1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75 
76 #define WREG32_SDMA(instance, offset, value) \
77 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80 
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86 
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114 
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124 
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134 
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148 
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152 
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213 
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219 
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225 
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261 
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274 
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276 	{ "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278 	0, 0,
279 	},
280 	{ "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282 	0, 0,
283 	},
284 	{ "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286 	0, 0,
287 	},
288 	{ "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290 	0, 0,
291 	},
292 	{ "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294 	0, 0,
295 	},
296 	{ "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298 	0, 0,
299 	},
300 	{ "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302 	0, 0,
303 	},
304 	{ "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306 	0, 0,
307 	},
308 	{ "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310 	0, 0,
311 	},
312 	{ "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314 	0, 0,
315 	},
316 	{ "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318 	0, 0,
319 	},
320 	{ "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322 	0, 0,
323 	},
324 	{ "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326 	0, 0,
327 	},
328 	{ "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330 	0, 0,
331 	},
332 	{ "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334 	0, 0,
335 	},
336 	{ "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338 	0, 0,
339 	},
340 	{ "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342 	0, 0,
343 	},
344 	{ "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346 	0, 0,
347 	},
348 	{ "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350 	0, 0,
351 	},
352 	{ "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354 	0, 0,
355 	},
356 	{ "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358 	0, 0,
359 	},
360 	{ "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362 	0, 0,
363 	},
364 	{ "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366 	0, 0,
367 	},
368 	{ "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 	SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370 	0, 0,
371 	},
372 };
373 
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375 		u32 instance, u32 offset)
376 {
377 	switch (instance) {
378 	case 0:
379 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380 	case 1:
381 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382 	case 2:
383 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384 	case 3:
385 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386 	case 4:
387 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388 	case 5:
389 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390 	case 6:
391 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392 	case 7:
393 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394 	default:
395 		break;
396 	}
397 	return 0;
398 }
399 
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402 	switch (seq_num) {
403 	case 0:
404 		return SOC15_IH_CLIENTID_SDMA0;
405 	case 1:
406 		return SOC15_IH_CLIENTID_SDMA1;
407 	case 2:
408 		return SOC15_IH_CLIENTID_SDMA2;
409 	case 3:
410 		return SOC15_IH_CLIENTID_SDMA3;
411 	case 4:
412 		return SOC15_IH_CLIENTID_SDMA4;
413 	case 5:
414 		return SOC15_IH_CLIENTID_SDMA5;
415 	case 6:
416 		return SOC15_IH_CLIENTID_SDMA6;
417 	case 7:
418 		return SOC15_IH_CLIENTID_SDMA7;
419 	default:
420 		break;
421 	}
422 	return -EINVAL;
423 }
424 
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427 	switch (client_id) {
428 	case SOC15_IH_CLIENTID_SDMA0:
429 		return 0;
430 	case SOC15_IH_CLIENTID_SDMA1:
431 		return 1;
432 	case SOC15_IH_CLIENTID_SDMA2:
433 		return 2;
434 	case SOC15_IH_CLIENTID_SDMA3:
435 		return 3;
436 	case SOC15_IH_CLIENTID_SDMA4:
437 		return 4;
438 	case SOC15_IH_CLIENTID_SDMA5:
439 		return 5;
440 	case SOC15_IH_CLIENTID_SDMA6:
441 		return 6;
442 	case SOC15_IH_CLIENTID_SDMA7:
443 		return 7;
444 	default:
445 		break;
446 	}
447 	return -EINVAL;
448 }
449 
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452 	switch (adev->asic_type) {
453 	case CHIP_VEGA10:
454 		soc15_program_register_sequence(adev,
455 						golden_settings_sdma_4,
456 						ARRAY_SIZE(golden_settings_sdma_4));
457 		soc15_program_register_sequence(adev,
458 						golden_settings_sdma_vg10,
459 						ARRAY_SIZE(golden_settings_sdma_vg10));
460 		break;
461 	case CHIP_VEGA12:
462 		soc15_program_register_sequence(adev,
463 						golden_settings_sdma_4,
464 						ARRAY_SIZE(golden_settings_sdma_4));
465 		soc15_program_register_sequence(adev,
466 						golden_settings_sdma_vg12,
467 						ARRAY_SIZE(golden_settings_sdma_vg12));
468 		break;
469 	case CHIP_VEGA20:
470 		soc15_program_register_sequence(adev,
471 						golden_settings_sdma0_4_2_init,
472 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473 		soc15_program_register_sequence(adev,
474 						golden_settings_sdma0_4_2,
475 						ARRAY_SIZE(golden_settings_sdma0_4_2));
476 		soc15_program_register_sequence(adev,
477 						golden_settings_sdma1_4_2,
478 						ARRAY_SIZE(golden_settings_sdma1_4_2));
479 		break;
480 	case CHIP_ARCTURUS:
481 		soc15_program_register_sequence(adev,
482 						golden_settings_sdma_arct,
483 						ARRAY_SIZE(golden_settings_sdma_arct));
484 		break;
485 	case CHIP_RAVEN:
486 		soc15_program_register_sequence(adev,
487 						golden_settings_sdma_4_1,
488 						ARRAY_SIZE(golden_settings_sdma_4_1));
489 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
490 			soc15_program_register_sequence(adev,
491 							golden_settings_sdma_rv2,
492 							ARRAY_SIZE(golden_settings_sdma_rv2));
493 		else
494 			soc15_program_register_sequence(adev,
495 							golden_settings_sdma_rv1,
496 							ARRAY_SIZE(golden_settings_sdma_rv1));
497 		break;
498 	case CHIP_RENOIR:
499 		soc15_program_register_sequence(adev,
500 						golden_settings_sdma_4_3,
501 						ARRAY_SIZE(golden_settings_sdma_4_3));
502 		break;
503 	default:
504 		break;
505 	}
506 }
507 
508 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
509 {
510 	int i;
511 
512 	/*
513 	 * The only chips with SDMAv4 and ULV are VG10 and VG20.
514 	 * Server SKUs take a different hysteresis setting from other SKUs.
515 	 */
516 	switch (adev->asic_type) {
517 	case CHIP_VEGA10:
518 		if (adev->pdev->device == 0x6860)
519 			break;
520 		return;
521 	case CHIP_VEGA20:
522 		if (adev->pdev->device == 0x66a1)
523 			break;
524 		return;
525 	default:
526 		return;
527 	}
528 
529 	for (i = 0; i < adev->sdma.num_instances; i++) {
530 		uint32_t temp;
531 
532 		temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
533 		temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
534 		WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
535 	}
536 }
537 
538 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
539 {
540 	int err = 0;
541 	const struct sdma_firmware_header_v1_0 *hdr;
542 
543 	err = amdgpu_ucode_validate(sdma_inst->fw);
544 	if (err)
545 		return err;
546 
547 	hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
548 	sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
549 	sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
550 
551 	if (sdma_inst->feature_version >= 20)
552 		sdma_inst->burst_nop = true;
553 
554 	return 0;
555 }
556 
557 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
558 {
559 	int i;
560 
561 	for (i = 0; i < adev->sdma.num_instances; i++) {
562 		release_firmware(adev->sdma.instance[i].fw);
563 		adev->sdma.instance[i].fw = NULL;
564 
565 		/* arcturus shares the same FW memory across
566 		   all SDMA isntances */
567 		if (adev->asic_type == CHIP_ARCTURUS)
568 			break;
569 	}
570 
571 	memset((void*)adev->sdma.instance, 0,
572 		sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
573 }
574 
575 /**
576  * sdma_v4_0_init_microcode - load ucode images from disk
577  *
578  * @adev: amdgpu_device pointer
579  *
580  * Use the firmware interface to load the ucode images into
581  * the driver (not loaded into hw).
582  * Returns 0 on success, error on failure.
