xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c (revision 03c9963f47a9efe204983fb0ea022814f8ce0084)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51 
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55 
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58 
59 #include "amdgpu_ras.h"
60 
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/arcturus_sdma1.bin");
72 MODULE_FIRMWARE("amdgpu/arcturus_sdma2.bin");
73 MODULE_FIRMWARE("amdgpu/arcturus_sdma3.bin");
74 MODULE_FIRMWARE("amdgpu/arcturus_sdma4.bin");
75 MODULE_FIRMWARE("amdgpu/arcturus_sdma5.bin");
76 MODULE_FIRMWARE("amdgpu/arcturus_sdma6.bin");
77 MODULE_FIRMWARE("amdgpu/arcturus_sdma7.bin");
78 
79 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
80 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
81 
82 #define WREG32_SDMA(instance, offset, value) \
83 	WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
84 #define RREG32_SDMA(instance, offset) \
85 	RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
86 
87 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
88 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
89 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
90 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
91 
92 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
93 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
94 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
95 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
96 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
98 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
100 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
101 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
102 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
103 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
105 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
106 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
107 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
108 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
110 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
112 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
113 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
114 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
115 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
116 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
117 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
118 };
119 
120 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
121 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
122 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
123 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
124 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
125 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
126 };
127 
128 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
129 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
130 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
131 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
134 };
135 
136 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
137 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
138 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
139 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
140 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
142 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
143 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
145 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
147 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
148 };
149 
150 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
151 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
152 };
153 
154 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
155 {
156 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
157 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
158 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
159 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
160 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
161 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
163 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
165 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
167 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
170 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
171 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
172 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
173 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
174 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
175 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
176 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
177 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
178 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
179 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
180 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
181 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
182 };
183 
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211 };
212 
213 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
214 {
215 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
216 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
217 };
218 
219 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
220 {
221 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
222 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
223 };
224 
225 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
226 {
227 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
228 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
229 	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
230 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
234 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
235 	SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
236 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238 	SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
240 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
241 	SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
242 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 	SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
246 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
247 	SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
248 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250 	SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002)
251 };
252 
253 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
254 		u32 instance, u32 offset)
255 {
256 	switch (instance) {
257 	case 0:
258 		return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
259 	case 1:
260 		return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
261 	case 2:
262 		return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
263 	case 3:
264 		return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
265 	case 4:
266 		return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
267 	case 5:
268 		return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
269 	case 6:
270 		return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
271 	case 7:
272 		return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
273 	default:
274 		break;
275 	}
276 	return 0;
277 }
278 
279 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
280 {
281 	switch (seq_num) {
282 	case 0:
283 		return SOC15_IH_CLIENTID_SDMA0;
284 	case 1:
285 		return SOC15_IH_CLIENTID_SDMA1;
286 	case 2:
287 		return SOC15_IH_CLIENTID_SDMA2;
288 	case 3:
289 		return SOC15_IH_CLIENTID_SDMA3;
290 	case 4:
291 		return SOC15_IH_CLIENTID_SDMA4;
292 	case 5:
293 		return SOC15_IH_CLIENTID_SDMA5;
294 	case 6:
295 		return SOC15_IH_CLIENTID_SDMA6;
296 	case 7:
297 		return SOC15_IH_CLIENTID_SDMA7;
298 	default:
299 		break;
300 	}
301 	return -EINVAL;
302 }
303 
304 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
305 {
306 	switch (client_id) {
307 	case SOC15_IH_CLIENTID_SDMA0:
308 		return 0;
309 	case SOC15_IH_CLIENTID_SDMA1:
310 		return 1;
311 	case SOC15_IH_CLIENTID_SDMA2:
312 		return 2;
313 	case SOC15_IH_CLIENTID_SDMA3:
314 		return 3;
315 	case SOC15_IH_CLIENTID_SDMA4:
316 		return 4;
317 	case SOC15_IH_CLIENTID_SDMA5:
318 		return 5;
319 	case SOC15_IH_CLIENTID_SDMA6:
320 		return 6;
321 	case SOC15_IH_CLIENTID_SDMA7:
322 		return 7;
323 	default:
324 		break;
325 	}
326 	return -EINVAL;
327 }
328 
329 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
330 {
331 	switch (adev->asic_type) {
332 	case CHIP_VEGA10:
333 		if (!amdgpu_virt_support_skip_setting(adev)) {
334 			soc15_program_register_sequence(adev,
335 							 golden_settings_sdma_4,
336 							 ARRAY_SIZE(golden_settings_sdma_4));
337 			soc15_program_register_sequence(adev,
338 							 golden_settings_sdma_vg10,
339 							 ARRAY_SIZE(golden_settings_sdma_vg10));
340 		}
341 		break;
342 	case CHIP_VEGA12:
343 		soc15_program_register_sequence(adev,
344 						golden_settings_sdma_4,
345 						ARRAY_SIZE(golden_settings_sdma_4));
346 		soc15_program_register_sequence(adev,
347 						golden_settings_sdma_vg12,
348 						ARRAY_SIZE(golden_settings_sdma_vg12));
349 		break;
350 	case CHIP_VEGA20:
351 		soc15_program_register_sequence(adev,
352 						golden_settings_sdma0_4_2_init,
353 						ARRAY_SIZE(golden_settings_sdma0_4_2_init));
354 		soc15_program_register_sequence(adev,
355 						golden_settings_sdma0_4_2,
356 						ARRAY_SIZE(golden_settings_sdma0_4_2));
357 		soc15_program_register_sequence(adev,
358 						golden_settings_sdma1_4_2,
359 						ARRAY_SIZE(golden_settings_sdma1_4_2));
360 		break;
361 	case CHIP_ARCTURUS:
362 		soc15_program_register_sequence(adev,
363 						golden_settings_sdma_arct,
364 						ARRAY_SIZE(golden_settings_sdma_arct));
365 		break;
366 	case CHIP_RAVEN:
367 		soc15_program_register_sequence(adev,
368 						golden_settings_sdma_4_1,
369 						ARRAY_SIZE(golden_settings_sdma_4_1));
370 		if (adev->rev_id >= 8)
371 			soc15_program_register_sequence(adev,
372 							golden_settings_sdma_rv2,
373 							ARRAY_SIZE(golden_settings_sdma_rv2));
374 		else
375 			soc15_program_register_sequence(adev,
376 							golden_settings_sdma_rv1,
377 							ARRAY_SIZE(golden_settings_sdma_rv1));
378 		break;
379 	default:
380 		break;
381 	}
382 }
383 
384 /**
385  * sdma_v4_0_init_microcode - load ucode images from disk
386  *
387  * @adev: amdgpu_device pointer
388  *
389  * Use the firmware interface to load the ucode images into
390  * the driver (not loaded into hw).
391  * Returns 0 on success, error on failure.
392  */
393 
394 // emulation only, won't work on real chip
395 // vega10 real chip need to use PSP to load firmware
396 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
397 {
398 	const char *chip_name;
399 	char fw_name[30];
400 	int err = 0, i;
401 	struct amdgpu_firmware_info *info = NULL;
402 	const struct common_firmware_header *header = NULL;
403 	const struct sdma_firmware_header_v1_0 *hdr;
404 
405 	DRM_DEBUG("\n");
406 
407 	switch (adev->asic_type) {
408 	case CHIP_VEGA10:
409 		chip_name = "vega10";
410 		break;
411 	case CHIP_VEGA12:
412 		chip_name = "vega12";
413 		break;
414 	case CHIP_VEGA20:
415 		chip_name = "vega20";
416 		break;
417 	case CHIP_RAVEN:
418 		if (adev->rev_id >= 8)
419 			chip_name = "raven2";
420 		else if (adev->pdev->device == 0x15d8)
421 			chip_name = "picasso";
422 		else
423 			chip_name = "raven";
424 		break;
425 	case CHIP_ARCTURUS:
426 		chip_name = "arcturus";
427 		break;
428 	default:
429 		BUG();
430 	}
431 
432 	for (i = 0; i < adev->sdma.num_instances; i++) {
433 		if (i == 0)
434 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
435 		else
436 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
437 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
438 		if (err)
439 			goto out;
440 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
441 		if (err)
442 			goto out;
443 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
444 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
445 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
446 		if (adev->sdma.instance[i].feature_version >= 20)
447 			adev->sdma.instance[i].burst_nop = true;
448 		DRM_DEBUG("psp_load == '%s'\n",
449 				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
450 
451 		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
452 			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
453 			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
454 			info->fw = adev->sdma.instance[i].fw;
455 			header = (const struct common_firmware_header *)info->fw->data;
456 			adev->firmware.fw_size +=
457 				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
458 		}
459 	}
460 out:
461 	if (err) {
462 		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
463 		for (i = 0; i < adev->sdma.num_instances; i++) {
464 			release_firmware(adev->sdma.instance[i].fw);
465 			adev->sdma.instance[i].fw = NULL;
466 		}
467 	}
468 	return err;
469 }
470 
471 /**
472  * sdma_v4_0_ring_get_rptr - get the current read pointer
473  *
474  * @ring: amdgpu ring pointer
475  *
476  * Get the current rptr from the hardware (VEGA10+).
