + /* hdp invalidate */
2293 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2294 		/* sdma_v4_0_ring_emit_vm_flush */
2295 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2296 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2297 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2298 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2299 	.emit_ib = sdma_v4_0_ring_emit_ib,
2300 	.emit_fence = sdma_v4_0_ring_emit_fence,
2301 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2302 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2303 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2304 	.test_ring = sdma_v4_0_ring_test_ring,
2305 	.test_ib = sdma_v4_0_ring_test_ib,
2306 	.insert_nop = sdma_v4_0_ring_insert_nop,
2307 	.pad_ib = sdma_v4_0_ring_pad_ib,
2308 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2309 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2310 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2311 };
2312 
2313 /*
2314  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2315  * So create a individual constant ring_funcs for those instances.
2316  */
2317 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2318 	.type = AMDGPU_RING_TYPE_SDMA,
2319 	.align_mask = 0xf,
2320 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2321 	.support_64bit_ptrs = true,
2322 	.vmhub = AMDGPU_MMHUB_1,
2323 	.get_rptr = sdma_v4_0_ring_get_rptr,
2324 	.get_wptr = sdma_v4_0_ring_get_wptr,
2325 	.set_wptr = sdma_v4_0_ring_set_wptr,
2326 	.emit_frame_size =
2327 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2328 		3 + /* hdp invalidate */
2329 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2330 		/* sdma_v4_0_ring_emit_vm_flush */
2331 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2332 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2333 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2334 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2335 	.emit_ib = sdma_v4_0_ring_emit_ib,
2336 	.emit_fence = sdma_v4_0_ring_emit_fence,
2337 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2338 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2339 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2340 	.test_ring = sdma_v4_0_ring_test_ring,
2341 	.test_ib = sdma_v4_0_ring_test_ib,
2342 	.insert_nop = sdma_v4_0_ring_insert_nop,
2343 	.pad_ib = sdma_v4_0_ring_pad_ib,
2344 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2345 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2346 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2347 };
2348 
2349 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2350 	.type = AMDGPU_RING_TYPE_SDMA,
2351 	.align_mask = 0xf,
2352 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2353 	.support_64bit_ptrs = true,
2354 	.vmhub = AMDGPU_MMHUB_0,
2355 	.get_rptr = sdma_v4_0_ring_get_rptr,
2356 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2357 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2358 	.emit_frame_size =
2359 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2360 		3 + /* hdp invalidate */
2361 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2362 		/* sdma_v4_0_ring_emit_vm_flush */
2363 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2364 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2365 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2366 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2367 	.emit_ib = sdma_v4_0_ring_emit_ib,
2368 	.emit_fence = sdma_v4_0_ring_emit_fence,
2369 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2370 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2371 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2372 	.test_ring = sdma_v4_0_ring_test_ring,
2373 	.test_ib = sdma_v4_0_ring_test_ib,
2374 	.insert_nop = sdma_v4_0_ring_insert_nop,
2375 	.pad_ib = sdma_v4_0_ring_pad_ib,
2376 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2377 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2378 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2379 };
2380 
2381 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2382 	.type = AMDGPU_RING_TYPE_SDMA,
2383 	.align_mask = 0xf,
2384 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2385 	.support_64bit_ptrs = true,
2386 	.vmhub = AMDGPU_MMHUB_1,
2387 	.get_rptr = sdma_v4_0_ring_get_rptr,
2388 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2389 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2390 	.emit_frame_size =
2391 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2392 		3 + /* hdp invalidate */
2393 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2394 		/* sdma_v4_0_ring_emit_vm_flush */
2395 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2396 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2397 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2398 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2399 	.emit_ib = sdma_v4_0_ring_emit_ib,
2400 	.emit_fence = sdma_v4_0_ring_emit_fence,
2401 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2402 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2403 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2404 	.test_ring = sdma_v4_0_ring_test_ring,
2405 	.test_ib = sdma_v4_0_ring_test_ib,
2406 	.insert_nop = sdma_v4_0_ring_insert_nop,
2407 	.pad_ib = sdma_v4_0_ring_pad_ib,
2408 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2409 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2410 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2411 };
2412 
2413 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2414 {
2415 	int i;
2416 
2417 	for (i = 0; i < adev->sdma.num_instances; i++) {
2418 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2419 			adev->sdma.instance[i].ring.funcs =
2420 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2421 		else
2422 			adev->sdma.instance[i].ring.funcs =
2423 					&sdma_v4_0_ring_funcs;
2424 		adev->sdma.instance[i].ring.me = i;
2425 		if (adev->sdma.has_page_queue) {
2426 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2427 				adev->sdma.instance[i].page.funcs =
2428 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2429 			else
2430 				adev->sdma.instance[i].page.funcs =
2431 					&sdma_v4_0_page_ring_funcs;
2432 			adev->sdma.instance[i].page.me = i;
2433 		}
2434 	}
2435 }
2436 
2437 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2438 	.set = sdma_v4_0_set_trap_irq_state,
2439 	.process = sdma_v4_0_process_trap_irq,
2440 };
2441 
2442 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2443 	.process = sdma_v4_0_process_illegal_inst_irq,
2444 };
2445 
2446 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2447 	.set = sdma_v4_0_set_ecc_irq_state,
2448 	.process = amdgpu_sdma_process_ecc_irq,
2449 };
2450 
2451 
2452 
2453 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2454 {
2455 	switch (adev->sdma.num_instances) {
2456 	case 1:
2457 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2458 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2459 		break;
2460 	case 8:
2461 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2462 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2463 		break;
2464 	case 2:
2465 	default:
2466 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2467 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2468 		break;
2469 	}
2470 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2471 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2472 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2473 }
2474 
2475 /**
2476  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2477  *
2478  * @ring: amdgpu_ring structure holding ring information
2479  * @src_offset: src GPU address
2480  * @dst_offset: dst GPU address
2481  * @byte_count: number of bytes to xfer
2482  *
2483  * Copy GPU buffers using the DMA engine (VEGA10/12).