583  */
584 
585 // emulation only, won't work on real chip
586 // vega10 real chip need to use PSP to load firmware
587 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
588 {
589 	const char *chip_name;
590 	char fw_name[30];
591 	int err = 0, i;
592 	struct amdgpu_firmware_info *info = NULL;
593 	const struct common_firmware_header *header = NULL;
594 
595 	DRM_DEBUG("\n");
596 
597 	switch (adev->asic_type) {
598 	case CHIP_VEGA10:
599 		chip_name = "vega10";
600 		break;
601 	case CHIP_VEGA12:
602 		chip_name = "vega12";
603 		break;
604 	case CHIP_VEGA20:
605 		chip_name = "vega20";
606 		break;
607 	case CHIP_RAVEN:
608 		if (adev->apu_flags & AMD_APU_IS_RAVEN2)
609 			chip_name = "raven2";
610 		else if (adev->apu_flags & AMD_APU_IS_PICASSO)
611 			chip_name = "picasso";
612 		else
613 			chip_name = "raven";
614 		break;
615 	case CHIP_ARCTURUS:
616 		chip_name = "arcturus";
617 		break;
618 	case CHIP_RENOIR:
619 		chip_name = "renoir";
620 		break;
621 	default:
622 		BUG();
623 	}
624 
625 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
626 
627 	err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
628 	if (err)
629 		goto out;
630 
631 	err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
632 	if (err)
633 		goto out;
634 
635 	for (i = 1; i < adev->sdma.num_instances; i++) {
636 		if (adev->asic_type == CHIP_ARCTURUS) {
637 			/* Acturus will leverage the same FW memory
638 			   for every SDMA instance */
639 			memcpy((void*)&adev->sdma.instance[i],
640 			       (void*)&adev->sdma.instance[0],
641 			       sizeof(struct amdgpu_sdma_instance));
642 		}
643 		else {
644 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
645 
646 			err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
647 			if (err)
648 				goto out;
649 
650 			err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
651 			if (err)
652 				goto out;
653 		}
654 	}
655 
656 	DRM_DEBUG("psp_load == '%s'\n",
657 		adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
658 
659 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
660 		for (i = 0; i < adev->sdma.num_instances; i++) {
661 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
662 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
663 			info->fw = adev->sdma.instance[i].fw;
664 			header = (const struct common_firmware_header *)info->fw->data;
665 			adev->firmware.fw_size +=
666 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
667 		}
668 	}
669 
670 out:
671 	if (err) {
672 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
673 		sdma_v4_0_destroy_inst_ctx(adev);
674 	}
675 	return err;
676 }
677 
678 /**
679  * sdma_v4_0_ring_get_rptr - get the current read pointer
680  *
681  * @ring: amdgpu ring pointer
682  *
683  * Get the current rptr from the hardware (VEGA10+).
684  */
685 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
686 {
687 	u64 *rptr;
688 
689 	/* XXX check if swapping is necessary on BE */
690 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
691 
692 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
693 	return ((*rptr) >> 2);
694 }
695 
696 /**
697  * sdma_v4_0_ring_get_wptr - get the current write pointer
698  *
699  * @ring: amdgpu ring pointer
700  *
701  * Get the current wptr from the hardware (VEGA10+).
702  */
703 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
704 {
705 	struct amdgpu_device *adev = ring->adev;
706 	u64 wptr;
707 
708 	if (ring->use_doorbell) {
709 		/* XXX check if swapping is necessary on BE */
710 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
711 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
712 	} else {
713 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
714 		wptr = wptr << 32;
715 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
716 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
717 				ring->me, wptr);
718 	}
719 
720 	return wptr >> 2;
721 }
722 
723 /**
724  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
725  *
726  * @ring: amdgpu ring pointer
727  *
728  * Write the wptr back to the hardware (VEGA10+).
729  */
730 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
731 {
732 	struct amdgpu_device *adev = ring->adev;
733 
734 	DRM_DEBUG("Setting write pointer\n");
735 	if (ring->use_doorbell) {
736 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
737 
738 		DRM_DEBUG("Using doorbell -- "
739 				"wptr_offs == 0x%08x "
740 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
741 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
742 				ring->wptr_offs,
743 				lower_32_bits(ring->wptr << 2),
744 				upper_32_bits(ring->wptr << 2));
745 		/* XXX check if swapping is necessary on BE */
746 		WRITE_ONCE(*wb, (ring->wptr << 2));
747 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
748 				ring->doorbell_index, ring->wptr << 2);
749 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
750 	} else {
751 		DRM_DEBUG("Not using doorbell -- "
752 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
753 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
754 				ring->me,
755 				lower_32_bits(ring->wptr << 2),
756 				ring->me,
757 				upper_32_bits(ring->wptr << 2));
758 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
759 			    lower_32_bits(ring->wptr << 2));
760 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
761 			    upper_32_bits(ring->wptr << 2));
762 	}
763 }
764 
765 /**
766  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
767  *
768  * @ring: amdgpu ring pointer
769  *
770  * Get the current wptr from the hardware (VEGA10+).
771  */
772 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
773 {
774 	struct amdgpu_device *adev = ring->adev;
775 	u64 wptr;
776 
777 	if (ring->use_doorbell) {
778 		/* XXX check if swapping is necessary on BE */
779 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
780 	} else {
781 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
782 		wptr = wptr << 32;
783 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
784 	}
785 
786 	return wptr >> 2;
787 }
788 
789 /**
790  * sdma_v4_0_ring_set_wptr - commit the write pointer
791  *
792  * @ring: amdgpu ring pointer
793  *
794  * Write the wptr back to the hardware (VEGA10+).
795  */
796 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
797 {
798 	struct amdgpu_device *adev = ring->adev;
799 
800 	if (ring->use_doorbell) {
801 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
802 
803 		/* XXX check if swapping is necessary on BE */
804 		WRITE_ONCE(*wb, (ring->wptr << 2));
805 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
806 	} else {
807 		uint64_t wptr = ring->wptr << 2;
808 
809 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
810 			    lower_32_bits(wptr));
811 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
812 			    upper_32_bits(wptr));
813 	}
814 }
815 
816 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
817 {
818 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
819 	int i;
820 
821 	for (i = 0; i < count; i++)
822 		if (sdma && sdma->burst_nop && (i == 0))
823 			amdgpu_ring_write(ring, ring->funcs->nop |
824 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
825 		else
826 			amdgpu_ring_write(ring, ring->funcs->nop);
827 }
828 
829 /**
830  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
831  *
832  * @ring: amdgpu ring pointer
833  * @ib: IB object to schedule
834  *
835  * Schedule an IB in the DMA ring (VEGA10).
836  */
837 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
838 				   struct amdgpu_job *job,
839 				   struct amdgpu_ib *ib,
840 				   uint32_t flags)
841 {
842 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
843 
844 	/* IB packet must end on a 8 DW boundary */
845 	sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
846 
847 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
848 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
849 	/* base must be 32 byte aligned */
850 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
851 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
852 	amdgpu_ring_write(ring, ib->length_dw);
853 	amdgpu_ring_write(ring, 0);
854 	amdgpu_ring_write(ring, 0);
855 
856 }
857 
858 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
859 				   int mem_space, int hdp,
860 				   uint32_t addr0, uint32_t addr1,
861 				   uint32_t ref, uint32_t mask,
862 				   uint32_t inv)
863 {
864 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
865 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
866 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
867 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
868 	if (mem_space) {
869 		/* memory */
870 		amdgpu_ring_write(ring, addr0);
871 		amdgpu_ring_write(ring, addr1);
872 	} else {
873 		/* registers */
874 		amdgpu_ring_write(ring, addr0 << 2);
875 		amdgpu_ring_write(ring, addr1 << 2);
876 	}
877 	amdgpu_ring_write(ring, ref); /* reference */
878 	amdgpu_ring_write(ring, mask); /* mask */
879 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
880 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
881 }
882 
883 /**
884  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
885  *
886  * @ring: amdgpu ring pointer
887  *
888  * Emit an hdp flush packet on the requested DMA ring.