477  */
478 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
479 {
480 	u64 *rptr;
481 
482 	/* XXX check if swapping is necessary on BE */
483 	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
484 
485 	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
486 	return ((*rptr) >> 2);
487 }
488 
489 /**
490  * sdma_v4_0_ring_get_wptr - get the current write pointer
491  *
492  * @ring: amdgpu ring pointer
493  *
494  * Get the current wptr from the hardware (VEGA10+).
495  */
496 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
497 {
498 	struct amdgpu_device *adev = ring->adev;
499 	u64 wptr;
500 
501 	if (ring->use_doorbell) {
502 		/* XXX check if swapping is necessary on BE */
503 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
504 		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
505 	} else {
506 		wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
507 		wptr = wptr << 32;
508 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
509 		DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
510 				ring->me, wptr);
511 	}
512 
513 	return wptr >> 2;
514 }
515 
516 /**
517  * sdma_v4_0_ring_set_wptr - commit the write pointer
518  *
519  * @ring: amdgpu ring pointer
520  *
521  * Write the wptr back to the hardware (VEGA10+).
522  */
523 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
524 {
525 	struct amdgpu_device *adev = ring->adev;
526 
527 	DRM_DEBUG("Setting write pointer\n");
528 	if (ring->use_doorbell) {
529 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
530 
531 		DRM_DEBUG("Using doorbell -- "
532 				"wptr_offs == 0x%08x "
533 				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
534 				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
535 				ring->wptr_offs,
536 				lower_32_bits(ring->wptr << 2),
537 				upper_32_bits(ring->wptr << 2));
538 		/* XXX check if swapping is necessary on BE */
539 		WRITE_ONCE(*wb, (ring->wptr << 2));
540 		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
541 				ring->doorbell_index, ring->wptr << 2);
542 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
543 	} else {
544 		DRM_DEBUG("Not using doorbell -- "
545 				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
546 				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
547 				ring->me,
548 				lower_32_bits(ring->wptr << 2),
549 				ring->me,
550 				upper_32_bits(ring->wptr << 2));
551 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
552 			    lower_32_bits(ring->wptr << 2));
553 		WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
554 			    upper_32_bits(ring->wptr << 2));
555 	}
556 }
557 
558 /**
559  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
560  *
561  * @ring: amdgpu ring pointer
562  *
563  * Get the current wptr from the hardware (VEGA10+).
564  */
565 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
566 {
567 	struct amdgpu_device *adev = ring->adev;
568 	u64 wptr;
569 
570 	if (ring->use_doorbell) {
571 		/* XXX check if swapping is necessary on BE */
572 		wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
573 	} else {
574 		wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
575 		wptr = wptr << 32;
576 		wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
577 	}
578 
579 	return wptr >> 2;
580 }
581 
582 /**
583  * sdma_v4_0_ring_set_wptr - commit the write pointer
584  *
585  * @ring: amdgpu ring pointer
586  *
587  * Write the wptr back to the hardware (VEGA10+).
588  */
589 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
590 {
591 	struct amdgpu_device *adev = ring->adev;
592 
593 	if (ring->use_doorbell) {
594 		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
595 
596 		/* XXX check if swapping is necessary on BE */
597 		WRITE_ONCE(*wb, (ring->wptr << 2));
598 		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
599 	} else {
600 		uint64_t wptr = ring->wptr << 2;
601 
602 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
603 			    lower_32_bits(wptr));
604 		WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
605 			    upper_32_bits(wptr));
606 	}
607 }
608 
609 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
610 {
611 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
612 	int i;
613 
614 	for (i = 0; i < count; i++)
615 		if (sdma && sdma->burst_nop && (i == 0))
616 			amdgpu_ring_write(ring, ring->funcs->nop |
617 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
618 		else
619 			amdgpu_ring_write(ring, ring->funcs->nop);
620 }
621 
622 /**
623  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
624  *
625  * @ring: amdgpu ring pointer
626  * @ib: IB object to schedule
627  *
628  * Schedule an IB in the DMA ring (VEGA10).
629  */
630 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
631 				   struct amdgpu_job *job,
632 				   struct amdgpu_ib *ib,
633 				   uint32_t flags)
634 {
635 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
636 
637 	/* IB packet must end on a 8 DW boundary */
638 	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
639 
640 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
641 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
642 	/* base must be 32 byte aligned */
643 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
644 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
645 	amdgpu_ring_write(ring, ib->length_dw);
646 	amdgpu_ring_write(ring, 0);
647 	amdgpu_ring_write(ring, 0);
648 
649 }
650 
651 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
652 				   int mem_space, int hdp,
653 				   uint32_t addr0, uint32_t addr1,
654 				   uint32_t ref, uint32_t mask,
655 				   uint32_t inv)
656 {
657 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
658 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
659 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
660 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
661 	if (mem_space) {
662 		/* memory */
663 		amdgpu_ring_write(ring, addr0);
664 		amdgpu_ring_write(ring, addr1);
665 	} else {
666 		/* registers */
667 		amdgpu_ring_write(ring, addr0 << 2);
668 		amdgpu_ring_write(ring, addr1 << 2);
669 	}
670 	amdgpu_ring_write(ring, ref); /* reference */
671 	amdgpu_ring_write(ring, mask); /* mask */
672 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
673 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
674 }
675 
676 /**
677  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
678  *
679  * @ring: amdgpu ring pointer
680  *
681  * Emit an hdp flush packet on the requested DMA ring.
682  */
683 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
684 {
685 	struct amdgpu_device *adev = ring->adev;
686 	u32 ref_and_mask = 0;
687 	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
688 
689 	ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
690 
691 	sdma_v4_0_wait_reg_mem(ring, 0, 1,
692 			       adev->nbio_funcs->get_hdp_flush_done_offset(adev),
693 			       adev->nbio_funcs->get_hdp_flush_req_offset(adev),
694 			       ref_and_mask, ref_and_mask, 10);
695 }
696 
697 /**
698  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
699  *
700  * @ring: amdgpu ring pointer
701  * @fence: amdgpu fence object
702  *
703  * Add a DMA fence packet to the ring to write
704  * the fence seq number and DMA trap packet to generate
705  * an interrupt if needed (VEGA10).
706  */
707 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
708 				      unsigned flags)
709 {
710 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
711 	/* write the fence */
712 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
713 	/* zero in first two bits */
714 	BUG_ON(addr & 0x3);
715 	amdgpu_ring_write(ring, lower_32_bits(addr));
716 	amdgpu_ring_write(ring, upper_32_bits(addr));
717 	amdgpu_ring_write(ring, lower_32_bits(seq));
718 
719 	/* optionally write high bits as well */
720 	if (write64bit) {
721 		addr += 4;
722 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
723 		/* zero in first two bits */
724 		BUG_ON(addr & 0x3);
725 		amdgpu_ring_write(ring, lower_32_bits(addr));
726 		amdgpu_ring_write(ring, upper_32_bits(addr));
727 		amdgpu_ring_write(ring, upper_32_bits(seq));
728 	}
729 
730 	/* generate an interrupt */
731 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
732 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
733 }
734 
735 
736 /**
737  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
738  *
739  * @adev: amdgpu_device pointer
740  *
741  * Stop the gfx async dma ring buffers (VEGA10).