2484  * Used by the amdgpu ttm implementation to move pages if
2485  * registered as the asic copy callback.
2486  */
2487 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2488 				       uint64_t src_offset,
2489 				       uint64_t dst_offset,
2490 				       uint32_t byte_count,
2491 				       bool tmz)
2492 {
2493 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2494 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2495 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2496 	ib->ptr[ib->length_dw++] = byte_count - 1;
2497 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2498 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2499 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2500 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2501 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2502 }
2503 
2504 /**
2505  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2506  *
2507  * @ring: amdgpu_ring structure holding ring information
2508  * @src_data: value to write to buffer
2509  * @dst_offset: dst GPU address
2510  * @byte_count: number of bytes to xfer
2511  *
2512  * Fill GPU buffers using the DMA engine (VEGA10/12).
2513  */
2514 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2515 				       uint32_t src_data,
2516 				       uint64_t dst_offset,
2517 				       uint32_t byte_count)
2518 {
2519 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2520 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2521 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2522 	ib->ptr[ib->length_dw++] = src_data;
2523 	ib->ptr[ib->length_dw++] = byte_count - 1;
2524 }
2525 
2526 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2527 	.copy_max_bytes = 0x400000,
2528 	.copy_num_dw = 7,
2529 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2530 
2531 	.fill_max_bytes = 0x400000,
2532 	.fill_num_dw = 5,
2533 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2534 };
2535 
2536 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2537 {
2538 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2539 	if (adev->sdma.has_page_queue)
2540 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2541 	else
2542 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2543 }
2544 
2545 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2546 	.copy_pte_num_dw = 7,
2547 	.copy_pte = sdma_v4_0_vm_copy_pte,
2548 
2549 	.write_pte = sdma_v4_0_vm_write_pte,
2550 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2551 };
2552 
2553 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2554 {
2555 	struct drm_gpu_scheduler *sched;
2556 	unsigned i;
2557 
2558 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2559 	for (i = 0; i < adev->sdma.num_instances; i++) {
2560 		if (adev->sdma.has_page_queue)
2561 			sched = &adev->sdma.instance[i].page.sched;
2562 		else
2563 			sched = &adev->sdma.instance[i].ring.sched;
2564 		adev->vm_manager.vm_pte_scheds[i] = sched;
2565 	}
2566 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2567 }
2568 
2569 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2570 					uint32_t instance,
2571 					uint32_t *sec_count)
2572 {
2573 	uint32_t i;
2574 	uint32_t sec_cnt;
2575 
2576 	/* double bits error (multiple bits) error detection is not supported */
2577 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2578 		/* the SDMA_EDC_COUNTER register in each sdma instance
2579 		 * shares the same sed shift_mask
2580 		 * */
2581 		sec_cnt = (value &
2582 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2583 			sdma_v4_0_ras_fields[i].sec_count_shift;
2584 		if (sec_cnt) {
2585 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2586 				sdma_v4_0_ras_fields[i].name,
2587 				instance, sec_cnt);
2588 			*sec_count += sec_cnt;
2589 		}
2590 	}
2591 }
2592 
2593 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2594 			uint32_t instance, void *ras_error_status)
2595 {
2596 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2597 	uint32_t sec_count = 0;
2598 	uint32_t reg_value = 0;
2599 
2600 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2601 	/* double bit error is not supported */
2602 	if (reg_value)
2603 		sdma_v4_0_get_ras_error_count(reg_value,
2604 				instance, &sec_count);
2605 	/* err_data->ce_count should be initialized to 0
2606 	 * before calling into this function */
2607 	err_data->ce_count += sec_count;
2608 	/* double bit error is not supported
2609 	 * set ue count to 0 */
2610 	err_data->ue_count = 0;
2611 
2612 	return 0;
2613 };
2614 
2615 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2616 {
2617 	int i;
2618 
2619 	/* read back edc counter registers to clear the counters */
2620 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2621 		for (i = 0; i < adev->sdma.num_instances; i++)
2622 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2623 	}
2624 }
2625 
2626 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2627 	.ras_late_init = amdgpu_sdma_ras_late_init,
2628 	.ras_fini = amdgpu_sdma_ras_fini,
2629 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2630 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2631 };
2632 
2633 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2634 {
2635 	switch (adev->asic_type) {
2636 	case CHIP_VEGA20:
2637 	case CHIP_ARCTURUS:
2638 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2639 		break;
2640 	default:
2641 		break;
2642 	}
2643 }
2644 
2645 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2646 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2647 	.major = 4,
2648 	.minor = 0,
2649 	.rev = 0,
2650 	.funcs = &sdma_v4_0_ip_funcs,
2651 };
2652