889  */
890 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
891 {
892 	struct amdgpu_device *adev = ring->adev;
893 	u32 ref_and_mask = 0;
894 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
895 
896 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
897 
898 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
899 			       adev->nbio.funcs->get_hdp_flush_done_offset(adev),
900 			       adev->nbio.funcs->get_hdp_flush_req_offset(adev),
901 			       ref_and_mask, ref_and_mask, 10);
902 }
903 
904 /**
905  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
906  *
907  * @ring: amdgpu ring pointer
908  * @fence: amdgpu fence object
909  *
910  * Add a DMA fence packet to the ring to write
911  * the fence seq number and DMA trap packet to generate
912  * an interrupt if needed (VEGA10).
913  */
914 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
915 				      unsigned flags)
916 {
917 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
918 	/* write the fence */
919 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
920 	/* zero in first two bits */
921 	BUG_ON(addr & 0x3);
922 	amdgpu_ring_write(ring, lower_32_bits(addr));
923 	amdgpu_ring_write(ring, upper_32_bits(addr));
924 	amdgpu_ring_write(ring, lower_32_bits(seq));
925 
926 	/* optionally write high bits as well */
927 	if (write64bit) {
928 		addr += 4;
929 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
930 		/* zero in first two bits */
931 		BUG_ON(addr & 0x3);
932 		amdgpu_ring_write(ring, lower_32_bits(addr));
933 		amdgpu_ring_write(ring, upper_32_bits(addr));
934 		amdgpu_ring_write(ring, upper_32_bits(seq));
935 	}
936 
937 	/* generate an interrupt */
938 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
939 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
940 }
941 
942 
943 /**
944  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
945  *
946  * @adev: amdgpu_device pointer
947  *
948  * Stop the gfx async dma ring buffers (VEGA10).
949  */
950 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
951 {
952 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
953 	u32 rb_cntl, ib_cntl;
954 	int i, unset = 0;
955 
956 	for (i = 0; i < adev->sdma.num_instances; i++) {
957 		sdma[i] = &adev->sdma.instance[i].ring;
958 
959 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
960 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
961 			unset = 1;
962 		}
963 
964 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
965 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
966 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
967 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
968 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
969 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
970 	}
971 }
972 
973 /**
974  * sdma_v4_0_rlc_stop - stop the compute async dma engines
975  *
976  * @adev: amdgpu_device pointer
977  *
978  * Stop the compute async dma queues (VEGA10).
979  */
980 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
981 {
982 	/* XXX todo */
983 }
984 
985 /**
986  * sdma_v4_0_page_stop - stop the page async dma engines
987  *
988  * @adev: amdgpu_device pointer
989  *
990  * Stop the page async dma ring buffers (VEGA10).
991  */
992 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
993 {
994 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
995 	u32 rb_cntl, ib_cntl;
996 	int i;
997 	bool unset = false;
998 
999 	for (i = 0; i < adev->sdma.num_instances; i++) {
1000 		sdma[i] = &adev->sdma.instance[i].page;
1001 
1002 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
1003 			(unset == false)) {
1004 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
1005 			unset = true;
1006 		}
1007 
1008 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1009 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1010 					RB_ENABLE, 0);
1011 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1012 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1013 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
1014 					IB_ENABLE, 0);
1015 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1016 	}
1017 }
1018 
1019 /**
1020  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
1021  *
1022  * @adev: amdgpu_device pointer
1023  * @enable: enable/disable the DMA MEs context switch.
1024  *
1025  * Halt or unhalt the async dma engines context switch (VEGA10).
1026  */
1027 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
1028 {
1029 	u32 f32_cntl, phase_quantum = 0;
1030 	int i;
1031 
1032 	if (amdgpu_sdma_phase_quantum) {
1033 		unsigned value = amdgpu_sdma_phase_quantum;
1034 		unsigned unit = 0;
1035 
1036 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1037 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1038 			value = (value + 1) >> 1;
1039 			unit++;
1040 		}
1041 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1042 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1043 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1044 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1045 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1046 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1047 			WARN_ONCE(1,
1048 			"clamping sdma_phase_quantum to %uK clock cycles\n",
1049 				  value << unit);
1050 		}
1051 		phase_quantum =
1052 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1053 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1054 	}
1055 
1056 	for (i = 0; i < adev->sdma.num_instances; i++) {
1057 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1058 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1059 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1060 		if (enable && amdgpu_sdma_phase_quantum) {
1061 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1062 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1063 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1064 		}
1065 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1066 
1067 		/*
1068 		 * Enable SDMA utilization. Its only supported on
1069 		 * Arcturus for the moment and firmware version 14
1070 		 * and above.
1071 		 */
1072 		if (adev->asic_type == CHIP_ARCTURUS &&
1073 		    adev->sdma.instance[i].fw_version >= 14)
1074 			WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1075 	}
1076 
1077 }
1078 
1079 /**
1080  * sdma_v4_0_enable - stop the async dma engines
1081  *
1082  * @adev: amdgpu_device pointer
1083  * @enable: enable/disable the DMA MEs.
1084  *
1085  * Halt or unhalt the async dma engines (VEGA10).
1086  */
1087 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1088 {
1089 	u32 f32_cntl;
1090 	int i;
1091 
1092 	if (enable == false) {
1093 		sdma_v4_0_gfx_stop(adev);
1094 		sdma_v4_0_rlc_stop(adev);
1095 		if (adev->sdma.has_page_queue)
1096 			sdma_v4_0_page_stop(adev);
1097 	}
1098 
1099 	for (i = 0; i < adev->sdma.num_instances; i++) {
1100 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1101 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1102 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1103 	}
1104 }
1105 
1106 /**
1107  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1108  */
1109 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1110 {
1111 	/* Set ring buffer size in dwords */
1112 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1113 
1114 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1115 #ifdef __BIG_ENDIAN
1116 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1117 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1118 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
1119 #endif
1120 	return rb_cntl;
1121 }
1122 
1123 /**
1124  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1125  *
1126  * @adev: amdgpu_device pointer
1127  * @i: instance to resume
1128  *
1129  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1130  * Returns 0 for success, error for failure.
1131  */
1132 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1133 {
1134 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1135 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1136 	u32 wb_offset;
1137 	u32 doorbell;
1138 	u32 doorbell_offset;
1139 	u64 wptr_gpu_addr;
1140 
1141 	wb_offset = (ring->rptr_offs * 4);
1142 
1143 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1144 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1145 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1146 
1147 	/* Initialize the ring buffer's read and write pointers */
1148 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1149 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1150 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1151 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1152 
1153 	/* set the wb address whether it's enabled or not */
1154 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1155 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1156 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1157 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1158 
1159 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1160 				RPTR_WRITEBACK_ENABLE, 1);
1161 
1162 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1163 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1164 
1165 	ring->wptr = 0;
1166 
1167 	/* before programing wptr to a less value, need set minor_ptr_update first */
1168 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1169 
1170 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1171 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1172 
1173 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1174 				 ring->use_doorbell);
1175 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1176 					SDMA0_GFX_DOORBELL_OFFSET,
1177 					OFFSET, ring->doorbell_index);
1178 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1179 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1180 
1181 	sdma_v4_0_ring_set_wptr(ring);
1182 
1183 	/* set minor_ptr_update to 0 after wptr programed */
1184 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1185 
1186 	/* setup the wptr shadow polling */
1187 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1188 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1189 		    lower_32_bits(wptr_gpu_addr));
1190 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1191 		    upper_32_bits(wptr_gpu_addr));
1192 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1193 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1194 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
1195 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1196 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1197 
1198 	/* enable DMA RB */
1199 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1200 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1201 
1202 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1203 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1204 #ifdef __BIG_ENDIAN
1205 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1206 #endif
1207 	/* enable DMA IBs */
1208 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1209 
1210 	ring->sched.ready = true;
1211 }
1212 
1213 /**
1214  * sdma_v4_0_page_resume - setup and start the async dma engines
1215  *
1216  * @adev: amdgpu_device pointer
1217  * @i: instance to resume
1218  *
1219  * Set up the page DMA ring buffers and enable them (VEGA10).