742  */
743 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
744 {
745 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
746 	u32 rb_cntl, ib_cntl;
747 	int i, unset = 0;
748 
749 	for (i = 0; i < adev->sdma.num_instances; i++) {
750 		sdma[i] = &adev->sdma.instance[i].ring;
751 
752 		if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
753 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
754 			unset = 1;
755 		}
756 
757 		rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
758 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
759 		WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
760 		ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
761 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
762 		WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
763 
764 		sdma[i]->sched.ready = false;
765 	}
766 }
767 
768 /**
769  * sdma_v4_0_rlc_stop - stop the compute async dma engines
770  *
771  * @adev: amdgpu_device pointer
772  *
773  * Stop the compute async dma queues (VEGA10).
774  */
775 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
776 {
777 	/* XXX todo */
778 }
779 
780 /**
781  * sdma_v4_0_page_stop - stop the page async dma engines
782  *
783  * @adev: amdgpu_device pointer
784  *
785  * Stop the page async dma ring buffers (VEGA10).
786  */
787 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
788 {
789 	struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
790 	u32 rb_cntl, ib_cntl;
791 	int i;
792 	bool unset = false;
793 
794 	for (i = 0; i < adev->sdma.num_instances; i++) {
795 		sdma[i] = &adev->sdma.instance[i].page;
796 
797 		if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
798 			(unset == false)) {
799 			amdgpu_ttm_set_buffer_funcs_status(adev, false);
800 			unset = true;
801 		}
802 
803 		rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
804 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
805 					RB_ENABLE, 0);
806 		WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
807 		ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
808 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
809 					IB_ENABLE, 0);
810 		WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
811 
812 		sdma[i]->sched.ready = false;
813 	}
814 }
815 
816 /**
817  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
818  *
819  * @adev: amdgpu_device pointer
820  * @enable: enable/disable the DMA MEs context switch.
821  *
822  * Halt or unhalt the async dma engines context switch (VEGA10).
823  */
824 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
825 {
826 	u32 f32_cntl, phase_quantum = 0;
827 	int i;
828 
829 	if (amdgpu_sdma_phase_quantum) {
830 		unsigned value = amdgpu_sdma_phase_quantum;
831 		unsigned unit = 0;
832 
833 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
834 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
835 			value = (value + 1) >> 1;
836 			unit++;
837 		}
838 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
839 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
840 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
841 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
842 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
843 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
844 			WARN_ONCE(1,
845 			"clamping sdma_phase_quantum to %uK clock cycles\n",
846 				  value << unit);
847 		}
848 		phase_quantum =
849 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
850 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
851 	}
852 
853 	for (i = 0; i < adev->sdma.num_instances; i++) {
854 		f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
855 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
856 				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
857 		if (enable && amdgpu_sdma_phase_quantum) {
858 			WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
859 			WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
860 			WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
861 		}
862 		WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
863 	}
864 
865 }
866 
867 /**
868  * sdma_v4_0_enable - stop the async dma engines
869  *
870  * @adev: amdgpu_device pointer
871  * @enable: enable/disable the DMA MEs.
872  *
873  * Halt or unhalt the async dma engines (VEGA10).
874  */
875 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
876 {
877 	u32 f32_cntl;
878 	int i;
879 
880 	if (enable == false) {
881 		sdma_v4_0_gfx_stop(adev);
882 		sdma_v4_0_rlc_stop(adev);
883 		if (adev->sdma.has_page_queue)
884 			sdma_v4_0_page_stop(adev);
885 	}
886 
887 	for (i = 0; i < adev->sdma.num_instances; i++) {
888 		f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
889 		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
890 		WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
891 	}
892 }
893 
894 /**
895  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
896  */
897 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
898 {
899 	/* Set ring buffer size in dwords */
900 	uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
901 
902 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
903 #ifdef __BIG_ENDIAN
904 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
905 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
906 				RPTR_WRITEBACK_SWAP_ENABLE, 1);
907 #endif
908 	return rb_cntl;
909 }
910 
911 /**
912  * sdma_v4_0_gfx_resume - setup and start the async dma engines
913  *
914  * @adev: amdgpu_device pointer
915  * @i: instance to resume
916  *
917  * Set up the gfx DMA ring buffers and enable them (VEGA10).
918  * Returns 0 for success, error for failure.
919  */
920 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
921 {
922 	struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
923 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
924 	u32 wb_offset;
925 	u32 doorbell;
926 	u32 doorbell_offset;
927 	u64 wptr_gpu_addr;
928 
929 	wb_offset = (ring->rptr_offs * 4);
930 
931 	rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
932 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
933 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
934 
935 	/* Initialize the ring buffer's read and write pointers */
936 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
937 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
938 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
939 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
940 
941 	/* set the wb address whether it's enabled or not */
942 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
943 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
944 	WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
945 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
946 
947 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
948 				RPTR_WRITEBACK_ENABLE, 1);
949 
950 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
951 	WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
952 
953 	ring->wptr = 0;
954 
955 	/* before programing wptr to a less value, need set minor_ptr_update first */
956 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
957 
958 	doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
959 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
960 
961 	doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
962 				 ring->use_doorbell);
963 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
964 					SDMA0_GFX_DOORBELL_OFFSET,
965 					OFFSET, ring->doorbell_index);
966 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
967 	WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
968 
969 	sdma_v4_0_ring_set_wptr(ring);
970 
971 	/* set minor_ptr_update to 0 after wptr programed */
972 	WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
973 
974 	/* setup the wptr shadow polling */
975 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
976 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
977 		    lower_32_bits(wptr_gpu_addr));
978 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
979 		    upper_32_bits(wptr_gpu_addr));
980 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
981 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
982 				       SDMA0_GFX_RB_WPTR_POLL_CNTL,
983 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
984 	WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
985 
986 	/* enable DMA RB */
987 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
988 	WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
989 
990 	ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
991 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
992 #ifdef __BIG_ENDIAN
993 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
994 #endif
995 	/* enable DMA IBs */
996 	WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
997 
998 	ring->sched.ready = true;
999 }
1000 
1001 /**
1002  * sdma_v4_0_page_resume - setup and start the async dma engines
1003  *
1004  * @adev: amdgpu_device pointer
1005  * @i: instance to resume
1006  *
1007  * Set up the page DMA ring buffers and enable them (VEGA10).
1008  * Returns 0 for success, error for failure.
1009  */
1010 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1011 {
1012 	struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1013 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1014 	u32 wb_offset;
1015 	u32 doorbell;
1016 	u32 doorbell_offset;
1017 	u64 wptr_gpu_addr;
1018 
1019 	wb_offset = (ring->rptr_offs * 4);
1020 
1021 	rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1022 	rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1023 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1024 
1025 	/* Initialize the ring buffer's read and write pointers */
1026 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1027 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1028 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1029 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1030 
1031 	/* set the wb address whether it's enabled or not */
1032 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1033 	       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1034 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1035 	       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1036 
1037 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1038 				RPTR_WRITEBACK_ENABLE, 1);
1039 
1040 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1041 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1042 
1043 	ring->wptr = 0;
1044 
1045 	/* before programing wptr to a less value, need set minor_ptr_update first */
1046 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1047 
1048 	doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1049 	doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1050 
1051 	doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1052 				 ring->use_doorbell);
1053 	doorbell_offset = REG_SET_FIELD(doorbell_offset,
1054 					SDMA0_PAGE_DOORBELL_OFFSET,
1055 					OFFSET, ring->doorbell_index);
1056 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1057 	WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1058 
1059 	/* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1060 	sdma_v4_0_page_ring_set_wptr(ring);
1061 
1062 	/* set minor_ptr_update to 0 after wptr programed */
1063 	WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1064 
1065 	/* setup the wptr shadow polling */
1066 	wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1067 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1068 		    lower_32_bits(wptr_gpu_addr));
1069 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1070 		    upper_32_bits(wptr_gpu_addr));
1071 	wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1072 	wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1073 				       SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1074 				       F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1075 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1076 
1077 	/* enable DMA RB */
1078 	rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1079 	WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1080 
1081 	ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1082 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1083 #ifdef __BIG_ENDIAN
1084 	ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1085 #endif
1086 	/* enable DMA IBs */
1087 	WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1088 
1089 	ring->sched.ready = true;
1090 }
1091 
1092 static void
1093 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1094 {
1095 	uint32_t def, data;
1096 
1097 	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1098 		/* enable idle interrupt */
1099 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1100 		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1101 
1102 		if (data != def)
1103 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1104 	} else {
1105 		/* disable idle interrupt */
1106 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1107 		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1108 		if (data != def)
1109 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1110 	}
1111 }
1112 
1113 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1114 {
1115 	uint32_t def, data;
1116 
1117 	/* Enable HW based PG. */
1118 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1119 	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1120 	if (data != def)
1121 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1122 
1123 	/* enable interrupt */
1124 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1125 	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1126 	if (data != def)
1127 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1128 
1129 	/* Configure hold time to filter in-valid power on/off request. Use default right now */
1130 	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1131 	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1132 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1133 	/* Configure switch time for hysteresis purpose. Use default right now */
1134 	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1135 	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1136 	if(data != def)
1137 		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1138 }
1139 
1140 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1141 {
1142 	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1143 		return;
1144 
1145 	switch (adev->asic_type) {
1146 	case CHIP_RAVEN:
1147 		sdma_v4_1_init_power_gating(adev);
1148 		sdma_v4_1_update_power_gating(adev, true);
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 }
1154 
1155 /**
1156  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1157  *
1158  * @adev: amdgpu_device pointer
1159  *
1160  * Set up the compute DMA queues and enable them (VEGA10).
1161  * Returns 0 for success, error for failure.
1162  */
1163 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1164 {
1165 	sdma_v4_0_init_pg(adev);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1172  *
1173  * @adev: amdgpu_device pointer
1174  *
1175  * Loads the sDMA0/1 ucode.
1176  * Returns 0 for success, -EINVAL if the ucode is not available.
1177  */
1178 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1179 {
1180 	const struct sdma_firmware_header_v1_0 *hdr;
1181 	const __le32 *fw_data;
1182 	u32 fw_size;
1183 	int i, j;
1184 
1185 	/* halt the MEs */
1186 	sdma_v4_0_enable(adev, false);
1187 
1188 	for (i = 0; i < adev->sdma.num_instances; i++) {
1189 		if (!adev->sdma.instance[i].fw)
1190 			return -EINVAL;
1191 
1192 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1193 		amdgpu_ucode_print_sdma_hdr(&hdr->header);
1194 		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1195 
1196 		fw_data = (const __le32 *)
1197 			(adev->sdma.instance[i].fw->data +
1198 				le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1199 
1200 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1201 
1202 		for (j = 0; j < fw_size; j++)
1203 			WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1204 				    le32_to_cpup(fw_data++));
1205 
1206 		WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1207 			    adev->sdma.instance[i].fw_version);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * sdma_v4_0_start - setup and start the async dma engines
1215  *
1216  * @adev: amdgpu_device pointer
1217  *
1218  * Set up the DMA engines and enable them (VEGA10).
1219  * Returns 0 for success, error for failure.
1220  */
1221 static int sdma_v4_0_start(struct amdgpu_device *adev)
1222 {
1223 	struct amdgpu_ring *ring;
1224 	int i, r = 0;
1225 
1226 	if (amdgpu_sriov_vf(adev)) {
1227 		sdma_v4_0_ctx_switch_enable(adev, false);
1228 		sdma_v4_0_enable(adev, false);
1229 	} else {
1230 
1231 		if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1232 			r = sdma_v4_0_load_microcode(adev);
1233 			if (r)
1234 				return r;
1235 		}
1236 
1237 		/* unhalt the MEs */
1238 		sdma_v4_0_enable(adev, true);
1239 		/* enable sdma ring preemption */
1240 		sdma_v4_0_ctx_switch_enable(adev, true);
1241 	}
1242 
1243 	/* start the gfx rings and rlc compute queues */
1244 	for (i = 0; i < adev->sdma.num_instances; i++) {
1245 		uint32_t temp;
1246 
1247 		WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1248 		sdma_v4_0_gfx_resume(adev, i);
1249 		if (adev->sdma.has_page_queue)
1250 			sdma_v4_0_page_resume(adev, i);
1251 
1252 		/* set utc l1 enable flag always to 1 */
1253 		temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1254 		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1255 		WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1256 
1257 		if (!amdgpu_sriov_vf(adev)) {
1258 			/* unhalt engine */
1259 			temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1260 			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1261 			WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1262 		}
1263 	}
1264 
1265 	if (amdgpu_sriov_vf(adev)) {
1266 		sdma_v4_0_ctx_switch_enable(adev, true);
1267 		sdma_v4_0_enable(adev, true);
1268 	} else {
1269 		r = sdma_v4_0_rlc_resume(adev);
1270 		if (r)
1271 			return r;
1272 	}
1273 
1274 	for (i = 0; i < adev->sdma.num_instances; i++) {
1275 		ring = &adev->sdma.instance[i].ring;
1276 
1277 		r = amdgpu_ring_test_helper(ring);
1278 		if (r)
1279 			return r;
1280 
1281 		if (adev->sdma.has_page_queue) {
1282 			struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1283 
1284 			r = amdgpu_ring_test_helper(page);
1285 			if (r)
1286 				return r;
1287 
1288 			if (adev->mman.buffer_funcs_ring == page)
1289 				amdgpu_ttm_set_buffer_funcs_status(adev, true);
1290 		}
1291 
1292 		if (adev->mman.buffer_funcs_ring == ring)
1293 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
1294 	}
1295 
1296 	return r;
1297 }
1298 
1299 /**
1300  * sdma_v4_0_ring_test_ring - simple async dma engine test
1301  *
1302  * @ring: amdgpu_ring structure holding ring information
1303  *
1304  * Test the DMA engine by writing using it to write an
1305  * value to memory. (VEGA10).
1306  * Returns 0 for success, error for failure.
1307  */
1308 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1309 {
1310 	struct amdgpu_device *adev = ring->adev;
1311 	unsigned i;
1312 	unsigned index;
1313 	int r;
1314 	u32 tmp;
1315 	u64 gpu_addr;
1316 
1317 	r = amdgpu_device_wb_get(adev, &index);
1318 	if (r)
1319 		return r;
1320 
1321 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1322 	tmp = 0xCAFEDEAD;
1323 	adev->wb.wb[index] = cpu_to_le32(tmp);
1324 
1325 	r = amdgpu_ring_alloc(ring, 5);
1326 	if (r)
1327 		goto error_free_wb;
1328 
1329 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1330 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1331 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1332 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1333 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1334 	amdgpu_ring_write(ring, 0xDEADBEEF);
1335 	amdgpu_ring_commit(ring);
1336 
1337 	for (i = 0; i < adev->usec_timeout; i++) {
1338 		tmp = le32_to_cpu(adev->wb.wb[index]);
1339 		if (tmp == 0xDEADBEEF)
1340 			break;
1341 		udelay(1);
1342 	}
1343 
1344 	if (i >= adev->usec_timeout)
1345 		r = -ETIMEDOUT;
1346 
1347 error_free_wb:
1348 	amdgpu_device_wb_free(adev, index);
1349 	return r;
1350 }
1351 
1352 /**
1353  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1354  *
1355  * @ring: amdgpu_ring structure holding ring information
1356  *
1357  * Test a simple IB in the DMA ring (VEGA10).
1358  * Returns 0 on success, error on failure.