1220  * Returns 0 for success, error for failure.
1221  */
1222 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1223 {
1224 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1225 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1226 	u32 wb_offset;
1227 	u32 doorbell;
1228 	u32 doorbell_offset;
1229 	u64 wptr_gpu_addr;
1230 
1231 	wb_offset = (ring->rptr_offs * 4);
1232 
1233 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1234 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1235 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1236 
1237 	/* Initialize the ring buffer's read and write pointers */
1238 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1239 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1240 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1241 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1242 
1243 	/* set the wb address whether it's enabled or not */
1244 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1245 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1246 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1247 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1248 
1249 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1250 				RPTR_WRITEBACK_ENABLE, 1);
1251 
1252 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1253 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1254 
1255 	ring->wptr = 0;
1256 
1257 	/* before programing wptr to a less value, need set minor_ptr_update first */
1258 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1259 
1260 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1261 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1262 
1263 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1264 				 ring->use_doorbell);
1265 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1266 					SDMA0_PAGE_DOORBELL_OFFSET,
1267 					OFFSET, ring->doorbell_index);
1268 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1269 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1270 
1271 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1272 	sdma_v4_0_page_ring_set_wptr(ring);
1273 
1274 	/* set minor_ptr_update to 0 after wptr programed */
1275 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1276 
1277 	/* setup the wptr shadow polling */
1278 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1279 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1280 		    lower_32_bits(wptr_gpu_addr));
1281 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1282 		    upper_32_bits(wptr_gpu_addr));
1283 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1284 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1285 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1286 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1287 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1288 
1289 	/* enable DMA RB */
1290 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1291 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1292 
1293 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1294 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1295 #ifdef __BIG_ENDIAN
1296 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1297 #endif
1298 	/* enable DMA IBs */
1299 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1300 
1301 	ring->sched.ready = true;
1302 }
1303 
1304 static void
1305 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1306 {
1307 	uint32_t def, data;
1308 
1309 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1310 		/* enable idle interrupt */
1311 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1312 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1313 
1314 		if (data != def)
1315 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1316 	} else {
1317 		/* disable idle interrupt */
1318 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1319 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1320 		if (data != def)
1321 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1322 	}
1323 }
1324 
1325 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1326 {
1327 	uint32_t def, data;
1328 
1329 	/* Enable HW based PG. */
1330 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1331 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1332 	if (data != def)
1333 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1334 
1335 	/* enable interrupt */
1336 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1337 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1338 	if (data != def)
1339 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1340 
1341 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1342 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1343 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1344 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1345 	/* Configure switch time for hysteresis purpose. Use default right now */
1346 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1347 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1348 	if(data != def)
1349 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1350 }
1351 
1352 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1353 {
1354 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1355 		return;
1356 
1357 	switch (adev->asic_type) {
1358 	case CHIP_RAVEN:
1359 	case CHIP_RENOIR:
1360 		sdma_v4_1_init_power_gating(adev);
1361 		sdma_v4_1_update_power_gating(adev, true);
1362 		break;
1363 	default:
1364 		break;
1365 	}
1366 }
1367 
1368 /**
1369  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1370  *
1371  * @adev: amdgpu_device pointer
1372  *
1373  * Set up the compute DMA queues and enable them (VEGA10).
1374  * Returns 0 for success, error for failure.
1375  */
1376 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1377 {
1378 	sdma_v4_0_init_pg(adev);
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1385  *
1386  * @adev: amdgpu_device pointer
1387  *
1388  * Loads the sDMA0/1 ucode.
1389  * Returns 0 for success, -EINVAL if the ucode is not available.
1390  */
1391 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1392 {
1393 	const struct sdma_firmware_header_v1_0 *hdr;
1394 	const __le32 *fw_data;
1395 	u32 fw_size;
1396 	int i, j;
1397 
1398 	/* halt the MEs */
1399 	sdma_v4_0_enable(adev, false);
1400 
1401 	for (i = 0; i < adev->sdma.num_instances; i++) {
1402 		if (!adev->sdma.instance[i].fw)
1403 			return -EINVAL;
1404 
1405 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1406 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1407 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1408 
1409 		fw_data = (const __le32 *)
1410 			(adev->sdma.instance[i].fw->data +
1411 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1412 
1413 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1414 
1415 		for (j = 0; j < fw_size; j++)
1416 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1417 				    le32_to_cpup(fw_data++));
1418 
1419 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1420 			    adev->sdma.instance[i].fw_version);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * sdma_v4_0_start - setup and start the async dma engines
1428  *
1429  * @adev: amdgpu_device pointer
1430  *
1431  * Set up the DMA engines and enable them (VEGA10).
1432  * Returns 0 for success, error for failure.
1433  */
1434 static int sdma_v4_0_start(struct amdgpu_device *adev)
1435 {
1436 	struct amdgpu_ring *ring;
1437 	int i, r = 0;
1438 
1439 	if (amdgpu_sriov_vf(adev)) {
1440 		sdma_v4_0_ctx_switch_enable(adev, false);
1441 		sdma_v4_0_enable(adev, false);
1442 	} else {
1443 
1444 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1445 			r = sdma_v4_0_load_microcode(adev);
1446 			if (r)
1447 				return r;
1448 		}
1449 
1450 		/* unhalt the MEs */
1451 		sdma_v4_0_enable(adev, true);
1452 		/* enable sdma ring preemption */
1453 		sdma_v4_0_ctx_switch_enable(adev, true);
1454 	}
1455 
1456 	/* start the gfx rings and rlc compute queues */
1457 	for (i = 0; i < adev->sdma.num_instances; i++) {
1458 		uint32_t temp;
1459 
1460 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1461 		sdma_v4_0_gfx_resume(adev, i);
1462 		if (adev->sdma.has_page_queue)
1463 			sdma_v4_0_page_resume(adev, i);
1464 
1465 		/* set utc l1 enable flag always to 1 */
1466 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1467 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1468 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1469 
1470 		if (!amdgpu_sriov_vf(adev)) {
1471 			/* unhalt engine */
1472 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1473 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1474 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1475 		}
1476 	}
1477 
1478 	if (amdgpu_sriov_vf(adev)) {
1479 		sdma_v4_0_ctx_switch_enable(adev, true);
1480 		sdma_v4_0_enable(adev, true);
1481 	} else {
1482 		r = sdma_v4_0_rlc_resume(adev);
1483 		if (r)
1484 			return r;
1485 	}
1486 
1487 	for (i = 0; i < adev->sdma.num_instances; i++) {
1488 		ring = &adev->sdma.instance[i].ring;
1489 
1490 		r = amdgpu_ring_test_helper(ring);
1491 		if (r)
1492 			return r;
1493 
1494 		if (adev->sdma.has_page_queue) {
1495 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1496 
1497 			r = amdgpu_ring_test_helper(page);
1498 			if (r)
1499 				return r;
1500 
1501 			if (adev->mman.buffer_funcs_ring == page)
1502 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1503 		}
1504 
1505 		if (adev->mman.buffer_funcs_ring == ring)
1506 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1507 	}
1508 
1509 	return r;
1510 }
1511 
1512 /**
1513  * sdma_v4_0_ring_test_ring - simple async dma engine test
1514  *
1515  * @ring: amdgpu_ring structure holding ring information
1516  *
1517  * Test the DMA engine by writing using it to write an
1518  * value to memory. (VEGA10).
1519  * Returns 0 for success, error for failure.