1359  */
1360 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1361 {
1362 	struct amdgpu_device *adev = ring->adev;
1363 	struct amdgpu_ib ib;
1364 	struct dma_fence *f = NULL;
1365 	unsigned index;
1366 	long r;
1367 	u32 tmp = 0;
1368 	u64 gpu_addr;
1369 
1370 	r = amdgpu_device_wb_get(adev, &index);
1371 	if (r)
1372 		return r;
1373 
1374 	gpu_addr = adev->wb.gpu_addr + (index * 4);
1375 	tmp = 0xCAFEDEAD;
1376 	adev->wb.wb[index] = cpu_to_le32(tmp);
1377 	memset(&ib, 0, sizeof(ib));
1378 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
1379 	if (r)
1380 		goto err0;
1381 
1382 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1383 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1384 	ib.ptr[1] = lower_32_bits(gpu_addr);
1385 	ib.ptr[2] = upper_32_bits(gpu_addr);
1386 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1387 	ib.ptr[4] = 0xDEADBEEF;
1388 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1389 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1390 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1391 	ib.length_dw = 8;
1392 
1393 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1394 	if (r)
1395 		goto err1;
1396 
1397 	r = dma_fence_wait_timeout(f, false, timeout);
1398 	if (r == 0) {
1399 		r = -ETIMEDOUT;
1400 		goto err1;
1401 	} else if (r < 0) {
1402 		goto err1;
1403 	}
1404 	tmp = le32_to_cpu(adev->wb.wb[index]);
1405 	if (tmp == 0xDEADBEEF)
1406 		r = 0;
1407 	else
1408 		r = -EINVAL;
1409 
1410 err1:
1411 	amdgpu_ib_free(adev, &ib, NULL);
1412 	dma_fence_put(f);
1413 err0:
1414 	amdgpu_device_wb_free(adev, index);
1415 	return r;
1416 }
1417 
1418 
1419 /**
1420  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1421  *
1422  * @ib: indirect buffer to fill with commands
1423  * @pe: addr of the page entry
1424  * @src: src addr to copy from
1425  * @count: number of page entries to update
1426  *
1427  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1428  */
1429 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1430 				  uint64_t pe, uint64_t src,
1431 				  unsigned count)
1432 {
1433 	unsigned bytes = count * 8;
1434 
1435 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1436 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1437 	ib->ptr[ib->length_dw++] = bytes - 1;
1438 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1439 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
1440 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
1441 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1442 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1443 
1444 }
1445 
1446 /**
1447  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1448  *
1449  * @ib: indirect buffer to fill with commands
1450  * @pe: addr of the page entry
1451  * @addr: dst addr to write into pe
1452  * @count: number of page entries to update
1453  * @incr: increase next addr by incr bytes
1454  * @flags: access flags
1455  *
1456  * Update PTEs by writing them manually using sDMA (VEGA10).
1457  */
1458 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1459 				   uint64_t value, unsigned count,
1460 				   uint32_t incr)
1461 {
1462 	unsigned ndw = count * 2;
1463 
1464 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1465 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1466 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1467 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1468 	ib->ptr[ib->length_dw++] = ndw - 1;
1469 	for (; ndw > 0; ndw -= 2) {
1470 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
1471 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
1472 		value += incr;
1473 	}
1474 }
1475 
1476 /**
1477  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1478  *
1479  * @ib: indirect buffer to fill with commands
1480  * @pe: addr of the page entry
1481  * @addr: dst addr to write into pe
1482  * @count: number of page entries to update
1483  * @incr: increase next addr by incr bytes
1484  * @flags: access flags
1485  *
1486  * Update the page tables using sDMA (VEGA10).
1487  */
1488 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1489 				     uint64_t pe,
1490 				     uint64_t addr, unsigned count,
1491 				     uint32_t incr, uint64_t flags)
1492 {
1493 	/* for physically contiguous pages (vram) */
1494 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1495 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1496 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1497 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1498 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1499 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1500 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1501 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1502 	ib->ptr[ib->length_dw++] = 0;
1503 	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1504 }
1505 
1506 /**
1507  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1508  *
1509  * @ib: indirect buffer to fill with padding
1510  *
1511  */
1512 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1513 {
1514 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1515 	u32 pad_count;
1516 	int i;
1517 
1518 	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1519 	for (i = 0; i < pad_count; i++)
1520 		if (sdma && sdma->burst_nop && (i == 0))
1521 			ib->ptr[ib->length_dw++] =
1522 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1523 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1524 		else
1525 			ib->ptr[ib->length_dw++] =
1526 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1527 }
1528 
1529 
1530 /**
1531  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1532  *
1533  * @ring: amdgpu_ring pointer
1534  *
1535  * Make sure all previous operations are completed (CIK).
1536  */
1537 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1538 {
1539 	uint32_t seq = ring->fence_drv.sync_seq;
1540 	uint64_t addr = ring->fence_drv.gpu_addr;
1541 
1542 	/* wait for idle */
1543 	sdma_v4_0_wait_reg_mem(ring, 1, 0,
1544 			       addr & 0xfffffffc,
1545 			       upper_32_bits(addr) & 0xffffffff,
1546 			       seq, 0xffffffff, 4);
1547 }
1548 
1549 
1550 /**
1551  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1552  *
1553  * @ring: amdgpu_ring pointer
1554  * @vm: amdgpu_vm pointer
1555  *
1556  * Update the page table base and flush the VM TLB
1557  * using sDMA (VEGA10).
1558  */
1559 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1560 					 unsigned vmid, uint64_t pd_addr)
1561 {
1562 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1563 }
1564 
1565 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1566 				     uint32_t reg, uint32_t val)
1567 {
1568 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1569 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1570 	amdgpu_ring_write(ring, reg);
1571 	amdgpu_ring_write(ring, val);
1572 }
1573 
1574 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1575 					 uint32_t val, uint32_t mask)
1576 {
1577 	sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1578 }
1579 
1580 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1581 {
1582 	uint fw_version = adev->sdma.instance[0].fw_version;
1583 
1584 	switch (adev->asic_type) {
1585 	case CHIP_VEGA10:
1586 		return fw_version >= 430;
1587 	case CHIP_VEGA12:
1588 		/*return fw_version >= 31;*/
1589 		return false;
1590 	case CHIP_VEGA20:
1591 		return fw_version >= 123;
1592 	default:
1593 		return false;
1594 	}
1595 }
1596 
1597 static int sdma_v4_0_early_init(void *handle)
1598 {
1599 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1600 	int r;
1601 
1602 	if (adev->asic_type == CHIP_RAVEN)
1603 		adev->sdma.num_instances = 1;
1604 	else if (adev->asic_type == CHIP_ARCTURUS)
1605 		adev->sdma.num_instances = 8;
1606 	else
1607 		adev->sdma.num_instances = 2;
1608 
1609 	r = sdma_v4_0_init_microcode(adev);
1610 	if (r) {
1611 		DRM_ERROR("Failed to load sdma firmware!\n");
1612 		return r;
1613 	}
1614 
1615 	/* TODO: Page queue breaks driver reload under SRIOV */
1616 	if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1617 		adev->sdma.has_page_queue = false;
1618 	else if (sdma_v4_0_fw_support_paging_queue(adev))
1619 		adev->sdma.has_page_queue = true;
1620 
1621 	sdma_v4_0_set_ring_funcs(adev);
1622 	sdma_v4_0_set_buffer_funcs(adev);
1623 	sdma_v4_0_set_vm_pte_funcs(adev);
1624 	sdma_v4_0_set_irq_funcs(adev);
1625 
1626 	return 0;
1627 }
1628 
1629 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1630 		struct amdgpu_iv_entry *entry);
1631 
1632 static int sdma_v4_0_late_init(void *handle)
1633 {
1634 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1635 	struct ras_common_if **ras_if = &adev->sdma.ras_if;
1636 	struct ras_ih_if ih_info = {
1637 		.cb = sdma_v4_0_process_ras_data_cb,
1638 	};
1639 	struct ras_fs_if fs_info = {
1640 		.sysfs_name = "sdma_err_count",
1641 		.debugfs_name = "sdma_err_inject",
1642 	};
1643 	struct ras_common_if ras_block = {
1644 		.block = AMDGPU_RAS_BLOCK__SDMA,
1645 		.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
1646 		.sub_block_index = 0,
1647 		.name = "sdma",
1648 	};
1649 	int r, i;
1650 
1651 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1652 		amdgpu_ras_feature_enable_on_boot(adev, &ras_block, 0);
1653 		return 0;
1654 	}
1655 
1656 	/* handle resume path. */
1657 	if (*ras_if) {
1658 		/* resend ras TA enable cmd during resume.
1659 		 * prepare to handle failure.