1520  */
1521 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1522 {
1523 	struct amdgpu_device *adev = ring->adev;
1524 	unsigned i;
1525 	unsigned index;
1526 	int r;
1527 	u32 tmp;
1528 	u64 gpu_addr;
1529 
1530 	r = amdgpu_device_wb_get(adev, &index);
1531 	if (r)
1532 		return r;
1533 
1534 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1535 	tmp = 0xCAFEDEAD;
1536 	adev->wb.wb[index] = cpu_to_le32(tmp);
1537 
1538 	r = amdgpu_ring_alloc(ring, 5);
1539 	if (r)
1540 		goto error_free_wb;
1541 
1542 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1543 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1544 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1545 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1546 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1547 	amdgpu_ring_write(ring, 0xDEADBEEF);
1548 	amdgpu_ring_commit(ring);
1549 
1550 	for (i = 0; i < adev->usec_timeout; i++) {
1551 		tmp = le32_to_cpu(adev->wb.wb[index]);
1552 		if (tmp == 0xDEADBEEF)
1553 			break;
1554 		udelay(1);
1555 	}
1556 
1557 	if (i >= adev->usec_timeout)
1558 		r = -ETIMEDOUT;
1559 
1560 error_free_wb:
1561 	amdgpu_device_wb_free(adev, index);
1562 	return r;
1563 }
1564 
1565 /**
1566  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1567  *
1568  * @ring: amdgpu_ring structure holding ring information
1569  *
1570  * Test a simple IB in the DMA ring (VEGA10).
1571  * Returns 0 on success, error on failure.
1572  */
1573 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1574 {
1575 	struct amdgpu_device *adev = ring->adev;
1576 	struct amdgpu_ib ib;
1577 	struct dma_fence *f = NULL;
1578 	unsigned index;
1579 	long r;
1580 	u32 tmp = 0;
1581 	u64 gpu_addr;
1582 
1583 	r = amdgpu_device_wb_get(adev, &index);
1584 	if (r)
1585 		return r;
1586 
1587 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1588 	tmp = 0xCAFEDEAD;
1589 	adev->wb.wb[index] = cpu_to_le32(tmp);
1590 	memset(&ib, 0, sizeof(ib));
1591 	r = amdgpu_ib_get(adev, NULL, 256,
1592 					AMDGPU_IB_POOL_DIRECT, &ib);
1593 	if (r)
1594 		goto err0;
1595 
1596 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1597 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1598 	ib.ptr[1] = lower_32_bits(gpu_addr);
1599 	ib.ptr[2] = upper_32_bits(gpu_addr);
1600 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1601 	ib.ptr[4] = 0xDEADBEEF;
1602 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1603 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1604 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1605 	ib.length_dw = 8;
1606 
1607 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1608 	if (r)
1609 		goto err1;
1610 
1611 	r = dma_fence_wait_timeout(f, false, timeout);
1612 	if (r == 0) {
1613 		r = -ETIMEDOUT;
1614 		goto err1;
1615 	} else if (r < 0) {
1616 		goto err1;
1617 	}
1618 	tmp = le32_to_cpu(adev->wb.wb[index]);
1619 	if (tmp == 0xDEADBEEF)
1620 		r = 0;
1621 	else
1622 		r = -EINVAL;
1623 
1624 err1:
1625 	amdgpu_ib_free(adev, &ib, NULL);
1626 	dma_fence_put(f);
1627 err0:
1628 	amdgpu_device_wb_free(adev, index);
1629 	return r;
1630 }
1631 
1632 
1633 /**
1634  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1635  *
1636  * @ib: indirect buffer to fill with commands
1637  * @pe: addr of the page entry
1638  * @src: src addr to copy from
1639  * @count: number of page entries to update
1640  *
1641  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1642  */
1643 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1644 				  uint64_t pe, uint64_t src,
1645 				  unsigned count)
1646 {
1647 	unsigned bytes = count * 8;
1648 
1649 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1650 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1651 	ib->ptr[ib->length_dw++] = bytes - 1;
1652 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1653 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1654 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1655 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1656 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1657 
1658 }
1659 
1660 /**
1661  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1662  *
1663  * @ib: indirect buffer to fill with commands
1664  * @pe: addr of the page entry
1665  * @addr: dst addr to write into pe
1666  * @count: number of page entries to update
1667  * @incr: increase next addr by incr bytes
1668  * @flags: access flags
1669  *
1670  * Update PTEs by writing them manually using sDMA (VEGA10).
1671  */
1672 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1673 				   uint64_t value, unsigned count,
1674 				   uint32_t incr)
1675 {
1676 	unsigned ndw = count * 2;
1677 
1678 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1679 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1680 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1681 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1682 	ib->ptr[ib->length_dw++] = ndw - 1;
1683 	for (; ndw > 0; ndw -= 2) {
1684 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1685 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1686 		value += incr;
1687 	}
1688 }
1689 
1690 /**
1691  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1692  *
1693  * @ib: indirect buffer to fill with commands
1694  * @pe: addr of the page entry
1695  * @addr: dst addr to write into pe
1696  * @count: number of page entries to update
1697  * @incr: increase next addr by incr bytes
1698  * @flags: access flags
1699  *
1700  * Update the page tables using sDMA (VEGA10).
1701  */
1702 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1703 				     uint64_t pe,
1704 				     uint64_t addr, unsigned count,
1705 				     uint32_t incr, uint64_t flags)
1706 {
1707 	/* for physically contiguous pages (vram) */
1708 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1709 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1710 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1711 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1712 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1713 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1714 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1715 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1716 	ib->ptr[ib->length_dw++] = 0;
1717 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1718 }
1719 
1720 /**
1721  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1722  *
1723  * @ib: indirect buffer to fill with padding
1724  *
1725  */
1726 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1727 {
1728 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1729 	u32 pad_count;
1730 	int i;
1731 
1732 	pad_count = (-ib->length_dw) & 7;
1733 	for (i = 0; i < pad_count; i++)
1734 		if (sdma && sdma->burst_nop && (i == 0))
1735 			ib->ptr[ib->length_dw++] =
1736 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1737 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1738 		else
1739 			ib->ptr[ib->length_dw++] =
1740 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1741 }
1742 
1743 
1744 /**
1745  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1746  *
1747  * @ring: amdgpu_ring pointer
1748  *
1749  * Make sure all previous operations are completed (CIK).
1750  */
1751 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1752 {
1753 	uint32_t seq = ring->fence_drv.sync_seq;
1754 	uint64_t addr = ring->fence_drv.gpu_addr;
1755 
1756 	/* wait for idle */
1757 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1758 			       addr & 0xfffffffc,
1759 			       upper_32_bits(addr) & 0xffffffff,
1760 			       seq, 0xffffffff, 4);
1761 }
1762 
1763 
1764 /**
1765  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1766  *
1767  * @ring: amdgpu_ring pointer
1768  * @vm: amdgpu_vm pointer
1769  *
1770  * Update the page table base and flush the VM TLB
1771  * using sDMA (VEGA10).