1660 		 */
1661 		ih_info.head = **ras_if;
1662 		r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1663 		if (r) {
1664 			if (r == -EAGAIN) {
1665 				/* request a gpu reset. will run again. */
1666 				amdgpu_ras_request_reset_on_boot(adev,
1667 						AMDGPU_RAS_BLOCK__SDMA);
1668 				return 0;
1669 			}
1670 			/* fail to enable ras, cleanup all. */
1671 			goto irq;
1672 		}
1673 		/* enable successfully. continue. */
1674 		goto resume;
1675 	}
1676 
1677 	*ras_if = kmalloc(sizeof(**ras_if), GFP_KERNEL);
1678 	if (!*ras_if)
1679 		return -ENOMEM;
1680 
1681 	**ras_if = ras_block;
1682 
1683 	r = amdgpu_ras_feature_enable_on_boot(adev, *ras_if, 1);
1684 	if (r) {
1685 		if (r == -EAGAIN) {
1686 			amdgpu_ras_request_reset_on_boot(adev,
1687 					AMDGPU_RAS_BLOCK__SDMA);
1688 			r = 0;
1689 		}
1690 		goto feature;
1691 	}
1692 
1693 	ih_info.head = **ras_if;
1694 	fs_info.head = **ras_if;
1695 
1696 	r = amdgpu_ras_interrupt_add_handler(adev, &ih_info);
1697 	if (r)
1698 		goto interrupt;
1699 
1700 	amdgpu_ras_debugfs_create(adev, &fs_info);
1701 
1702 	r = amdgpu_ras_sysfs_create(adev, &fs_info);
1703 	if (r)
1704 		goto sysfs;
1705 resume:
1706 	for (i = 0; i < adev->sdma.num_instances; i++) {
1707 		r = amdgpu_irq_get(adev, &adev->sdma.ecc_irq,
1708 				   AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1709 		if (r)
1710 			goto irq;
1711 	}
1712 
1713 	return 0;
1714 irq:
1715 	amdgpu_ras_sysfs_remove(adev, *ras_if);
1716 sysfs:
1717 	amdgpu_ras_debugfs_remove(adev, *ras_if);
1718 	amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1719 interrupt:
1720 	amdgpu_ras_feature_enable(adev, *ras_if, 0);
1721 feature:
1722 	kfree(*ras_if);
1723 	*ras_if = NULL;
1724 	return r;
1725 }
1726 
1727 static int sdma_v4_0_sw_init(void *handle)
1728 {
1729 	struct amdgpu_ring *ring;
1730 	int r, i;
1731 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1732 
1733 	/* SDMA trap event */
1734 	for (i = 0; i < adev->sdma.num_instances; i++) {
1735 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1736 				      SDMA0_4_0__SRCID__SDMA_TRAP,
1737 				      &adev->sdma.trap_irq);
1738 		if (r)
1739 			return r;
1740 	}
1741 
1742 	/* SDMA SRAM ECC event */
1743 	for (i = 0; i < adev->sdma.num_instances; i++) {
1744 		r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1745 				      SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1746 				      &adev->sdma.ecc_irq);
1747 		if (r)
1748 			return r;
1749 	}
1750 
1751 	for (i = 0; i < adev->sdma.num_instances; i++) {
1752 		ring = &adev->sdma.instance[i].ring;
1753 		ring->ring_obj = NULL;
1754 		ring->use_doorbell = true;
1755 
1756 		DRM_INFO("use_doorbell being set to: [%s]\n",
1757 				ring->use_doorbell?"true":"false");
1758 
1759 		/* doorbell size is 2 dwords, get DWORD offset */
1760 		ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1761 
1762 		sprintf(ring->name, "sdma%d", i);
1763 		r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1764 				     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1765 		if (r)
1766 			return r;
1767 
1768 		if (adev->sdma.has_page_queue) {
1769 			ring = &adev->sdma.instance[i].page;
1770 			ring->ring_obj = NULL;
1771 			ring->use_doorbell = true;
1772 
1773 			/* paging queue use same doorbell index/routing as gfx queue
1774 			 * with 0x400 (4096 dwords) offset on second doorbell page
1775 			 */
1776 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1777 			ring->doorbell_index += 0x400;
1778 
1779 			sprintf(ring->name, "page%d", i);
1780 			r = amdgpu_ring_init(adev, ring, 1024,
1781 					     &adev->sdma.trap_irq,
1782 					     AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1783 			if (r)
1784 				return r;
1785 		}
1786 	}
1787 
1788 	return r;
1789 }
1790 
1791 static int sdma_v4_0_sw_fini(void *handle)
1792 {
1793 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1794 	int i;
1795 
1796 	if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA) &&
1797 			adev->sdma.ras_if) {
1798 		struct ras_common_if *ras_if = adev->sdma.ras_if;
1799 		struct ras_ih_if ih_info = {
1800 			.head = *ras_if,
1801 		};
1802 
1803 		/*remove fs first*/
1804 		amdgpu_ras_debugfs_remove(adev, ras_if);
1805 		amdgpu_ras_sysfs_remove(adev, ras_if);
1806 		/*remove the IH*/
1807 		amdgpu_ras_interrupt_remove_handler(adev, &ih_info);
1808 		amdgpu_ras_feature_enable(adev, ras_if, 0);
1809 		kfree(ras_if);
1810 	}
1811 
1812 	for (i = 0; i < adev->sdma.num_instances; i++) {
1813 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1814 		if (adev->sdma.has_page_queue)
1815 			amdgpu_ring_fini(&adev->sdma.instance[i].page);
1816 	}
1817 
1818 	for (i = 0; i < adev->sdma.num_instances; i++) {
1819 		release_firmware(adev->sdma.instance[i].fw);
1820 		adev->sdma.instance[i].fw = NULL;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static int sdma_v4_0_hw_init(void *handle)
1827 {
1828 	int r;
1829 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1830 
1831 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1832 			adev->powerplay.pp_funcs->set_powergating_by_smu)
1833 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1834 
1835 	sdma_v4_0_init_golden_registers(adev);
1836 
1837 	r = sdma_v4_0_start(adev);
1838 
1839 	return r;
1840 }
1841 
1842 static int sdma_v4_0_hw_fini(void *handle)
1843 {
1844 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1845 	int i;
1846 
1847 	if (amdgpu_sriov_vf(adev))
1848 		return 0;
1849 
1850 	for (i = 0; i < adev->sdma.num_instances; i++) {
1851 		amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1852 			       AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1853 	}
1854 
1855 	sdma_v4_0_ctx_switch_enable(adev, false);
1856 	sdma_v4_0_enable(adev, false);
1857 
1858 	if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1859 			&& adev->powerplay.pp_funcs->set_powergating_by_smu)
1860 		amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1861 
1862 	return 0;
1863 }
1864 
1865 static int sdma_v4_0_suspend(void *handle)
1866 {
1867 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1868 
1869 	return sdma_v4_0_hw_fini(adev);
1870 }
1871 
1872 static int sdma_v4_0_resume(void *handle)
1873 {
1874 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1875 
1876 	return sdma_v4_0_hw_init(adev);
1877 }
1878 
1879 static bool sdma_v4_0_is_idle(void *handle)
1880 {
1881 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1882 	u32 i;
1883 
1884 	for (i = 0; i < adev->sdma.num_instances; i++) {
1885 		u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1886 
1887 		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1888 			return false;
1889 	}
1890 
1891 	return true;
1892 }
1893 
1894 static int sdma_v4_0_wait_for_idle(void *handle)
1895 {
1896 	unsigned i, j;
1897 	u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1898 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899 
1900 	for (i = 0; i < adev->usec_timeout; i++) {
1901 		for (j = 0; j < adev->sdma.num_instances; j++) {
1902 			sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1903 			if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1904 				break;
1905 		}
1906 		if (j == adev->sdma.num_instances)
1907 			return 0;
1908 		udelay(1);
1909 	}
1910 	return -ETIMEDOUT;
1911 }
1912 
1913 static int sdma_v4_0_soft_reset(void *handle)
1914 {
1915 	/* todo */
1916 
1917 	return 0;
1918 }
1919 
1920 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1921 					struct amdgpu_irq_src *source,
1922 					unsigned type,
1923 					enum amdgpu_interrupt_state state)
1924 {
1925 	u32 sdma_cntl;
1926 
1927 	sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
1928 	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1929 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1930 	WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
1931 
1932 	return 0;
1933 }
1934 
1935 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1936 				      struct amdgpu_irq_src *source,
1937 				      struct amdgpu_iv_entry *entry)
1938 {
1939 	uint32_t instance;
1940 
1941 	DRM_DEBUG("IH: SDMA trap\n");
1942 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
1943 	switch (entry->ring_id) {
1944 	case 0:
1945 		amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1946 		break;
1947 	case 1:
1948 		if (adev->asic_type == CHIP_VEGA20)
1949 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1950 		break;
1951 	case 2:
1952 		/* XXX compute */
1953 		break;
1954 	case 3:
1955 		if (adev->asic_type != CHIP_VEGA20)
1956 			amdgpu_fence_process(&adev->sdma.instance[instance].page);
1957 		break;
1958 	}
1959 	return 0;
1960 }
1961 
1962 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1963 		struct amdgpu_iv_entry *entry)
1964 {
1965 	uint32_t instance, err_source;
1966 
1967 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
1968 	if (instance < 0)
1969 		return 0;
1970 
1971 	switch (entry->src_id) {
1972 	case SDMA0_4_0__SRCID__SDMA_SRAM_ECC:
1973 		err_source = 0;
1974 		break;
1975 	case SDMA0_4_0__SRCID__SDMA_ECC:
1976 		err_source = 1;
1977 		break;
1978 	default:
1979 		return 0;
1980 	}
1981 
1982 	kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1983 
1984 	amdgpu_ras_reset_gpu(adev, 0);
1985 
1986 	return AMDGPU_RAS_UE;
1987 }
1988 
1989 static int sdma_v4_0_process_ecc_irq(struct amdgpu_device *adev,
1990 				      struct amdgpu_irq_src *source,
1991 				      struct amdgpu_iv_entry *entry)
1992 {
1993 	struct ras_common_if *ras_if = adev->sdma.ras_if;
1994 	struct ras_dispatch_if ih_data = {
1995 		.entry = entry,
1996 	};
1997 
1998 	if (!ras_if)
1999 		return 0;
2000 
2001 	ih_data.head = *ras_if;
2002 
2003 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
2004 	return 0;
2005 }
2006 
2007 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2008 					      struct amdgpu_irq_src *source,
2009 					      struct amdgpu_iv_entry *entry)
2010 {
2011 	int instance;
2012 
2013 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
2014 
2015 	instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2016 	if (instance < 0)
2017 		return 0;
2018 
2019 	switch (entry->ring_id) {
2020 	case 0:
2021 		drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2022 		break;
2023 	}
2024 	return 0;
2025 }
2026 
2027 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2028 					struct amdgpu_irq_src *source,
2029 					unsigned type,
2030 					enum amdgpu_interrupt_state state)
2031 {
2032 	u32 sdma_edc_config;
2033 
2034 	sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2035 	sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2036 		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2037 	WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2038 
2039 	return 0;
2040 }
2041 
2042 static void sdma_v4_0_update_medium_grain_clock_gating(
2043 		struct amdgpu_device *adev,
2044 		bool enable)
2045 {
2046 	uint32_t data, def;
2047 
2048 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2049 		/* enable sdma0 clock gating */
2050 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2051 		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2052 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2053 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2054 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2055 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2056 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2057 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2058 			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2059 		if (def != data)
2060 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
2061 
2062 		if (adev->sdma.num_instances > 1) {
2063 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
2064 			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2065 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2066 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2067 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2068 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2069 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2070 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2071 				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2072 			if (def != data)
2073 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2074 		}
2075 	} else {
2076 		/* disable sdma0 clock gating */
2077 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2078 		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2079 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2080 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2081 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2082 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2083 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2084 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2085 			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2086 
2087 		if (def != data)
2088 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
2089 
2090 		if (adev->sdma.num_instances > 1) {
2091 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
2092 			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2093 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2094 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2095 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2096 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2097 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2098 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2099 				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2100 			if (def != data)
2101 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
2102 		}
2103 	}
2104 }
2105 
2106 
2107 static void sdma_v4_0_update_medium_grain_light_sleep(
2108 		struct amdgpu_device *adev,
2109 		bool enable)
2110 {
2111 	uint32_t data, def;
2112 
2113 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2114 		/* 1-not override: enable sdma0 mem light sleep */
2115 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2116 		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2117 		if (def != data)
2118 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2119 
2120 		/* 1-not override: enable sdma1 mem light sleep */
2121 		if (adev->sdma.num_instances > 1) {
2122 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2123 			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2124 			if (def != data)
2125 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2126 		}
2127 	} else {
2128 		/* 0-override:disable sdma0 mem light sleep */
2129 		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2130 		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2131 		if (def != data)
2132 			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
2133 
2134 		/* 0-override:disable sdma1 mem light sleep */
2135 		if (adev->sdma.num_instances > 1) {
2136 			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
2137 			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2138 			if (def != data)
2139 				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
2140 		}
2141 	}
2142 }
2143 
2144 static int sdma_v4_0_set_clockgating_state(void *handle,
2145 					  enum amd_clockgating_state state)
2146 {
2147 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2148 
2149 	if (amdgpu_sriov_vf(adev))
2150 		return 0;
2151 
2152 	switch (adev->asic_type) {
2153 	case CHIP_VEGA10:
2154 	case CHIP_VEGA12:
2155 	case CHIP_VEGA20:
2156 	case CHIP_RAVEN:
2157 		sdma_v4_0_update_medium_grain_clock_gating(adev,
2158 				state == AMD_CG_STATE_GATE ? true : false);
2159 		sdma_v4_0_update_medium_grain_light_sleep(adev,
2160 				state == AMD_CG_STATE_GATE ? true : false);
2161 		break;
2162 	default:
2163 		break;
2164 	}
2165 	return 0;
2166 }
2167 
2168 static int sdma_v4_0_set_powergating_state(void *handle,
2169 					  enum amd_powergating_state state)
2170 {
2171 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2172 
2173 	switch (adev->asic_type) {
2174 	case CHIP_RAVEN:
2175 		sdma_v4_1_update_power_gating(adev,
2176 				state == AMD_PG_STATE_GATE ? true : false);
2177 		break;
2178 	default:
2179 		break;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2186 {
2187 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2188 	int data;
2189 
2190 	if (amdgpu_sriov_vf(adev))
2191 		*flags = 0;
2192 
2193 	/* AMD_CG_SUPPORT_SDMA_MGCG */
2194 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2195 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2196 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2197 
2198 	/* AMD_CG_SUPPORT_SDMA_LS */
2199 	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2200 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2201 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
2202 }
2203 
2204 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2205 	.name = "sdma_v4_0",
2206 	.early_init = sdma_v4_0_early_init,
2207 	.late_init = sdma_v4_0_late_init,
2208 	.sw_init = sdma_v4_0_sw_init,
2209 	.sw_fini = sdma_v4_0_sw_fini,
2210 	.hw_init = sdma_v4_0_hw_init,
2211 	.hw_fini = sdma_v4_0_hw_fini,
2212 	.suspend = sdma_v4_0_suspend,
2213 	.resume = sdma_v4_0_resume,
2214 	.is_idle = sdma_v4_0_is_idle,
2215 	.wait_for_idle = sdma_v4_0_wait_for_idle,
2216 	.soft_reset = sdma_v4_0_soft_reset,
2217 	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
2218 	.set_powergating_state = sdma_v4_0_set_powergating_state,
2219 	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
2220 };
2221 
2222 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2223 	.type = AMDGPU_RING_TYPE_SDMA,
2224 	.align_mask = 0xf,
2225 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2226 	.support_64bit_ptrs = true,
2227 	.vmhub = AMDGPU_MMHUB_0,
2228 	.get_rptr = sdma_v4_0_ring_get_rptr,
2229 	.get_wptr = sdma_v4_0_ring_get_wptr,
2230 	.set_wptr = sdma_v4_0_ring_set_wptr,
2231 	.emit_frame_size =
2232 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2233 		3 + /* hdp invalidate */
2234 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2235 		/* sdma_v4_0_ring_emit_vm_flush */
2236 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2237 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2238 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2239 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2240 	.emit_ib = sdma_v4_0_ring_emit_ib,
2241 	.emit_fence = sdma_v4_0_ring_emit_fence,
2242 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2243 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2244 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2245 	.test_ring = sdma_v4_0_ring_test_ring,
2246 	.test_ib = sdma_v4_0_ring_test_ib,
2247 	.insert_nop = sdma_v4_0_ring_insert_nop,
2248 	.pad_ib = sdma_v4_0_ring_pad_ib,
2249 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2250 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2251 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2252 };
2253 
2254 /*
2255  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2256  * So create a individual constant ring_funcs for those instances.