1772  */
1773 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1774 					 unsigned vmid, uint64_t pd_addr)
1775 {
1776 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1777 }
1778 
1779 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1780 				     uint32_t reg, uint32_t val)
1781 {
1782 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1783 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1784 	amdgpu_ring_write(ring, reg);
1785 	amdgpu_ring_write(ring, val);
1786 }
1787 
1788 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1789 					 uint32_t val, uint32_t mask)
1790 {
1791 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1792 }
1793 
1794 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1795 {
1796 	uint fw_version = adev->sdma.instance[0].fw_version;
1797 
1798 	switch (adev->asic_type) {
1799 	case CHIP_VEGA10:
1800 		return fw_version >= 430;
1801 	case CHIP_VEGA12:
1802 		/*return fw_version >= 31;*/
1803 		return false;
1804 	case CHIP_VEGA20:
1805 		return fw_version >= 123;
1806 	default:
1807 		return false;
1808 	}
1809 }
1810 
1811 static int sdma_v4_0_early_init(void *handle)
1812 {
1813 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1814 	int r;
1815 
1816 	if (adev->flags & AMD_IS_APU)
1817 		adev->sdma.num_instances = 1;
1818 	else if (adev->asic_type == CHIP_ARCTURUS)
1819 		adev->sdma.num_instances = 8;
1820 	else
1821 		adev->sdma.num_instances = 2;
1822 
1823 	r = sdma_v4_0_init_microcode(adev);
1824 	if (r) {
1825 		DRM_ERROR("Failed to load sdma firmware!\n");
1826 		return r;
1827 	}
1828 
1829 	/* TODO: Page queue breaks driver reload under SRIOV */
1830 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1831 		adev->sdma.has_page_queue = false;
1832 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1833 		adev->sdma.has_page_queue = true;
1834 
1835 	sdma_v4_0_set_ring_funcs(adev);
1836 	sdma_v4_0_set_buffer_funcs(adev);
1837 	sdma_v4_0_set_vm_pte_funcs(adev);
1838 	sdma_v4_0_set_irq_funcs(adev);
1839 	sdma_v4_0_set_ras_funcs(adev);
1840 
1841 	return 0;
1842 }
1843 
1844 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1845 		void *err_data,
1846 		struct amdgpu_iv_entry *entry);
1847 
1848 static int sdma_v4_0_late_init(void *handle)
1849 {
1850 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1851 	struct ras_ih_if ih_info = {
1852 		.cb = sdma_v4_0_process_ras_data_cb,
1853 	};
1854 
1855 	sdma_v4_0_setup_ulv(adev);
1856 
1857 	if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1858 		adev->sdma.funcs->reset_ras_error_count(adev);
1859 
1860 	if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1861 		return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1862 	else
1863 		return 0;
1864 }
1865 
1866 static int sdma_v4_0_sw_init(void *handle)
1867 {
1868 	struct amdgpu_ring *ring;
1869 	int r, i;
1870 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1871 
1872 	/* SDMA trap event */
1873 	for (i = 0; i < adev->sdma.num_instances; i++) {
1874 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1875 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1876 				      &adev->sdma.trap_irq);
1877 		if (r)
1878 			return r;
1879 	}
1880 
1881 	/* SDMA SRAM ECC event */
1882 	for (i = 0; i < adev->sdma.num_instances; i++) {
1883 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1884 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1885 				      &adev->sdma.ecc_irq);
1886 		if (r)
1887 			return r;
1888 	}
1889 
1890 	for (i = 0; i < adev->sdma.num_instances; i++) {
1891 		ring = &adev->sdma.instance[i].ring;
1892 		ring->ring_obj = NULL;
1893 		ring->use_doorbell = true;
1894 
1895 		DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1896 				ring->use_doorbell?"true":"false");
1897 
1898 		/* doorbell size is 2 dwords, get DWORD offset */
1899 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1900 
1901 		sprintf(ring->name, "sdma%d", i);
1902 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1903 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1904 				     AMDGPU_RING_PRIO_DEFAULT);
1905 		if (r)
1906 			return r;
1907 
1908 		if (adev->sdma.has_page_queue) {
1909 			ring = &adev->sdma.instance[i].page;
1910 			ring->ring_obj = NULL;
1911 			ring->use_doorbell = true;
1912 
1913 			/* paging queue use same doorbell index/routing as gfx queue
1914 			 * with 0x400 (4096 dwords) offset on second doorbell page
1915 			 */
1916 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1917 			ring->doorbell_index += 0x400;
1918 
1919 			sprintf(ring->name, "page%d", i);
1920 			r = amdgpu_ring_init(adev, ring, 1024,
1921 					     &adev->sdma.trap_irq,
1922 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1923 					     AMDGPU_RING_PRIO_DEFAULT);
1924 			if (r)
1925 				return r;
1926 		}
1927 	}
1928 
1929 	return r;
1930 }
1931 
1932 static int sdma_v4_0_sw_fini(void *handle)
1933 {
1934 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1935 	int i;
1936 
1937 	if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1938 		adev->sdma.funcs->ras_fini(adev);
1939 
1940 	for (i = 0; i < adev->sdma.num_instances; i++) {
1941 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1942 		if (adev->sdma.has_page_queue)
1943 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1944 	}
1945 
1946 	sdma_v4_0_destroy_inst_ctx(adev);
1947 
1948 	return 0;
1949 }
1950 
1951 static int sdma_v4_0_hw_init(void *handle)
1952 {
1953 	int r;
1954 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1955 
1956 	if (adev->flags & AMD_IS_APU)
1957 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1958 
1959 	if (!amdgpu_sriov_vf(adev))
1960 		sdma_v4_0_init_golden_registers(adev);
1961 
1962 	r = sdma_v4_0_start(adev);
1963 
1964 	return r;
1965 }
1966 
1967 static int sdma_v4_0_hw_fini(void *handle)
1968 {
1969 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1970 	int i;
1971 
1972 	if (amdgpu_sriov_vf(adev))
1973 		return 0;
1974 
1975 	for (i = 0; i < adev->sdma.num_instances; i++) {
1976 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1977 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1978 	}
1979 
1980 	sdma_v4_0_ctx_switch_enable(adev, false);
1981 	sdma_v4_0_enable(adev, false);
1982 
1983 	if (adev->flags & AMD_IS_APU)
1984 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1985 
1986 	return 0;
1987 }
1988 
1989 static int sdma_v4_0_suspend(void *handle)
1990 {
1991 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1992 
1993 	return sdma_v4_0_hw_fini(adev);
1994 }
1995 
1996 static int sdma_v4_0_resume(void *handle)
1997 {
1998 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1999 
2000 	return sdma_v4_0_hw_init(adev);
2001 }
2002 
2003 static bool sdma_v4_0_is_idle(void *handle)
2004 {
2005 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2006 	u32 i;
2007 
2008 	for (i = 0; i < adev->sdma.num_instances; i++) {
2009 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
2010 
2011 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
2012 			return false;
2013 	}
2014 
2015 	return true;
2016 }
2017 
2018 static int sdma_v4_0_wait_for_idle(void *handle)
2019 {
2020 	unsigned i, j;
2021 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2022 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2023 
2024 	for (i = 0; i < adev->usec_timeout; i++) {
2025 		for (j = 0; j < adev->sdma.num_instances; j++) {
2026 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2027 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2028 				break;
2029 		}
2030 		if (j == adev->sdma.num_instances)
2031 			return 0;
2032 		udelay(1);
2033 	}
2034 	return -ETIMEDOUT;
2035 }
2036 
2037 static int sdma_v4_0_soft_reset(void *handle)
2038 {
2039 	/* todo */
2040 
2041 	return 0;
2042 }
2043 
2044 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2045 					struct amdgpu_irq_src *source,
2046 					unsigned type,
2047 					enum amdgpu_interrupt_state state)
2048 {
2049 	u32 sdma_cntl;
2050 
2051 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2052 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2053 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2054 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2055 
2056 	return 0;
2057 }
2058 
2059 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2060 				      struct amdgpu_irq_src *source,
2061 				      struct amdgpu_iv_entry *entry)
2062 {
2063 	uint32_t instance;
2064 
2065 	DRM_DEBUG("IH: SDMA trap\n");
2066 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2067 	switch (entry->ring_id) {
2068 	case 0:
2069 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2070 		break;
2071 	case 1:
2072 		if (adev->asic_type == CHIP_VEGA20)
2073 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2074 		break;
2075 	case 2:
2076 		/* XXX compute */
2077 		break;
2078 	case 3:
2079 		if (adev->asic_type != CHIP_VEGA20)
2080 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
2081 		break;
2082 	}
2083 	return 0;
2084 }
2085 
2086 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2087 		void *err_data,
2088 		struct amdgpu_iv_entry *entry)
2089 {
2090 	int instance;
2091 
2092 	/* When “Full RAS” is enabled, the per-IP interrupt sources should
2093 	 * be disabled and the driver should only look for the aggregated
2094 	 * interrupt via sync flood
2095 	 */
2096 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2097 		goto out;
2098 
2099 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2100 	if (instance < 0)
2101 		goto out;
2102 
2103 	amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2104 
2105 out:
2106 	return AMDGPU_RAS_SUCCESS;
2107 }
2108 
2109 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2110 					      struct amdgpu_irq_src *source,
2111 					      struct amdgpu_iv_entry *entry)
2112 {
2113 	int instance;
2114 
2115 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2116 
2117 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2118 	if (instance < 0)
2119 		return 0;
2120 
2121 	switch (entry->ring_id) {
2122 	case 0:
2123 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2124 		break;
2125 	}
2126 	return 0;
2127 }
2128 
2129 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2130 					struct amdgpu_irq_src *source,
2131 					unsigned type,
2132 					enum amdgpu_interrupt_state state)
2133 {
2134 	u32 sdma_edc_config;
2135 
2136 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2137 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2138 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2139 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2140 
2141 	return 0;
2142 }
2143 
2144 static void sdma_v4_0_update_medium_grain_clock_gating(
2145 		struct amdgpu_device *adev,
2146 		bool enable)
2147 {
2148 	uint32_t data, def;
2149 	int i;
2150 
2151 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2152 		for (i = 0; i < adev->sdma.num_instances; i++) {
2153 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2154 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2155 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2156 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2157 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2158 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2159 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2160 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2161 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2162 			if (def != data)
2163 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2164 		}
2165 	} else {
2166 		for (i = 0; i < adev->sdma.num_instances; i++) {
2167 			def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2168 			data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2169 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2170 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2171 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2172 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2173 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2174 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2175 				 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2176 			if (def != data)
2177 				WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2178 		}
2179 	}
2180 }
2181 
2182 
2183 static void sdma_v4_0_update_medium_grain_light_sleep(
2184 		struct amdgpu_device *adev,
2185 		bool enable)
2186 {
2187 	uint32_t data, def;
2188 	int i;
2189 
2190 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2191 		for (i = 0; i < adev->sdma.num_instances; i++) {
2192 			/* 1-not override: enable sdma mem light sleep */
2193 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2194 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2195 			if (def != data)
2196 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2197 		}
2198 	} else {
2199 		for (i = 0; i < adev->sdma.num_instances; i++) {
2200 		/* 0-override:disable sdma mem light sleep */
2201 			def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2202 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2203 			if (def != data)
2204 				WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2205 		}
2206 	}
2207 }
2208 
2209 static int sdma_v4_0_set_clockgating_state(void *handle,
2210 					  enum amd_clockgating_state state)
2211 {
2212 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2213 
2214 	if (amdgpu_sriov_vf(adev))
2215 		return 0;
2216 
2217 	switch (adev->asic_type) {
2218 	case CHIP_VEGA10:
2219 	case CHIP_VEGA12:
2220 	case CHIP_VEGA20:
2221 	case CHIP_RAVEN:
2222 	case CHIP_ARCTURUS:
2223 	case CHIP_RENOIR:
2224 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2225 				state == AMD_CG_STATE_GATE);
2226 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2227 				state == AMD_CG_STATE_GATE);
2228 		break;
2229 	default:
2230 		break;
2231 	}
2232 	return 0;
2233 }
2234 
2235 static int sdma_v4_0_set_powergating_state(void *handle,
2236 					  enum amd_powergating_state state)
2237 {
2238 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2239 
2240 	switch (adev->asic_type) {
2241 	case CHIP_RAVEN:
2242 	case CHIP_RENOIR:
2243 		sdma_v4_1_update_power_gating(adev,
2244 				state == AMD_PG_STATE_GATE ? true : false);
2245 		break;
2246 	default:
2247 		break;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2254 {
2255 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2256 	int data;
2257 
2258 	if (amdgpu_sriov_vf(adev))
2259 		*flags = 0;
2260 
2261 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2262 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2263 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2264 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2265 
2266 	/* AMD_CG_SUPPORT_SDMA_LS */
2267 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2268 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2269 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2270 }
2271 
2272 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2273 	.name = "sdma_v4_0",
2274 	.early_init = sdma_v4_0_early_init,
2275 	.late_init = sdma_v4_0_late_init,
2276 	.sw_init = sdma_v4_0_sw_init,
2277 	.sw_fini = sdma_v4_0_sw_fini,
2278 	.hw_init = sdma_v4_0_hw_init,
2279 	.hw_fini = sdma_v4_0_hw_fini,
2280 	.suspend = sdma_v4_0_suspend,
2281 	.resume = sdma_v4_0_resume,
2282 	.is_idle = sdma_v4_0_is_idle,
2283 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2284 	.soft_reset = sdma_v4_0_soft_reset,
2285 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2286 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2287 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2288 };
2289 
2290 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2291 	.type = AMDGPU_RING_TYPE_SDMA,
2292 	.align_mask = 0xf,
2293 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2294 	.support_64bit_ptrs = true,
2295 	.vmhub = AMDGPU_MMHUB_0,
2296 	.get_rptr = sdma_v4_0_ring_get_rptr,
2297 	.get_wptr = sdma_v4_0_ring_get_wptr,
2298 	.set_wptr = sdma_v4_0_ring_set_wptr,
2299 	.emit_frame_size =
2300 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2301 		3 + /* hdp invalidate */
2302 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2303 		/* sdma_v4_0_ring_emit_vm_flush */
2304 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2305 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2306 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2307 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2308 	.emit_ib = sdma_v4_0_ring_emit_ib,
2309 	.emit_fence = sdma_v4_0_ring_emit_fence,
2310 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2311 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2312 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2313 	.test_ring = sdma_v4_0_ring_test_ring,
2314 	.test_ib = sdma_v4_0_ring_test_ib,
2315 	.insert_nop = sdma_v4_0_ring_insert_nop,
2316 	.pad_ib = sdma_v4_0_ring_pad_ib,
2317 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2318 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2319 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2320 };
2321 
2322 /*
2323  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2324  * So create a individual constant ring_funcs for those instances.