2257  */
2258 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2259 	.type = AMDGPU_RING_TYPE_SDMA,
2260 	.align_mask = 0xf,
2261 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2262 	.support_64bit_ptrs = true,
2263 	.vmhub = AMDGPU_MMHUB_1,
2264 	.get_rptr = sdma_v4_0_ring_get_rptr,
2265 	.get_wptr = sdma_v4_0_ring_get_wptr,
2266 	.set_wptr = sdma_v4_0_ring_set_wptr,
2267 	.emit_frame_size =
2268 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2269 		3 + /* hdp invalidate */
2270 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2271 		/* sdma_v4_0_ring_emit_vm_flush */
2272 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2273 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2274 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2275 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2276 	.emit_ib = sdma_v4_0_ring_emit_ib,
2277 	.emit_fence = sdma_v4_0_ring_emit_fence,
2278 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2279 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2280 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2281 	.test_ring = sdma_v4_0_ring_test_ring,
2282 	.test_ib = sdma_v4_0_ring_test_ib,
2283 	.insert_nop = sdma_v4_0_ring_insert_nop,
2284 	.pad_ib = sdma_v4_0_ring_pad_ib,
2285 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2286 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2287 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2288 };
2289 
2290 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2291 	.type = AMDGPU_RING_TYPE_SDMA,
2292 	.align_mask = 0xf,
2293 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2294 	.support_64bit_ptrs = true,
2295 	.vmhub = AMDGPU_MMHUB_0,
2296 	.get_rptr = sdma_v4_0_ring_get_rptr,
2297 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2298 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2299 	.emit_frame_size =
2300 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2301 		3 + /* hdp invalidate */
2302 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2303 		/* sdma_v4_0_ring_emit_vm_flush */
2304 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2305 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2306 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2307 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2308 	.emit_ib = sdma_v4_0_ring_emit_ib,
2309 	.emit_fence = sdma_v4_0_ring_emit_fence,
2310 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2311 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2312 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2313 	.test_ring = sdma_v4_0_ring_test_ring,
2314 	.test_ib = sdma_v4_0_ring_test_ib,
2315 	.insert_nop = sdma_v4_0_ring_insert_nop,
2316 	.pad_ib = sdma_v4_0_ring_pad_ib,
2317 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2318 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2319 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2320 };
2321 
2322 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2323 	.type = AMDGPU_RING_TYPE_SDMA,
2324 	.align_mask = 0xf,
2325 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2326 	.support_64bit_ptrs = true,
2327 	.vmhub = AMDGPU_MMHUB_1,
2328 	.get_rptr = sdma_v4_0_ring_get_rptr,
2329 	.get_wptr = sdma_v4_0_page_ring_get_wptr,
2330 	.set_wptr = sdma_v4_0_page_ring_set_wptr,
2331 	.emit_frame_size =
2332 		6 + /* sdma_v4_0_ring_emit_hdp_flush */
2333 		3 + /* hdp invalidate */
2334 		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2335 		/* sdma_v4_0_ring_emit_vm_flush */
2336 		SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2337 		SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2338 		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2339 	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2340 	.emit_ib = sdma_v4_0_ring_emit_ib,
2341 	.emit_fence = sdma_v4_0_ring_emit_fence,
2342 	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2343 	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2344 	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2345 	.test_ring = sdma_v4_0_ring_test_ring,
2346 	.test_ib = sdma_v4_0_ring_test_ib,
2347 	.insert_nop = sdma_v4_0_ring_insert_nop,
2348 	.pad_ib = sdma_v4_0_ring_pad_ib,
2349 	.emit_wreg = sdma_v4_0_ring_emit_wreg,
2350 	.emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2351 	.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2352 };
2353 
2354 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2355 {
2356 	int i;
2357 
2358 	for (i = 0; i < adev->sdma.num_instances; i++) {
2359 		if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2360 			adev->sdma.instance[i].ring.funcs =
2361 					&sdma_v4_0_ring_funcs_2nd_mmhub;
2362 		else
2363 			adev->sdma.instance[i].ring.funcs =
2364 					&sdma_v4_0_ring_funcs;
2365 		adev->sdma.instance[i].ring.me = i;
2366 		if (adev->sdma.has_page_queue) {
2367 			if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2368 				adev->sdma.instance[i].page.funcs =
2369 					&sdma_v4_0_page_ring_funcs_2nd_mmhub;
2370 			else
2371 				adev->sdma.instance[i].page.funcs =
2372 					&sdma_v4_0_page_ring_funcs;
2373 			adev->sdma.instance[i].page.me = i;
2374 		}
2375 	}
2376 }
2377 
2378 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2379 	.set = sdma_v4_0_set_trap_irq_state,
2380 	.process = sdma_v4_0_process_trap_irq,
2381 };
2382 
2383 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2384 	.process = sdma_v4_0_process_illegal_inst_irq,
2385 };
2386 
2387 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2388 	.set = sdma_v4_0_set_ecc_irq_state,
2389 	.process = sdma_v4_0_process_ecc_irq,
2390 };
2391 
2392 
2393 
2394 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2395 {
2396 	switch (adev->sdma.num_instances) {
2397 	case 1:
2398 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2399 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2400 		break;
2401 	case 8:
2402 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2403 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2404 		break;
2405 	case 2:
2406 	default:
2407 		adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2408 		adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2409 		break;
2410 	}
2411 	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2412 	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2413 	adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2414 }
2415 
2416 /**
2417  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2418  *
2419  * @ring: amdgpu_ring structure holding ring information
2420  * @src_offset: src GPU address
2421  * @dst_offset: dst GPU address
2422  * @byte_count: number of bytes to xfer
2423  *
2424  * Copy GPU buffers using the DMA engine (VEGA10/12).
2425  * Used by the amdgpu ttm implementation to move pages if
2426  * registered as the asic copy callback.
2427  */
2428 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2429 				       uint64_t src_offset,
2430 				       uint64_t dst_offset,
2431 				       uint32_t byte_count)
2432 {
2433 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2434 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2435 	ib->ptr[ib->length_dw++] = byte_count - 1;
2436 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2437 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2438 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2439 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2440 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2441 }
2442 
2443 /**
2444  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2445  *
2446  * @ring: amdgpu_ring structure holding ring information
2447  * @src_data: value to write to buffer
2448  * @dst_offset: dst GPU address
2449  * @byte_count: number of bytes to xfer
2450  *
2451  * Fill GPU buffers using the DMA engine (VEGA10/12).
2452  */
2453 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2454 				       uint32_t src_data,
2455 				       uint64_t dst_offset,
2456 				       uint32_t byte_count)
2457 {
2458 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2459 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2460 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2461 	ib->ptr[ib->length_dw++] = src_data;
2462 	ib->ptr[ib->length_dw++] = byte_count - 1;
2463 }
2464 
2465 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2466 	.copy_max_bytes = 0x400000,
2467 	.copy_num_dw = 7,
2468 	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2469 
2470 	.fill_max_bytes = 0x400000,
2471 	.fill_num_dw = 5,
2472 	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2473 };
2474 
2475 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2476 {
2477 	adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2478 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1)
2479 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[1].page;
2480 	else
2481 		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2482 }
2483 
2484 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2485 	.copy_pte_num_dw = 7,
2486 	.copy_pte = sdma_v4_0_vm_copy_pte,
2487 
2488 	.write_pte = sdma_v4_0_vm_write_pte,
2489 	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2490 };
2491 
2492 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2493 {
2494 	struct drm_gpu_scheduler *sched;
2495 	unsigned i;
2496 
2497 	adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2498 	if (adev->sdma.has_page_queue && adev->sdma.num_instances > 1) {
2499 		for (i = 1; i < adev->sdma.num_instances; i++) {
2500 			sched = &adev->sdma.instance[i].page.sched;
2501 			adev->vm_manager.vm_pte_rqs[i - 1] =
2502 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2503 		}
2504 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances - 1;
2505 		adev->vm_manager.page_fault = &adev->sdma.instance[0].page;
2506 	} else {
2507 		for (i = 0; i < adev->sdma.num_instances; i++) {
2508 			sched = &adev->sdma.instance[i].ring.sched;
2509 			adev->vm_manager.vm_pte_rqs[i] =
2510 				&sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2511 		}
2512 		adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2513 	}
2514 }
2515 
2516 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2517 	.type = AMD_IP_BLOCK_TYPE_SDMA,
2518 	.major = 4,
2519 	.minor = 0,
2520 	.rev = 0,
2521 	.funcs = &sdma_v4_0_ip_funcs,
2522 };
2523