2325  */
2326 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2327 	.type = AMDGPU_RING_TYPE_SDMA,
2328 	.align_mask = 0xf,
2329 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2330 	.support_64bit_ptrs = true,
2331 	.vmhub = AMDGPU_MMHUB_1,
2332 	.get_rptr = sdma_v4_0_ring_get_rptr,
2333 	.get_wptr = sdma_v4_0_ring_get_wptr,
2334 	.set_wptr = sdma_v4_0_ring_set_wptr,
2335 	.emit_frame_size =
2336 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2337 		3 + /* hdp invalidate */
2338 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2339 		/* sdma_v4_0_ring_emit_vm_flush */
2340 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2341 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2342 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2343 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2344 	.emit_ib = sdma_v4_0_ring_emit_ib,
2345 	.emit_fence = sdma_v4_0_ring_emit_fence,
2346 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2347 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2348 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2349 	.test_ring = sdma_v4_0_ring_test_ring,
2350 	.test_ib = sdma_v4_0_ring_test_ib,
2351 	.insert_nop = sdma_v4_0_ring_insert_nop,
2352 	.pad_ib = sdma_v4_0_ring_pad_ib,
2353 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2354 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2355 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2356 };
2357 
2358 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2359 	.type = AMDGPU_RING_TYPE_SDMA,
2360 	.align_mask = 0xf,
2361 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2362 	.support_64bit_ptrs = true,
2363 	.vmhub = AMDGPU_MMHUB_0,
2364 	.get_rptr = sdma_v4_0_ring_get_rptr,
2365 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2366 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2367 	.emit_frame_size =
2368 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2369 		3 + /* hdp invalidate */
2370 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2371 		/* sdma_v4_0_ring_emit_vm_flush */
2372 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2373 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2374 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2375 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2376 	.emit_ib = sdma_v4_0_ring_emit_ib,
2377 	.emit_fence = sdma_v4_0_ring_emit_fence,
2378 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2379 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2380 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2381 	.test_ring = sdma_v4_0_ring_test_ring,
2382 	.test_ib = sdma_v4_0_ring_test_ib,
2383 	.insert_nop = sdma_v4_0_ring_insert_nop,
2384 	.pad_ib = sdma_v4_0_ring_pad_ib,
2385 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2386 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2387 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2388 };
2389 
2390 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2391 	.type = AMDGPU_RING_TYPE_SDMA,
2392 	.align_mask = 0xf,
2393 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2394 	.support_64bit_ptrs = true,
2395 	.vmhub = AMDGPU_MMHUB_1,
2396 	.get_rptr = sdma_v4_0_ring_get_rptr,
2397 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2398 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2399 	.emit_frame_size =
2400 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2401 		3 + /* hdp invalidate */
2402 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2403 		/* sdma_v4_0_ring_emit_vm_flush */
2404 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2405 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2406 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2407 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2408 	.emit_ib = sdma_v4_0_ring_emit_ib,
2409 	.emit_fence = sdma_v4_0_ring_emit_fence,
2410 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2411 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2412 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2413 	.test_ring = sdma_v4_0_ring_test_ring,
2414 	.test_ib = sdma_v4_0_ring_test_ib,
2415 	.insert_nop = sdma_v4_0_ring_insert_nop,
2416 	.pad_ib = sdma_v4_0_ring_pad_ib,
2417 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2418 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2419 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2420 };
2421 
2422 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2423 {
2424 	int i;
2425 
2426 	for (i = 0; i < adev->sdma.num_instances; i++) {
2427 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2428 			adev->sdma.instance[i].ring.funcs =
2429 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2430 		else
2431 			adev->sdma.instance[i].ring.funcs =
2432 					&sdma_v4_0_ring_funcs;
2433 		adev->sdma.instance[i].ring.me = i;
2434 		if (adev->sdma.has_page_queue) {
2435 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2436 				adev->sdma.instance[i].page.funcs =
2437 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2438 			else
2439 				adev->sdma.instance[i].page.funcs =
2440 					&sdma_v4_0_page_ring_funcs;
2441 			adev->sdma.instance[i].page.me = i;
2442 		}
2443 	}
2444 }
2445 
2446 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2447 	.set = sdma_v4_0_set_trap_irq_state,
2448 	.process = sdma_v4_0_process_trap_irq,
2449 };
2450 
2451 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2452 	.process = sdma_v4_0_process_illegal_inst_irq,
2453 };
2454 
2455 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2456 	.set = sdma_v4_0_set_ecc_irq_state,
2457 	.process = amdgpu_sdma_process_ecc_irq,
2458 };
2459 
2460 
2461 
2462 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2463 {
2464 	switch (adev->sdma.num_instances) {
2465 	case 1:
2466 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2467 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2468 		break;
2469 	case 8:
2470 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2471 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2472 		break;
2473 	case 2:
2474 	default:
2475 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2476 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2477 		break;
2478 	}
2479 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2480 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2481 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2482 }
2483 
2484 /**
2485  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2486  *
2487  * @ring: amdgpu_ring structure holding ring information
2488  * @src_offset: src GPU address
2489  * @dst_offset: dst GPU address
2490  * @byte_count: number of bytes to xfer
2491  *
2492  * Copy GPU buffers using the DMA engine (VEGA10/12).
2493  * Used by the amdgpu ttm implementation to move pages if
2494  * registered as the asic copy callback.
2495  */
2496 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2497 				       uint64_t src_offset,
2498 				       uint64_t dst_offset,
2499 				       uint32_t byte_count,
2500 				       bool tmz)
2501 {
2502 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2503 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2504 		SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2505 	ib->ptr[ib->length_dw++] = byte_count - 1;
2506 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2507 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2508 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2509 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2510 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2511 }
2512 
2513 /**
2514  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2515  *
2516  * @ring: amdgpu_ring structure holding ring information
2517  * @src_data: value to write to buffer
2518  * @dst_offset: dst GPU address
2519  * @byte_count: number of bytes to xfer
2520  *
2521  * Fill GPU buffers using the DMA engine (VEGA10/12).
2522  */
2523 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2524 				       uint32_t src_data,
2525 				       uint64_t dst_offset,
2526 				       uint32_t byte_count)
2527 {
2528 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2529 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2530 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2531 	ib->ptr[ib->length_dw++] = src_data;
2532 	ib->ptr[ib->length_dw++] = byte_count - 1;
2533 }
2534 
2535 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2536 	.copy_max_bytes = 0x400000,
2537 	.copy_num_dw = 7,
2538 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2539 
2540 	.fill_max_bytes = 0x400000,
2541 	.fill_num_dw = 5,
2542 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2543 };
2544 
2545 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2546 {
2547 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2548 	if (adev->sdma.has_page_queue)
2549 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2550 	else
2551 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2552 }
2553 
2554 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2555 	.copy_pte_num_dw = 7,
2556 	.copy_pte = sdma_v4_0_vm_copy_pte,
2557 
2558 	.write_pte = sdma_v4_0_vm_write_pte,
2559 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2560 };
2561 
2562 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2563 {
2564 	struct drm_gpu_scheduler *sched;
2565 	unsigned i;
2566 
2567 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2568 	for (i = 0; i < adev->sdma.num_instances; i++) {
2569 		if (adev->sdma.has_page_queue)
2570 			sched = &adev->sdma.instance[i].page.sched;
2571 		else
2572 			sched = &adev->sdma.instance[i].ring.sched;
2573 		adev->vm_manager.vm_pte_scheds[i] = sched;
2574 	}
2575 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2576 }
2577 
2578 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2579 					uint32_t instance,
2580 					uint32_t *sec_count)
2581 {
2582 	uint32_t i;
2583 	uint32_t sec_cnt;
2584 
2585 	/* double bits error (multiple bits) error detection is not supported */
2586 	for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2587 		/* the SDMA_EDC_COUNTER register in each sdma instance
2588 		 * shares the same sed shift_mask
2589 		 * */
2590 		sec_cnt = (value &
2591 			sdma_v4_0_ras_fields[i].sec_count_mask) >>
2592 			sdma_v4_0_ras_fields[i].sec_count_shift;
2593 		if (sec_cnt) {
2594 			DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2595 				sdma_v4_0_ras_fields[i].name,
2596 				instance, sec_cnt);
2597 			*sec_count += sec_cnt;
2598 		}
2599 	}
2600 }
2601 
2602 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2603 			uint32_t instance, void *ras_error_status)
2604 {
2605 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2606 	uint32_t sec_count = 0;
2607 	uint32_t reg_value = 0;
2608 
2609 	reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2610 	/* double bit error is not supported */
2611 	if (reg_value)
2612 		sdma_v4_0_get_ras_error_count(reg_value,
2613 				instance, &sec_count);
2614 	/* err_data->ce_count should be initialized to 0
2615 	 * before calling into this function */
2616 	err_data->ce_count += sec_count;
2617 	/* double bit error is not supported
2618 	 * set ue count to 0 */
2619 	err_data->ue_count = 0;
2620 
2621 	return 0;
2622 };
2623 
2624 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2625 {
2626 	int i;
2627 
2628 	/* read back edc counter registers to clear the counters */
2629 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2630 		for (i = 0; i < adev->sdma.num_instances; i++)
2631 			RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2632 	}
2633 }
2634 
2635 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2636 	.ras_late_init = amdgpu_sdma_ras_late_init,
2637 	.ras_fini = amdgpu_sdma_ras_fini,
2638 	.query_ras_error_count = sdma_v4_0_query_ras_error_count,
2639 	.reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2640 };
2641 
2642 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2643 {
2644 	switch (adev->asic_type) {
2645 	case CHIP_VEGA20:
2646 	case CHIP_ARCTURUS:
2647 		adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2648 		break;
2649 	default:
2650 		break;
2651 	}
2652 }
2653 
2654 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2655 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2656 	.major = 4,
2657 	.minor = 0,
2658 	.rev = 0,
2659 	.funcs = &sdma_v4_0_ip_funcs,
2660 };
2661